Sample records for highly resolved stable

  1. Unsteady Transonic Flow Past Airfoils in Rigid Body Motion.

    DTIC Science & Technology

    1981-03-01

    coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the highly non- linear transonic effects for flutter...Numerical experiments show that the scheme is very stable and is able to resolve the highly nonlinear transonic effects for flutter analysis within...of attack, the angle between the flight direction and the airfoil chord. The effect of chanqinthe angle of attack of a conventional symmetric airfoil

  2. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics.

    PubMed

    Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan

    2014-01-01

    Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.

  3. Structure of high-index GaAs surfaces - the discovery of the stable GaAs(2511) surface

    NASA Astrophysics Data System (ADS)

    Jacobi, K.; Geelhaar, L.; Márquez, J.

    We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( {1} {1} {3})B(8 ×1), (114)Aα2(2×1), (137), (3715), and (2511) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs(2511) surface.

  4. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma

    PubMed Central

    Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid

    2011-01-01

    Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614

  5. Stable isotope resolved metabolomics reveals the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes

    USDA-ARS?s Scientific Manuscript database

    Using stable isotope resolved metabolomics (SIRM), we characterized the role of anabolic (de novo synthesis) vs catabolic (protein catalysis) processes contributing to free amino acid pools in glyphosate susceptible (S) and resistant (R) Amaranthus palmeri biotypes. Following exposure to glyphosate ...

  6. Highly Stable Lyophilized Homogeneous Bead-Based Immunoassays for On-Site Detection of Bio Warfare Agents from Complex Matrices.

    PubMed

    Mechaly, Adva; Marx, Sharon; Levy, Orly; Yitzhaki, Shmuel; Fisher, Morly

    2016-06-21

    This study shows the development of dry, highly stable immunoassays for the detection of bio warfare agents in complex matrices. Thermal stability was achieved by the lyophilization of the complete, homogeneous, bead-based immunoassay in a special stabilizing buffer, resulting in a ready-to-use, simple assay, which exhibited long shelf and high-temperature endurance (up to 1 week at 100 °C). The developed methodology was successfully implemented for the preservation of time-resolved fluorescence, Alexa-fluorophores, and horse radish peroxidase-based bead assays, enabling multiplexed detection. The multiplexed assay was successfully implemented for the detection of Bacillus anthracis, botulinum B, and tularemia in complex matrices.

  7. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  8. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  9. High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500

    PubMed Central

    Shvartsburg, Alexandre A.; Seim, Tom A.; Danielson, William F.; Norheim, Randy; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.

    2013-01-01

    As the resolution of analytical methods improves, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~ 400 – 500 is achievable using He/N2 or H2/N2 gas mixtures. PMID:23345059

  10. High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Seim, Thomas A.; Danielson, William F.

    2013-01-20

    As the resolution of analytical methods improve, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~more » 400 - 500 is achievable using He/N2 or H2/N2 gas mixtures.« less

  11. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1990-01-01

    The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).

  12. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  13. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX.

    PubMed

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  14. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  15. Preparation, purification and analyses of thirteen alkali-stable dinucleotides from ribonucleic acid

    PubMed Central

    Trim, A. R.; Parker, Janet E.

    1970-01-01

    Of the 16 alkali-stable dinucleotides known to be obtained by hydrolysis of commercial yeast RNA with alkali, 13 were prepared in quantities of the order of 10mg or more. The samples, with only one exception, contain at least 90% of dinucleotide, and spectroscopic constants and nucleotide-sequence determinations, although not conclusive, indicate a high degree of purity of these products. The small dinucleotide fraction in 150g of RNA hydrolysed with alkali (1–2% of the total nucleotides) was separated from the mononucleotides by stepwise ion-exchange chromatography on DEAE-cellulose columns and resolved into seven fractions containing from one to four different dinucleotides by electrophoresis on paper at pH3.0. These fractions were resolved into their constituent dinucleotides by chromatography in ammonium sulphate. Contamination of the products by impurities from the paper was minimized by washing it before using it for chromatography or electrophoresis and, by using a thick grade of paper (Whatman no. 17), it was possible to handle and purify relatively large quantities of nucleotides. PMID:5435489

  16. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    PubMed Central

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  17. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stranak, Vitezslav; University of South Bohemia, Institute of Physics and Biophysics, Branisovska 31, 370 05 Ceske Budejovice; Herrendorf, Ann-Pierra

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a highmore » concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.« less

  18. Integration of stable isotope and trace contaminant concentration for enhanced forensic acetone discrimination.

    PubMed

    Moran, James J; Ehrhardt, Christopher J; Wahl, Jon H; Kreuzer, Helen W; Wahl, Karen L

    2013-11-15

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 8 acetone samples, while the remaining 13 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer and might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  20. Ferroelectric Domain Studies of Patterned (001) BiFeO 3 by Angle-Resolved Piezoresponse Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh

    We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less

  1. Ferroelectric Domain Studies of Patterned (001) BiFeO 3 by Angle-Resolved Piezoresponse Force Microscopy

    DOE PAGES

    Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh; ...

    2018-01-09

    We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less

  2. High-Density Stretchable Electrode Grids for Chronic Neural Recording

    PubMed Central

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János

    2018-01-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263

  3. AGGREGATING FOOD SOURCES IN STABLE ISOTOPE DIETARY STUDIES: LUMP IT OR LEAVE IT?

    EPA Science Inventory

    A common situation when stable isotope mixing models are used to estimate food source dietary contributions is that there are too many sources to allow a unique solution. To resolve this problem one option is to combine sources with similar signatures such that the number of sou...

  4. SOURCE AGGREGATION IN STABLE ISOTOPE MIXING MODELS: LUMP IT OR LEAVE IT?

    EPA Science Inventory

    A common situation when stable isotope mixing models are used to estimate source contributions to a mixture is that there are too many sources to allow a unique solution. To resolve this problem one option is to combine sources with similar signatures such that the number of sou...

  5. A computationally efficient scheme for the non-linear diffusion equation

    NASA Astrophysics Data System (ADS)

    Termonia, P.; Van de Vyver, H.

    2009-04-01

    This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.

  6. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM).

    PubMed

    Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M

    2017-07-11

    Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have applied this method to profile amino acids and their labeling patterns in 13 C and 2 H doubly labeled PC9 cell extracts, cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13 C 6 -glucose (Glc). The multi-element isotopologue distributions provided key insights into amino acid metabolism and intracellular pools in human lung cancer tissues in high detail. The 13 C labeling of Asp and Glu revealed de novo synthesis of these amino acids from 13 C 6 -Glc via the Krebs cycle, specifically the elevated level of 13 C 3 -labeled Asp and Glu in cancerous versus non-cancerous lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of double tracers, ( 13 C 6 -Glc +  2 H 2 -Gly or 13 C 6 -Glc +  2 H 3 -Ser) in PC9 cells clearly resolved pools of Ser and Gly synthesized de novo from 13 C 6 -Glc ( 13 C 3 -Ser and 13 C 2 -Gly) versus Ser and Gly derived from external sources ( 2 H 3 -Ser, 2 H 2 -Gly). Moreover the complex 2 H labeling patterns of the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic pathway in PC9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections.

    PubMed

    Trojan, Michael; Rengier, Fabian; Kotelis, Drosos; Müller-Eschner, Matthias; Partovi, Sasan; Fink, Christian; Karmonik, Christof; Böckler, Dittmar; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik

    2017-01-01

    To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group ( p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper ( p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group ( p = 0.01). 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Ehrhardt, Christopher J.; Wahl, Jon H.

    We analyzed 21 neat acetone samples from 15 different suppliers to demonstrate the utility of a coupled stable isotope and trace contaminant strategy for distinguishing forensically-relevant samples. By combining these two pieces of orthogonal data we could discriminate all of the acetones that were produced by the 15 different suppliers. Using stable isotope ratios alone, we were able to distinguish 9 acetone samples, while the remaining 12 fell into four clusters with highly similar signatures. Adding trace chemical contaminant information enhanced discrimination to 13 individual acetones with three residual clusters. The acetones within each cluster shared a common manufacturer andmore » might, therefore, not be expected to be resolved. The data presented here demonstrates the power of combining orthogonal data sets to enhance sample fingerprinting and highlights the role disparate data could play in future forensic investigations.« less

  9. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  10. Rotationally resolved fluorescence spectroscopy of molecular iodine

    NASA Astrophysics Data System (ADS)

    Lemon, Christopher; Canagaratna, Sebastian; Gray, Jeffrey

    2008-03-01

    Vibration-electronic spectroscopy of I2 vapor is a common, important experiment in physical chemistry lab courses. We use narrow bandwidth diode-pumped solid state (DPSS) lasers to excite specific rotational levels; these lasers are surprisingly stable and are now available at low cost. We also use efficient miniature fiber-optic spectrometers to resolve rotational fluorescence patterns in a vibrational progression. The resolution enables thorough and accurate analysis of spectroscopic constants for the ground electronic state. The high signal-to-noise ratio, which is easily achieved, also enables students to precisely measure fluorescence band intensities, providing further insight into vibrational wavefunctions and the molecular potential function. We will provide a detailed list of parts for the apparatus as well as modeling algorithms with statistical evaluation to facilitate widespread adoption of these experimental improvements by instructors of intermediate and advanced lab courses.

  11. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  12. Tolerant indirect reciprocity can boost social welfare through solidarity with unconditional cooperators in private monitoring.

    PubMed

    Okada, Isamu; Sasaki, Tatsuya; Nakai, Yutaka

    2017-08-29

    Indirect reciprocity is an important mechanism for resolving social dilemmas. Previous studies explore several types of assessment rules that are evolutionarily stable for keeping cooperation regimes. However, little is known about the effects of private information on social systems. Most indirect reciprocity studies assume public monitoring in which individuals share a single assessment for each individual. Here, we consider a private monitoring system that loosens such an unnatural assumption. We explore the stable norms in the private system using an individual-based simulation. We have three main findings. First, narrow and unstable cooperation: cooperation in private monitoring becomes unstable and the restricted norms cannot maintain cooperative regimes while they can in public monitoring. Second, stable coexistence of discriminators and unconditional cooperators: under private monitoring, unconditional cooperation can play a role in keeping a high level of cooperation in tolerant norm situations. Finally, Pareto improvement: private monitoring can achieve a higher cooperation rate than does public monitoring.

  13. Stable isotope-resolved metabolomics and applications for drug development

    PubMed Central

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  14. Time-resolved monitoring of cavitation activity in megasonic cleaning systems.

    PubMed

    Hauptmann, M; Brems, S; Struyf, H; Mertens, P; Heyns, M; De Gendt, S; Glorieux, C

    2012-03-01

    The occurrence of acoustic cavitation in the cleaning liquid is a crucial precondition for the performance of megasonic cleaning systems. Hence, a fundamental understanding of the impact of different parameters of the megasonic process on cavitation activity is necessary. A setup capable of synchronously measuring sonoluminescence and acoustic emission originating from acoustically active bubbles is presented. The system also includes a high-speed-stroboscopic Schlieren imaging system to directly visualize the influence of cavitation activity on the Schlieren contrast and resolvable bubbles. This allows a thorough characterization of the mutual interaction of cavitation bubbles with the sound field and with each other. Results obtained during continuous sonication of argon-saturated water at various nominal power densities indicate that acoustic cavitation occurs in a cyclic manner, during which periods of stable and inertial cavitation activity alternate. The occurrence of higher and ultraharmonics in the acoustic emission spectra is characteristic for the stable cavitation state. The inertial cavitation state is characterized by a strong attenuation of the sound field, the explosive growth of bubbles and the occurrence of broadband components in the acoustic spectra. Both states can only be sustained at sufficiently high intensities of the sound field. At lower intensities, their occurrences are limited to short, random bursts. Cleaning activity can be linked to the cavitation activity through the measurement of particle removal on standard 200 mm silicon wafers. It is found that the particle removal efficiency is reduced, when a continuous state of cavitation activity ceases to exist.

  15. Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Michailovich, O.; Rathi, Y.

    2014-03-01

    High angular resolution diffusion imaging (HARDI) improves upon more traditional diffusion tensor imaging (DTI) in its ability to resolve the orientations of crossing and branching neural fibre tracts. The HARDI signals are measured over a spherical shell in q-space, and are usually used as an input to q-ball imaging (QBI) which allows estimation of the diffusion orientation distribution functions (ODFs) associated with a given region-of interest. Unfortunately, the partial nature of single-shell sampling imposes limits on the estimation accuracy. As a result, the recovered ODFs may not possess sufficient resolution to reveal the orientations of fibre tracts which cross each other at acute angles. A possible solution to the problem of limited resolution of QBI is provided by means of spherical deconvolution, a particular instance of which is sparse deconvolution. However, while capable of yielding high-resolution reconstructions over spacial locations corresponding to white matter, such methods tend to become unstable when applied to anatomical regions with a substantial content of isotropic diffusion. To resolve this problem, a new deconvolution approach is proposed in this paper. Apart from being uniformly stable across the whole brain, the proposed method allows one to quantify the isotropic component of cerebral diffusion, which is known to be a useful diagnostic measure by itself.

  16. Optimal integrated abundances for chemical tagging of extragalactic globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim; Shetrone, Matthew; Dotter, Aaron; Mackey, Dougal

    2014-09-01

    High-resolution integrated light (IL) spectroscopy provides detailed abundances of distant globular clusters whose stars cannot be resolved. Abundance comparisons with other systems (e.g. for chemical tagging) require understanding the systematic offsets that can occur between clusters, such as those due to uncertainties in the underlying stellar population. This paper analyses high-resolution IL spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 to (1) quantify potential systematic uncertainties in Fe, Ca, Ti, Ni, Ba, and Eu and (2) identify the most stable abundance ratios that will be useful in future analyses of unresolved targets. When stellar populations are well modelled, uncertainties are ˜0.1-0.2 dex based on sensitivities to the atmospheric parameters alone; in the worst-case scenarios, uncertainties can rise to 0.2-0.4 dex. The [Ca I/Fe I] ratio is identified as the optimal integrated [α/Fe] indicator (with offsets ≲ 0.1 dex), while [Ni I/Fe I] is also extremely stable to within ≲ 0.1 dex. The [Ba II/Eu II] ratios are also stable when the underlying populations are well modelled and may also be useful for chemical tagging.

  17. Investigating mechanically induced phase response of the tissue by using high-speed phase-resolved optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Hendon, Christine P.

    2017-02-01

    Phase-resolved optical coherence tomography (OCT), a functional extension of OCT, provides depth-resolved phase information with extra contrast. In cardiology, changes in the mechanical properties have been associated with tissue remodeling and disease progression. Here we present the capability of profiling structural deformation of the sample in vivo by using a highly stable swept source OCT system The system, operating at 1300 nm, has an A-line acquisition rate of 200 kHz. We measured the phase noise floor to be 6.5 pm±3.2 pm by placing a cover slip in the sample arm, while blocking the reference arm. We then conducted a vibrational frequency test by measuring the phase response from a polymer membrane stimulated by a pure tone acoustic wave from 10 kHz to 80 kHz. The measured frequency response agreed with the known stimulation frequency with an error < 0.005%. We further measured the phase response of 7 fresh swine hearts obtained from Green Village Packing Company through a mechanical stretching test, within 24 hours of sacrifice. The heart tissue was cut into a 1 mm slices and fixed on two motorized stages. We acquired 100,000 consecutive M-scans, while the sample is stretched at a constant velocity of 10 um/s. The depth-resolved phase image presents linear phase response over time at each depth, but the slope varies among tissue types. Our future work includes refining our experiment protocol to quantitatively measured the elastic modulus of the tissue in vivo and building a tissue classifier based on depth-resolved phase information.

  18. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    PubMed

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections

    PubMed Central

    Trojan, Michael; Kotelis, Drosos; Müller-Eschner, Matthias; Partovi, Sasan; Fink, Christian; Karmonik, Christof; Böckler, Dittmar; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik

    2017-01-01

    Objective To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. Results For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p = 0.027 and p = 0.003), and upward and downward slopes of time-intensity curves were significantly steeper (p = 0.015 and p = 0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p = 0.01). Conclusions 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections. PMID:29317855

  20. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  1. Disentangling the surface and bulk electronic structures of LaOFeAs

    DOE PAGES

    Zhang, P.; Ma, J.; Qian, T.; ...

    2016-09-20

    We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.

  2. Trends in North Pacific Ocean-Atmosphere Variability During the Common Era Inferred From a New Mt. Hunter (Denali, Alaska) 1200-Year Ice Core Stable Isotope Record

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Osterberg, E. C.; Winski, D.; Wake, C. P.; Campbell, S. W.; Introne, D.; Ferris, D. G.

    2016-12-01

    The mechanisms and outcomes of teleconnections between the tropical and North Pacific regions over the past 2000 years remain elusive. Correctly assessing the impact on the Aluetian Low, storm tracks, and general hydroclimate during the Medieval Climate Anomaly (MCA), transition to the Little Ice Age (LIA), and then into the 20th century likely requires a suite of high resolution paleoclimate data from the region. Here we present an ice core stable water isotope developed from two surface to bedrock ice cores recovered in 2013 from the high elevation Mt. Hunter plateau in Denali National Park, Alaska. The cores were processed using a continuous flow analysis (CFA) system, and dated using a combination of annual chemical and dust signals, and radioactive and volcanic horizons. The resulting annually-resolved timescale currently spans 2013-810AD. We analyzed 6000 stable water isotope samples for d18O, dD, and the derived deuterium excess (dxs) parameter, yielding a subannually resolved isotope record from 2013-1234AD, and 1-3 year resolution from 1233-810AD. We initially focus on the dxs record, as there are trends in the data that correspond to the large scale climate features of the Common Era. The dxs record shows decreased values during the MCA and a rise into the LIA, consistent with several other regional paleoclimate records. The most obvious feature of the dxs record is a pronounced decrease beginning in the mid 19th century and continuing to present. We note that this trend mirrors a rise in snow accumulation rate in the Denali ice core record, suggesting coherent changes in North Pacific climate dynamics over the past 150 years. Understanding the dxs record in terms of ocean source region temperature and/or relative humidity remains a challenge, and we discuss progress on interpreting the Denali isotope record and fitting these data into a broader paleoclimate context.

  3. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  4. Evolution of Temperature and Carbon Storage Within the Deep Southeast Atlantic Ocean Across the Last Glacial/Interglacial Cycle Inferred from a Highly-Resolved Sedimentary Depth Transect

    NASA Astrophysics Data System (ADS)

    Foreman, A. D.; Charles, C. D.; Rae, J. W. B.; Adkins, J. F.; Slowey, N. C.

    2015-12-01

    Many models show that the relative intensity of stratification is a primary variable governing the sequestration and release of carbon from the ocean over ice ages. The wide-scale observations necessary to test these model-derived hypotheses are not yet sufficient, but sedimentary depth transects represent a promising approach for making progress. Here we present paired stable isotopic (d18O, d13C) and trace metal data (Mg/Ca, B/Ca) from benthic foraminifera collected from a highly vertically-resolved depth transect from the mid-depth and deep SE Atlantic. These observations, which cover Marine Isotope Stages 5e, 5d, 5a, 4, and the Last Glacial Maximum, document the evolution of glacial conditions from the previous interglacial, and provide detailed observations regarding the magnitude and timing of changes in temperature and salinity within the deep ocean at key time points over the last glacial/interglacial cycle. Furthermore, the comparison between purely 'physical' tracers (i.e. Mg/Ca, d18O) and tracers sensitive to the carbon cycle (i.e. d13C and B/Ca) provides critical insight into the relationship between deep/mid-depth stratification and global carbon dynamics. Notably among our observations, the paired stable isotope and trace metal results strongly suggest that much of the ice-age cooling of deep South Atlantic occurred at the MIS 5e/5d transition, while the onset of salinity stratification in the mid-depth South Atlantic occurred at the MIS 5/4 transition.

  5. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  6. Resolution rate of isolated low-grade hydronephrosis diagnosed within the first year of life

    PubMed Central

    Madden-Fuentes, Ramiro J.; McNamara, Erin R.; Nseyo, Unwanaobong; Wiener, John S.; Routh, Jonathan C.; Ross, Sherry S.

    2015-01-01

    Objective Diagnosis of low-grade hydronephrosis often occurs prenatally, during evaluation after urinary tract infection (UTI), or imaging for non-urologic reasons within the first year of life. Its significance in terms of resolution, need for antibiotic prophylaxis, or progression to surgery remains uncertain. We hypothesized that isolated low-grade hydronephrosis in this population frequently resolves, UTIs are infrequent, and progression to surgical intervention is minimal. Patients and methods Children <12 months old diagnosed hydronephrosis (Society for Fetal Urology [SFU] grade 1 or 2) between January 2004 and December 2009 were identified by ICD9 code. Patients with other urological abnormalities were excluded. Stability of hydronephrosis, UTI (≥100,000 CFU/mL bacterial growth) or need for surgical intervention was noted. Results Of 1496 infants with hydronephrosis, 416 (623 renal units) met inclusion criteria. Of 398 renal units with grade 1 hydronephrosis, 385 (96.7%) resolved or remained stable. Only 13 (3.3%) worsened, of which one underwent ureteroneocystostomy. Of 225 renal units with grade 2 hydro-nephrosis, 222 (98.7%) resolved, improved or remained stable, three (1.3%) worsened, of which one required pyeloplasty. Only 0.7% of patients in the ambulatory setting had a febrile UTI. Conclusions Low-grade hydronephrosis diagnosed within the first year of life remains stable or improves in 97.4% of renal units. Given the low rate of recurrent UTI in the ambulatory setting, antibiotic prophylaxis has a limited role in management. PMID:25185821

  7. Resolution rate of isolated low-grade hydronephrosis diagnosed within the first year of life.

    PubMed

    Madden-Fuentes, Ramiro J; McNamara, Erin R; Nseyo, Unwanaobong; Wiener, John S; Routh, Jonathan C; Ross, Sherry S

    2014-08-01

    Diagnosis of low-grade hydronephrosis often occurs prenatally, during evaluation after urinary tract infection (UTI), or imaging for non-urologic reasons within the first year of life. Its significance in terms of resolution, need for antibiotic prophylaxis, or progression to surgery remains uncertain. We hypothesized that isolated low-grade hydronephrosis in this population frequently resolves, UTIs are infrequent, and progression to surgical intervention is minimal. Children < 12 months old diagnosed hydronephrosis (Society for Fetal Urology [SFU] grade 1 or 2) between January 2004 and December 2009 were identified by ICD9 code. Patients with other urological abnormalities were excluded. Stability of hydronephrosis, UTI (≥ 100,000 CFU/mL bacterial growth) or need for surgical intervention was noted. Of 1496 infants with hydronephrosis, 416 (623 renal units) met inclusion criteria. Of 398 renal units with grade 1 hydronephrosis, 385 (96.7%) resolved or remained stable. Only 13 (3.3%) worsened, of which one underwent ureteroneocystostomy. Of 225 renal units with grade 2 hydronephrosis, 222 (98.7%) resolved, improved or remained stable, three (1.3%) worsened, of which one required pyeloplasty. Only 0.7% of patients in the ambulatory setting had a febrile UTI. Low-grade hydronephrosis diagnosed within the first year of life remains stable or improves in 97.4% of renal units. Given the low rate of recurrent UTI in the ambulatory setting, antibiotic prophylaxis has a limited role in management. Copyright © 2014. Published by Elsevier Ltd.

  8. Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo

    DOE PAGES

    Luo, Ye; Benali, Anouar; Shulenburger, Luke; ...

    2016-11-24

    Titanium dioxide, TiO 2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of applications utilize the naturally existing phases: rutile, anatase and brookite. In spite of the simple form of TiO 2 and its wide uses, there is long- standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We include temperature effects by calculating the Helmholtz free energy includingmore » both internal energy corrected by QMC and vibrational contributions from phonon calculations within the quasi harmonic approximation via density functional perturbation theory. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean- field calculations. Furthermore, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase.« less

  9. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    NASA Astrophysics Data System (ADS)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  10. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface.

    PubMed

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  11. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  12. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  13. Quantum percolation in cuprate high-temperature superconductors

    PubMed Central

    Phillips, J. C.

    2008-01-01

    Although it is now generally acknowledged that electron–phonon interactions cause cuprate superconductivity with Tc values ≈100 K, the complexities of atomic arrangements in these marginally stable multilayer materials have frustrated both experimental analysis and theoretical modeling of the remarkably rich data obtained both by angle-resolved photoemission (ARPES) and high-resolution, large-area scanning tunneling microscopy (STM). Here, we analyze the theoretical background in terms of our original (1989) model of dopant-assisted quantum percolation (DAQP), as developed further in some two dozen articles, and apply these ideas to recent STM data. We conclude that despite all of the many difficulties, with improved data analysis it may yet be possible to identify quantum percolative paths. PMID:18626024

  14. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  15. A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.

    PubMed

    Lee, Sungwon; Inoue, Yusuke; Kim, Dongmin; Reuveny, Amir; Kuribara, Kazunori; Yokota, Tomoyuki; Reeder, Jonathan; Sekino, Masaki; Sekitani, Tsuyoshi; Abe, Yusuke; Someya, Takao

    2014-12-19

    To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.

  16. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    PubMed

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  17. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.

  18. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  19. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  20. Lipid Bilayer Vesicles with Numbers of Membrane-Linking Pores

    NASA Astrophysics Data System (ADS)

    Ken-ichirou Akashi,; Hidetake Miyata,

    2010-06-01

    We report that phospholipid membranes spontaneously formed in aqueous medium giant unilamellar vesicles (GUVs) possessing many membranous wormhole-like structures (membrane-linking pores, MLPs). By phase contract microscopy and confocal fluorescence microscopy, the structures of the MLPs, consisting of lipid bilayer, were resolvable, and a variety of vesicular shapes having many MLPs (a high genus topology) were found. These vesicles were stable but easily deformed by micromanipulation with a microneedle. We also observed the size reduction of the MLPs with the increase in membrane tension, which was qualitatively consistent with a prediction from a simple dynamical model.

  1. Sarcoid-resembling granulomatous lung disease secondary to occupational magnetite iron dust exposure.

    PubMed

    Xiao, Lewis; Kookana, Anil; McClure, Robert; Heraganahally, Subash

    2018-08-01

    Non-caseating granulomatous pulmonary conditions resembling sarcoidosis secondary to industrial/occupation exposure to magnetite iron ore dusts have been rarely documented in the literature. This is a case report of a 58-year-old blast crew member involved in iron ore/magnetite mining who presented with a 12-month history of chronic dry cough. High-resolution computed tomography revealed bilateral interstitial opacities. Lung biopsy demonstrated sarcoid-like granulomatous inflammation. Oral corticosteroid treatment improved the cough. Radiological features did not resolve despite treatment and yet remained stable following no subsequent exposure to iron mining dust.

  2. Time-resolved Analysis of Proteome Dynamics by Tandem Mass Tags and Stable Isotope Labeling in Cell Culture (TMT-SILAC) Hyperplexing*

    PubMed Central

    Welle, Kevin A.; Zhang, Tian; Hryhorenko, Jennifer R.; Shen, Shichen; Qu, Jun; Ghaemmaghami, Sina

    2016-01-01

    Recent advances in mass spectrometry have enabled system-wide analyses of protein turnover. By globally quantifying the kinetics of protein clearance and synthesis, these methodologies can provide important insights into the regulation of the proteome under varying cellular and environmental conditions. To facilitate such analyses, we have employed a methodology that combines metabolic isotopic labeling (Stable Isotope Labeling in Cell Culture - SILAC) with isobaric tagging (Tandem Mass Tags - TMT) for analysis of multiplexed samples. The fractional labeling of multiple time-points can be measured in a single mass spectrometry run, providing temporally resolved measurements of protein turnover kinetics. To demonstrate the feasibility of the approach, we simultaneously measured the kinetics of protein clearance and accumulation for more than 3000 proteins in dividing and quiescent human fibroblasts and verified the accuracy of the measurements by comparison to established non-multiplexed approaches. The results indicate that upon reaching quiescence, fibroblasts compensate for lack of cellular growth by globally downregulating protein synthesis and upregulating protein degradation. The described methodology significantly reduces the cost and complexity of temporally-resolved dynamic proteomic experiments and improves the precision of proteome-wide turnover data. PMID:27765818

  3. Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Bowen

    A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering and reconstruction LES framework. The DRM is a mixed model that consists of subgrid scale (SGS) and resolved subfilter scale (RSFS) components. The RSFS portion is represented by a scale-similarity model that allows for backscatter of energy from the SFS to the mean flow. Compared to conventional closures, the DRM is able to sustain resolved turbulence under moderate stability at coarser resolution (thus saving computational resources). The DRM performs equally well at fine resolution. Under strong stability, the DRM simulates an intermittently turbulent SBL, whereas conventional closures predict false laminar flows. The improved simulation methodology of the SBL has many potential applications in the area of wind energy, numerical weather prediction, pollution modeling and so on. The SBL is first simulated over idealized flat terrain with prescribed forcings and periodic lateral boundaries. A wide range of stability regimes, from weakly to strongly stable conditions, is tested to evaluate model performance. Under strongly stable conditions, intermittency due to mean shear and turbulence interactions is simulated and analyzed. Furthermore, results of the strongly stable SBL are used to improve wind farm siting and nighttime operations. Moving away from the idealized setting, the SBL is simulated over relatively flat terrain at a Kansas site over the Great Plains, where the Cooperative Atmospheric-Surface Exchange Study -- 1999 (CASES-99) took place. The LES obtains realistic initial and lateral boundary conditions from a meso-scale model reanalysis through a grid nesting procedure. Shear-instability induced intermittency observed on the night of Oct 5th during CASES-99 is reproduced to good temporal and magnitude agreement. The LES locates the origin of the shear-instability waves in a shallow upwind valley, and uncovers the intermittency mechanism to be wave breaking over a standing wave (formed over a stagnant cold-air bubble) across the valley. Finally, flow over the highly complex terrain of the Owens Valley in California is modeled with a similar nesting procedure. The LES results are validated with observation data from the 2006 Terrain-Induced Rotor Experiment (T-REX). The nested LES reproduces a transient nighttime warming event observed on the valley floor on April 17 during T-REX. The intermittency mechanism is shown to be through slope-valley flow transitions. In addition, a cold-air intrusion from the eastern valley sidewall is simulated. This generates an easterly cross-valley flow, and the associated top-down mixing through breaking Kelvin-Helmholtz billows is analyzed. Finally, the nesting methodology tested and optimized in the CASES-99 and T-REX studies is transferrable to general ABL applications. For example, a nested LES is performed to model daytime methane plume dispersion over a landfill and good results are obtained.

  4. Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures

    PubMed Central

    Yao, Huajian; Shearer, Peter M.; Gerstoft, Peter

    2013-01-01

    Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest megathrust earthquakes in the past 10 y using a compressive-sensing (sparse source recovery) technique, resolving generally low-frequency radiation closer to the trench at shallower depths and high-frequency radiation farther from the trench at greater depths. Together with coseismic slip models and early aftershock locations, our results suggest depth-varying frictional properties at the subducting plate interfaces. The shallower portion of the slab interface (above ∼15 km) is frictionally stable or conditionally stable and is the source region for tsunami earthquakes with large coseismic slip, deficient high-frequency radiation, and few early aftershocks. The slab interface at intermediate depths (∼15–35 km) is the main unstable seismogenic zone for the nucleation of megathrust quakes, typically with large coseismic slip, abundant early aftershocks, and intermediate- to high-frequency radiation. The deeper portion of the slab interface (∼35–45 km) is seismically unstable, however with small coseismic slip, dominant high-frequency radiation, and relatively fewer aftershocks.

  5. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation

    NASA Astrophysics Data System (ADS)

    Martin, N. J.; Conroy, J. L.; Noone, D.; Cobb, K. M.; Konecky, B. L.; Rea, S.

    2018-01-01

    The origin of stable isotopic variability in precipitation over time and space is critical to the interpretation of stable isotope-based paleoclimate proxies. In the eastern equatorial Pacific, modern stable isotope measurements in precipitation (δ18Op and δDp) are sparse and largely unevaluated in the literature, although insights from such analyses would benefit the interpretations of several regional isotope-based paleoclimate records. Here we present a new 3.5 year record of daily-resolved δ18Op and δDp from Santa Cruz, Galápagos. With a prior 13 year record of monthly δ18Op and δDp from the island, these new data reveal controls on the stable isotopic composition of regional precipitation on event to interannual time scales. Overall, we find Galápagos δ18Op is significantly correlated with precipitation amount on daily and monthly time scales. The majority of Galápagos rain events are drizzle, or garúa, derived from local marine boundary layer vapor, with corresponding high δ18Op values due to the local source and increased evaporation and equilibration of smaller drops with boundary layer vapor. On monthly time scales, only precipitation in very strong, warm season El Niño months has substantially lower δ18Op values, as the sea surface temperature threshold for deep convection (28°C) is only surpassed at these times. The 2015/2016 El Niño event did not produce strong precipitation or δ18Op anomalies due to the short period of warm SST anomalies, which did not extend into the peak of the warm season. Eastern Pacific proxy isotope records may be biased toward periods of high rainfall during strong to very strong El Niño events.

  6. Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods

    NASA Astrophysics Data System (ADS)

    Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton

    2018-03-01

    The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.

  7. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  8. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation

    PubMed Central

    2013-01-01

    Background The fatty acid mixture of human milk is ideal for the newborn but little is known about its composition in the first few weeks of lactation. Of special interest are the levels of long-chain PUFAs (LCPUFAs), since these are essential for the newborn’s development. Additionally, the LCPUFAs arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are precursors for lipid mediators which regulate inflammation. Methods We determined the composition of 94 human milk samples from 30 mothers over the first month of lactation for fatty acids using GC-MS and quantified lipid mediators using HPLC-MS/MS. Results Over the four weeks period, DHA levels decreased, while levels of γC18:3 and αC18:3 steadily increased. Intriguingly, we found high concentrations of lipid mediators and their hydroxy fatty acid precursors in human milk, including pro-inflammatory leukotriene B4 (LTB4) and anti-inflammatory and pro-resolving lipoxin A4 (LXA4), resolvin D1 (RvD1) and resolvin E1 (RvE1). Lipid mediator levels were stable with the exception of two direct precursors. Conclusions Elevated levels of DHA right after birth might represent higher requirements of the newborn and the high content of anti-inflammatory and pro-resolving lipid mediators and their precursors may indicate their role in neonatal immunity and may be one of the reasons for the advantage of human milk over infant formula. PMID:23767972

  9. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  10. Alignment of time-resolved data from high throughput experiments.

    PubMed

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach provides a nonlinear alignment of two sequences that neither need to have equi-distant time points nor measurements at identical time points. The proposed method is evaluated with artificial as well as real data. The software is available as an R package tra (Time-Resolved data Alignment) which is freely available at: http://public.ostfalia.de/klawonn/tra.zip .

  11. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W

    PubMed Central

    Huang, Biao; Yu, Huixin; Bao, Jiandong; Zhang, Manda; Green, William L; Wu, Sing-Yung

    2018-01-01

    Objective: Using compound W (a 3,3′-diiodothyronine sulfate [T2S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Method: Photosensitive particles (donor beads) coated with compound W or T2S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. Results: The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages <10% with stable reproducibility. Conclusions: The ICW-AlphaLISA shows good stability and high sensitivity and can measure a wide range of compound W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero. PMID:29449777

  12. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W.

    PubMed

    Huang, Biao; Yu, Huixin; Bao, Jiandong; Zhang, Manda; Green, William L; Wu, Sing-Yung

    2018-01-01

    Using compound W (a 3,3'-diiodothyronine sulfate [T 2 S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Photosensitive particles (donor beads) coated with compound W or T 2 S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages <10% with stable reproducibility. The ICW-AlphaLISA shows good stability and high sensitivity and can measure a wide range of compound W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero.

  13. Dynamics of electron injection in a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.

    2017-08-01

    The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

  14. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    NASA Astrophysics Data System (ADS)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  15. Resolving the biodiversity paradox

    Treesearch

    James S. Clark; Mike Dieta; Sukhendu Chakraborty; Pankaj K.Ibeanez Agarwal; Shannon LaDeau; Mike Wolosin

    2007-01-01

    The paradox of biodiversity involves three elements, (i) mathematical models predict that species must differ in specific ways in order to coexist as stable ecological communities, (ii) such differences are difficult to identify, yet (iii) there is widespread evidence of stability in natural communities.

  16. Electron spin polarization (CIDEP) investigation of the interaction of reactive free radicals with polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Dwyer, D.W.

    1993-10-14

    Time-resolved electron spin resonance (TR ESR) was employed to investigate the polarized ESR (CIDEP) spectra produced by interaction of mono- and polynitroxyls with reactive free radicals (r[sup [number sign

  17. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  18. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane

    PubMed Central

    Al-Doghachi, Faris A. J.; Islam, Aminul; Zainal, Zulkarnain; Saiman, Mohd Izham; Embong, Zaidi; Taufiq-Yap, Yun Hin

    2016-01-01

    A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50–80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions. PMID:26745623

  19. Multiyear and multisite photometric campaigns on the bright high-amplitude pulsating subdwarf B star EC 01541-1409

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Kilkenny, D.; O'Toole, S.; Østensen, R. H.; Honer, C.; Gilker, J. T.; Quint, A. C.; Doennig, A. M.; Hicks, L. H.; Thompson, M. A.; McCart, P. A.; Zietsman, E.; Chen, W.-P.; Chen, C.-W.; Lin, C.-C.; Beck, P.; Degroote, P.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; Lacluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Baran, A.; Winiarski, M.; Drozdz, M.

    2012-03-01

    We present follow-up observations of the pulsating subdwarf B (sdB) star EC 01541-1409 as part of our efforts to resolve pulsation spectra for use in asteroseismological analyses. This paper reports on data obtained from a single-site campaign, during 2008, and a multisite campaign, during 2009. From limited 2008 data, we were able to clearly resolve and pre-whiten 24 periods. A subsequent multisite campaign spanning nearly 2 months found over 30 individual periodicities most of which were unstable in amplitude and/or phase. Pulsation amplitudes were found to the detection limit, meaning that further observations would likely reveal more periodicities. EC 01541-1409 reveals itself to be one of two sdB pulsators with many pulsation frequencies covering a large frequency range. Unlike the other star of this type (PG 0048+091), it has one high-amplitude periodicity which appears phase stable, making EC 01541-1409 an excellent candidate for exoplanet studies via pulsation phases. No multiplets were detected leaving EC 01541-1409 as yet another rich p-mode sdB pulsator without these features, limiting observational constraints on pulsation modes.

  20. Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor

    NASA Astrophysics Data System (ADS)

    Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan

    2018-07-01

    We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).

  1. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  2. Modeling the Radiance of the Moon for On-orbit Calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Becker, K.J.; ,

    2003-01-01

    The RObotic Lunar Observatory (ROLO) project has developed radiometric models of the Moon for disk-integrated irradiance and spatially resolved radiance. Although the brightness of the Moon varies spatially and with complex dependencies upon illumination and viewing geometry, the surface photometric properties are extremely stable, and therefore potentially knowable to high accuracy. The ROLO project has acquired 5+ years of spatially resolved lunar images in 23 VNIR and 9 SWIR filter bands at phase angles up to 90??. These images are calibrated to exoatmospheric radiance using nightly stellar observations in a band-coupled extinction algorithm and a radiometric scale based upon observations of the star Vega. An effort is currently underway to establish an absolute scale with direct traceability to NIST radiometric standards. The ROLO radiance model performs linear fitting of the spatially resolved lunar image data on an individual pixel basis. The results are radiance images directly comparable to spacecraft observations of the Moon. Model-generated radiance images have been produced for the ASTER lunar view conducted on 14 April 2003. The radiance model is still experimental - simplified photometric functions have been used, and initial results show evidence of computational instabilities, particularly at the lunar poles. The ROLO lunar image dataset is unique and extensive and presents opportunities for development of novel approaches to lunar photometric modeling.

  3. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  4. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  5. Design and synthesis of the BODIPY-BSA complex for biological applications.

    PubMed

    Vedamalai, Mani; Gupta, Iti

    2018-02-01

    A quinoxaline-functionalized styryl-BODIPY derivative (S1) was synthesized by microwave-assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro-encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1-BSA complex was characterized systematically using ultraviolet (UV)-visible absorption, fluorescence emission, kinetics, circular dichroism and time-resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1-BSA complex could be used as a new biomaterial for fluorescence-based high-throughput assay for kinase enzymes. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid

    NASA Astrophysics Data System (ADS)

    Lee, Kelly

    2011-03-01

    Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.

  7. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  8. Multi-dimensional high order essentially non-oscillatory finite difference methods in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.

  9. Chain-like structure elements in Ni40Ta60 metallic glasses observed by scanning tunneling microscopy

    PubMed Central

    Pawlak, Rémy; Marot, Laurent; Sadeghi, Ali; Kawai, Shigeki; Glatzel, Thilo; Reimann, Peter; Goedecker, Stefan; Güntherodt, Hans-Joachim; Meyer, Ernst

    2015-01-01

    The structure of metallic glasses is a long-standing question because the lack of long-range order makes diffraction based techniques difficult to be applied. Here, we used scanning tunneling microscopy with large tunneling resistance of 6 GΩ at low temperature in order to minimize forces between probe and sample and reduce thermal fluctuations of metastable structures. Under these extremely gentle conditions, atomic structures of Ni40Ta60 metallic glasses are revealed with unprecedented lateral resolution. In agreement with previous models and experiments, icosahedral-like clusters are observed. The clusters show a high degree of mobility, which explains the need of low temperatures for stable imaging. In addition to icosahedrons, chain-like structures are resolved and comparative density functional theory (DFT) calculations confirm that these structures are meta-stable. The co-existence of icosahedral and chain-like structures might be an key ingredient for the understanding of the mechanical properties of metallic glasses. PMID:26268430

  10. Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982

    NASA Astrophysics Data System (ADS)

    Drury, Anna Joy; Westerhold, Thomas; Hodell, David; Röhl, Ursula

    2018-03-01

    Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in ˜ 11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed ˜ 6.4 Ma, marking a strengthening in the cryosphere-carbon cycle coupling. A large ˜ 0.7 ‰ double excursion is revealed ˜ 6.4-6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions ˜ 6.4-6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST) estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean. Comparisons of the revised Site 982 stratigraphy to high-resolution astronomically tuned benthic δ18O stratigraphies from ODP Site 926 (equatorial Atlantic) and Ain el Beida (north-western Morocco) show that prior inconsistencies in short-term excursions are now resolved. The identification of key new cycles at Site 982 further highlights the requirement for the current scheme for late Miocene marine isotope stages to be redefined. Our new integrated deep-sea benthic stable isotope stratigraphy and astrochronology from Site 982 will facilitate future high-resolution late Miocene to early Pliocene climate research.

  11. Class III malocclusion with complex problems of lateral open bite and severe crowding successfully treated with miniscrew anchorage and lingual orthodontic brackets.

    PubMed

    Yanagita, Takeshi; Kuroda, Shingo; Takano-Yamamoto, Teruko; Yamashiro, Takashi

    2011-05-01

    In this article, we report the successful use of miniscrews in a patient with an Angle Class III malocclusion, lateral open bite, midline deviation, and severe crowding. Simultaneously resolving such problems with conventional Class III treatment is difficult. In this case, the treatment procedure was even more challenging because the patient preferred to have lingual brackets on the maxillary teeth. As a result, miniscrews were used to facilitate significant asymmetric tooth movement in the posterior and downward directions; this contributed to the camouflage of the skeletal mandibular protrusion together with complete resolution of the severe crowding and lateral open bite. Analysis of the jaw motion showed that irregularities in chewing movement were also resolved, and a stable occlusion was achieved. Improvements in the facial profile and dental arches remained stable at the 18-month follow-up. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. A High-Resolution Chronology of Rapid Forest Transitions following Polynesian Arrival in New Zealand

    PubMed Central

    McWethy, David B.; Wilmshurst, Janet M.; Whitlock, Cathy; Wood, Jamie R.; McGlone, Matt S.

    2014-01-01

    Human-caused forest transitions are documented worldwide, especially during periods when land use by dense agriculturally-based populations intensified. However, the rate at which prehistoric human activities led to permanent deforestation is poorly resolved. In the South Island, New Zealand, the arrival of Polynesians c. 750 years ago resulted in dramatic forest loss and conversion of nearly half of native forests to open vegetation. This transformation, termed the Initial Burning Period, is documented in pollen and charcoal records, but its speed has been poorly constrained. High-resolution chronologies developed with a series of AMS radiocarbon dates from two lake sediment cores suggest the shift from forest to shrubland occurred within decades rather than centuries at drier sites. We examine two sites representing extreme examples of the magnitude of human impacts: a drier site that was inherently more vulnerable to human-set fires and a wetter, less burnable site. The astonishing rate of deforestation at the hands of small transient populations resulted from the intrinsic vulnerability of the native flora to fire and from positive feedbacks in post-fire vegetation recovery that increased landscape flammability. Spatially targeting burning in highly-flammable seral vegetation in forests rarely experiencing fire was sufficient to create an alternate fire-prone stable state. The New Zealand example illustrates how seemingly stable forest ecosystems can experience rapid and permanent conversions. Forest loss in New Zealand is among the fastest ecological transitions documented in the Holocene; yet equally rapid transitions can be expected in present-day regions wherever positive feedbacks support alternate fire-inhibiting, fire-prone stable states. PMID:25372150

  13. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  14. Development and Application of a High-Performance Liquid Chromatography Stability-Indicating Assay for Beyond-Use Date Determination of Compounded Topical Gels Containing Multiple Active Drugs.

    PubMed

    Gorman, Gregory; Sokom, Simara; Coward, Lori; Arnold, John J

    2017-01-01

    Topical gels compounded by pharmacists are important clinical tools for the management of pain. Nevertheless, there is often a dearth of information about the chemical stability of drugs included in these topical formulations, complicating the assignment of beyond-use dating. The purpose of this study was to develop a high-performance liquid chromatography photodiode array-based stability-indicating assay that could simultaneously resolve six drugs (amitriptyline, baclofen, clonidine, gabapentin, ketoprofen, lidocaine) commonly included in topical gels for pain management and their potential degradation products. Furthermore, this method was applied to the determination of beyond-use dating of combinations of these drugs prepared in commonly utilized bases (Lipobase, Lipoderm, Pluronic organogel). Gabapentin was determined to be the least stable component in all formulations tested. Measured stability ranged between 7 to 49 days depending on the base and other active drugs present in the formulation. In the absence of gabapentin, baclofen was the next least stable component, lasting for 120 days, regardless of the type of formulating base used. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  15. WIRC-POL: A near-IR spectro-polarimetric imager at Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Nilsson, Ricky; Tinyanont, Samaporn; Mawet, Dimitri; Knutson, Heather; WIRC-POL Team

    2017-01-01

    The 200-inch Hale Telescope at Palomar Observatory is the largest equatorial-mounted telescope in the world. Combining a large aperture, extremely stable tracking, and no differential motion of optics, it introduces low and stable instrument polarization, making it uniquely suited for time-resolved polarimetry. Its prime focus currently hosts the Wide-field InfraRed Camera (WIRC), which is being refurbished with a new H2 detector, 32 channel readout electronics, grism, focal-plane mask and polarization grating. This will transform it into WIRC-POL — a machine for high-precision photometry, and slitless low-resolution (R~150) spectroscopy and spectro-polarimetry. Two key science programs are starting in 2017: (1) a large spectro-polarimetric survey of approximately 1000 LTY field brown dwarfs, probing atmospheric composition, physical properties, and cloud dynamics at the L-T transition, and (2) a survey of transiting exoplanets, using the high photometric stability and slitless spectroscopy mode to characterize exoplanet atmospheres from spectra obtained in transit and secondary eclipse, and search for transit-timing variations in multiple planet systems. Here we present an overview of the instrument upgrades and the exciting scientific questions we aim to address.

  16. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  17. Attosecond light sources in the water window

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Li, Jie; Yin, Yanchun; Zhao, Kun; Chew, Andrew; Wang, Yang; Hu, Shuyuan; Cheng, Yan; Cunningham, Eric; Wu, Yi; Chini, Michael; Chang, Zenghu

    2018-02-01

    As a compact and burgeoning alternative to synchrotron radiation and free-electron lasers, high harmonic generation (HHG) has proven its superiority in static and time-resolved extreme ultraviolet spectroscopy for the past two decades and has recently gained many interests and successes in generating soft x-ray emissions covering the biologically important water window spectral region. Unlike synchrotron and free-electron sources, which suffer from relatively long pulse width or large time jitter, soft x-ray sources from HHG could offer attosecond time resolution and be synchronized with their driving field to investigate time-resolved near edge absorption spectroscopy, which could reveal rich structural and dynamical information of the interrogated samples. In this paper, we review recent progresses on generating and characterizing attosecond light sources in the water window region. We show our development of an energetic, two-cycle, carrier-envelope phase stable laser source at 1.7 μm and our achievement in producing a 53 as soft x-ray pulse covering the carbon K-edge in the water window. Such source paves the ways for the next generation x-ray spectroscopy with unprecedented temporal resolution.

  18. Validation of highly sensitive simultaneous targeted and untargeted analysis of keto-steroids by Girard P derivatization and stable isotope dilution-liquid chromatography-high resolution mass spectrometry.

    PubMed

    Frey, Alexander J; Wang, Qingqing; Busch, Christine; Feldman, Daniel; Bottalico, Lisa; Mesaros, Clementina A; Blair, Ian A; Vachani, Anil; Snyder, Nathaniel W

    2016-12-01

    A multiplexed quantitative method for the analysis of three major unconjugated steroids in human serum by stable isotope dilution liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed and validated on a Q Exactive Plus hybrid quadrupole/Orbitrap mass spectrometer. This quantification utilized isotope dilution and Girard P derivatization on the keto-groups of testosterone (T), androstenedione (AD) and dehydroepiandrosterone (DHEA) to improve ionization efficiency using electrospray ionization. Major isomeric compounds to T and DHEA; the inactive epimer of testosterone (epiT), and the metabolite of AD, 5α-androstanedione (5α-AD) were completely resolved on a biphenyl column within an 18min method. Inter- and intra-day method validation using LC-HRMS with qualifying product ions was performed and acceptable analytical performance was achieved. The method was further validated by comparing steroid levels from 100μL of serum from young vs older subjects. Since this approach provides high-dimensional HRMS data, untargeted analysis by age group was performed. DHEA and T were detected among the top analytes most significantly different across the two groups after untargeted LC-HRMS analysis, as well as a number of other still unknown metabolites, indicating the potential for combined targeted/untargeted analysis in steroid analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Tsai, Meng-Che; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Chen, Hung-Ming; Rick, John; Su, Wei-Nien; Kuo, Chung-Feng Jeffrey; Hwang, Bing-Joe

    2017-06-01

    High capacity lithium-sulfur batteries with stable cycle performance and sulfur loadings greater than 70 wt% are regarded as promising candidates for energy storage devices. However, it has been challenged to achieving practical application of sulfur cathode because of low loading of active sulfur and poor cycle performance. Herein, we design novel nanocomposite cathode materials consist of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) by controllable sulfur-impregnation method. Nitrogen doping helps increase the surface area by ten times from pristine graphene, and pore volume by seven times. These structural features allow the cathode to hold more sulfur. It also adsorbs polysulfides and prevents their detachment from the host materials; thereby achieving stable cycle performance. The solution drop sulfur-impregnation method provides uniform distribution of nano-sulfur in controlled manner. The material delivers a high initial discharge capacity of 1042 mAhg-1 and 916 mAhg-1 with excellent capacity retention of 94.8% and 81.9% at 0.2 C and 0.5 C respectively after 100 cycles. Thus, the combination of solution drop and nitrogen doping opens a new chapter for resolving capacity fading as well as long cycling problems and creates a new strategy to increase sulfur loading in controlled mechanism.

  20. Resolution of renal adenocarcinoma-induced secondary inappropriate polycythaemia after nephrectomy in two cats.

    PubMed

    Klainbart, Sigal; Segev, Gilad; Loeb, Emmanuel; Melamed, Dana; Aroch, Itamar

    2008-07-01

    Two cases of secondary, inappropriate polycythaemia caused by renal adenocarcinoma in domestic shorthair cats, are described. The cats were 9 and 12 years old and both were presented because of generalised seizures presumably due to hyperviscosity. Both cats had a markedly increased haematocrit (0.770 and 0.632 l/l) and thrombocytosis (744 x 10(9)/l and 926 x 10(9)/l). An abdominal ultrasound revealed a mass in the cranial pole of one kidney in both cats. Serum erythropoietin (EPO) concentration was within the reference interval (RI) in both cats but was inappropriately high considering the markedly increased haematocrit. The cats were initially stabilised and managed by multiple phlebotomies and intravenous fluid therapy and underwent nephrectomy of the affected kidney later on. Both the polycythaemia and thrombocytosis resolved following surgery. Postoperative serum EPO concentration, measured in one cat, decreased markedly. Histopathology of the affected kidneys confirmed a diagnosis of renal adenocarcinoma. Both cats were stable for an 8-month follow-up period; however, one cat had developed a stable chronic kidney disease (CKD), while the other was represented 8 months postoperatively due to dyspnoea, and had radiographic evidence of lung metastasis, presumably because of the spread of the original renal tumour and was euthanased. Initial stabilisation of polycythaemic cats should include multiple phlebotomies. Nephrectomy should be considered in cats with secondary, inappropriate, renal adenocarcinoma-related polycythaemia when only one kidney is affected by the tumour, and provided that the other kidney's function is satisfactory. Nephrectomy should be expected to resolve the polycythaemia and lead to normalisation of serum EPO concentration.

  1. Aesthetic Description and Realism in Art Education.

    ERIC Educational Resources Information Center

    Brown, Neil C. M.

    1989-01-01

    Looks at the usefulness of a stable realism for questions related to the description and understanding of art works. Explores two theories which may resolve the antagonism between representational meanings and their assertion as true properties of the work: (1) Wiggin's concept of authentic effect; and (2) Petit's theory of rectification and…

  2. On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation

    NASA Astrophysics Data System (ADS)

    Vermeire, B. C.; Vincent, P. E.

    2016-12-01

    We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased Courant-Friedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids.

  3. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface.

    PubMed

    Volkmann, Till H M; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2016-05-01

    Plants rely primarily on rainfall infiltrating their root zones - a supply that is inherently variable, and fluctuations are predicted to increase on most of the Earth's surface. Yet, interrelationships between water availability and plant use on short timescales are difficult to quantify and remain poorly understood. To overcome previous methodological limitations, we coupled high-resolution in situ observations of stable isotopes in soil and transpiration water. We applied the approach along with Bayesian mixing modeling to track the fate of (2) H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems. We resolve how rainwater infiltrates the root zones in a nonequilibrium process and show that tree species differ in their ability to quickly acquire the newly available source. Sessile oak (Quercus petraea) adjusted root uptake to vertical water availability patterns under drought, but readjustment toward the rewetted topsoil was delayed. By contrast, European beech (Fagus sylvatica) readily utilized water from all soil depths independent of water depletion, enabling faster uptake of rainwater. Our results demonstrate that species-specific plasticity and responses to water supply fluctuations on short timescales can now be identified and must be considered to predict vegetation functional dynamics and water cycling under current and future climatic conditions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersema, David John; Lundquist, Katherine A.; Chow, Fotini Katapodes

    With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscalemore » simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.« less

  5. Large pneumothorax in blunt chest trauma: Is a chest drain always necessary in stable patients? A case report.

    PubMed

    Idris, Baig M; Hefny, Ashraf F

    2016-01-01

    Pneumothorax is the most common potentially life-threatening blunt chest injury. The management of pneumothorax depends upon the etiology, its size and hemodynamic stability of the patient. Most clinicians agree that chest drainage is essential for the management of traumatic large pneumothorax. Herein, we present a case of large pneumothorax in blunt chest trauma patient that resolved spontaneously without a chest drain. A 63- year- old man presented to the Emergency Department complaining of left lateral chest pain due to a fall on his chest at home. On examination, he was hemodynamically stable. An urgent chest X-ray showed evidence of left sided pneumothorax. CT scan of the chest showed pneumothorax of more than 30% of the left hemithorax (around 600ml of air) with multiple left ribs fracture. Patient refused tube thoracostomy and was admitted to surgical department for close observation. The patient was managed conservatively without chest tube insertion. A repeat CT scan of the chest has shown complete resolution of the pneumothorax. The clinical spectrum of pneumothorax varies from asymptomatic to life threatening tension pneumothorax. In stable patients, conservative management can be safe and effective for small pneumothorax. To the best of our knowledge, this is the second reported case in the English literature with large pneumothorax which resolved spontaneously without chest drain. Blunt traumatic large pneumothorax in a clinically stable patient can be managed conservatively. Current recommendations for tube placement may need to be reevaluated. This may reduce morbidity associated with chest tube thoracostomy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  7. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    NASA Astrophysics Data System (ADS)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might provide a record of the nebular formation environment. The Te stable isotope fractionation of the carbonaceous chondrites CI and CM (and CO potentially) overlap within uncertainty with data for terrestrial Te standard solutions, sediments and ore samples. Assuming the silicate Earth displays similar Te isotope fractionation as the studied terrestrial samples, the data indicate that the late veneer might have been delivered by material similar to CI or CM (or possibly) CO carbonaceous chondrites in terms of Te isotope composition. Nine terrestrial samples display resolvable Te stable isotope fractionation of 0.85 and 0.60‰ for δ130/125Te for sediment and USGS geochemical exploration reference samples, respectively. Tellurium isotopes therefore have the potential to become a new geochemical sedimentary proxy, as well as a proxy for ore-exploration.

  8. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to 13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  9. Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life.

    PubMed

    Wang, Xiao-Liang; Han, Wei-Qiang; Chen, Haiyan; Bai, Jianming; Tyson, Trevor A; Yu, Xi-Qian; Wang, Xiao-Jian; Yang, Xiao-Qing

    2011-12-28

    Many researchers have focused in recent years on resolving the crucial problem of capacity fading in Li ion batteries when carbon anodes are replaced by other group-IV elements (Si, Ge, Sn) with much higher capacities. Some progress was achieved by using different nanostructures (mainly carbon coatings), with which the cycle numbers reached 100-200. However, obtaining longer stability via a simple process remains challenging. Here we demonstrate that a nanostructure of amorphous hierarchical porous GeO(x) whose primary particles are ~3.7 nm diameter has a very stable capacity of ~1250 mA h g(-1) for 600 cycles. Furthermore, we show that a full cell coupled with a Li(NiCoMn)(1/3)O(2) cathode exhibits high performance. © 2011 American Chemical Society

  10. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  11. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM).

    PubMed

    Lane, Andrew N; Higashi, Richard M; Fan, Teresa W-M

    2016-07-01

    In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical trials or treatments. Development of ex vivo human tissue and animal models with humanized organs including bone marrow and liver show considerable promise for analyzing drug responses that are more relevant to humans. Similarly using stable isotope tracer methods with these improved models in advanced stages of the drug development pipeline, in conjunction with tissue biopsy is expected significantly to reduce the high failure rate of experimental drugs in Phase II and III clinical trials.

  12. Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies

    Treesearch

    A.G. Barr; A.D. Richardson; D.Y. Hollinger; D. Papale; M.A. Arain; T.A. Black; G. Bohrer; D. Dragoni; M.L. Fischer; L. Gu; B.E. Law; H.A. Margolis; J.H. McCaughey; J.W. Munger; W. Oechel; K. Schaeffer

    2013-01-01

    The eddy-covariance method often underestimates fluxes under stable, low-wind conditions at night when turbulence is not well developed. The most common approach to resolve the problem of nighttime flux underestimation is to identify and remove the deficit periods using friction-velocity (u∗) threshold filters (u∗

  13. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.; Holman, Matthew

    1999-01-01

    We examine the nonlinear stability of the Wisdom-Holman (WH) symplectic mapping applied to the integration of perturbed, highly eccentric (e-0.9) two-body orbits. We find that the method is unstable and introduces artificial chaos into the computed trajectories for this class of problems, unless the step size chosen 1s small enough that PeriaPse is always resolved, in which case the method is generically stable. This 'radial orbit instability' persists even for weakly perturbed systems. Using the Stark problem as a fiducial test case, we investigate the dynamical origin of this instability and argue that the numerical chaos results from the overlap of step-size resonances; interestingly, for the Stark-problem many of these resonances appear to be absolutely stable. We similarly examine the robustness of several alternative integration methods: a time-regularized version of the WH mapping suggested by Mikkola; the potential-splitting (PS) method of Duncan, Levison, Lee; and two original methods incorporating approximations based on Stark motion instead of Keplerian motion. The two fixed point problem and a related, more general problem are used to conduct a comparative test of the various methods for several types of motion. Among the algorithms tested, the time-transformed WH mapping is clearly the most efficient and stable method of integrating eccentric, nearly Keplerian orbits in the absence of close encounters. For test particles subject to both high eccentricities and very close encounters, we find an enhanced version of the PS method-incorporating time regularization, force-center switching, and an improved kernel function-to be both economical and highly versatile. We conclude that Stark-based methods are of marginal utility in N-body type integrations. Additional implications for the symplectic integration of N-body systems are discussed.

  14. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Esparza, Domingo; Lundquist, Julie K.; Sauer, Jeremy A.

    Multiscale modeling of a diurnal cycle of real-world conditions is presented for the first time, validated using data from the CWEX-13 field experiment. Dynamical downscaling from synoptic-scale down to resolved three-dimensional eddies in the atmospheric boundary layer (ABL) was performed, spanning 4 orders of magnitude in horizontal grid resolution: from 111 km down to 8.2 m (30 m) in stable (convective) conditions. Computationally efficient mesoscale-to-microscale transition was made possible by the generalized cell perturbation method with time-varying parameters derived from mesoscale forcing conditions, which substantially reduced the fetch to achieve fully developed turbulence. In addition, careful design of the simulationsmore » was made to inhibit the presence of under-resolved convection at convection-resolving mesoscale resolution and to ensure proper turbulence representation in stably-stratified conditions. Comparison to in situ wind-profiling lidar and near-surface sonic anemometer measurements demonstrated the ability to reproduce the ABL structure throughout the entire diurnal cycle with a high degree of fidelity. The multiscale simulations exhibit realistic atmospheric features such as convective rolls and global intermittency. Also, the diurnal evolution of turbulence was accurately simulated, with probability density functions of resolved turbulent velocity fluctuations nearly identical to the lidar measurements. Explicit representation of turbulence in the stably-stratified ABL was found to provide the right balance with larger scales, resulting in the development of intra-hour variability as observed by the wind lidar; this variability was not captured by the mesoscale model. Furthermore, multiscale simulations improved mean ABL characteristics such as horizontal velocity, vertical wind shear, and turbulence.« less

  15. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies

    DOE PAGES

    Munoz-Esparza, Domingo; Lundquist, Julie K.; Sauer, Jeremy A.; ...

    2017-04-25

    Multiscale modeling of a diurnal cycle of real-world conditions is presented for the first time, validated using data from the CWEX-13 field experiment. Dynamical downscaling from synoptic-scale down to resolved three-dimensional eddies in the atmospheric boundary layer (ABL) was performed, spanning 4 orders of magnitude in horizontal grid resolution: from 111 km down to 8.2 m (30 m) in stable (convective) conditions. Computationally efficient mesoscale-to-microscale transition was made possible by the generalized cell perturbation method with time-varying parameters derived from mesoscale forcing conditions, which substantially reduced the fetch to achieve fully developed turbulence. In addition, careful design of the simulationsmore » was made to inhibit the presence of under-resolved convection at convection-resolving mesoscale resolution and to ensure proper turbulence representation in stably-stratified conditions. Comparison to in situ wind-profiling lidar and near-surface sonic anemometer measurements demonstrated the ability to reproduce the ABL structure throughout the entire diurnal cycle with a high degree of fidelity. The multiscale simulations exhibit realistic atmospheric features such as convective rolls and global intermittency. Also, the diurnal evolution of turbulence was accurately simulated, with probability density functions of resolved turbulent velocity fluctuations nearly identical to the lidar measurements. Explicit representation of turbulence in the stably-stratified ABL was found to provide the right balance with larger scales, resulting in the development of intra-hour variability as observed by the wind lidar; this variability was not captured by the mesoscale model. Furthermore, multiscale simulations improved mean ABL characteristics such as horizontal velocity, vertical wind shear, and turbulence.« less

  16. Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta.

    PubMed

    Diantom, Agoura; Carini, Eleonora; Curti, Elena; Cassotta, Fabrizio; D'Alessandro, Alessandro; Vittadini, Elena

    2016-03-15

    A multi-analytical and multi-dimensional approach was used to investigate the effect of moisture and gluten on physico-chemical properties of shelf-stable ready to eat (RTE) pasta. Moisture and frozen water contents were not affected by formulation nor storage time. Hardness and retrograded amylopectin significantly increased during storage in all samples, more markedly in pasta with the lowest moisture content. Higher amounts of water and gluten reduced pasta hardening and contributed to control RTE pasta quality. (1)H FID became steeper in all samples during storage, but no effect of high moisture and gluten levels was observed on the mobility of these protons. Three proton T2 populations were observed (population C, population D and population E). Population C and D were not resolved during all storage. (1)H T2 relaxation time of the most abundant population (population E) shifted to shorter times and the amount of protons increased during storage, more importantly in the samples with lower moisture and gluten content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses.

    PubMed

    Bradler, Maximilian; Werhahn, Jasper C; Hutzler, Daniel; Fuhrmann, Simon; Heider, Rupert; Riedle, Eberhard; Iglev, Hristo; Kienberger, Reinhard

    2013-08-26

    We present a three-color mid-IR setup for vibrational pump-repump-probe experiments with a temporal resolution well below 100 fs and a freely selectable spectral resolution of 20 to 360 cm(-1) for the pump and repump. The usable probe range without optical realignment is 900 cm(-1). The experimental design employed is greatly simplified compared to the widely used setups, highly robust and includes a novel means for generation of tunable few-cycle pulses with stable carrier-envelope phase. A Ti:sapphire pump system operating with 1 kHz and a modest 150 fs pulse duration supplies the total pump energy of just 0.6 mJ. The good signal-to-noise ratio of the setup allows the determination of spectrally resolved transient probe changes smaller than 6·10(-5) OD at 130 time delays in just 45 minutes. The performance of the spectrometer is demonstrated with transient IR spectra and decay curves of HDO molecules in lithium nitrate trihydrate and ice and a first all MIR pump-repump-probe measurement.

  18. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations.

    PubMed

    Gibb, Gillian C; Kardailsky, Olga; Kimball, Rebecca T; Braun, Edward L; Penny, David

    2007-01-01

    We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.

  19. A sensitive high-performance liquid chromatographic method for the determination of 6-mercaptopurine in plasma using precolumn derivatization and fluorescence detection.

    PubMed

    Warren, D J; Slørdal, L

    1993-02-01

    A sensitive high-performance liquid chromatographic (HPLC) method for measuring plasma concentrations of 6-mercaptopurine (6-MP) is described. After protein precipitation with 5-sulfosalicylic acid, samples are subjected to precolumn derivatization using the thiol-reactive fluorophore monobromobimane (mBrB). The drug-mBrB adduct is then resolved by isocratic elution from a C18 reversed-phase support and quantified by fluorescence detection. Recovery of 6-MP after protein precipitation was consistently > 85% and the drug-mBrB adduct was found to be stable for at least 2 weeks at room temperature. With plasma samples containing 30 nM 6-MP, the assay displayed within-run (n = 6) and between-day (n = 6) coefficients of variation of 2.2 and 10.6%, respectively. The limit of detection for 6-MP in plasma was 3 nM (500 pg/ml) and the standard curve was linear up to 3 microM. Using this method, we have observed that 6-MP is stable in heparinized whole blood for at least 24 h provided samples are maintained on ice. Since this method requires few manipulations during sample preparation and is readily adaptable to automated techniques, it may prove useful in the routine clinical laboratory setting.

  20. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase

    PubMed Central

    Wallgren, Marcus; Mohammad, Jani B.; Yan, Kok-Phen; Pourbozorgi-Langroudi, Parham; Ebrahimi, Mahsa; Sabouri, Nasim

    2016-01-01

    Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures. PMID:27185885

  1. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  2. Particular geoscientific perspectives on stable isotope analysis in the arboreal system

    NASA Astrophysics Data System (ADS)

    Helle, Gerhard; Balting, Daniel; Pauly, Maren; Slotta, Franziska

    2017-04-01

    In geosciences stable isotopes of carbon, oxygen and hydrogen from the tree ring archive have been used for several decades to trace the course of past environmental and climatological fluctuations. In contrast to ice cores, the tree ring archive is of biological nature (like many other terrestrial archives), but provides the opportunity to establish site networks with very high resolution in space and time. Many of the basic physical mechanisms of isotope shifts are known, but biologically mediated processes may lead to isotope effects that are poorly understood. This implies that the many processes within the arboreal system leading to archived isotope ratios in wood material are governed by a multitude of environmental variables that are not only tied to the isotopic composition of atmospheric source values (precipitation, CO2), but also to seasonally changing metabolic flux rates and pool sizes of photosynthates within the trees. Consequently, the extraction of climate and environmental information is particularly challenging and reconstructions are still of rather qualitative nature. Over the last 10 years or so, monitoring studies have been implemented to investigate stable isotope, climate and environmental signal transfer within the arboreal system to develop transfer or response functions that can translate the relevant isotope values extracted from tree rings into climate or other environmental variables. To what extent have these efforts lead to a better understanding that helps improving the meaningfulness of tree ring isotope signals? For example, do monitoring studies help deciphering the causes for age-related trends in tree ring stable isotope sequences that are published in a growing number of papers. Are existing monitoring studies going into detail enough or is it already too much effort for the outcome? Based on what we know already particularly in mesic habitats, tree ring stable isotopes are much better climate proxies than other tree ring parameters. However, millennial or multi-millennial high quality reconstructions from tree ring isotopes are still rare. This is because of i) methodological constraints related to mass spectrometric analyses and ii) the nature of tree-ring chronologies that are put together by many trees of various individual ages. In view of this: What is the state-of-the-art in high throughput tree ring stable isotope analyses? Is it necessary to advance existing methodologies further to conserve the annual time resolution provided by the tree-ring archive? Other terrestrial archives, like lake sediments and speleothems rarely provide annually resolved stable isotope data. Furthermore, certain tree species from tropical or sub-tropical regions cannot be dated properly by dendrochronology and hence demand specific stable isotope measuring strategies, etc.. Although the points raised here do specifically apply for the tree ring archive, some of them are important for all proxy archives of organic origin.

  3. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    PubMed

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results warrant further exploration of dacryoconarid stable isotope proxy sensitivity, the isotopic contrast among dacryoconarids, other taxa, and bulk rock, as well as other potential dacryoconarid proxies (Mg/Ca, Sr/Ca, (87) Sr/(86) Sr, microlaser and ion microprobe isotope techniques, and clumped isotopes) for stratigraphic research. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    USDA-ARS?s Scientific Manuscript database

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  5. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    NASA Astrophysics Data System (ADS)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.

  6. Attenuation of Lg in the western US using the USArray

    NASA Astrophysics Data System (ADS)

    Phillips, W. Scott; Stead, Richard J.

    2008-04-01

    The unprecedented breadth and density of the USArray allows us to resolve lateral variations of 1-Hz Lg attenuation to 0.5 degrees over much of the western United States. We collected over 31,000 Lg amplitudes from 547 events and 408 stations of the initial USArray footprint. Two-dimensional tomographic inversion yielded Q ranging from 60 to 550, with a variance reduction of 47% relative to the best-fit constant Q model (Q = 155). Q is low over most of the region, with lowest values associated with recent volcanic activity, and active shear zones. High Q is found in older, stable crust, notably the Colorado and Columbia plateaus, while smaller islands of high Q are associated with batholiths, including the Sierra Nevada, Peninsular, and Bitterroot Ranges, the western Mojave, and Okanogan Highlands, as well as other areas of competent crust such as the Harcuvar range, and two topographically bounded blocks in the Basin and Range.

  7. Ultrafast photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals

    NASA Astrophysics Data System (ADS)

    Hoyer, Theo; Tuszynski, Wilfried; Lienau, Christoph

    2007-07-01

    We report a sub-picosecond time-resolved fluorescence spectroscopic study of different cinnamic acid crystals, model systems for solid-state photodimerization reactions. For α-cyano-4-hydroxycinnamic acid (α-CHC), we identify the emission spectra of both monomers and dimers, allowing us to directly probe the photoinduced dynamics of both species. The dimerization occurs on a timescale of 10 ps and results in a long-lived dimer product, stable for hours. For sinapinic acid, we find an extremely fast, sub-picosecond dimerization reaction and a short-lived dimer. This first sub-picosecond time-resolved dimerization study in cinnamic acid crystals provides a new basis for relating their structural properties and microscopic reaction dynamics.

  8. Experimental investigations on characteristics of stable water electrospray in air without discharge

    NASA Astrophysics Data System (ADS)

    Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo

    2017-06-01

    An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.

  9. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  10. Management of BB shot wounds to the heart.

    PubMed

    Thompson, E C; Block, E F; Mancini, M C

    1996-01-01

    The aim of this study was to review our experience with BB shot injuries to the heart. This is a retrospective chart review. Three patients were found to have BB injuries to the heart. All patients were stable upon presentation. Echocardiography localized the BB pellets to the muscular septum. All patients were treated with nonoperative therapy. There was not mortality. One patient developed an interventricular conduction delay that resolved before discharge. Nonoperative management of stable patients who present with BB wounds to the heart is safe and effective if the BB is intramuscular. An echocardiogram should be used to localize the pellets and evaluate the pericardium.

  11. Triaxiality and Exotic Rotations at High Spins in 134Ce

    DOE PAGES

    Petrache, C. M.; Guo, S.; Ayangeakaa, A. D.; ...

    2016-06-06

    High-spin states in Ce-134 have been investigated using the Cd-116(Ne-22,4n) reaction and the Gammasphere array. The level scheme has been extended to an excitation energy of similar to 30 MeV and spin similar to 54 (h) over bar. Two new dipole bands and four new sequences of quadrupole transitions were identified. Several new transitions have been added to a number of known bands. One of the strongly populated dipole bands was revised and placed differently in the level scheme, resolving a discrepancy between experiment and model calculations reported previously. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinskymore » calculations. A coherent understanding of the various excitations, both at low and high spins, is thus obtained, supporting an interpretation in terms of coexistence of stable triaxial, highly deformed, and superdeformed shapes up to very high spins. Rotations around different axes of the triaxial nucleus, and sudden changes of the rotation axis in specific configurations, are identified, further elucidating the nature of high-spin collective excitations in the A = 130 mass region.« less

  12. Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    So, Peter T.

    2016-03-01

    Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.

  13. Component-resolved diagnosis of plant food allergy by SPT.

    PubMed

    Asero, R; Jimeno, L; Barber, D

    2008-12-01

    Fruits and vegetables may contain both labile and stable allergens. The former induce only OAS, whereas stable allergens may induce systemic reactions. Component-resolved diagnosis (CRD) of allergy to plant foods is therefore essential for the clinical management of allergic patients. 80 adults allergic to plant foods underwent SPT with purified natural date palm profilin (Pho d 2), purified Mal d 1, a peach extract containing uniquely LTP, and with a kiwi extract containing uniquely stable allergens. 58 (72%) patients were monosensitized: 24 to Mal d 1, 24 to profilin, 7 to LTP, and 3 to kiwi. 22 patients were multi-sensitised: 14 to Mal d 1 and profilin, 2 to Mal d 1 and kiwi, 1 to LTP and profilin, 3 to LTP and Mal d 1, and 2 to LTP, Mal d 1 and profilin. Mal d 1 and LTP sensitisation were associated with apple and peach allergy, respectively, whereas profilin sensitisation was associated with allergy to melon, watermelon, banana, tomato and citrus fruits. 18/21 kiwi-allergic patients were sensitised to one of the cross-reacting allergens, but 2/18 reacted to kiwi-specific allergens as well. In patients with allergy to plant-derived foods CRD can be performed by SPT with purified allergen proteins. In the future, the availability of a larger number of purified natural or recombinant allergens for SPT will represent a simple means to classify food-allergic patients properly on the first visit.

  14. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.

  15. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    DOE PAGES

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; ...

    2013-02-28

    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less

  16. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    PubMed

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  17. Climatic interpretation of tree-ring methoxyl d2H time-series from a central alpine larch forest

    NASA Astrophysics Data System (ADS)

    Riechelmann, Dana F. C.; Greule, Markus; Siegwolf, Rolf T. W.; Esper, Jan; Keppler, Frank

    2017-04-01

    We measured stable hydrogen isotope ratios of lignin methoxyl groups (d2HLM) in high elevation larch trees (Larix decidua Mill.) from the Simplon Valley in southern Switzerland. Thirty-seven larch trees were sampled and five individuals analysed for their d2HLM values at annual (1971-2009) and pentadal resolution (1746-2009). Testing the climate response of the d2HLM series, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation and weaker but negative correlation with June/July temperature. In addition, a negative correlation with June-August d2H in precipitation of the nearby GNIP station in Locarno is observed. The pentadally resolved d2HLM series show no significant correlation to climate parameters. The positive correlation of the annually resolved data to summer precipitation is uncommon to d2H measurements from tree-rings (Feakins et al., 2013; Helle and Schleser, 2004; McCarroll and Loader, 2004; Mischel et al., 2015; White et al., 1994). However, we explain the positive association with warm season hydroclimate as follows: methoxyl groups of lignin are directly formed from tissues in the xylem water. More precipitation during June and July, which are on average relatively dry month, results in higher d2H values of the xylem water and therefore, higher d2H value in the lignin methoxyl groups. Therefore, we suggest that d2HLM values of high elevation larch trees might likely serve as a summer precipitation proxy. References: Feakins, S.J., Ellsworth, P.V., Sternberg, L.d.S.L., 2013. Lignin methoxyl hydrogen isotope rations in a coastal ecosystem. Geochimica et Cosmochimica Acta, 121: 54-66. Helle, G., Schleser, G.H., 2004. Interpreting Climate Proxies from Tree-rings. In: Fischer, H., Floeser, G., Kumke, T., Lohmann, G., Miller, H., Negendank, J.F.W., et al., editors. The Climate in Historical Times. Springer Berlin Heidelberg, pp. 129-148. McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree rings. Quaternary Science Reviews, 23: 771-801. Mischel, M., Esper, J., Keppler, F., Greule, M., Werner, W., 2015. d2H, d13C and d18O from whole wood, a-cellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach. Isotopes in Environmental and Health Studies, 1-16. White, J.W.C., Lawrence, J.R., Broecker, W.S., 1994. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the northeastern United States. Geochimica et Cosmochimica Acta, 58: 851-862.

  18. Visible Spectrum of Stable Sonoluminescence

    DTIC Science & Technology

    1992-12-01

    Lawrence Livermore National Laboratory. 9. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the...December 1992. 11. B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman , and S. J. Putterman, "Resolving the picosecond characteristics of synchronous...author, 12 November 1992. 14. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the author, 14

  19. The ecology of cooperative breeding behaviour.

    PubMed

    Shen, Sheng-Feng; Emlen, Stephen T; Koenig, Walter D; Rubenstein, Dustin R

    2017-06-01

    Ecology is a fundamental driving force for the evolutionary transition from solitary living to breeding cooperatively in groups. However, the fact that both benign and harsh, as well as stable and fluctuating, environments can favour the evolution of cooperative breeding behaviour constitutes a paradox of environmental quality and sociality. Here, we propose a new model - the dual benefits framework - for resolving this paradox. Our framework distinguishes between two categories of grouping benefits - resource defence benefits that derive from group-defended critical resources and collective action benefits that result from social cooperation among group members - and uses insider-outsider conflict theory to simultaneously consider the interests of current group members (insiders) and potential joiners (outsiders) in determining optimal group size. We argue that the different grouping benefits realised from resource defence and collective action profoundly affect insider-outsider conflict resolution, resulting in predictable differences in the per capita productivity, stable group size, kin structure and stability of the social group. We also suggest that different types of environmental variation (spatial vs. temporal) select for societies that form because of the different grouping benefits, thus helping to resolve the paradox of why cooperative breeding evolves in such different types of environments. © 2017 John Wiley & Sons Ltd/CNRS.

  20. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2011-02-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

  1. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris

    1992-01-01

    The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820

  2. Magnetization reversal of the domain structure in the anti-perovskite nitride Co{sub 3}FeN investigated by high-resolution X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajiri, T., E-mail: t.hajiri@numse.nagoya-u.ac.jp; Kuroki, Y.; Ando, H.

    2016-05-14

    We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co{sub 3}FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy,more » present in nanostructured thin films.« less

  3. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    PubMed

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1993-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.

  5. EndoAnchors to Resolve Persistent Type Ia Endoleak Secondary to Proximal Cuff With Parallel Graft Placement.

    PubMed

    Donselaar, Esmé J; van der Vijver-Coppen, Rozemarijn J; van den Ham, Leo H; Lardenoye, Jan Willem H P; Reijnen, Michel M P J

    2016-02-01

    To describe 2 patients with a distally migrated endograft causing a type Ia endoleak and treatment with a proximal cuff and chimney grafts that required EndoAnchors to finally seal the leak. Two men, ages 86 and 72 years, presented with stent-graft migration and type Ia endoleak at 5 and 15 years after endovascular repair, respectively. Both were treated with a proximal cuff in combination with a chimney graft to the left renal artery. In both cases, the type Ia endoleak persisted, likely due to gutter formation. Both patients were treated in the same setting with EndoAnchors that instantly resolved the endoleak. At 1-year follow-up, there was no recurrent endoleak or migration, with patent chimney grafts and renal arteries and stable renal function. EndoAnchors may effectively resolve a persistent type Ia endoleak arising from gutter formation after placement of a proximal cuff and chimney grafts. © The Author(s) 2015.

  6. Resolving the neutron lifetime puzzle

    NASA Astrophysics Data System (ADS)

    Mumm, Pieter

    2018-05-01

    Free electrons and protons are stable, but outside atomic nuclei, free neutrons decay into a proton, electron, and antineutrino through the weak interaction, with a lifetime of ∼880 s (see the figure). The most precise measurements have stated uncertainties below 1 s (0.1%), but different techniques, although internally consistent, disagree by 4 standard deviations given the quoted uncertainties. Resolving this “neutron lifetime puzzle” has spawned much experimental effort as well as exotic theoretical mechanisms, thus far without a clear explanation. On page 627 of this issue, Pattie et al. (1) present the most precise measurement of the neutron lifetime to date. A new method of measuring trapped neutrons in situ allows a more detailed exploration of one of the more pernicious systematic effects in neutron traps, neutron phase-space evolution (the changing orbits of neutrons in the trap), than do previous methods. The precision achieved, combined with a very different set of systematic uncertainties, gives hope that experiments such as this one can help resolve the current situation with the neutron lifetime.

  7. Investigations of (Delta)14C, (delta)13C, and (delta)15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, L A; Andrews, A H; Cailliet, G M

    The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicitymore » with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.« less

  8. Tissue identity testing of cancer by short tandem repeat polymorphism: pitfalls of interpretation in the presence of microsatellite instability.

    PubMed

    Much, Melissa; Buza, Natalia; Hui, Pei

    2014-03-01

    Tissue identity testing by short tandem repeat (STR) polymorphism offers discriminating power in resolving tissue mix-up or contamination. However, one caveat is the presence of microsatellite unstable tumors, in which genetic alterations may drastically change the STR wild-type polymorphism leading to unexpected allelic discordance. We examined how tissue identity testing results can be altered by the presence of microsatellite instability (MSI). Eleven cases of MSI-unstable (9 intestinal and 2 endometrial adenocarcinomas) and 10 cases of MSI-stable tumors (all colorectal adenocarcinomas) were included. All had been previously tested by polymerase chain reaction testing at 5 National Cancer Institute (NCI) recommended MSI loci and/or immunohistochemistry for DNA mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). Tissue identity testing targeting 15 STR loci was performed using AmpF/STR Identifiler Amplification. Ten of 11 MSI-unstable tumors demonstrated novel alleles at 5 to 12 STR loci per case and frequently with 3 or more allelic peaks. However, all affected loci showed identifiable germline allele(s) in MSI-high tumors. A wild-type allelic profile was seen in 7 of 10 MSI-stable tumors. In the remaining 3 cases, isolated novel alleles were present at a unique single locus in addition to germline alleles. Loss of heterozygosity was observed frequently in both MSI-stable (6/11 cases) and MSI-unstable tumors (8/10 cases). In conclusion, MSI may significantly alter the wild-type allelic polymorphism, leading to potential interpretation errors of STR genotyping. Careful examination of the STR allelic pattern, high index of suspicion, and follow-up MSI testing are crucial to avoid erroneous conclusions and subsequent clinical and legal consequences. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The Resolvent Algebra of Non-relativistic Bose Fields: Observables, Dynamics and States

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev

    2018-05-01

    The structure of the gauge invariant (particle number preserving) C*-algebra generated by the resolvents of a non-relativistic Bose field is analyzed. It is shown to form a dense subalgebra of the bounded inverse limit of a directed system of approximately finite dimensional C*-algebras. Based on this observation, it is proven that the closure of the gauge invariant algebra is stable under the dynamics induced by Hamiltonians involving pair potentials. These facts allow to proceed to a description of interacting Bosons in terms of C*-dynamical systems. It is outlined how the present approach leads to simplifications in the construction of infinite bosonic states and sheds new light on topics in many body theory.

  10. Pentacene appended to a TEMPO stable free radical: the effect of magnetic exchange coupling on photoexcited pentacene.

    PubMed

    Chernick, Erin T; Casillas, Rubén; Zirzlmeier, Johannes; Gardner, Daniel M; Gruber, Marco; Kropp, Henning; Meyer, Karsten; Wasielewski, Michael R; Guldi, Dirk M; Tykwinski, Rik R

    2015-01-21

    Understanding the fundamental spin dynamics of photoexcited pentacene derivatives is important in order to maximize their potential for optoelectronic applications. Herein, we report on the synthesis of two pentacene derivatives that are functionalized with the [(2,2,6,6-tetramethylpiperidin-1-yl)oxy] (TEMPO) stable free radical. The presence of TEMPO does not quench the pentacene singlet excited state, but does quench the photoexcited triplet excited state as a function of TEMPO-to-pentacene distance. Time-resolved electron paramagnetic resonance experiments confirm that triplet quenching is accompanied by electron spin polarization transfer from the pentacene excited state to the TEMPO doublet state in the weak coupling regime.

  11. Penetrative convection at high Rayleigh numbers

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  12. Effective Simulation Strategy of Multiscale Flows using a Lattice Boltzmann model with a Stretched Lattice

    NASA Astrophysics Data System (ADS)

    Yahia, Eman; Premnath, Kannan

    2017-11-01

    Resolving multiscale flow physics (e.g. for boundary layer or mixing layer flows) effectively generally requires the use of different grid resolutions in different coordinate directions. Here, we present a new formulation of a multiple relaxation time (MRT)-lattice Boltzmann (LB) model for anisotropic meshes. It is based on a simpler and more stable non-orthogonal moment basis while the use of MRT introduces additional flexibility, and the model maintains a stream-collide procedure; its second order moment equilibria are augmented with additional velocity gradient terms dependent on grid aspect ratio that fully restores the required isotropy of the transport coefficients of the normal and shear stresses. Furthermore, by introducing additional cubic velocity corrections, it maintains Galilean invariance. The consistency of this stretched lattice based LB scheme with the Navier-Stokes equations is shown via a Chapman-Enskog expansion. Numerical study for a variety of benchmark flow problems demonstrate its ability for accurate and effective simulations at relatively high Reynolds numbers. The MRT-LB scheme is also shown to be more stable compared to prior LB models for rectangular grids, even for grid aspect ratios as small as 0.1 and for Reynolds numbers of 10000.

  13. Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir

    PubMed Central

    Yang, Yan; Wang, Guoqiang; Wang, Lijing; Yu, Jingshan; Xu, Zongxue

    2014-01-01

    Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE); and 3) China trend - surface reanalysis (trend surface) data. These are compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and desirable results. The results of this study suggest that precipitation data for future applications should be considered comprehensively in the TGR area, including the influence of data density and topography. PMID:25409467

  14. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains

    PubMed Central

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R.; Tyteca, Donatienne

    2016-01-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicholson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decade, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (> min vs sec) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryotes to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. PMID:26738447

  15. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    PubMed

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  16. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    PubMed

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Warm season precipitation signal in δ2 H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland.

    PubMed

    Riechelmann, Dana F C; Greule, Markus; Siegwolf, Rolf T W; Anhäuser, Tobias; Esper, Jan; Keppler, Frank

    2017-10-15

    In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ 2 H methoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ 2 H values from wood. We measured δ 2 H methoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ 2 H methoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ 2 H methoxyl values were measured as CH 3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 μL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. Testing the climate response of the δ 2 H methoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ 2 H methoxyl series do not show any significant correlation to climate parameters. Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ 2 H values of the xylem water and, therefore, higher δ 2 H values in the lignin methoxyl groups. Therefore, we suggest that δ 2 H methoxyl values of high elevation larch trees might serve as a summer precipitation proxy. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Executor Framework for DIRAC

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Graciani Diaz, R.

    2012-12-01

    DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.

  19. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.

    PubMed

    Crown, Scott B; Antoniewicz, Maciek R

    2013-03-01

    Radioactive and stable isotopes have been applied for decades to elucidate metabolic pathways and quantify carbon flow in cellular systems using mass and isotope balancing approaches. Isotope-labeling experiments can be conducted as a single tracer experiment, or as parallel labeling experiments. In the latter case, several experiments are performed under identical conditions except for the choice of substrate labeling. In this review, we highlight robust approaches for probing metabolism and addressing metabolically related questions though parallel labeling experiments. In the first part, we provide a brief historical perspective on parallel labeling experiments, from the early metabolic studies when radioisotopes were predominant to present-day applications based on stable-isotopes. We also elaborate on important technical and theoretical advances that have facilitated the transition from radioisotopes to stable-isotopes. In the second part of the review, we focus on parallel labeling experiments for (13)C-metabolic flux analysis ((13)C-MFA). Parallel experiments offer several advantages that include: tailoring experiments to resolve specific fluxes with high precision; reducing the length of labeling experiments by introducing multiple entry-points of isotopes; validating biochemical network models; and improving the performance of (13)C-MFA in systems where the number of measurements is limited. We conclude by discussing some challenges facing the use of parallel labeling experiments for (13)C-MFA and highlight the need to address issues related to biological variability, data integration, and rational tracer selection. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Decadal-scale Climate Variability on the Central Iranian Plateau Spanning the So-called 4.2 ka BP Drought Event

    NASA Astrophysics Data System (ADS)

    Carolin, S.; Walker, R. T.; Henderson, G. M.; Maxfield, L.; Ersek, V.; Sloan, A.; Talebian, M.; Fattahi, M.; Nezamdoust, J.

    2015-12-01

    The influence of climate on the growth and development of ancient civilizations throughout the Holocene remains a topic of heated debate. The 4.2 ka BP global-scale mid-to-low latitude aridification event (Walker et al., 2012) in particular has incited various correlation proposals. Some authors suggest that this event may have led to the collapse of the Akkadian empire in Mesopotamia, one of the first empires in human history, as well as to changes among other Early Bronze Age societies dependent on cereal agriculture (eg. Staubwasser and Weiss, 2006). Other authors remain doubtful of the impact of environmental factors on the collapse of past societies (eg. Middleton, 2012). While coincident timing of an environmental event with archeological evidence does not necessitate a causation, a comprehensive understanding of climate variability in the ancient Near East is nonetheless an essential component to resolving the full history of early human settlements. Paleoclimate data on the Central Iranian Plateau, a region rich with ancient history, is exceptionally sparse compared to other areas. Many karst locations are found throughout the region, however, setting the stage for the development of several high-resolution, accurate and precisely-dated climate proxy records if a correlation between the chemistry of semi-arid speleothem samples and climate is resolved. Here we present a 5.1-3.7 ka BP record of decadal-scale stalagmite stable isotope and trace metal variability. The stalagmite was collected in Gol-e zard cave (35.8oN, 52.0oE), ~100 km NE of Tehran on the southern flank of the Alborz mountain range (2530masl). The area currently receives ~270mm mean annual precipitation, with more than 90% of precipitation falling within the wet season (November-May). We use GNIP data from Tehran and local and regional meteorological data to resolve the large-scale mechanisms forcing isotopic variations in rainwater over Gol-e zard cave. We discuss possible transformation of water isotopes during transition through the karst aquifer based on site properties and simple model experiments. Finally, we discuss the timing and magnitude of significant events in the stable isotope and trace metal records, particularly in relation to the 4.2 ka BP drought event apparent in certain other regional climate records.

  1. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    PubMed Central

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2015-01-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS. PMID:21130670

  2. Laser microfabrication of biomedical devices: time-resolved microscopy of the printing process

    NASA Astrophysics Data System (ADS)

    Serra, P.; Patrascioiu, A.; Fernández-Pradas, J. M.; Morenza, J. L.

    2013-04-01

    Laser printing constitutes an interesting alternative to more conventional printing techniques in the microfabrication of biomedical devices. The principle of operation of most laser printing techniques relies on the highly localized absorption of strongly focused laser pulses in the close proximity of the free surface of the liquid to be printed. This leads to the generation of a cavitation bubble which further expansion results in the ejection of a small fraction of the liquid, giving place to the deposition of a well-defined droplet onto a collector substrate. Laser printing has proved feasible for printing biological materials, from single-stranded DNA to proteins, and even living cells and microorganisms, with high degrees of resolution and reproducibility. In consequence, laser printing appears to be an excellent candidate for the fabrication of biological microdevices, such as DNA and protein microarrays, or miniaturized biosensors. The optimization of the performances of laser printing techniques requires a detailed knowledge of the dynamics of liquid transfer. Time-resolved microscopy techniques play a crucial role in this concern, since they allow tracking the evolution of the ejected material with excellent time and spatial resolution. Investigations carried out up to date have shown that liquid ejection proceeds through the formation of long, thin and stable liquid jets. In this work the different approaches used so far for monitoring liquid ejection during laser printing are considered, and it is shown how these techniques make possible to understand the complex dynamics involved in the process.

  3. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  4. An Iterative Method for Problems with Multiscale Conductivity

    PubMed Central

    Kim, Hyea Hyun; Minhas, Atul S.; Woo, Eung Je

    2012-01-01

    A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model, which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin cylinder is an insulator and both inside and outside the thin cylinderare filled with the same saline. The injected current can enter only through the holes adopted to the thin cylinder. The model has a high contrast of conductivity discontinuity across the thin cylinder and the thickness of the layer and the size of holes are very small compared to the domain of the model problem. Numerical methods for such a model require a very fine mesh near the thin layer to resolve the conductivity discontinuity. In this work, an efficient numerical method for such a model problem is proposed by employing a uniform mesh, which need not resolve the conductivity discontinuity. The discrete problem is then solved by an iterative method, where the solution is improved by solving a simple discrete problem with a uniform conductivity. At each iteration, the right-hand side is updated by integrating the previous iterate over the thin cylinder. This process results in a certain smoothing effect on microscopic structures and our discrete model can provide a more practical tool for simulating the apparent conductivity. The convergence of the iterative method is analyzed regarding the contrast in the conductivity and the relative thickness of the layer. In numerical experiments, solutions of our method are compared to reference solutions obtained from COMSOL, where very fine meshes are used to resolve the conductivity discontinuity in the model. Errors of the voltage in L2 norm follow O(h) asymptotically and the current density matches quitewell those from the reference solution for a sufficiently small mesh size h. The experimental results present a promising feature of our approach for simulating the apparent conductivity related to changes in microscopic cellular structures. PMID:23304238

  5. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample-standard bracketing. As cold plasma conditions can amplify matrix effects, experiments were conducted to test the matrix tolerance of measurements; the use of clean, matrix-matched samples and standards is critical. Limitations of the cold-plasma high-resolution MC-ICP-MS methodology with respect to matrix tolerance are discussed and compared with the limitations of TIMS methodologies.

  6. Time-Resolved Records of Magnetic Activity on the Pallasite Parent Body and Psyche

    NASA Astrophysics Data System (ADS)

    Bryson, J. F. J.; Nichols, C. I. O.; Herrero-Albillos, J.; Kronast, F.; Kasama, T.; Alimadadi, H.; van der Laan, G.; Nimmo, F.; Harrison, R. J.

    2014-12-01

    Although many small bodies apparently generated dynamo fields in the early solar system, the nature and temporal evolution of these fields has remained enigmatic. Time-resolved records of the Earth's planetary field have been essential in understanding the dynamic history of our planet, and equivalent information from asteroids could provide a unique insight into the development of the solar system. Here we present time-resolved records of magnetic activity on the main-group pallasite parent body and (16) Psyche, obtained using newly-developed nanomagnetic imaging techniques. For the pallasite parent body, the inferred field direction remained relatively constant and the intensity was initially stable at ~100 μT before it decreased in two discrete steps down to 0 μT. We interpret this behaviour as due to vigorous dynamo activity driven by compositional convection in the core, ultimately transitioning from a dipolar to multipolar field as the inner core grew from the bottom-up. For Psyche (measured from IVA iron meteorites), the inferred field direction reversed, while the intensity remained stable at >50 μT. Psyche cooled rapidly as an unmantled core, although the resulting thermal convection alone cannot explain these observations. Instead, this behaviour required top-down core solidification, and is attributed either to compositional convection (if the core also solidified from the bottom-up) or convection generated directly by top-down solidification (e.g. Fe-snow). The mechanism governing convection in small body cores is an open question (due partly to uncertainties in the direction of core solidification), and these observations suggest that unconventional (i.e. not thermal) mechanisms acted in the early solar system. These mechanisms are very efficient at generating convection, implying a long-lasting and widespread epoch of dynamo activity among small bodies in the early solar system.

  7. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    PubMed

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mathematical Models to Determine Stable Behavior of Complex Systems

    NASA Astrophysics Data System (ADS)

    Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.

    2018-05-01

    The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.

  9. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

    PubMed Central

    Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu

    2017-01-01

    O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965

  10. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    DTIC Science & Technology

    2017-07-31

    Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email

  11. An Experimental Study of a Low-Jitter Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Lee, Michael; Eskridge, Richard; Smith, James; Martin, Adam; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for a variety of applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 kilometers per second have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.

  12. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  13. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.

  14. Alumina/polymer-coated nanocrystals with extremely high stability used as a color conversion material in LEDs

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Lee, Jongsoo; Han, Chang-Soo

    2013-12-01

    The long-term stability of quantum dot (QD)-based devices under harsh environmental conditions has been a critical bottleneck to be resolved for commercial use. Here, we demonstrate an extremely stable QD/alumina/polymer hybrid structure by combining internal atomic layer deposition (ALD) infilling with polymer encapsulation. ALD infilling and polymer encapsulation of QDs synergistically prohibit the degradation of QDs in terms of optical, thermal and humid attacks. Our hybrid QD/alumina/polymer film structure showed no noticeable reduction in photoluminescence even in a commercial grade test (85% humidity at 85 ° C) over 28 days. In addition, we successfully fabricated a QD-based light-emitting device with excellent long-term stability by incorporating hybrid QD/alumina/polymer film as a color conversion material on light-emitting diode chips.

  15. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy.

    PubMed

    Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki

    2017-03-06

    Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  17. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter

    PubMed Central

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  18. Observation of oscillatory relaxation in the Sn-terminated surface of epitaxial rock-salt SnSe { 111 } topological crystalline insulator

    NASA Astrophysics Data System (ADS)

    Jin, Wencan; Dadap, Jerry; Osgood, Richard; Vishwanath, Suresh; Lien, Huai-Hsun; Chaney, Alexander; Xing, Huili; Liu, Jianpeng; Kong, Lingyuan; Ma, Junzhang; Qian, Tian; Ding, Hong; Sadowski, Jerzy; Dai, Zhongwei; Pohl, Karsten; Lou, Rui; Wang, Shancai; Liu, Xinyu; Furdyna, Jacek

    Topological crystalline insulators have been recently observed in rock-salt SnSe { 111 } thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation is a preferred configuration. In this work, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, are used to demonstrate conclusively that a rock-salt SnSe { 111 } thin film has a stable Sn-terminated surface. These observations are supported by low energy electron diffraction (LEED) intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe { 111 } thin film has undergone an oscillatory surface structural relaxation. In sharp contrast to the Se-terminated counterpart, the Dirac surface state in the Sn-terminated SnSe { 111 } thin film yields a high Fermi velocity, 0 . 50 ×106 m/s, which may lead to high-speed electronic device applications. DOE No. DE-FG 02-04-ER-46157.

  19. Designation of a polarization-converting system and its enhancement of double-frequency efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-08-01

    A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.

  20. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging†

    PubMed Central

    Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian

    2013-01-01

    Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544

  1. On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30)

    USGS Publications Warehouse

    Allen, T.I.; Wald, D.J.

    2009-01-01

    An alternative method has recently been proposed for evaluating global seismic site conditions, or the average shear velocity to 30 m depth (VS30), from the Shuttle Radar Topography Mission (SRTM) 30 arcsec digital elevation models (DEMs). The basic premise of the method is that the topographic slope can be used as a reliable proxy for VS30 in the absence of geologically and geotechnically based site-condition maps through correlations between VS30 measurements and topographic gradient. Here we evaluate the use of higher-resolution (3 and 9 arcsec) DEMs to examine whether we are able to resolve VS30 in more detail than can be achieved using the lower-resolution SRTM data. High-quality DEMs at resolutions greater than 30 arcsec are not uniformly available at the global scale. However, in many regions where such data exist, they may be employed to resolve finer-scale variations in topographic gradient, and consequently, VS30. We use the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center's National Elevation Dataset (NED) to investigate the use of high-resolution DEMs for estimating VS30 in several regions across the United States, including the San Francisco Bay area in California, Los Angeles, California, and St. Louis, Missouri. We compare these results with an example from Taipei, Taiwan, that uses 9 arcsec SRTM data, which are globally available. The use of higher-resolution NED data recovers finer-scale variations in topographic gradient, which better correlate to geological and geomorphic features, in particular, at the transition between hills and basins, warranting their use over 30 arcsec SRTM data where available. However, statistical analyses indicate little to no improvement over lower-resolution topography when compared to VS30 measurements, suggesting that some topographic smoothing may provide more stable VS30 estimates. Furthermore, we find that elevation variability in canopy-based SRTM measurements at resolutions greater than 30 arcsec are too large to resolve reliable slopes, particularly in low-gradient sedimentary basins.

  2. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. © 2016 Wiley Periodicals, Inc.

  3. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements.

    PubMed

    van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna

    2012-03-01

    Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.

  4. Bright and ultra-fast scintillation from a semiconductor?

    PubMed Central

    Derenzo, Stephen E.; Bourret-Courshesne, Edith; Bizarri, Gregory; Canning, Andrew

    2015-01-01

    Semiconductor scintillators are worth studying because they include both the highest luminosities and shortest decay times of all known scintillators. Moreover, many semiconductors have the heaviest stable elements (Tl, Hg, Pb, Bi) as a major constituent and a high ion pair yield that is proportional to the energy deposited. We review the scintillation properties of semiconductors activated by native defects, isoelectronic impurities, donors and acceptors with special emphasis on those that have exceptionally high luminosities (e.g. ZnO:Zn, ZnS:Ag,Cl, CdS:Ag,Cl) and those that have ultra-fast decay times (e.g. ZnO:Ga; CdS:In). We discuss underlying mechanisms that are consistent with these properties and the possibilities for achieving (1) 200,000 photons/MeV and 1% fwhm energy resolution for 662 keV gamma rays, (2) ultra-fast (ns) decay times and coincident resolving times of 30 ps fwhm for time-of-flight positron emission tomography, and (3) both a high luminosity and an ultra-fast decay time from the same scintillator at cryogenic temperatures. PMID:26855462

  5. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells.

    PubMed

    Kongkanand, Anusorn; Mathias, Mark F

    2016-04-07

    Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.

  6. Exactly energy conserving semi-implicit particle in cell formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less

  7. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  9. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    PubMed Central

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.

    2017-01-01

    Ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface. PMID:28598428

  10. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  11. Roughness of the Mantle Transition Zone Discontinuities Revealed by High Resolution Wavefield Imaging with the Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pavlis, G. L.

    2015-12-01

    We post-processed 141,080 pairs of high quality radial and transverse receiver functions from the Earthscope Automated Receiver Survey using a variant of what we have called generalized iterative deconvolution method and reshaped the spiking output into different scales of Ricker wavelets. We then used these data as input to our 3D plane wave migration method to produce an image volume of P to S scattering surfaces under all of the lower 48 states. The result is arguably the highest resolution image ever produce of the mantle transition zone. Due to the effect of migration impulse response, different scales of Ricker wavelets provide another important means of controlling the resolution of the image produced by 3D plane wave migration method. Model simulation shows that comparing to the widely used CCP stacking method with receiver functions shaped by Gaussian wavelet, the application of our methods is capable of resolving not only dipping discontinuities but also more subtle details of the discontinuities. Application to the latest USArray data reveals several previously unobserved features of the 410 and 660 discontinuities. Both discontinuities are resolved to a precision approaching 1 km under the stable interior, but degrading to the order of 10 km in the western US due to a probably combination of higher attenuation and velocity heterogeneity not resolved by current generation tomography models. Topography with many 10s of km is resolved at a range of scales. In addition, we observe large variation of relative amplitude on the radial component and large variations in the radial to transverse amplitude ratio that correlate with inferred variations in discontinuity topography. We argue this combination of observations can be explained by roughness at a range of scales. Roughness is consistent with the phase-change model for these discontinuities given there is little reason to think the mantle is homogeneous at these distance scales. Continental scale isopach of the transition zones shows the average thickness of the transition is approximately 15 km greater in the eastern US compared to the western US. This change occurs on a well define boundary roughly under the Mississippi River. The standard phase change model would thus predict higher transition zone temperatures on the western side of this boundary.

  12. Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components

    EPA Science Inventory

    Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...

  13. Scombroid poisoning.

    PubMed

    McInerney, J; Sahgal, P; Vogel, M; Rahn, E; Jonas, E

    1996-08-01

    Scombroid poisoning is described in the literature as a toxic poisoning caused by ingestion of certain dark meat fish undergoing bacterial decomposition. Poisoning results from the ingestion of a heat-stable toxin. We describe the case of a man who presented to the emergency department several hours after eating tuna steak with evidence of scombroid poisoning that was associated with loss of vision and atrial tachycardia with block. All signs and symptoms resolved after treatment for scombroid poisoning.

  14. High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.

    2016-12-01

    Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)

  15. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    NASA Astrophysics Data System (ADS)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  16. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-02

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).

  17. Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use.

    PubMed

    Takahashi, Teppei; Terada, Tomoyoshi; Arikawa, Hajime; Kizaki, Kazuha; Terawaki, Hiroyuki; Imai, Hajime; Itoh, Yoshinori; Era, Seiichi

    2016-01-01

    We investigated the quantitation of oxidative chemical modifications, such as thiol oxidation and carbonylation, in medical-grade human serum albumin (HSA) preparations, in comparison with those of healthy and diseased subjects. Four kinds of HSA products were obtained from three major suppliers in Japan. Eight male collegiate students and six healthy male volunteers were recruited as the young (21.6 years) and older (57.2 years) groups, respectively. Four male stable patients (64.3 years) treated with regular hemodialysis (HD) also enrolled in this study. Quantitative analyses for thiol oxidation and carbonylation were performed using HPLC and spectroscopic methods, respectively. Structural characterization was further investigated by differential scanning calorimetry (DSC) and circular dichroism (CD) spectropolarimetry. Significantly larger amounts of thiol-oxidized and carbonylated HSA products were observed than HSA obtained from healthy subjects. In the structural characterization, the midpoint temperature of the denaturation curve (Tm) analyzed by DSC was relatively high, and may have been caused by the added albumin-specific stabilizers, and CD-resolved secondary structure showed that HSA products had a helical conformation. Commercial HSA products for clinical use have a more thermally stable state and remain in a helix-rich structure, even though their specific amino acids (mainly Cys and Lys residues) are oxidatively modified.

  18. High resolution water stable isotope profiles of abrupt climate transitions in Greenland ice with new observations from NEEM

    NASA Astrophysics Data System (ADS)

    Popp, T. J.; White, J. W. C.; Gkinis, V.; Vinther, B. M.; Johnsen, S. J.

    2012-04-01

    In 1989 Willi Dansgaard and others, using the DYE3 ice core, showed that the abrupt termination of the Younger Dryas expressed in water stable isotope ratios and deuterium excess was completed in less than 50 years. A few years later, using the GISP2 ice core, Richard Alley and others proposed that snow accumulation at the site doubled in as little as 1-3 years across the same climate transition at the end of the Younger Dryas. Over the next two decades, in large part due to such observations from Greenland ice cores, a paradigm of linked, abrupt changes in the North Atlantic region has been developed around North Atlantic deep water formation, North Atlantic sea ice extent, and widespread atmospheric circulation changes occurring repeatedly during the last glacial period in response to changing freshwater fluxes to the region, or perhaps other causes. More recently, with the NGRIP ice core, using a suite of high resolution proxy data, and in particular deuterium excess, it was observed again that certain features in the climate system can switch modes from one year to the next, while other proxies can take from decades to centuries to completely switch modes. Thus, an event seen in the proxy records such as the abrupt end of the Younger Dryas (or other interstadial events) may comprise multiple climatic or oceanic responses with different relative timing and duration which potentially follow a predictable sequence of events, in some cases separated by only a few years. Today, the search continues for these emerging patterns through isotopic and other highly resolvable proxy data series from ice cores. With the recent completion of the drilling at NEEM, many abrupt transitions have now been measured in detail over a geographic transect with drilling sites spanning from DYE3 in Southern Greenland, GISP2 in the central summit region, and up to NGRIP and NEEM in the far north. The anatomy of abrupt climate transitions can therefore be examined both spatially and temporally, where obtaining the highest possible temporal resolution is desirable to resolve patterns. A new method for measuring water stable isotope ratios has been developed during the NEEM project that allows us to measure a carefully controlled fraction of a continuously melted ice core section which is evaporated directly into Cavity Ring Down Laser Spectrometer in the Near-Infrared spectrum. In such a system the resolution can be maximized (and characterized) largely as a function of both the melt rate and minimizing subsequent mixing in the gas phase during analysis. These new detailed water isotope series from the NEEM ice core are examined with respect to the corresponding series from new and previously available series from the other ice cores. The emerging picture indicates that abrupt climate changes have both a temporal and geographic anatomy that can change from one event to the next in how they are recorded across Greenland. Together with modeling and chemical impurity data, these patterns we detect in the water stable isotope series will provide clues and constraints to the timing and origin of oceanic and atmospheric changes that make up an abrupt climate change.

  19. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Cimini, Domenico; De Angelis, Francesco; Canut, Guylaine; Unger, Vinciane; Guillot, Remi; Tzanos, Diane; Paci, Alexandre

    2017-09-01

    A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51-52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54-58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch deep near-surface temperature inversions very well. Larger errors were observed in cloudy conditions due to the difficulty of ground-based MWRs to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky conditions was observed. From this study, we can conclude that MWRs are expected to bring valuable information into numerical weather prediction models up to 3 km in altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proven that MWRs are capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions.

  20. Eocene Antarctic seasonality inferred from high-resolution stable isotope profiles of fossil bivalves and driftwood

    NASA Astrophysics Data System (ADS)

    Judd, E. J.; Ivany, L. C.; Miklus, N. M.; Uveges, B. T.; Junium, C. K.

    2017-12-01

    The Eocene Epoch was a time of large-scale global climate change, experiencing both the warmest temperatures of the Cenozoic and the onset of southern hemisphere glaciation. The record of average global temperatures throughout this transition is reasonably well constrained, however considerably less is known about the accompanying changes in seasonality. Seasonally resolved temperature data provide a wealth of information not readily available from mean annual temperature data alone. These data are particularly important in the climatically sensitive high latitudes, as they can elucidate the means by which climate changes and the conditions necessary for the growth of ice sheets. Several recent studies, however, have suggested the potential for monsoonal precipitation regimes in the early-middle Eocene high latitudes, which complicates interpretation of seasonally resolved oxygen isotope records in shallow nearshore marine settings. Seasonal precipitation and runoff could create a brackish, isotopically depleted lens in these environments, depleting summertime δ18Ocarb and thereby inflating the inferred mean and range of isotope-derived temperatures. Here, we assess intra-annual variations in temperature in shallow nearshore Antarctic waters during the middle and late Eocene, inferred from high-resolution oxygen isotope profiles from accretionary bivalves of the La Meseta Formation, Seymour Island, Antarctica. To address concerns related to precipitation and runoff, we also subsample exceptionally preserved fossil driftwood from within the formation and use seasonal differences in δ13Corg values to estimate the ratio of summertime to wintertime precipitation. Late Eocene oxygen isotope profiles exhibit strongly attenuated seasonal amplitudes and more enriched mean annual values in comparison with data from the middle Eocene. Preliminary fossil wood data are not indicative of a strongly seasonal precipitation regime, implying that intra-annual variation in oxygen isotope profiles dominantly reflects changes in temperature. Collectively, these results indicate that the late Eocene was cooler and dramatically less seasonal than the middle Eocene and suggest that high latitude Eocene cooling was achieved primarily through a preferential decrease in summertime temperatures.

  1. Multifocal Choroiditis with Retinal Vasculitis, Optic Neuropathy, and Keratoconus in a Young Saudi Male.

    PubMed

    Dhafiri, Yousef; Al Rubaie, Khalid; Kirat, Omar; May, William N; Nguyen, Quan D; Kozak, Igor

    2017-01-01

    The purpose of this study is to describe an association of unilateral multifocal choroiditis (MFC), retinal vasculitis, optic neuropathy, and bilateral keratoconus in a young Saudi male. A 27-year-old male patient with stable bilateral keratoconus presented with a painless vision loss in his left eye. Ophthalmic examinations revealed multiple foci of idiopathic chorioretinitis, retinal vasculitis, and mild optic disc leakage on fluorescein angiography, all of which resolved on systemic therapy with mycophenolate mofetil and prednisone after 3 months. Systemic medication was stopped after 8 months. One year after presentation, patient's visual acuity has improved and remained stable. Systemic immunomodulatory therapy can be effective in managing and leading to resolution of MFC, retinal vasculitis, and optic disc leak in young patients.

  2. Revisiting the relationship between attributional style and academic performance

    PubMed Central

    2015-01-01

    Abstract Previous research into the relationship between attributions and academic performance has produced contradictory findings that have not been resolved. The present research examines the role of specific dimensions of attributional style in predicting subsequent academic performance in a sample of pupils (N = 979) from both high‐ and low‐achieving schools. Hierarchical regression and moderation analyses indicate that internal, stable, and global, attributional styles for positive events predict higher levels of academic performance. Global attributions for negative events were related to poorer performance across all schools. Stable attributions for negative events were related to higher levels of performance in high‐achieving schools but not in low‐achieving schools. Higher levels of internality for negative events were associated with higher performance only in low achieving schools. PMID:27594711

  3. Assessing the impact of race, social factors and air pollution on birth outcomes: a population-based study.

    PubMed

    Gray, Simone C; Edwards, Sharon E; Schultz, Bradley D; Miranda, Marie Lynn

    2014-01-29

    Both air pollution exposure and socioeconomic status (SES) are important indicators of children's health. Using highly resolved modeled predictive surfaces, we examine the joint effects of air pollution exposure and measures of SES in a population level analysis of pregnancy outcomes in North Carolina (NC). Daily measurements of particulate matter <2.5 μm in aerodynamic diameter (PM2.5) and ozone (O3) were calculated through a spatial hierarchical Bayesian model which produces census-tract level point predictions. Using multilevel models and NC birth data from 2002-2006, we examine the association between pregnancy averaged PM2.5 and O3, individual and area-based SES indicators, and birth outcomes. Maternal race and education, and neighborhood household income were associated with adverse birth outcomes. Predicted concentrations of PM2.5 and O3 were also associated with an additional effect on reductions in birth weight and increased risks of being born low birth weight and small for gestational age. This paper builds on and complements previous work on the relationship between pregnancy outcomes and air pollution exposure by using 1) highly resolved air pollution exposure data; 2) a five-year population level sample of pregnancies; and 3) including personal and areal level measures of social determinants of pregnancy outcomes. Results show a stable and negative association between air pollution exposure and adverse birth outcomes. Additionally, the more socially disadvantaged populations are at a greater risk; controlling for both SES and environmental stressors provides a better understanding of the contributing factors to poor children's health outcomes.

  4. A Neural Mechanism of Social Categorization.

    PubMed

    Stolier, Ryan M; Freeman, Jonathan B

    2017-06-07

    Humans readily sort one another into multiple social categories from mere facial features. However, the facial features used to do so are not always clear-cut because they can be associated with opponent categories (e.g., feminine male face). Recently, computational models and behavioral studies have provided indirect evidence that categorizing such faces is accomplished through dynamic competition between parallel, coactivated social categories that resolve into a stable categorical percept. Using a novel paradigm combining fMRI with real-time hand tracking, the present study examined how the brain translates diverse social cues into categorical percepts. Participants (male and female) categorized faces varying in gender and racial typicality. When categorizing atypical faces, participants' hand movements were simultaneously attracted toward the unselected category response, indexing the degree to which such faces activated the opposite category in parallel. Multivoxel pattern analyses (MVPAs) provided evidence that such social category coactivation manifested in neural patterns of the right fusiform cortex. The extent to which the hand was simultaneously attracted to the opposite gender or race category response option corresponded to increased neural pattern similarity with the average pattern associated with that category, which in turn associated with stronger engagement of the dorsal anterior cingulate cortex. The findings point to a model of social categorization in which occasionally conflicting facial features are resolved through competition between coactivated ventral-temporal cortical representations with the assistance of conflict-monitoring regions. More broadly, the results offer a promising multimodal paradigm to investigate the neural basis of "hidden", temporarily active representations in the service of a broad range of cognitive processes. SIGNIFICANCE STATEMENT Individuals readily sort one another into social categories (e.g., sex, race), which have important consequences for a variety of interpersonal behaviors. However, individuals routinely encounter faces that contain diverse features associated with multiple categories (e.g., feminine male face). Using a novel paradigm combining neuroimaging with hand tracking, the present research sought to address how the brain comes to arrive at stable social categorizations from multiple social cues. The results provide evidence that opponent social categories coactivate in face-processing regions, which compete and may resolve into an eventual stable categorization with the assistance of conflict-monitoring regions. Therefore, the findings provide a neural mechanism through which the brain may translate inherently diverse social cues into coherent categorizations of other people. Copyright © 2017 the authors 0270-6474/17/375711-11$15.00/0.

  5. Effect of diode-laser and AC magnetic field of bovine serum albumin nanospheres loaded with phthalocyanine and magnetic particles.

    PubMed

    Simioni, Andreza Ribeiro; Rodrigues, Marcilene M A; Primo, Fernando L; Morais, Paulo C; Tedesco, Antonio Claudio

    2011-04-01

    This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material's evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.

  6. Progress In Plasma Accelerator Development for Dynamic Formation of Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Cassibry, Jason T.; Griffin, Steven; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a coaxial pulsed plasma thruster (Figure 1). It has been tested experimentally and plasma jet velocities of approx.50 km/sec have been obtained. The plasma jet has been photographed with 10-ns exposure times to reveal a stable and repeatable plasma structure (Figure 2). Data for velocity profile information has been obtained using light pipes and magnetic probes embedded in the gun walls to record the plasma and current transit respectively at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  7. Plasma Accelerator Development for Dynamic Formation of Plasma Liners: A Status Report

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  8. The fluid transport in inkjet-printed liquid rivulets

    NASA Astrophysics Data System (ADS)

    Singler, Timothy; Liu, Liang; Sun, Xiaoze; Pei, Yunheng; Microfluidic; Interfacial Transport Lab Team

    2017-11-01

    Inkjet printing holds significant potential for the controlled deposition of solution-processed functional materials spanning applications from microelectronics to biomedical sciences. Although theoretical and experimental investigations addressing the stability criteria of the inkjet-printed liquid rivulets have been discussed in the literature, the associated transport phenomena have received little attention. This study focuses on the experimental investigation of printed rivulets, stable with respect to Rayleigh-Plateau, but exhibiting bulge instability. The morphological evolution and the depth-resolved flow field of the rivulets were assessed via high-speed imaging in conjunction with micro-PIV. We discuss in detail effects of repetitive wave motion induced by periodic drop impact at the leading edge and the associated pulsatile flow, as well as the persistent nonuniform mass distribution in the ridge region of the rivulet. The results provide an experimental foundation for more detailed theoretical modelling of printed rivulet flows.

  9. Perceived Competency and Resolution of Homelessness Among Women with Substance Abuse Problems

    PubMed Central

    Finfgeld-Connett, Deborah; Bloom, Tina L.; Johnson, E. Diane

    2011-01-01

    Using a metasynthesis approach, our aim was to articulate new insights relating to the most efficient and effective means of helping homeless women with substance abuse problems to enhance their well-being and become more stably housed. Distorted perceptions of competency, which are shaped by dysfunctional relationships and mental health problems, make it challenging for women with substance abuse problems to resolve homelessness. Women with particularly low or high levels of perceived competency tend to grapple with challenges related to structure and control, trust, and hopelessness. Therapeutic strategies for approaching these women include careful assessment, caring, personalized structure and control, development of interpersonal trust, instillation of hope, and the targeted use of psychotherapeutic agents and counseling. Framing care for homeless women within the context of perceived competency offers a new way of understanding their plight and shaping interventions to more expeditiously move them toward healthy and stable lives. PMID:21890717

  10. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  11. Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    PubMed Central

    2007-01-01

    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism.

  12. Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Lai, Jiawei; Kong, Lingjian; Ma, Junchao; Lin, Zhu; Lin, Fang; Zhu, Rui; Xu, Jun; Huang, Shiu-Ming; Tang, Dongsheng; Liu, Song; Zhang, Zhensheng; Liao, Zhi-Min; Sun, Dong; Yu, Dapeng

    2018-04-01

    Self-powered photodetectors with a broadband response have attracted great attention due to their potential applications in sensing, imaging, communication, and spectroscopy. Specifically, those with the detection wavelength range covering mid-infrared at room temperature are very challenging and highly desired. Here, the photoresponse of self-powered SmB6 photodetectors is demonstrated through the spatially resolved photocurrent mapping. The photocurrent originates from the interface between the SmB6 and Au electrodes due to the charge separation by built-in electric fields at the interface. It exhibits a stable photoresponse over broadband wavelengths ranging from 488 nm to 10.6 μm at room-temperature. Our results suggest that the chemical vapor deposition grown SmB6 nanowires could be promising candidates for future broadband self-powered detectors and pave the way toward SmB6-based optoelectronic applications.

  13. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1992-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  14. Perceived competency and resolution of homelessness among women with substance abuse problems.

    PubMed

    Finfgeld-Connett, Deborah; Bloom, Tina L; Johnson, E Diane

    2012-03-01

    Using a metasynthesis approach, our aim was to articulate new insights relating to the most efficient and effective means of helping homeless women with substance abuse problems to enhance their well-being and become more stably housed. Distorted perceptions of competency, which are shaped by dysfunctional relationships and mental health problems, make it challenging for women with substance abuse problems to resolve homelessness. Women with particularly low or high levels of perceived competency tend to grapple with challenges related to structure and control, trust, and hopelessness. Therapeutic strategies for approaching these women include careful assessment, caring, personalized structure and control, development of interpersonal trust, instillation of hope, and the targeted use of psychotherapeutic agents and counseling. Framing care for homeless women within the context of perceived competency offers a new way of understanding their plight and shaping interventions to more expeditiously move them toward healthy and stable lives.

  15. The feature extraction of "cat-eye" targets based on bi-spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Fan, Guihua; Sun, Huayan

    2016-10-01

    In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.

  16. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    PubMed

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  17. Clinical and radiological outcomes following traumatic Grade 3 and 4 vertebral artery injuries: a 10-year retrospective analysis from a Level I trauma center. The Parkland Carotid and Vertebral Artery Injury Survey.

    PubMed

    Scott, William W; Sharp, Steven; Figueroa, Stephen A; Eastman, Alexander L; Hatchette, Charles V; Madden, Christopher J; Rickert, Kim L

    2015-05-01

    Grade 3 and 4 blunt vertebral artery (VA) injuries may carry a different natural course from that of lower-grade blunt VA injuries. Proper screening, management, and follow-up of these injuries remain controversial. Grade 3 and 4 blunt VA injuries were analyzed to define their natural history and establish a rational management plan based on lesion progression and cerebral infarction. A retrospective review of a prospectively maintained database of all blunt traumatic carotid and vertebral artery injuries from August 2003 to April 2013 was performed, and Grade 3 and 4 blunt VA injuries were identified. Grade 3 injuries were defined as stenosis of the vessel greater than 50% or the development of a pseudoaneurysm, and Grade 4 injuries were defined as complete vessel occlusion. Demographic information, radiographic imaging findings, number of imaging sessions performed per individual, length of radiographic follow-up, radiographic outcome at end of follow-up, treatment(s) provided, and documentation of ischemic stroke or transient ischemic attack were recorded. A total of 79 high-grade (Grade 3 and 4) blunt VA injuries in 67 patients were identified. Fifty-nine patients with 66 high-grade blunt VA injuries were available for follow-up. There were 17 patients with 23 Grade 3 injuries and 42 patients with 43 Grade 4 injuries. The mean follow-up duration was 58 days for Grade 3 and 67 days for Grade 4 blunt VA injuries. Repeat imaging of Grade 3 blunt VA injuries showed that 39% of injuries were radiographically stable, 43% resolved, and 13% improved, while 1 injury radiographically worsened. Repeat imaging of the Grade 4 blunt VA injuries showed that 65% of injuries were radiographically stable (persistent occlusion), 30% improved (recanalization of the vessel), and in 2 cases (5%) the injury resolved. All Grade 3 injuries that were treated were managed with aspirin or clopidogrel alone, as were the majority of Grade 4 injuries. There were 3 cerebral infarctions thought to be related to Grade 4 blunt VA injuries, which were likely present on admission. All 3 of these patients died at a mean of 13.7 days after hospital admission. No cerebral infarctions directly related to Grade 3 blunt VA injuries were identified. The majority of high-grade blunt VA injuries remain stable or are improved at final follow-up. Despite a 4% rate of radiographic worsening in the Grade 3 blunt VA injury group and a 35% recanalization rate in the Grade 4 blunt VA injury group, there were no adverse clinical outcomes associated with these radiographic changes. No cerebral infarctions were noted in the Grade 3 group. A 7% stroke rate was identified in the Grade 4 blunt VA injury group; however, this was confined to the immediate postinjury period and was associated with 100% mortality. While these data suggest that these high-grade vertebral artery injuries may require less intensive radiographic follow-up, future prospective studies are needed to make conclusive changes related to treatment and management.

  18. Boom and bust in continuous time evolving economic model

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Ackland, G. J.

    2009-08-01

    We show that a simple model of a spatially resolved evolving economic system, which has a steady state under simultaneous updating, shows stable oscillations in price when updated asynchronously. The oscillations arise from a gradual decline of the mean price due to competition among sellers competing for the same resource. This lowers profitability and hence population but is followed by a sharp rise as speculative sellers invade the large un-inhabited areas. This cycle then begins again.

  19. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  20. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    PubMed

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  1. A Facile Droplet-Chip-Time-Resolved Inductively Coupled Plasma Mass Spectrometry Online System for Determination of Zinc in Single Cell.

    PubMed

    Wang, Han; Chen, Beibei; He, Man; Hu, Bin

    2017-05-02

    Single cell analysis is a significant research field in recent years reflecting the heterogeneity of cells in a biological system. In this work, a facile droplet chip was fabricated and online combined with time-resolved inductively coupled plasma mass spectrometry (ICPMS) via a microflow nebulizer for the determination of zinc in single HepG2 cells. On the focusing geometric designed PDMS microfluidic chip, the aqueous cell suspension was ejected and divided by hexanol to generate droplets. The droplets encapsulated single cells remain intact during the transportation into ICP for subsequent detection. Under the optimized conditions, the frequency of droplet generation is 3-6 × 10 6 min -1 , and the injected cell number is 2500 min -1 , which can ensure the single cell encapsulation. ZnO nanoparticles (NPs) were used for the quantification of zinc in single cells, and the accuracy was validated by conventional acid digestion-ICPMS method. The ZnO NPs incubated HepG2 cells were analyzed as model samples, and the results exhibit the heterogeneity of HepG2 cells in the uptake/adsorption of ZnO NPs. The developed online droplet-chip-ICPMS analysis system achieves stable single cell encapsulation and has high throughput for single cell analysis. It has the potential in monitoring the content as well as distribution of trace elements/NPs at the single cell level.

  2. The reflection component in the average and heartbeat spectra of the black-hole candidate IGR J17091-3642 during the 2016 outburst

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Méndez, Mariano; Altamirano, Diego; Court, James; Beri, Aru; Cheng, Zheng

    2018-05-01

    We present simultaneous NuSTAR and Swift observations of the black hole transient IGR J17091-3642 during its 2016 outburst. By jointly fitting six NuSTAR and four Swift spectra, we found that during this outburst the source evolves from the hard to the hard/soft intermediate and back to the hard state, similar to the 2011 outburst. Unlike in the previous outburst, in this case we observed both a broad emission and an moderately broad absorption line in our observations. Our fits favour an accretion disc with an inclination angle of ˜45° with respect to the line of sight and a high iron abundance of 3.5 ± 0.3 in units of the solar abundance. We also observed heartbeat variability in one NuSTAR observation. We fitted the phase-resolved spectra of this observation and found that the reflected emission varies independently from the direct emission, whereas in the fits to the average spectra these two quantities are strongly correlated. Assuming that in IGR J17091-3642 the inner radius of the disc both in the average and the phase-resolved spectra is located at the radius of the innermost stable circular orbit, with 90% confidence the spin parameter of the black hole in this system is -0.13 ≤ a* ≤ 0.27.

  3. Model studies on the photosensitized isomerization of bixin.

    PubMed

    Montenegro, Mariana A; Rios, Alessandro de O; Mercadante, Adriana Z; Nazareno, Mónica A; Borsarelli, Claudio D

    2004-01-28

    The photosensitized isomerization reaction of the natural cis carotenoid bixin (methyl hydrogen 9'-cis-6, 6'-diapocarotene-6, 6'-dioate) with rose bengal or methylene blue as the sensitizer in acetonitrile/methanol (1:1) solution was studied using UV-vis spectroscopy, high-performance liquid chromatography (HPLC), and time-resolved spectroscopic techniques, such as laser-flash photolysis and singlet oxygen phosphorescence detection. In both N(2)- and air-saturated solutions, the main product formed was all-trans-bixin. The observed isomerization rate constants, k(obs), decreased in the presence of air or with increase in the bixin concentration, suggesting the participation of the excited triplet state of bixin, (3)Bix, as precursor of the cis--> trans process. On the other hand, bixin solutions in the absence of sensitizer and/or light did not degrade, indicating that the ground state of bixin is stable to thermal isomerization at room temperature. Time-resolved spectroscopic experiments confirmed the formation of the excited triplet state of bixin and its deactivation by ground state bixin and molecular oxygen quenching processes. The primary isomerization products only degraded in the presence of air and under prolonged illumination conditions, probably due to the formation of oxidation products by reaction with singlet molecular oxygen. An energy-transfer mechanism was used to explain the observed results for the bixin transformations, and the consequences for food color are discussed.

  4. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  5. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2015-04-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  6. Amyloid-β Plaques in Clinical Alzheimer’s Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity

    PubMed Central

    Wildburger, Norelle C.; Gyngard, Frank; Guillermier, Christelle; Patterson, Bruce W.; Elbert, Donald; Mawuenyega, Kwasi G.; Schneider, Theresa; Green, Karen; Roth, Robyn; Schmidt, Robert E.; Cairns, Nigel J.; Benzinger, Tammie L. S.; Steinhauser, Matthew L.; Bateman, Randall J.

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population—those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aβ) in the brain, which leads to one of the pathological hallmarks of AD—Aβ plaques. As a result, Aβ plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aβ in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aβ plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK–SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aβ plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK–SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development. PMID:29623063

  7. Amyloid-β Plaques in Clinical Alzheimer's Disease Brain Incorporate Stable Isotope Tracer In Vivo and Exhibit Nanoscale Heterogeneity.

    PubMed

    Wildburger, Norelle C; Gyngard, Frank; Guillermier, Christelle; Patterson, Bruce W; Elbert, Donald; Mawuenyega, Kwasi G; Schneider, Theresa; Green, Karen; Roth, Robyn; Schmidt, Robert E; Cairns, Nigel J; Benzinger, Tammie L S; Steinhauser, Matthew L; Bateman, Randall J

    2018-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with clinical manifestations of progressive memory decline and loss of executive function and language. AD affects an estimated 5.3 million Americans alone and is the most common form of age-related dementia with a rapidly growing prevalence among the aging population-those 65 years of age or older. AD is characterized by accumulation of aggregated amyloid-beta (Aβ) in the brain, which leads to one of the pathological hallmarks of AD-Aβ plaques. As a result, Aβ plaques have been extensively studied after being first described over a century ago. Advances in brain imaging and quantitative measures of Aβ in biological fluids have yielded insight into the time course of plaque development decades before and after AD symptom onset. However, despite the fundamental role of Aβ plaques in AD, in vivo measures of individual plaque growth, growth distribution, and dynamics are still lacking. To address this question, we combined stable isotope labeling kinetics (SILK) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging in an approach termed SILK-SIMS to resolve plaque dynamics in three human AD brains. In human AD brain, plaques exhibit incorporation of a stable isotope tracer. Tracer enrichment was highly variable between plaques and the spatial distribution asymmetric with both quiescent and active nanometer sub-regions of tracer incorporation. These data reveal that Aβ plaques are dynamic structures with deposition rates over days indicating a highly active process. Here, we report the first, direct quantitative measures of in vivo deposition into plaques in human AD brain. Our SILK-SIMS studies will provide invaluable information on plaque dynamics in the normal and diseased brain and offer many new avenues for investigation into pathological mechanisms of the disease, with implications for therapeutic development.

  8. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357. [W--25 at. % Re

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, T.M.; Wagner, A.; Berger, A.S.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10/sup -6/ torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450/sup 0/K. Specimens can also be irradiated in-situ with any low-energymore » (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s/sup -1/. In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy. (auth)« less

  9. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    NASA Astrophysics Data System (ADS)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making temporally resolved measurements of the stable isotopes in xylem water, using a setup that can be easily repeated by other research groups. The method is anticipated to find broad application in ecohydrological analyses, and in tracer studies aimed at quantifying age distributions of soil water extracted by plant roots.

  10. A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Brasseur, James G.; Juneja, Anurag

    2001-09-01

    Large-eddy simulation (LES) of boundary-layer flows has serious deficiencies near the surface when a viscous sublayer either does not exist (rough walls) or is not practical to resolve (high Reynolds numbers). In previous work, we have shown that the near-surface errors arise from the poor performance of algebraic subfilter-scale (SFS) models at the first several grid levels, where integral scales are necessarily under-resolved and the turbulence is highly anisotropic. In under-resolved turbulence, eddy viscosity and similarity SFS models create a spurious feedback loop between predicted resolved-scale (RS) velocity and modeled SFS acceleration, and are unable to simultaneously capture SFS acceleration and RS-SFS energy flux. To break the spurious coupling in a dynamically meaningful manner, we introduce a new modeling strategy in which the grid-resolved subfilter velocity is estimated from a separate dynamical equation containing the essential inertial interactions between SFS and RS velocity. This resolved SFS (RSFS) velocity is then used as a surrogate for the complete SFS velocity in the SFS stress tensor. We test the RSFS model by comparing LES of highly under-resolved anisotropic buoyancy-generated homogeneous turbulence with a corresponding direct numerical simulation (DNS). The new model successfully suppresses the spurious feedback loop between RS velocity and SFS acceleration, and greatly improves model predictions of the anisotropic structure of SFS acceleration and resolved velocity fields. Unlike algebraic models, the RSFS model accurately captures SFS acceleration intensity and RS-SFS energy flux, even during the nonequilibrium transient, and properly partitions SFS acceleration between SFS stress divergence and SFS pressure force.

  11. Measures of health sciences journal use: a comparison of vendor, link-resolver, and local citation statistics.

    PubMed

    De Groote, Sandra L; Blecic, Deborah D; Martin, Kristin

    2013-04-01

    Libraries require efficient and reliable methods to assess journal use. Vendors provide complete counts of articles retrieved from their platforms. However, if a journal is available on multiple platforms, several sets of statistics must be merged. Link-resolver reports merge data from all platforms into one report but only record partial use because users can access library subscriptions from other paths. Citation data are limited to publication use. Vendor, link-resolver, and local citation data were examined to determine correlation. Because link-resolver statistics are easy to obtain, the study library especially wanted to know if they correlate highly with the other measures. Vendor, link-resolver, and local citation statistics for the study institution were gathered for health sciences journals. Spearman rank-order correlation coefficients were calculated. There was a high positive correlation between all three data sets, with vendor data commonly showing the highest use. However, a small percentage of titles showed anomalous results. Link-resolver data correlate well with vendor and citation data, but due to anomalies, low link-resolver data would best be used to suggest titles for further evaluation using vendor data. Citation data may not be needed as it correlates highly with other measures.

  12. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  13. Velocity-Resolved LES (VR-LES) technique for simulating turbulent transport of high Schmidt number passive scalars

    NASA Astrophysics Data System (ADS)

    Verma, Siddhartha; Blanquart, Guillaume; P. K. Yeung Collaboration

    2011-11-01

    Accurate simulation of high Schmidt number scalar transport in turbulent flows is essential to studying pollutant dispersion, weather, and several oceanic phenomena. Batchelor's theory governs scalar transport in such flows, but requires further validation at high Schmidt and high Reynolds numbers. To this end, we use a new approach with the velocity field fully resolved, but the scalar field only partially resolved. The grid used is fine enough to resolve scales up to the viscous-convective subrange where the decaying slope of the scalar spectrum becomes constant. This places the cutoff wavenumber between the Kolmogorov scale and the Batchelor scale. The subgrid scale terms, which affect transport at the supergrid scales, are modeled under the assumption that velocity fluctuations are negligible beyond this cutoff wavenumber. To ascertain the validity of this technique, we performed a-priori testing on existing DNS data. This Velocity-Resolved LES (VR-LES) technique significantly reduces the computational cost of turbulent simulations of high Schmidt number scalars, and yet provides valuable information of the scalar spectrum in the viscous-convective subrange.

  14. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the size of a eukaryotic cell or multiple prokaryotic cells) or provide a basis for compounds specific stable isotope analysis of trace biomarkers. The small size and low weight of the system holds future potential for field and / or remote deployment.

  15. Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    WangEqual Contribution To This Work., Jian; Wang, Zhiqiang; Cho, Hyunjin; Kim, Myung Jong; Sham, T. K.; Sun, Xuhui

    2015-01-01

    Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b

  16. Rapid Spontaneously Resolving Acute Subdural Hematoma

    PubMed Central

    Gan, Qi; Zhao, Hexiang; Zhang, Hanmei; You, Chao

    2017-01-01

    Introduction: This study reports a rare patient of a rapid spontaneously resolving acute subdural hematoma. In addition, an analysis of potential clues for the phenomenon is presented with a review of the literature. Patient Presentation: A 1-year-and-2-month-old boy fell from a height of approximately 2 m. The patient was in a superficial coma with a Glasgow Coma Scale of 8 when he was transferred to the authors’ hospital. Computed tomography revealed the presence of an acute subdural hematoma with a midline shift beyond 1 cm. His guardians refused invasive interventions and chose conservative treatment. Repeat imaging after 15 hours showed the evident resolution of the hematoma and midline reversion. Progressive magnetic resonance imaging demonstrated the complete resolution of the hematoma, without redistribution to a remote site. Conclusions: Even though this phenomenon has a low incidence, the probability of a rapid spontaneously resolving acute subdural hematoma should be considered when patients present with the following characteristics: children or elderly individuals suffering from mild to moderate head trauma; stable or rapidly recovered consciousness; and simple acute subdural hematoma with a moderate thickness and a particularly low-density band in computed tomography scans. PMID:28468224

  17. Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhong; Šrajer, Vukica; Knapp, James E.

    2013-04-08

    Here we present a meta-analysis of a large collection of static structures of a protein in the Protein Data Bank in order to extract the progression of structural events during protein function. We apply this strategy to the homodimeric hemoglobin HbI from Scapharca inaequivalvis. We derive a simple dynamic model describing how binding of the first ligand in one of the two chemically identical subunits facilitates a second binding event in the other partner subunit. The results of our ultrafast time-resolved crystallographic studies support this model. We demonstrate that HbI functions like a homodimeric mechanical device, such as pliers ormore » scissors. Ligand-induced motion originating in one subunit is transmitted to the other via conserved pivot points, where the E and F' helices from two partner subunits are 'bolted' together to form a stable dimer interface permitting slight relative rotation but preventing sliding.« less

  18. Qualitative fusion technique based on information poor system and its application to factor analysis for vibration of rolling bearings

    NASA Astrophysics Data System (ADS)

    Xia, Xintao; Wang, Zhongyu

    2008-10-01

    For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.

  19. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  20. Spatially resolved U(VI) partitioning and speciation: implications for plume scale behavior of contaminant U in the Hanford vadose zone.

    PubMed

    Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K; Wang, Zheming; Dixit, Suvasis; Steefel, Carl I; Saiz, Eduardo; Kunz, Martin; Tamura, Nobumichi

    2009-04-01

    A saline-alkaline brine containing high concentration of U(VI) was accidentally spilled at the Hanford Site in 1951, introducing 10 tons of U into sediments under storage tank BX-102. U concentrations in the deep vadose zone and groundwater plumes increase with time, yet how the U has been migrating is not fully understood. We simulated the spill event in laboratory soil columns, followed by aging, and obtained spatially resolved U partitioning and speciation along simulated plumes. We found after aging, at apparent steady state, that the pore aqueous phase U concentrations remained surprisingly high (up to 0.022 M), in close agreement with the recently reported high U concentrations (up to 0.027 M) in the vadose zone plume (1). The pH values of aged pore liquids varying from 10 to 7, consistent with the measured pH of the field borehole sediments varying from 9.5 to 7.4 (2), from near the plume source to the plume front. The direct measurements of aged pore liquids together with thermodynamic calculations using a Pitzer approach revealed that UO2(CO3)3(4-) is the dominant aqueous U species within the plume body (pH 8-10), whereas Ca2UO2(CO3)3 and CaUO2(CO3)32- are also significant in the plume frontvicinity (pH 7-8), consistent with that measured from field borehole pore-waters (3). U solid phase speciation varies at different locations along the plume flow path and even within single sediment grains, because of location dependent pore and micropore solution chemistry. Our results suggest that continuous gravity-driven migration of the highly stable U02(CO3)34 in the residual carbonate and sodium rich tank waste solution is likely responsible for the detected growing U concentrations in the vadose zone and groundwater.

  1. Osmium Stable Isotope Composition of Chondrites and Iron Meteorites: Implications for Planetary Core Formation

    NASA Astrophysics Data System (ADS)

    Nanne, J. A. M.; Millet, M. A.; Burton, K. W.; Dale, C. W.; Nowell, G. M.; Williams, H. M.

    2016-12-01

    Mass-dependent Os stable isotope fractionation is expected to occur during metal-silicate segregation as well as during crystallization of metal alloys due to the different bonding environment between silicate and metals. As such, Os stable isotopes have the potential to resolve questions pertaining to planetary accretion and differentiation. Here, we present stable Os isotope data for a set of chondrites and iron meteorites to examine the processes associated with core solidification. Carbonaceous, ordinary, and enstatite chondrites show no detectable stable isotope variation with a δ190Os weighted average of +0.12±0.04 (n=37). The uniform composition observed for chondrites implies Os stable isotope homogeneity of the bulk solar nebula. Contrary to chondrites, iron meteorites display a large range in Os stable isotope compositions from δ190Os of +0.05 up to +0.49‰. Variation is only observed in the IIAB and IIIAB irons. Type IVB irons display values similar to chondrites (+0.107±0.047 [n=3]) and IVA compositions are slightly different +0.187±0.004 (n=2). The type IIAB and IIIAB groups show values both within the chondritic range and up to heavier values extending up to +0.49‰. Since core formation in small planetary bodies is expected to quantitatively sequester Os in metal phases, bulk planetary cores are expected to display chondritic δ190Os values. Conversely, samples of the IIAB and IIIAB group display significant variation, possibly indicating that stable isotope fractionation occurred during solidification of the parent-body core. However, no covariation is observed between δ190Os and either Os abundance or radiogenic Os isotope ratios. Instead, liquid immiscibility during core crystallization, where the liquid metal splits into separate S- and P-rich liquids, may be a source of Os stable isotope fractionation.

  2. Analysis of state of vehicular scars on Arctic Tundra, Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H.

    1974-01-01

    Identification on ERTS images of severe vehicular scars in the northern Alaska tundra suggests that, if such scars are of an intensity or have spread to a dimension such that they can be resolved by ERTS sensors (20 meters), they can be identified and their state monitored by the use of ERTS images. Field review of the state of vehicular scars in the Umiat area indicates that all are revegetating at varying rates and are approaching a stable state.

  3. High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hines, D. C.

    2007-06-01

    HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.

  4. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    DOE PAGES

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; ...

    2017-06-09

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  5. High-resolution food webs based on nitrogen isotopic composition of amino acids

    PubMed Central

    Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko

    2014-01-01

    Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278

  6. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    PubMed

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  8. Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Li, Chang-Zhi; Zhang, Yunhai; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-12-21

    Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C 60 -bis) in an inverted p-i-n architecture. The devices with an ultrathin C 60 -bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C 60 -bis, due to a favorable energy level alignment between the CH 3 NH 3 PbI 3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C 60 -bis become better under indoor humidity conditions.

  9. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  10. Inadequacy, Impurity and Infidelity; Modifying the Modified Brendel Alpha-Cellulose Extraction Method for Resinous Woods in Stable Isotope Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Brookman, T. H.; Whittaker, T. E.; King, P. L.; Horton, T. W.

    2011-12-01

    Stable isotope dendroclimatology is a burgeoning field in palaeoclimate science due to its unique potential to contribute (sub)annually resolved climate records, over millennial timescales, to the terrestrial palaeoclimate record. Until recently the time intensive methods precluded long-term climate reconstructions. Advances in continuous-flow mass spectrometry and isolation methods for α-cellulose (ideal for palaeoclimate studies as, unlike other wood components, it retains its initial isotopic composition) have made long-term, calendar dated palaeoclimate reconstructions a viable proposition. The Modified Brendel (mBrendel) α-cellulose extraction method is a fast, cost-effective way of preparing whole-wood samples for stable oxygen and carbon isotope analysis. However, resinous woods often yield incompletely processed α-cellulose using the standard mBrendel approach. As climate signals may be recorded by small (<1%) isotopic shifts it is important to investigate if incomplete processing affects the accuracy and precision of tree-ring isotopic records. In an effort to address this methodological issue, we investigated three highly resinous woods: kauri (Agathis australis), ponderosa pine (Pinus ponderosa) and huon pine (Lagarastrobus franklinii). Samples of each species were treated with 16 iterations of the mBrendel, varying reaction temperature, time and reagent volumes. Products were investigated using microscopic and bulk transmission Fourier Transform infrared spectroscopy (FITR) to reveal variations in the level of processing; poorly-digested fibres display a peak at 1520cm-1 suggesting residual lignin and a peak at ~1600cm-1 in some samples suggests retained resin. Despite the different levels of purity, replicate analyses of samples processed by high temperature digestion yielded consistent δ18O within and between experiments. All α-cellulose samples were 5-7% enriched compared to the whole-wood, suggesting that even incomplete processing at high temperature can provide acceptable δ18O analytical external precision. For kauri, short, lower temperature extractions produced α-cellulose with δ18O consistently ~1% lower than longer, higher temperature kauri experiments. These findings suggest that temperature and time are significant variables that influence the analytical precision of α-cellulose stable isotope analysis and that resinous hardwoods (e.g. kauri) may require longer and/or hotter digestions than softwoods. The effects of mBrendel variants on the carbon isotope ratio precision of α-cellulose extracts will also be presented. Our findings indicate that the standard mBrendel α-cellulose extraction method may not fully remove lignins and resins depending on the type of wood being analysed. Residual impurities can decrease analytical precision and accuracy. Fortunately, FTIR analysis prior to isotopic analysis is a relatively fast and cost effective way to determine α-cellulose extract purity, ultimately improving the data quality, accuracy and utility of tree-ring based stable isotopic climate records.

  11. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    NASA Astrophysics Data System (ADS)

    Zhou, Rulong; Qu, Bingyan; Dai, Jun; Zeng, Xiao Cheng

    2014-03-01

    Although CO2 and SiO2 both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO2 is a gas, whereas SiO2 is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO2 and SiO2 under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011)] has resolved a long-standing puzzle regarding whether a SixC1-xO2 compound between CO2 and SiO2 exists in nature. Nevertheless, the detailed atomic structure of the SixC1-xO2 crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the SixC1-xO2 compound with various stoichiometric ratios (SiO2:CO2) using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC2O6 compound with a multislab three-dimensional (3D) structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive SixC1-xO2 compound under high pressure is predicted and awaiting future experimental confirmation. The SiC2O6 crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC2O6 crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO2 sequestration.

  12. Missense suppression in Coprinus lagopus associated wtih a chromosome duplication.

    PubMed

    Lewis, D; Casselton, L A

    1975-05-01

    Amongst some 70 recessive suppressors of a met-I mutation in Coprinus lagopus, one unstable suppressor was identified. The unstable suppressor, designated sup-6plus, could be maintained on minimal medium, but was lost within 24h on minimal medium containing more than 1-7 p.p.m. DL-methionine or 0-75 p.p.m. L-methionine. Isolation of hyphal tips from the monokaryotic strain carrying sup-6plus yielded three types of colony: the unstable parental type, the stable met-I auxotroph and a stable prototroph which was slow-growing and inhibited by methionine in the growth medium. This stable sup-6plus type was recovered with difficulty by resolving dikaryons formed between the unstable sup-6plus strain and strains carring the wild-type allele of the suppressor gene. From sexual crosses, neither the unstable nor stable sup-6plus type segregated, only the met-I auxotrophic revertant. The unstable sup-6plus strain is thought to have an extra chromosome carrying the sup-6plus mutation. For vigorous growth the wild-type allele, sup-6, is indispensable and would be carried on the homologous chromosome. The selective pressures on different media account for loss of the duplicated chromosomes. The results are interpreted as missense suppression by a mutant of an indispensable tRNA.

  13. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.; deGroot, Wilhelmus A.

    2001-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of cur-rent designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flametubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2O. and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative. stable species concentration measurements from the flow.

  14. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; deGroot, W. A.

    2000-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of current designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flame-tubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2, H2O, and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative, stable species concentration measurements from the flow.

  15. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence.

    PubMed

    Tao, Bingshan; Barate, Philippe; Devaux, Xavier; Renucci, Pierre; Frougier, Julien; Djeffal, Abdelhak; Liang, Shiheng; Xu, Bo; Hehn, Michel; Jaffrès, Henri; George, Jean-Marie; Marie, Xavier; Mangin, Stéphane; Han, Xiufeng; Wang, Zhanguo; Lu, Yuan

    2018-05-31

    Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

  16. Fogwater Inputs to a Cloud Forest in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Eugster, W.; Burkard, R.; Holwerda, F.; Bruijnzeel, S.; Scatena, F. N.; Siegwolf, R.

    2002-12-01

    Fog is highly persistent at upper elevations of humid tropical mountains and is an important pathway for water and nutrient inputs to mountain forest ecosystems. Measurements of fogwater fluxes were performed in the Luquillo mountains of Puerto Rico using the eddy covariance approach and a Caltech-type active strand cloudwater collector. Rainfall and throughfall were collected between 25 June--7 August 2002. Samples of fog, rain, stemflow and throughfall were analyzed for inorganic ion and stable isotope concentrations (δ18O and δD). Initial results indicate that fog inputs can occur during periods without rain and last for up to several days. The isotope ratios in rainwater and fogwater are rather similar, indicative of the proximity of the Carribbean Sea and the close interrelation between the origins of fog and rain at our experimental site. Largest differences in isotope ratios for fog were found between daytime convective and nighttime stable conditions. Throughfall was always exceeding rainfall, indicating (a) the relevance of fogwater inputs and (b) the potentially significant undersampling of rainfall due to relatively high wind speeds (5.7 m/s mean) and the exposition of our field site close to a mountain ridge. Our size-resolved measurements of cloud droplets (40 size bins between 2 and 50 μm aerodynamic diameter) indicate that the liquid water content of fog in the Luquillo mountains is 5 times higher than previously assumed, and thus does not differ from the values reported from other mountain ranges in other climate zones. Average deposition rates are 0.88 mm and 6.5 mm per day for fog and rain, respectively.

  17. Octonary resistance states in La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 multiferroic tunnel junctions

    DOE PAGES

    Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...

    2015-10-06

    General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ showsmore » at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO 3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less

  18. Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses

    NASA Astrophysics Data System (ADS)

    Rosatelli, G.; Wall, F.; Stoppa, F.; Brilli, M.

    2010-11-01

    Petrography-controlled laser ablation inductively coupled plasma mass spectrometry (LAICPMS) analyses of carbonate in fresh shallow level sub-volcanic Polino monticellite calcio-carbonatite tuffisite have been performed to assess the geochemical differences between fresh igneous, epigenetic carbonates and sedimentary accidental fragments. Igneous calcite has consistently high LREE/HREE ratios (La/Yb N , 15-130) due to high LREE (ΣLREE, 425-1,269 ppm). Secondary calcite cements are characterized by progressively lower and more variable trace element contents, with lower LREE/HREE ratios. A distinguishing geochemical feature is progressively increasing negative Ce anomalies observed through coarse secondary calcite that can be related to the surface environment processes. The limestone accidental fragments in the tuffisite have trace element contents almost two orders of magnitude lower than igneous carbonate and low LREE (ΣLREE < 9.5 ppm) with low LREE/HREE fractionation (La/Yb N ratios < 18). The stable isotope composition of different carbonate types is consistent with their formation in different environments. The tuffisitization processes during diatreme formation under high CO2-OH fugacity conditions may account for the differences noted in the igneous carbonates.

  19. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation.

    PubMed

    Myllys, Nanna; Ponkkonen, Tuomo; Passananti, Monica; Elm, Jonas; Vehkamäki, Hanna; Olenius, Tinja

    2018-05-24

    The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.

  20. How fragility makes phase-change data storage robust: insights from ab initio simulations

    PubMed Central

    Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo

    2014-01-01

    Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316

  1. Measures of health sciences journal use: a comparison of vendor, link-resolver, and local citation statistics*

    PubMed Central

    De Groote, Sandra L.; Blecic, Deborah D.; Martin, Kristin

    2013-01-01

    Objective: Libraries require efficient and reliable methods to assess journal use. Vendors provide complete counts of articles retrieved from their platforms. However, if a journal is available on multiple platforms, several sets of statistics must be merged. Link-resolver reports merge data from all platforms into one report but only record partial use because users can access library subscriptions from other paths. Citation data are limited to publication use. Vendor, link-resolver, and local citation data were examined to determine correlation. Because link-resolver statistics are easy to obtain, the study library especially wanted to know if they correlate highly with the other measures. Methods: Vendor, link-resolver, and local citation statistics for the study institution were gathered for health sciences journals. Spearman rank-order correlation coefficients were calculated. Results: There was a high positive correlation between all three data sets, with vendor data commonly showing the highest use. However, a small percentage of titles showed anomalous results. Discussion and Conclusions: Link-resolver data correlate well with vendor and citation data, but due to anomalies, low link-resolver data would best be used to suggest titles for further evaluation using vendor data. Citation data may not be needed as it correlates highly with other measures. PMID:23646026

  2. Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.

    We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.

  3. Sr/Ca proxy sea-surface temperature reconstructions from modern and holocene Montastraea faveolata specimens from the Dry Tortugas National Park

    USGS Publications Warehouse

    Flannery, Jennifer A.; Poore, Richard Z.

    2013-01-01

    Sr/Ca ratios from skeletal samples from two Montastraea faveolata corals (one modern, one Holocene, ~6 Ka) from the Dry Tortugas National Park were measured as a proxy for sea-surface temperature (SST). We sampled coral specimens with a computer-driven triaxial micromilling machine, which yielded an average of 15 homogenous samples per annual growth increment. We regressed Sr/Ca values from resulting powdered samples against a local SST record to obtain a calibration equation of Sr/Ca = -0.0392 SST + 10.205, R = -0.97. The resulting calibration was used to generate a 47-year modern (1961-2008) and a 7-year Holocene (~6 Ka) Sr/Ca subannually resolved proxy record of SST. The modern M. faveolata yields well-defined annual Sr/Ca cycles ranging in amplitude from ~0.3 and 0.5 mmol/mol. The amplitude of ~0.3 to 0.5 mmol/mol equates to a 10-15°C seasonal SST amplitude, which is consistent with available local instrumental records. Summer maxima proxy SSTs calculated from the modern coral Sr/ Ca tend to be fairly stable: most SST maxima from 1961–2008 are 29°C ± 1°C. In contrast, winter minimum SST calculated in the 47-year modern time-series are highly variable, with a cool interval in the early to mid-1970s. The Holocene (~6 Ka) Montastraea faveolata coral also yields distinct annual Sr/Ca cycles with amplitudes ranging from ~0.3 to 0.6 mmol/mol. Absolute Sr/Ca values and thus resulting SST estimates over the ~7-year long record are similar to those from the modern coral. We conclude that Sr/Ca from Montastraea faveolata has high potential for developing subannually resolved Holocene SST records.

  4. Low-resolution simulations of vesicle suspensions in 2D

    NASA Astrophysics Data System (ADS)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  5. Endorsing cellular competitiveness in aberrant epithelium of oral submucous fibrosis progression: neighbourhood analysis of immunohistochemical attributes.

    PubMed

    Anura, Anji; Kazi, Anees; Pal, Mousumi; Paul, Ranjan Rashmi; Sengupta, Sanghamitra; Chatterjee, Jyotirmoy

    2018-04-23

    Epithelial abnormality during the transformation of oral submucous fibrosis (OSF) into oral squamous cell carcinoma has been well studied and documented. However, the differential contribution of atrophy and hyperplasia for malignant potentiality of OSF is yet to be resolved. Existing diagnostic conjectures lack precise diagnostic attributes which may be effectively resolved by substantiation of specific molecular pathology signatures. Present study elucidates existence of cellular competitiveness in OSF conditions using computer-assisted neighbourhood analysis in quantitative immunohistochemistry (IHC) framework. The concept of field cancerization was contributory in finding correspondence among neighbouring cells of epithelial layers with reference to differential expression of cardinal cancer-related genes [c-Myc (oncogene), p53 (tumour suppressor), and HIF-1α (hypoxia regulator)] which are known to be important sensors in recognizing cellular competitive interface. Our analyses indicate that different states of OSF condition may be associated with different forms of competitiveness within epithelial neighbouring cells which might be responsible to shape the present and future of the pre-malignant condition. Analytical findings indicated association of atrophic epithelium with stress-driven competitive environment having low c-Myc, high-p53, and stable HIF-1α (the looser cells) which undergo apoptosis. Whereas, the cells with high c-Myc + (winner cells) give rise to hyperplastic epithelium via possible mutation in p53. The epithelial dysplasia plausibly occurs due to clonal expansion of c-Myc and p53 positive supercompetitor cells. Present study proposes quantitative IHC along with neighbourhood analysis which might help us to dig deeper on to the interaction among epithelial cell population to provide a better understanding of field cancerization and malignant transformation of pre-malignancy.

  6. The vertical structure of gaseous galaxy discs in cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Ludlow, Aaron D.

    2018-01-01

    We study the vertical structure of polytropic centrifugally supported gaseous discs embedded in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG). The disc 'characteristic' thickness, zH, set by the midplane sound speed and circular velocity, zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, z_SG = c_s^2/GΣ, in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves 'flare' outwards. Flares in mono abundance or coeval populations in galaxies like the Milky Way are thus not necessarily due to radial migration. For the polytropic equation of state of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations, discs that match observational constraints are NSG for Md < 3 × 109 M⊙ and SG at higher masses, if fully gaseous. We test these analytic results using a set of idealized smoothed particle hydrodynamic simulations and find excellent agreement. Our results clarify the role of the gravitational softening on the thickness of simulated discs, and on the onset of radial instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough to not compromise the vertical structure of a disc also resolve the onset of their instabilities, but the converse is not true.

  7. Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.

    PubMed

    Kamal, Md Zahid; Mohammad, Tabrez Anwar Shamim; Krishnamoorthy, G; Rao, Nalam Madhusudhana

    2012-01-01

    Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.

  8. Rapid Verification of Candidate Serological Biomarkers Using Gel-based, Label-free Multiple Reaction Monitoring

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves, quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1-D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μl serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers. PMID:21726088

  9. Rapid verification of candidate serological biomarkers using gel-based, label-free multiple reaction monitoring.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Barnhart, Kurt T; Speicher, David W

    2011-09-02

    Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS) has emerged as a promising platform for verification of serological candidate biomarkers. However, cost and time needed to synthesize and evaluate stable isotope peptides, optimize spike-in assays, and generate standard curves quickly becomes unattractive when testing many candidate biomarkers. In this study, we demonstrate that label-free multiplexed MRM-MS coupled with major protein depletion and 1D gel separation is a time-efficient, cost-effective initial biomarker verification strategy requiring less than 100 μL of serum. Furthermore, SDS gel fractionation can resolve different molecular weight forms of targeted proteins with potential diagnostic value. Because fractionation is at the protein level, consistency of peptide quantitation profiles across fractions permits rapid detection of quantitation problems for specific peptides from a given protein. Despite the lack of internal standards, the entire workflow can be highly reproducible, and long-term reproducibility of relative protein abundance can be obtained using different mass spectrometers and LC methods with external reference standards. Quantitation down to ~200 pg/mL could be achieved using this workflow. Hence, the label-free GeLC-MRM workflow enables rapid, sensitive, and economical initial screening of large numbers of candidate biomarkers prior to setting up SID-MRM assays or immunoassays for the most promising candidate biomarkers.

  10. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  11. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer

    PubMed Central

    Kinoshita, Kenji; Fujimoto, Kentaro; Yakabe, Toru; Saito, Shin; Hamaguchi, Yuzo; Kikuchi, Takayuki; Nonaka, Ken; Murata, Shigenori; Masuda, Daisuke; Takada, Wataru; Funaoka, Sohei; Arai, Susumu; Nakanishi, Hisao; Yokoyama, Kanehisa; Fujiwara, Kazuhiko; Matsubara, Kenichi

    2007-01-01

    DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO® PrimeSurface® with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3′ end of the immobilized DNA primers on the S-Bio® by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA. PMID:17135189

  12. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    PubMed

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  13. Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical.

    PubMed

    Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Krzyaniak, Matthew D; Wasielewski, Michael R

    2016-05-12

    Photoinduced electron transfer reactions in organic donor-acceptor systems leading to long-lived radical ion pairs (RPs) have attracted broad interest for their potential applications in fields as diverse as solar energy conversion and spintronics. We present the photophysics and spin dynamics of an electron donor - electron acceptor - stable radical system consisting of a meta-phenylenediamine (mPD) donor covalently linked to a 4-aminonaphthalene-1,8-dicarboximide (ANI) electron-accepting chromophore as well as an α,γ-bisdiphenylene-β-phenylallyl (BDPA) stable radical. Selective photoexcitation of ANI produces the BDPA-mPD(+•)-ANI(-•) triradical in which the mPD(+•)-ANI(-•) RP spins are strongly exchange coupled. The presence of BDPA is found to greatly increase the RP intersystem crossing rate from the initially photogenerated BDPA-(1)(mPD(+•)-ANI(-•)) to BDPA-(3)(mPD(+•)-ANI(-•)), resulting in accelerated RP recombination via the triplet channel to produce BDPA-mPD-(3*)ANI as compared to a reference molecule lacking the BDPA radical. The RP recombination rates observed are much faster than those previously reported for weakly coupled triradical systems. Time-resolved EPR spectroscopy shows that this process is also associated with strong spin polarization of the stable radical. Overall, these results show that RP intersystem crossing rates can be strongly influenced by stable radicals nearby strongly coupled RP systems, making it possible to use a third spin to control RP lifetimes down to a picosecond time scale.

  14. Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.

    2016-12-01

    Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.

  15. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.

  16. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    NASA Astrophysics Data System (ADS)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  17. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    NASA Astrophysics Data System (ADS)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-04-01

    Back diffusion of organic contaminants is often the cause of groundwater plumes' persistence and can significantly hinder cleanup interventions [1, 2]. In this study we perform a high-resolution investigation of back diffusion in a well-controlled flow-through laboratory setup. We considered cis-dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis-DCE back diffusion in a series of flow-through experiments, performed in porous media with different hydraulic conductivity and at different seepage velocities (i.e., 0.4, 0.8 and 1.2 m/day). A two-centimeter thick agarose gel layer was placed at the bottom of the setup to simulate the source of cis-DCE back diffusion from an impervious layer. Intensive sampling (>1000 measurements) was carried out, including the withdrawal of aqueous samples at closely spaced (1 cm) outlet ports, as well as the high-resolution sampling of the source zone (agarose gel) at the end of each experiment. The transient behavior of the plumes originated by back diffusion was investigated by sampling the outlet ports at regular intervals in the experiments, each run for a total time corresponding to 15 pore volumes. The high-resolution sampling allowed us to resolve the spatial and temporal evolution of concentration and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study [3], provided a good agreement with the experimental data. References [1] Mackay, D. M.; Cherry, J. A. Groundwater contamination: Pumpand-treat remediation. Environ. Sci. Technol. 1989, 23, 630-636. [2] Parker, B. L.; Chapman, S. W.; Guilbeault, M. A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 19-19. [3] Jin, B., Rolle, M., Li, T., Haderlein, S.B., 2014. Diffusive fractionation of BTEX and chlorinated ethenes in aqueous solution: quantification of spatial isotope gradients. Environ. Sci. Technol. 48, 6141-6150.

  18. The Isotopic Record of Elevation Thresholds in Continental Plateaus to Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Mulch, A.; Chamberlain, C. P.; Graham, S. A.; Teyssier, C.; Cosca, M. A.

    2011-12-01

    High-elevation orogenic plateaus and mountain ranges exert a strong control on global climate and precipitation patterns and interact with lithospheric and upper mantle tectonic processes as well as atmospheric circulation. Reconstructing the history of surface elevation thus not only provides a critical link between erosional and tectonic processes but also ties Earth surface processes to the long-term climate history of our planet. This interaction, however, has important implications when using stable isotopes (O, H) as proxies for landscape and terrestrial climate evolution as interacting land surface properties (elevation, relief, vegetation cover) and atmospheric circulation patterns (upstream moisture path) may attain threshold conditions that can cloak or amplify the impact of topography on isotopes in precipitation. A large number of stable isotope studies in lacustrine and pedogenic environments of intermontane basins record the isotopic and sedimentologic fingerprint of the evolving landscape of the Cenozoic western North American Cordillera. In general we observe the onset of strong oxygen isotope in precipitation gradients along the eastward and westward flanks of the Cordilleran orogen and associated 18O-depleted moisture within the Cordilleran hinterland to develop no later than 50-55 Ma in British Columbia and Washington, 49 Ma in Montana, and 39-40 Ma in Nevada. However, some of these shifts to very low oxygen isotope compositions in meteoric water occur at rates that by far exceed those that could be attributed to tectonic surface uplift alone. Here we present a multi-proxy approach from the Elko Basin (NV) that ties stable and radiogenic tracers of landscape evolution with high resolution Ar-Ar geochronology. In pedogenic and lacustrine deposits of the Elko basin we observe a change in oxygen isotope ratios that is far too large (6-8 %) and rapid (<200 000 a) to be solely due to changes in elevation. Rather we suggest that the combined effects of developing topography and relief and changing global climate conditions during the Mid Eocene climatic optimum interacted to change atmospheric moisture transport. We suggest that such rapid changes in rainfall composition may be relatively common in evolving plateau regions once critical relief and elevation conditions are attained and caution against using stable isotope paleoaltimetry in regions with relatively poor age control where such effects may easily be mistaken as changes in absolute paleoelevation of the plateau region. On the other hand, such highly resolved terrestrial isotope records provide extremely valuable information when trying to recover how landscape evolution interacted with atmospheric moisture transport across the continents and the terrestrial biosphere during times of paleoclimate change.

  19. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Lee, T.; Norris, G. A.; Roberts, P. T.; Collett, J. L., Jr.; Paatero, P.; Worsnop, D. R.

    2012-01-01

    Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) at an elementary school 18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC), carbon monoxide (CO), nitrogen oxides (NOx), and meteorological data were collected. The US~Environmental Protection Agency's~(EPA) positive matrix factorization (PMF) data analysis tool was used to apportion organic matter (OM) as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA), low-volatility oxygenated organic aerosol (LV-OOA), biomass burning organic aerosol (BBOA), and semi-volatile oxygenated organic aerosol (SV-OOA). When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26% of the OM, while LV-OOA was highest in the afternoon and accounted for 26% of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12% of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques available in EPA PMF and ME-2 suggested that the four-factor solution was very stable.

  20. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Lee, T.; Norris, G. A.; Roberts, P. T.; Collett, J. L., Jr.; Paatero, P.; Worsnop, D. R.

    2011-08-01

    Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) at an elementary school 20 m from the US 95 freeway in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC), carbon monoxide (CO), nitrogen oxides (NOx), and meteorological data were collected. The US Environmental Protection Agency's (EPA) positive matrix factorization (PMF) data analysis tool was used to apportion organic matter (OM) as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA), low-volatility oxygenated organic aerosol (LV-OOA), biomass burning organic aerosol (BBOA), and semi-volatile oxygenated organic aerosol (SV-OOA). When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26 % of the OM, and it made up nearly half of the OM when the monitoring site was downwind of US 95 during morning rush hour. LV-OOA was highest in the afternoon and accounted for 26 % of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12 % of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques available in EPA PMF and ME-2 suggested that the four-factor solution was very stable.

  1. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Nachtegaal, Maarten; Binninger, Tobias; Cheng, Xi; Kim, Bae-Jung; Durst, Julien; Bozza, Francesco; Graule, Thomas; Schäublin, Robin; Wiles, Luke; Pertoso, Morgan; Danilovic, Nemanja; Ayers, Katherine E.; Schmidt, Thomas J.

    2017-09-01

    The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material’s surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

  2. Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings

    PubMed Central

    Kumar, Sunil; Maury, Francis; Bahlawane, Naoufal

    2016-01-01

    As a strongly correlated metal oxide, VO2 inspires several highly technological applications. The challenging reliable wafer-scale synthesis of high quality polycrystalline VO2 coatings is demonstrated on 4” Si taking advantage of the oxidative sintering of chemically vapor deposited VO2 films. This approach results in films with a semiconductor-metal transition (SMT) quality approaching that of the epitaxial counterpart. SMT occurs with an abrupt electrical resistivity change exceeding three orders of magnitude with a narrow hysteresis width. Spatially resolved infrared and Raman analyses evidence the self-assembly of VO2 disordered metamaterial, compresing monoclinic (M1 and M2) and rutile (R) domains, at the transition temperature region. The M2 mediation of the M1-R transition is spatially confined and related to the localized strain-stabilization of the M2 phase. The presence of the M2 phase is supposed to play a role as a minor semiconducting phase far above the SMT temperature. In terms of application, we show that the VO2 disordered self-assembly of M and R phases is highly stable and can be thermally triggered with high precision using short heating or cooling pulses with adjusted strengths. Such a control enables an accurate and tunable thermal control of the electrical switching. PMID:27883052

  3. Time-resolved characterization of primary emissions from residential wood combustion appliances.

    PubMed

    Heringa, M F; DeCarlo, P F; Chirico, R; Lauber, A; Doberer, A; Good, J; Nussbaumer, T; Keller, A; Burtscher, H; Richard, A; Miljevic, B; Prevot, A S H; Baltensperger, U

    2012-10-16

    Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.

  4. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS.

    PubMed

    Li, Lingyun; Zhang, Fuming; Zaia, Joseph; Linhardt, Robert J

    2012-10-16

    Low molecular heparins (LMWHs) are structurally complex, heterogeneous, polydisperse, and highly negatively charged mixtures of polysaccharides. The direct characterization of LMWH is a major challenge for currently available analytical technologies. Electrospray ionization (ESI) liquid chromatography-mass spectrometry (LC-MS) is a powerful tool for the characterization complex biological samples in the fields of proteomics, metabolomics, and glycomics. LC-MS has been applied to the analysis of heparin oligosaccharides, separated by size exclusion, reversed phase ion-pairing chromatography, and chip-based amide hydrophilic interaction chromatography (HILIC). However, there have been limited applications of ESI-LC-MS for the direct characterization of intact LMWHs (top-down analysis) due to their structural complexity, low ionization efficiency, and sulfate loss. Here we present a simple and reliable HILIC-Fourier transform (FT)-ESI-MS platform to characterize and compare two currently marketed LMWH products using the top-down approach requiring no special sample preparation steps. This HILIC system relies on cross-linked diol rather than amide chemistry, affording highly resolved chromatographic separations using a relatively high percentage of acetonitrile in the mobile phase, resulting in stable and high efficiency ionization. Bioinformatics software (GlycReSoft 1.0) was used to automatically assign structures within 5-ppm mass accuracy.

  5. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  6. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer

    PubMed Central

    Xiang, Lanyi; Wang, Wei; Xie, Wenfa

    2016-01-01

    Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V−1 s−1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V. PMID:27824101

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Kreuzer, Helen W.; Carman, April J.

    Acid scavengers are frequently used as stabilizer compounds in a variety of applications. When used to stabilize volatile compounds such as nerve agents, the lower volatility and higher stability of acid scavengers make them more persistent in a post-event forensic setting. We are employing compound-specific stable isotope analysis of the carbon, nitrogen, and hydrogen components of three acid scavenging compounds (N,N-diethylaniline, tributylamine, and triethylamine) as a tool for distinguishing between different samples of the stabilizers. Combined analysis of three stable isotopes in these samples improves the technique’s resolving potential, enhancing sample matching capabilities. The compound specific methods developed here canmore » be applied to instances where these compounds are not pure, such as when mixed with an agent or when found as a residue at an event site. Effective sample matching can be crucial for linking compounds at multiple event sites or linking a supply inventory to an event.« less

  8. Ubiquity of non-geometry in heterotic compactifications

    DOE PAGES

    García-Etxebarria, Iñaki; Lüst, Dieter; Massai, Stefano; ...

    2017-03-08

    Here, we study the effect of quantum corrections on heterotic compactifications on elliptic fibrations away from the stable degeneration limit, elaborating on a recent observation by Malmendier and Morrison. We show that already for the simplest nontrivial elliptic fibration the effect is quite dramatic: the I 1 degeneration with trivial gauge background dynamically splits into two T-fects with monodromy around each T-fect being (conjugate to) T-duality along one of the legs of the T 2. This implies that almost every elliptic heterotic compactification becomes a non-geometric T-fold away from the stable degeneration limit. We also point out a subtlety duemore » to this non-geometric splitting at finite fiber size. It arises when determining, via heterotic/F-theory duality, the SCFTs associated to a small number of pointlike instantons probing heterotic ADE singularities. Along the way we resolve various puzzles in the literature.« less

  9. Trap formation and energy transfer in pheophorbide a-DAB-dendrimers and pyropheophorbide a-fullerene C 60 hexaadduct molecular systems

    NASA Astrophysics Data System (ADS)

    Röder, Beate; Ermilov, Eugeny A.; Hackbarth, Steffen; Helmreich, Matthias; Jux, Norbert

    2006-04-01

    The photophysical properties of DAB-dendrimers from 1 st to 4 th generation as well as Diaminohexane - all substituted with the in maximum achievable quantity of pheophorbide a (Pheo) molecules were studied in comparison with a novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) and a fullerene [6:0]-hexaadduct which carries twelve pyropheophorbide a units (FHP12) using both steady-state and time-resolved spectroscopic methods. It was found that neighboring dye molecules covalently linked to one DAB- or fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation different types of energy traps, which were resolved experimentally. The dipole-dipole resonance Förster energy transfer between the dye molecules coupled to one complex caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of the different complexes were reduced with increasing number of dye molecules per complex. Nevertheless in every case the singlet oxygen generation was less influenced then the fluorescence quantum yield, exposing the complex to a non-negligible amount of excited oxygen in the singlet state. While the fullerene complexes turned out to be stable under these conditions, the DAB-dendrimer-backbones were completely fragmented to small rudiments carrying just one or a small number of dye molecules.

  10. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  11. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    PubMed

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-07

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC.

  12. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  13. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE PAGES

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun; ...

    2017-04-05

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  14. The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.

    2015-02-01

    We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).

  15. Stable clustering and the resolution of dissipationless cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Joyce, Michael; Sylos Labini, Francesco

    2017-10-01

    The determination of the resolution of cosmological N-body simulations, I.e. the range of scales in which quantities measured in them represent accurately the continuum limit, is an important open question. We address it here using scale-free models, for which self-similarity provides a powerful tool to control resolution. Such models also provide a robust testing ground for the so-called stable clustering approximation, which gives simple predictions for them. Studying large N-body simulations of such models with different force smoothing, we find that these two issues are in fact very closely related: our conclusion is that the accuracy of two-point statistics in the non-linear regime starts to degrade strongly around the scale at which their behaviour deviates from that predicted by the stable clustering hypothesis. Physically the association of the two scales is in fact simple to understand: stable clustering fails to be a good approximation when there are strong interactions of structures (in particular merging) and it is precisely such non-linear processes which are sensitive to fluctuations at the smaller scales affected by discretization. Resolution may be further degraded if the short distance gravitational smoothing scale is larger than the scale to which stable clustering can propagate. We examine in detail the very different conclusions of studies by Smith et al. and Widrow et al. and find that the strong deviations from stable clustering reported by these works are the results of over-optimistic assumptions about scales resolved accurately by the measured power spectra, and the reliance on Fourier space analysis. We emphasize the much poorer resolution obtained with the power spectrum compared to the two-point correlation function.

  16. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  17. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro

    2010-07-13

    We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.

  18. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  19. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    PubMed

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  20. Fire-extinguishing organic electrolytes for safe batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Watanabe, Eriko; Takada, Koji; Tateyama, Yoshitaka; Yamada, Atsuo

    2018-01-01

    Severe safety concerns are impeding the large-scale employment of lithium/sodium batteries. Conventional electrolytes are highly flammable and volatile, which may cause catastrophic fires or explosions. Efforts to introduce flame-retardant solvents into the electrolytes have generally resulted in compromised battery performance because those solvents do not suitably passivate carbonaceous anodes. Here we report a salt-concentrated electrolyte design to resolve this dilemma via the spontaneous formation of a robust inorganic passivation film on the anode. We demonstrate that a concentrated electrolyte using a salt and a popular flame-retardant solvent (trimethyl phosphate), without any additives or soft binders, allows stable charge-discharge cycling of both hard-carbon and graphite anodes for more than 1,000 cycles (over one year) with negligible degradation; this performance is comparable or superior to that of conventional flammable carbonate electrolytes. The unusual passivation character of the concentrated electrolyte coupled with its fire-extinguishing property contributes to developing safe and long-lasting batteries, unlocking the limit toward development of much higher energy-density batteries.

  1. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    PubMed

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A. A.; Morlighem, M.

    2018-03-01

    We employ National Aeronautics and Space Administration (NASA)'s Operation IceBridge high-resolution airborne gravity from 2016, NASA's Ocean Melting Greenland bathymetry from 2015, ice thickness from Operation IceBridge from 2010 to 2015, and BedMachine v3 to analyze 20 major southeast Greenland glaciers. The results reveal glacial fjords several hundreds of meters deeper than previously thought; the full extent of the marine-based portions of the glaciers; deep troughs enabling warm, salty Atlantic Water (AW) to reach the glacier fronts and melt them from below; and few shallow sills that limit the access of AW. The new oceanographic and topographic data help to fully resolve the complex pattern of historical ice front positions from the 1930s to 2017: glaciers exposed to AW and resting on retrograde beds have retreated rapidly, while glaciers perched on shallow sills or standing in colder waters or with major sills in the fjords have remained stable.

  3. An HPLC method for determination of azadirachtin residues in bovine muscle.

    PubMed

    Gai, María Nella; Álvarez, Christian; Venegas, Raúl; Morales, Javier

    2011-04-01

    A high-performance liquid chromatography (HPLC) method for the determination of azadirachtin (A and B) residues in bovine muscle has been developed. Azadirachtin is a neutral triterpene and chemotherapeutic agent effective in controlling some pest flies in horses, stables, horns and fruit. The actual HPLC method uses an isocratic elution and UV detection. Liquid-liquid extraction and solid-phase purification was used for the clean-up of the biological matrix. The chromatographic determination of these components is achieved using a C18 analytical column with water-acetonitrile mixture (27.5:72.5, v/v) as mobile phase, 1 mL/min as flow rate, 45 °C column temperature and UV detector at 215 nm. The azadirachtin peaks are well resolved and free of interference from matrix components. The extraction and analytical method developed in this work allows the quantitation of azadirachtin with precision and accuracy, establishing a lower limit of quantitation of azadirachtin, extracted from the biological matrix.

  4. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.

    PubMed

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P; Steirer, K Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+ -conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2 O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  5. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states

    NASA Astrophysics Data System (ADS)

    Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus

    2014-11-01

    The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.

  6. Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota

    PubMed Central

    Toussaint, Nora C.; Buffie, Charlie G.; Rätsch, Gunnar; Pamer, Eric G.; Sander, Chris; Xavier, João B.

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli. PMID:24348232

  7. Hosting a Fourier Transform Spectrometer (FTS) on CubeSat Spacecraft Platforms for Global Measurements of Three-Dimensional Winds

    NASA Astrophysics Data System (ADS)

    Scott, D. K.; Neilsen, T. L.; Weston, C.; Frazier, C.; Smith, T.; Shumway, A.

    2015-12-01

    Global measurements of vertically-resolved atmospheric wind profiles offer the potential for improved weather forecasts and superior predictions of atmospheric wind patterns. A small-satellite constellation that uses a Fourier Transform Spectrometer (FTS) instrument onboard 12U CubeSats can provide measurements of global tropospheric wind profiles from space at a very low cost. These small satellites are called FTS CubeSats. This presentation will describe a spacecraft concept that provides a stable, robust platform to host the FTS payload. Of importance to the payload are power, data, station keeping, thermal, and accommodations that enable high spectral measurements to be made from a LEO orbit. The spacecraft concept draws on Space Dynamics Laboratory (SDL) heritage and the recent success of the Dynamic Ionosphere Cubesat Experiment (DICE) and HyperAngular Rainbow Polarimeter (HARP) missions. Working with team members, SDL built a prototype observatory (spacecraft and payload) for testing and proof of concept.

  8. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei

    2018-05-01

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

  9. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.

    PubMed

    Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C

    2006-01-01

    Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.

  10. An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.

    1993-02-11

    Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less

  11. Spatially and temporally resolved measurements of a dense copper plasma heated by intense relativistic electrons

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Colgan, J.

    2017-08-01

    A 100-μm-thick Cu foil is isochorically heated by a ˜100-ns-long electron bunch with an energy of 19.8 MeV and current of 1.7 kA to Te > 1 eV. After 100 ns of heating and 20 ns of expansion, the plasma exhibits a stable, quiescent temperature and density distribution for >200 ns. Several intense Cu-I emission lines are observed after ˜20 J of electron beam energy is deposited. These lines have well known Stark widths providing a direct measurement of ne. The Los Alamos ATOMIC code [Magee et al., AIP Conf. Proc. 2004, 168-179 and Hakel et al., J. Quant. Spectrosc. Radiat. Transfer 99, 265 (2006)] was run in local-thermodynamic-equilibrium mode to estimate Te and ne. Spatially and temporally resolved measurements are presented in both the vertical and horizontal directions adjacent to the foil indicating temperatures >1 eV and densities ranging from 1-3 × 1017 cm-3 after expansion and cooling.

  12. Change in "resolved plans" and "suicidal ideation" factors of suicidality after participation in an intensive outpatient treatment program.

    PubMed

    Minnix, Jennifer A; Romero, Catherine; Joiner, Thomas E; Weinberg, Elizabeth F

    2007-11-01

    This study aims to investigate factors related to suicide in a unique clinical population with more chronic psychopathology than many outpatient samples. One hundred and five adult outpatients were included in the current study. We predicted that higher scores on the resolved plans and preparation (RPP) factor of the Beck Suicide Scale [Beck, A.T., Kovacs, M., Weissman, M., (1979). Assessment of suicidal intention: The scale for suicidal ideation. Journal of Consulting and Clinical Psychology 47, 343-352] would predict multiple attempter status even after accounting for co-morbid diagnoses and suicidal ideation (SI) factor scores. Additionally, we predicted that the scores on the RPP factor would decrease less over time than scores on the SI factor. Results were consistent with both hypotheses, suggesting that RPP factor scores were uniquely predictive of status as a multiple attempter and were more stable over time. Mental health diagnoses were rendered without the use of a structured interview and therefore no reliability data were collected.

  13. Encapsulation of labetalol, pseudoephedrine in β-cyclodextrin cavity: spectral and molecular modeling studies.

    PubMed

    Prabhu, A Antony Muthu; Rajendiran, N

    2012-11-01

    The absorption and fluorescence spectra of labetalol and pseudoephedrine have been studied in different polarities of solvents and β-cyclodextrin (β-CD). The inclusion complexation with β-CD is investigated by UV-visible, steady state and time resolved fluorescence spectra and PM3 method. In protic solvents, the normal emission originates from a locally excited state and the longer wavelength emission is due to intramolecular charge transfer (TICT). Labetalol forms a 1:2 complex and pseudoephedrine forms 1:1 complex with β-CD. Nanosecond time-resolved studies indicated that both molecules show triexponential decay. Thermodynamic parameters (ΔG, ΔH, ΔS) and HOMO, LUMO orbital investigations confirm the stability of the inclusion complex. The geometry of the most stable complex shows that the aromatic ring is deeply self included inside the β-CD cavity and intermolecular hydrogen bonds were established between host and guest molecules. This suggests that hydrophobic effect and hydrogen bond play an important role in the inclusion process.

  14. Changes in some personality traits after recovery from alcohol dependence/abuse, anxiety and depression--results of a 5-year follow-up in a general population sample of women.

    PubMed

    Ostlund, Anette; Hensing, Gunnel; Sundh, Valter; Spak, Fredrik

    2007-01-01

    The aim of this study was to analyse stability of and change in personality traits in a general population sample of women over 5 years. Specific questions were how personality traits changed after a first episode of alcohol dependence/abuse (ADA), anxiety or depression disorders and after remission of an episode. The study was based on data from a longitudinal general population-based survey titled, "Women and alcohol in Göteborg (WAG)". A total of 641 women were interviewed in 1990 or 1995 and re-interviewed after 5 years. Personality traits were assessed with the Karolinska Scales of Personality (KSP) and lifetime psychiatric diagnoses given according to the Diagnostic and Statistical Manual of Mental Disorders, 3rd revised edition (DSM-III-R). Mean T-scores (KSP) for the general population sample were stable between initial assessment and follow-up 5 years later. Correlations between assessments were high for most KSP scores, indicating high individual stability. For women with resolved ADA, KSP scores were normalized to five scales at the follow-up assessment: somatic anxiety, muscular tension, monotony avoidance, social desirability and irritability. Women who recovered from anxiety disorders during the follow-up had decreased scores in somatic anxiety and muscular tension and increased scores in verbal aggression. Women who developed ADA during follow-up had increased scores on the scales impulsiveness and verbal aggression. Women who developed depression during follow-up had increased monotony avoidance. Personality traits were generally stable in this adult female population but some personality traits changed in association with changes in psychiatric disorders. This knowledge could be useful in evaluation of treatment needs and treatment outcome.

  15. Spin Polarization Transfer from a Photogenerated Radical Ion Pair to a Stable Radical Controlled by Charge Recombination.

    PubMed

    Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Mauck, Catherine M; Krzyaniak, Matthew D; Wasielewski, Michael R

    2017-06-15

    Photoexcitation of electron donor-acceptor molecules frequently produces radical ion pairs with well-defined initial spin-polarized states that have attracted significant interest for spintronics. Transfer of this initial spin polarization to a stable radical is predicted to depend on the rates of the radical ion pair recombination reactions, but this prediction has not been tested experimentally. In this study, a stable radical/electron donor/chromophore/electron acceptor molecule, BDPA • -mPD-ANI-NDI, where BDPA • is α,γ-bisdiphenylene-β-phenylallyl, mPD is m-phenylenediamine, ANI is 4-aminonaphthalene-1,8-dicarboximide, and NDI is naphthalene-1,4:5,8-bis(dicarboximide), was synthesized. Photoexcitation of ANI produces the triradical BDPA • -mPD +• -ANI-NDI -• in which the mPD +• -ANI-NDI -• radical ion pair is spin coupled to the BDPA • stable radical. BDPA • -mPD +• -ANI-NDI -• and its counterpart lacking the stable radical are found to exhibit spin-selective charge recombination in which the triplet radical ion pair 3 (mPD +• -ANI-NDI -• ) is in equilibrium with the 3 *NDI charge recombination product. Time-resolved EPR measurements show that this process is associated with an inversion of the sign of the polarization transferred to BDPA • over time. The polarization transfer rates are found to be strongly solvent dependent, as shifts in this equilibrium affect the spin dynamics. These results demonstrate that even small changes in electron transfer dynamics can have a large effect on the spin dynamics of photogenerated multispin systems.

  16. Rational Design of Porous Covalent Triazine-Based Framework Composites as Advanced Organic Lithium-Ion Battery Cathodes.

    PubMed

    Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong

    2018-06-02

    In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.

  17. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  18. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    PubMed

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  19. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    NASA Astrophysics Data System (ADS)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  20. Spatially Resolved Genomic, Stable Isotopic, and Lipid Analyses of a Modern Freshwater Microbialite from Cuatro Ciénegas, Mexico

    PubMed Central

    Nitti, Anthony; Daniels, Camille A.; Siefert, Janet; Souza, Valeria; Hollander, David

    2012-01-01

    Abstract Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ13C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO3 matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records. Key Words: Microbial ecology—Microbe-mineral interactions—Microbial mats—Stromatolites—Genomics. Astrobiology 12, 685–698. PMID:22882001

  1. The "Long Pipe" in CICLoPE: A Design for Detailed Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Talamelli, A.; Bellani, G.; Rossetti, A.

    A new facility to study high Reynolds number wall bounded turbulent flow has been designed. It will be installed in the laboratory of Center for International Collaboration on Long Pipe Experiments "CICLoPE" in Predappio (Italy). The facility consists of a large pipe, allowing to reach high Reynolds numbers, where all turbulent scales can be resolved with standard measurement techniques. The pipe operates with air at ambient conditions with a maximum speed of 60 m/s in order to avoid any compressibility effect. In order to maintain stable conditions over long period of time the pipe is part of a close loop circuit. The pipe will be located in a tunnel 60 m underground, thus ensuring very low level of external perturbations. The layout resembles an ordinary wind tunnel where the main difference is the long test section, which produces most of the friction losses. This requires the use of a multiple stage axial fan driven by two independent motors. Even though many of the various aerodynamic components are similar to those ordinary used in wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have been designed aiming at obtaining a very good quality of the flow and minimizing the overall pressure losses.

  2. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki

    2011-05-15

    Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) is one of the most widely used analytical methods. In this article, we highlight recent advances using DNPH provided by our studies over past seven years. DNPH reacts with carbonyls to form corresponding stable 2,4-DNPhydrazone derivatives (DNPhydrazones). This method may result in analytical error because DNPhydrazones have both E- and Z-stereoisomers caused by the CN double bond. Purified aldehyde-2,4-DNPhydrazone demonstrated only the E-isomer, but under UV irradiation and the addition of acid, both E- and Z-isomers were seen. In order to resolve the isometric problem, a method for transforming the CN double bond of carbonyl-2,4-DNPhydrazone into a C-N single bond, by reductive amination using 2-picoline borane, has been developed. The amination reactions of C1-C10 aldehyde DNPhydrazones are completely converted into the reduced forms and can be analyzed with high-performance liquid chromatography. As a new application using DNPH derivatization, the simultaneous measurement of carbonyls with carboxylic acids or ozone is described in this review. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Many Mg-Mg bonds form the core of the Mg16Cp*8Br4K cluster anion: the key to a reassessment of the Grignard reagent (GR) formation process?

    PubMed

    Kruczyński, T; Henke, F; Neumaier, M; Bowen, K H; Schnöckel, H

    2016-02-01

    It caused a sensation eight years ago, when the first room temperature stable molecular compound with a Mg-Mg bond (LMgMgL, L = chelating ligand) containing magnesium in the oxidation state +1 was prepared. Here, we report the preparation of a [Mg 16 Cp*8Br 4 K] - cluster anion (Cp* = pentamethylcyclopentadiene) with 27 Mg-Mg bonds. It has been obtained through the reaction of KCp* with a metastable solution of MgBr in toluene. A highly-resolved Fourier transform mass spectrum (FT-MS) of this cluster anion, brought into vacuum by electrospraying its solution in THF, provides the title cluster's stoichiometry. This Mg 16 cluster together with experiments on the metastable solution of MgBr show that: during the formation process of GRs (Grignard reagents) which are involved in most of sophisticated syntheses of organic products, not the highly reactive MgBr radical as often presumed, but instead the metalloid Mg 16 Cp*8Br 4 cluster anion and its related cousins that are the operative intermediates along the pathway from Mg metal to GRs ( e.g. Cp*MgBr).

  4. Investigation Of A Tin-Lithium Alloy As A Liquid Plasma-Facing Material

    NASA Astrophysics Data System (ADS)

    Sandefur, Heather; Ruzic, David; Kolasinski, Robert; Buchenauer, Dean; Sandia National Laboratories Collaboration; University of Illinois Collaboration

    2017-10-01

    Sn-Li is a low melting-point alloy that has been identified as a material with favorable performance in plasma material interaction studies. While lithium is a low Z material with a demonstrated ability to absorb impinging ions, pure lithium is plagued by high evaporation rates in the liquid phase. The Sn-Li alloy is a more stable alternative that provides a lower rate of evaporative flux due to the high vapor pressure of tin. In the liquid phase, the bulk segregation of lithium to the surface of the material has also been observed. While the alloy is of considerable interest, little data has been collected on its surface chemistry in a plasma environment. In order to expand the existing body of knowledge in this area, samples of an 80 percent Sn-20 percent Li alloy were prepared and analyzed in order to assess the surface composition and degree of lithium segregation in the liquid phase. The Angle-Resolved Ion Energy Spectrometer (ARIES) at Sandia National Laboratories was used to probe the surfaces of the alloy using the low energy ion scattering method. The lithium coverage at the surface was measured, and the material's affinity for hydrogen chemisorption was investigated.

  5. Hysteresis in DNA compaction by Dps is described by an Ising model

    PubMed Central

    Vtyurina, Natalia N.; Dulin, David; Docter, Margreet W.; Meyer, Anne S.; Dekker, Nynke H.; Abbondanzieri, Elio A.

    2016-01-01

    In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps–DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps–DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states. PMID:27091987

  6. Structural Features of a Hyperthermostable Endo-β-1,3-glucanase in Solution and Adsorbed on “Invisible” Particles

    PubMed Central

    Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem

    2005-01-01

    Conformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature. PMID:15516527

  7. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    NASA Astrophysics Data System (ADS)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  8. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    PubMed

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  9. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    PubMed

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  10. The neodymium stable isotope composition of the silicate Earth and chondrites

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd isotope composition giving an average composition for the bulk silicate Earth of δ146/144Nd = -0.022 ± 0.034‰ (n = 30). In the samples here magmatic differentiation appears to only have an effect on stable Nd in highly evolved magmas with heavier δ146/144Nd values observed in samples with >70 wt% SiO2. The average stable Nd isotope composition of chondrites and the bulk silicate Earth are indistinguishable at the 95% confidence level. However, mantle samples do possess variable stable Nd isotope compositions (Δ146/144Nd = 75 ppm) with an average δ 146 / 144Nd value of -0.008‰. If these heavier values represent the true composition of pristine mantle then it is not possible to completely rule out some role for core formation in accounting for some of the offset between the mantle and chondrites. Overall, these results indicate that the mismatch of 142Nd between the Earth and chondrites is best explained by a higher proportion of s-process Nd in the Earth, rather than partitioning into sulfide or S-rich metal in the core.

  11. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  12. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  13. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  14. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  15. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    PubMed

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  16. Inferring biome-scale net primary productivity from tree-ring isotopes

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  17. HLA-DR expression, cytokines and bioactive lipids in sepsis

    PubMed Central

    2014-01-01

    Sepsis accounts for more than 200,000 deaths annually in the USA alone. Both inflammatory and anti-inflammatory responses occur simultaneously in sepsis, the early phase dominated by the hyperinflammatory response and the late phase by immunosuppression. This late immunosuppression phase leads to loss of the delayed type hypersensitivity response, failure to clear the primary infection and development of secondary infections. Based on the available data, I hypothesize that failure to produce adequate amounts of inflammation resolving lipid mediators may be at the centre of both the hyperinflammatory response and late immunosuppression seen in sepsis. These proresolving lipids – lipoxins, resolvins and protectins – suppress exacerbated activation of leukocytes and macrophages, inhibit excess production of pro-inflammatory cytokines, initiate resolution of inappropriate inflammation, augment clearance of bacteria and other pathogens, and restore homeostasis. If true, this implies that administration of naturally occurring lipoxins, resolvins, protectins, maresins and nitrolipids by themselves or their more stable synthetic analogues such as 15-epi-16-(para-fluorophenoxy)-lipoxin A4-methyl ester, a synthetic analogue of 15-epi-lipoxin A4, and 15(R/S)-methyl-LXA4 may form a new approach in the prevention (in the high-risk subjects), management of sepsis and in resolving the imbalanced inflammatory process such that sepsis is ameliorated early. In addition, recent studies have suggested that nociceptin and cold inducible RNA binding protein (CIRBP) also have a role in the pathobiology of sepsis. It is suggested that both nociceptin and CIRBP inhibit the production of lipoxins, resolvins, protectins, maresins, and nitrolipids and thus play a role in sepsis and septic shock. PMID:24904669

  18. Detailed characterization of the LLNL imaging proton spectrometer

    DOE PAGES

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  19. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron.

    PubMed

    Forck, Richard M; Pradzynski, Christoph C; Wolff, Sabine; Ončák, Milan; Slavíček, Petr; Zeuch, Thomas

    2012-03-07

    Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.

  20. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  1. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  2. CT Scan Screening for Lung Cancer: Risk Factors for Nodules and Malignancy in a High-Risk Urban Cohort

    PubMed Central

    Greenberg, Alissa K.; Lu, Feng; Goldberg, Judith D.; Eylers, Ellen; Tsay, Jun-Chieh; Yie, Ting-An; Naidich, David; McGuinness, Georgeann; Pass, Harvey; Tchou-Wong, Kam-Meng; Addrizzo-Harris, Doreen; Chachoua, Abraham; Crawford, Bernard; Rom, William N.

    2012-01-01

    Background Low-dose computed tomography (CT) for lung cancer screening can reduce lung cancer mortality. The National Lung Screening Trial reported a 20% reduction in lung cancer mortality in high-risk smokers. However, CT scanning is extremely sensitive and detects non-calcified nodules (NCNs) in 24–50% of subjects, suggesting an unacceptably high false-positive rate. We hypothesized that by reviewing demographic, clinical and nodule characteristics, we could identify risk factors associated with the presence of nodules on screening CT, and with the probability that a NCN was malignant. Methods We performed a longitudinal lung cancer biomarker discovery trial (NYU LCBC) that included low-dose CT-screening of high-risk individuals over 50 years of age, with more than 20 pack-year smoking histories, living in an urban setting, and with a potential for asbestos exposure. We used case-control studies to identify risk factors associated with the presence of nodules (n = 625) versus no nodules (n = 557), and lung cancer patients (n = 30) versus benign nodules (n = 128). Results The NYU LCBC followed 1182 study subjects prospectively over a 10-year period. We found 52% to have NCNs >4 mm on their baseline screen. Most of the nodules were stable, and 9.7% of solid and 26.2% of sub-solid nodules resolved. We diagnosed 30 lung cancers, 26 stage I. Three patients had synchronous primary lung cancers or multifocal disease. Thus, there were 33 lung cancers: 10 incident, and 23 prevalent. A sub-group of the prevalent group were stable for a prolonged period prior to diagnosis. These were all stage I at diagnosis and 12/13 were adenocarcinomas. Conclusions NCNs are common among CT-screened high-risk subjects and can often be managed conservatively. Risk factors for malignancy included increasing age, size and number of nodules, reduced FEV1 and FVC, and increased pack-years smoking. A sub-group of screen-detected cancers are slow-growing and may contribute to over-diagnosis and lead-time biases. PMID:22768300

  3. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  4. Response trajectories reveal conflict phase in image-word mismatch.

    PubMed

    van Vugt, Floris T; Cavanagh, Patrick

    2012-02-01

    In the present study, response trajectories were used in a picture–word conflict task to determine the timing of intermediate processing stages that are relatively inaccessible to response time measures. A marker was placed above or below the word ABOVE or BELOW so that its location was congruent or in conflict with the word's meaning. To report either word location(above or below the marker) or word meaning, participants moved a mouse upward toward the appropriate top left or right answer corner on the display screen.Their response trajectories showed a number of distinctive features: First, at about 200 ms after stimulus onset(the "decision moment"), the trajectory abruptly began to arc toward the appropriate answer corner; second,when the word's meaning and position were in conflict,the trajectory showed an interruption that continued until the conflict was resolved. By varying the SOA of the word and marker onsets, we found that the word meaning and word position became available at approximately 325 ms and 251 ms, respectively, after their onsets, and that the delay to resolve conflicts was about 138 ms. The timing of these response trajectory events was more stable than any extracted from the final response times, demonstrating the power of response trajectories to reveal processing stages that are only poorly resolved, if at all, by response time measures [added].

  5. Two-site ionic labeling with pyranine: implications for structural dynamics studies of polymers and polypeptides by time-resolved fluorescence anisotropy.

    PubMed

    Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D

    2006-04-26

    Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.

  6. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  7. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  8. 1+1 dimensional compactifications of string theory.

    PubMed

    Goheer, Naureen; Kleban, Matthew; Susskind, Leonard

    2004-05-14

    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.

  9. Improved immunization strategy to reduce energy consumption on nodes traffic

    NASA Astrophysics Data System (ADS)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  11. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  12. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  13. Long-term results and recurrence rates after spironolactone treatment in non-resolving central serous chorio-retinopathy (CSCR).

    PubMed

    Herold, Tina Rike; Rist, Kristina; Priglinger, Siegfried Georg; Ulbig, Michael Werner; Wolf, Armin

    2017-02-01

    To evaluate the long-term results of spironolactone in non-resolving central serous chorio-retinopathy (CSCR) and recurrence rates of CSCR. Interventional uncontrolled open-label prospective clinical trial of patients with non-resolving CSCR who were treated with spironolactone 50 mg daily (Spironolacton AL® 50 mg, ALIUD PHARMA) for up to 16 weeks. Follow-up visits were performed at 3, 6, 9, and 12 months. Retreatment criteria for recurrence were: gain in sub-retinal fluid (SRF) of more than 25 % plus/or increase of central retinal thickness (CRT) of more than 50 μm plus visual symptoms compared to last visit. 12-month efficacy of upload treatment with spironolactone. Secondary outcome measure was the recurrence rate at 6, 9, and 12 months. Of the 21 study eyes treated, 71 % (n = 15) showed significant improvement or complete regression on OCT examination over 12 months. Nineteen percent of the patients (n = 4) showed a stable course from visit 1 to visit 12. The overall reduction of sub-retinal fluid from visit 1 (156 μm ± 131 SD) to visit 12 (53 μm ± 93 SD) was statistically significant (p = 0.003). The change of mean visual acuity (log MAR) from 0.25 (± 0.17 SD) at baseline to 0.17 (± 0.18 SD) at visit 12 was statistically significant, with p = 0.044. Our results confirm a positive effect of spironolactone in non-resolving CSCR in 71 % of cases. Evaluation of recurrence rates and retreatments showed good results in patients who responded to spironolactone primarily. A prospective randomized trial may provide better data about this non-invasive treatment.

  14. Immobilization of an L-aminoacylase-producing strain of Aspergillus oryzae into gelatin pellets and its application in the resolution of D,L-methionine.

    PubMed

    Yuan Yj, Ying-jin; Wang Sh, Shu-hao; Song Zx, Zheng-xiao; Gao Rc, Rui-chang

    2002-04-01

    The conditions for immobilization of an l-aminoacylase-producing strain of Aspergillus oryzae in gelatin and the enzymic characteristics of the immobilized pellets were studied. The optimal concentrations of gelatin, glutaraldehyde and ethyldiamine and time of immobilization were determined. Scanning electron micrographs reveal the cross-linked structure differences between the native and immobilized pellets. Optimum pH and temperature of the native and immobilized pellets were determined. Effects of ionic strength and substrate concentration on relative activity of the native and immobilized pellets were investigated in detail. The immobilized pellets were more stable over broader temperature and pH ranges. In addition, the immobilized pellets showed stable activity under operational and storage conditions. The immobilized pellets lost about 20% of their initial activity after five cycles of reuse. The results reported in this paper show the potential for using the immobilized A. oryzae pellets to resolve d,l-methionine.

  15. Strange matter in compact stars

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  16. A PURE HYDRODYNAMIC INSTABILITY IN SHEAR FLOWS AND ITS APPLICATION TO ASTROPHYSICAL ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata, E-mail: sujitkumar@physics.iisc.ernet.in, E-mail: bm@physics.iisc.ernet.in

    2016-10-20

    We provide a possible resolution for the century-old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds toward the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads tomore » pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments, and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long-standing problem of hydrodynamic instability of Rayleigh-stable flows.« less

  17. Chloromethane Degradation in Soils: A Combined Microbial and Two-Dimensional Stable Isotope Approach.

    PubMed

    Jaeger, Nicole; Besaury, Ludovic; Kröber, Eileen; Delort, Anne-Marie; Greule, Markus; Lenhart, Katharina; Nadalig, Thierry; Vuilleumier, Stéphane; Amato, Pierre; Kolb, Steffen; Bringel, Françoise; Keppler, Frank

    2018-03-01

    Chloromethane (CHCl, methyl chloride) is the most abundant volatile halocarbon in the atmosphere and involved in stratospheric ozone depletion. The global CHCl budget, and especially the CHCl sink from microbial degradation in soil, still involves large uncertainties. These may potentially be resolved by a combination of stable isotope analysis and bacterial diversity studies. We determined the stable isotope fractionation of CHCl hydrogen and carbon and investigated bacterial diversity during CHCl degradation in three soils with different properties (forest, grassland, and agricultural soils) and at different temperatures and headspace mixing ratios of CHCl. The extent of chloromethane degradation decreased in the order forest > grassland > agricultural soil. Rates ranged from 0.7 to 2.5 μg g dry wt. d for forest soil, from 0.1 to 0.9 μg g dry wt. d for grassland soil, and from 0.1 to 0.4 μg g dry wt. d for agricultural soil and increased with increasing temperature and CHCl supplementation. The measured mean stable hydrogen enrichment factor of CHCl of -50 ± 13‰ was unaffected by temperature, mixing ratio, or soil type. In contrast, the stable carbon enrichment factor depended on CHCl degradation rates and ranged from -38 to -11‰. Bacterial community composition correlated with soil properties was independent from CHCl degradation or isotope enrichment. Nevertheless, increased abundance after CHCl incubation was observed in 21 bacterial operational taxonomical units (OTUs at the 97% 16S RNA sequence identity level). This suggests that some of these bacterial taxa, although not previously associated with CHCl degradation, may play a role in the microbial CHCl sink in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  19. High speed photography, videography, and photonics III; Proceedings of the Meeting, San Diego, CA, August 22, 23, 1985

    NASA Technical Reports Server (NTRS)

    Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)

    1985-01-01

    Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.

  20. Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.

    2012-03-01

    Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  1. On the improvement of signal repeatability in laser-induced air plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  2. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    PubMed Central

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  3. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.

    PubMed

    Adey, Andrew; Burton, Joshua N; Kitzman, Jacob O; Hiatt, Joseph B; Lewis, Alexandra P; Martin, Beth K; Qiu, Ruolan; Lee, Choli; Shendure, Jay

    2013-08-08

    The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.

  4. Tree Ring Analyses Unlock a Century of Hydroclimatic Variability Across the Himalayas

    NASA Astrophysics Data System (ADS)

    Brunello, C. F.; Andermann, C.; Helle, G.; Comiti, F.; Tonon, G.; Hovius, N.

    2017-12-01

    Climate change has altered precipitation patterns and impacted the spatio-temporal distribution and availability of water in high mountain environments. For example, intensification of the Indian Summer Monsoon (ISM) increases the potential for moisture laden air to breach the Himalayan orographic barrier and penetrate into the arid, elevated southern Tibetan Plateau, with geomorphological and hydrological consequences. Such trends should be considered against a solid background, but a consistent record of centennial monsoon dynamics in the trans-Himalayan region has never been developed. Instrumental data are sparse and only cover a limited time period as well as remotely sensed information. Meanwhile, models have major systematic bias and substantial uncertainty in reproducing ISM interannual variability. In this context, hydro-climatic proxies, such as oxygen stable isotope ratios in cellulose of tree rings, are a valuable source of data, especially because isotope mass spectroscopy can unlock yearly resolved information by tracing the isotopic signature (18O) stored within each growth ring. Here we present three centennial records of monsoon dynamics, along a latitudinal transect, spanning a pronounced precipitation gradient across the Himalayan orogen. Three sites were selected along the Kali Gandaki valley in the central Himalayas (Nepal), this valley connects the wet, monsoon dominated Gangetic plain with the arid Tibetan Plateau. Our transect covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Our results show that inter-annual variation of monsoon strength can be reconstructed by tree ring δ18O. The inferred monsoon dynamics are compared against independent constraints on precipitation, snow cover and river discharge. Different water sources contribute disproportionally at the three sites, reflecting spatial and temporal shifts of the westerlies and the Indian summer monsoon. These two dominant sources of humidity are complemented by recycled continental circulation characterizing pre-monsoon rainfall. Our yearly resolved records of monsoon strength provide insights into anomalous hydro-climatic years and highlight the importance of precipitation variability for the hydrological processes in high mountain regions.

  5. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the results with respect to the seasonal N-dynamics in the catchment.

  6. Therapy for unhealed gastrocutaneous fistulas in rats as a model for analogous healing of persistent skin wounds and persistent gastric ulcers: stable gastric pentadecapeptide BPC 157, atropine, ranitidine, and omeprazole.

    PubMed

    Skorjanec, Sandra; Dolovski, Zdravko; Kocman, Ivan; Brcic, Luka; Blagaic Boban, Alenka; Batelja, Lovorka; Coric, Marjana; Sever, Marko; Klicek, Robert; Berkopic, Lidija; Radic, Bozo; Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Cesarec, Vedran; Tonkic, Ante; Zoricic, Ivan; Mise, Stjepan; Staresinic, Mario; Ivica, Mihovil; Lovric Bencic, Martina; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2009-01-01

    This study focused on unhealed gastrocutaneous fistulas to resolve whether standard drugs that promote healing of gastric ulcers may simultaneously have the same effect on cutaneous wounds, and corticosteroid aggravation, and to demonstrate why peptides such as BPC 157 exhibit a greater healing effect. Therefore, with the fistulas therapy, we challenge the wound/growth factors theory of the analogous nonhealing of wounds and persistent gastric ulcers. The healing rate of gastrocutaneous fistula in rat (2-mm-diameter stomach defect, 3-mm-diameter skin defect) validates macro/microscopically and biomechanically a direct skin wound/stomach ulcer relation, and identifies a potential therapy consisting of: (i) stable gastric pentadecapeptide BPC 157 [in drinking water (10 microg/kg) (12 ml/rat/day) or intraperitoneally (10 microg/kg, 10 ng/kg, 10 pg/kg)], (ii) atropine (10 mg/kg), ranitidine (50 mg/kg), and omeprazole (50 mg/kg), (iii) 6-alpha-methylprednisolone (1 mg/kg) [intraperitoneally, once daily, first application at 30 min following surgery; last 24 h before sacrifice (at postoperative days 1, 2, 3, 7, 14, and 21)]. Greater anti-ulcer potential and efficiency in wound healing compared with standard agents favor BPC 157, efficient in inflammatory bowel disease (PL-14736, Pliva), given in drinking water or intraperitoneally. Even after 6-alpha-methylprednisolone aggravation, BPC 157 promptly improves both skin and stomach mucosa healing, and closure of fistulas, with no leakage after up to 20 ml water intragastrically. Standard anti-ulcer agents, after a delay, improve firstly skin healing and then stomach mucosal healing, but not fistula leaking and bursting strength (except for atropine). We conclude that BPC 157 may resolve analogous nonhealing of wounds and persistent gastric ulcers better than standard agents.

  7. Natural History of Ground-Glass Lesions Among Patients With Previous Lung Cancer.

    PubMed

    Shewale, Jitesh B; Nelson, David B; Rice, David C; Sepesi, Boris; Hofstetter, Wayne L; Mehran, Reza J; Vaporciyan, Ara A; Walsh, Garrett L; Swisher, Stephen G; Roth, Jack A; Antonoff, Mara B

    2018-06-01

    Among patients with previous lung cancer, the malignant potential of subsequent ground-glass opacities (GGOs) on computed tomography remains unknown, with a lack of consensus regarding surveillance and intervention. This study sought to describe the natural history of GGO in patients with a history of lung cancer. A retrospective review was performed of 210 patients with a history of lung cancer and ensuing computed tomography evidence of pure or mixed GGOs between 2007 and 2013. Computed tomography reports were reviewed to determine the fate of the GGOs, by classifying all lesions as stable, resolved, or progressive over the course of the study. Multivariable analysis was performed to identify predictors of GGO progression and resolution. The mean follow-up time was 13 months. During this period, 55 (26%) patients' GGOs were stable, 131 (62%) resolved, and 24 (11%) progressed. Of the 24 GGOs that progressed, three were subsequently diagnosed as adenocarcinoma. Patients of black race (odds ratio [OR], 0.26) and other races besides white (OR, 0.89) had smaller odds of GGO resolution (p = 0.033), whereas patients with previous lung squamous cell carcinoma (OR, 5.16) or small cell carcinoma (OR, 5.36) were more likely to experience GGO resolution (p < 0.001). On multivariable analysis, only a history of adenocarcinoma was an independent predictor of GGO progression (OR, 6.9; p = 0.011). Among patients with a history of lung cancer, prior adenocarcinoma emerged as a predictor of GGO progression, whereas a history of squamous cell carcinoma or small cell carcinoma and white race were identified as predictors of GGO resolution. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Clinical features of Sarcoidosis in Oman: A report from the Middle East region.

    PubMed

    Jayakrishnan, B; Al-Busaidi, Nasser; Al-Lawati, Ahsan; George, Jojy; Al-Rawas, Omar A; Al-Mahrouqi, Yaqoub; Al-Lawati, Nabil

    2016-10-07

    Though clinical features of sarcoidosis follow a similar pattern, some heterogeneity is seen in different ethnic and racial groups. To describe for the first time the clinical characteristics of sarcoidosis patients in the Sultanate of Oman. The data on all cases of sarcoidosis followed up in the two tertiary hospitals in Oman were retrieved retrospectively. Of the 92 patients, for representing the ethnic data only Omani patients (n=83) were included. The mean age was 52.90±12.35 years. Majority were females (72.3%, n=60). Cough (n=44, 53.0%), dyspnea (n=39, 47%), arthralgia (n=26, 31.3%) and fatigue (30.1%) were the major symptoms. Arthralgia was reported by 41.7% of the females and 4.3% of the males (p= 0.001). Uveitis was present in 16 (19.3%), erythema nodosum in 8 (9.6%) and hypercalcemia in 13 (15.7%). The radiological stage at presentation was stage 0, 18.7%; I, 28%; II, 17.3%; III, 24% and IV, 12%. Majority (61.4%) of the patients had tissue diagnosis; intra-thoracic site 70.6%. Pulmonary function showed abnormal diffusion in 75%. Sixty eight received treatment, 81.9% took prednisolone. Based on radiograph good outcome (Resolving) was noted in 20.9%, intermediate (Stable) in 73.1% and poor (Progressive) in 6%. Lung function wise, resolving, stable and progressive disease was seen in 31.4%, 40.0% and 28.6% respectively. The clinical picture of the patients with sarcoidosis from Oman was similar to that reported from the rest of the world. Region wise, our patients were older and arthralgia and hypercalcemia were more common. The management of sarcoidosis needs a more organized approach in the country with clear guidelines on monitoring and treatment.

  9. Time-resolved distributions of bulk parameters, diacids, ketoacids and α-dicarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2015-02-01

    To better understand the photochemical production and diurnal distributions of organic and inorganic aerosols in the tropical coastal Indian atmosphere, the aerosol (TSP) samples were collected every 3 h during 30-31 January, 14-15 February and 28-29 May 2007 from Chennai and studied for total carbon (TC) and nitrogen (TN) and their stable isotope ratios (δ13CTC and δ15NTN), carbonaceous components, inorganic ions, diacids, ketoacids and α-dicarbonyls. Time-resolved distributions of bulk parameters, inorganic ions, and diacids and related compounds, except for few species, did not show any clear diurnal trend but showed peaks at 6-9 h during all the study periods, except for the peak at 15-18 h on 28 May. SO42-, C2 - C6 diacids, ketoacids and α-dicarbonyls in February and on 29 May showed a diurnal trend. δ13CTC and δ15NTN stayed relatively constant during the study periods but showed 13C depletion (in January) and 15 N enrichment when TC and TN peaked. Based on these results together with air mass trajectories, we found that the diurnal distributions of Chennai aerosols are mainly influenced by land/sea breeze and the aged (photochemically processed) air masses, although in situ photochemical production and nighttime chemistry of secondary aerosol species, particularly C2-C4 diacids and SO42-, are significant. The characteristics of seasonal variations of carbonaceous components, and diacids and related compounds and comparisons of δ13CTC and δ15NTN of Chennai aerosols with the isotopic signatures of the point sources inferred that biofuel/biomass burning in South and Southeast Asia are the major sources of aerosols (TSP).

  10. Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Sonke, Jeroen E; Salters, Vincent J M

    2007-08-03

    The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.

  11. Assessment of craniospinal arteriovenous malformations at 3T with highly temporally and highly spatially resolved contrast-enhanced MR angiography.

    PubMed

    Saleh, R S; Lohan, D G; Villablanca, J P; Duckwiler, G; Kee, S T; Finn, J P

    2008-05-01

    Patients with arteriovenous malformation (AVM) are known to have an elevated risk of complications with conventional catheter angiography (CCA) but nonetheless require monitoring of hemodynamics. Thus, we aimed to evaluate both anatomy and hemodynamics in patients with AVM noninvasively by using contrast-enhanced MR angiography (CE-MRA) at 3T and to compare the results with CCA. Institutional review board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant study. Twenty control subjects without vascular malformation (6 men, 18-70 years of age) and 10 patients with AVMs (6 men, 20-74 years of age) underwent supra-aortic time-resolved and high-spatial-resolution CE-MRA at 3T. Large-field-of-view coronal acquisitions extending from the root of the aorta to the cranial vertex were obtained for both MRA techniques. Image quality was assessed by 2 specialized radiologists by using a 4-point scale. AVM characteristics and nidus size were evaluated by using both CE-MRA and CCA in all patients. In patients, 96.6% (319/330) of arterial segments on high-spatial-resolution MRA and 87.7% (272/310) of arterial segments on time-resolved MRA were graded excellent/good. MRA showed 100% specificity for detecting feeding arteries and venous drainage (n = 8) and complete obliteration of the AVM in 2 cases (concordance with CCA). Nidus diameters measured by both MRA and CCA resulted in a very strong correlation (r = 0.99) with a mild overestimation by MRA (0.10 cm by using the Bland-Altman plot). By combining highly temporally resolved and highly spatially resolved MRA at 3T as complementary studies, one can assess vascular anatomy and hemodynamics noninvasively in patients with AVM.

  12. Retaining nurses through conflict resolution. Training staff to confront problems and communicate openly can improve the work climate.

    PubMed

    Fowler, A R; Bushardt, S C; Jones, M A

    1993-06-01

    The way nurses resolve conflict may be leading them to quit their jobs or leave the profession altogether. Conflict is inevitable in a dynamic organization. What is important is not to avoid conflict but to seek its resolution in a constructive manner. Organizational conflict is typically resolved through one of five strategies: withdrawal, force, conciliation, compromise, or confrontation. A recent study of nurses in three different hospitals showed that the approach they use most is withdrawal. This might manifest itself in a request to change shifts or assignments and may lead to a job change and, eventually, abandonment of the field altogether. Given this scenario, changing nurses' conflict resolution style may help administrators combat the nursing shortage. Healthcare organizations must examine themselves to determine why nurses so frequently use withdrawal; then they must restructure work relationships as needed. Next, organizations need to increase nurses' awareness of the problem and train them to use a resolution style more conducive to building stable relationships: confrontation. Staff should also be trained in effective communications skills to develop trust and openness in their relationships.

  13. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  14. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  15. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  16. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  17. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  18. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  19. Highly sensitive time-resolved thermography and multivariate image analysis of the cerebral cortex for intrasurgical diagnostics

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald

    2013-03-01

    Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.

  20. Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography

    PubMed Central

    Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.

    2015-01-01

    Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598

  1. Time-resolved Spectroscopy and Multi-color Photometry Of The Pulsating and Short-period Binary Subdwarf B Star Feige 48

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Baran, A.; O'Toole, S.

    2012-05-01

    Pulsating subdwarf B (sdB) stars can be used as probes of the helium fusing cores of horizontal branch stars. To probe these stars, asteroseismology must be able to observationally associate pulsation frequencies with modes. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining RV and multicolor measurements has also been shows as an effective means of constraining mode identifications. I will present results for Feige 48 using both time-resolved spectroscopy and multicolor photometry and attempts to constrain their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  2. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  3. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  4. Tunable Reflective Spatial Heterodyne Spectrometer: A Technique for High Resolving Power, Wide Field Of View Observation Of Diffuse Emission Line Sources

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyedeh Sona

    The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have not been extensively observed due to absence of technical capabilities in current apparatus. We will introduce the concept of Special Heterodyne Spectrometers and address how it can fill the gap. Chapter 2 reports on the development of a new mathematical frame work for the Reflective SHS. Chapter 3 provides the details of the design and construction of a Tunable Reflective SHS at both UC Davis laboratory and Mt. Hamilton, Lick Observatory, CA. And chapter 4 contains an overview of the prospects of SHS instruments in future.

  5. THE KMOS{sup 3D} SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ≤ z ≤ 2.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.

    2015-02-01

    We present the KMOS{sup 3D} survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS{sup 3D} survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M {sub *}) and rest-frame (U – V) – M {sub *} planes uniformly. We describe the selection of targets, the observations, and themore » data reduction. In the first-year of data we detect Hα emission in 191 M {sub *} = 3 × 10{sup 9}-7 × 10{sup 11} M {sub ☉} galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v {sub rot}/σ{sub 0} > 1, implying that the star-forming ''main sequence'' is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ∼70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z ≳ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s{sup –1}at z ∼ 2.3 to 25 km s{sup –1}at z ∼ 0.9. Combined with existing results spanning z ∼ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.« less

  6. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. D.; Kemp, A. J.; Pérez, F.

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis asmore » previously measured.« less

  7. Highly charged ion beams and their applications

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2018-01-01

    While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.

  8. Chemically exfoliated Mo S2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase

    NASA Astrophysics Data System (ADS)

    Pal, Banabir; Singh, Anjali; Sharada, G.; Mahale, Pratibha; Kumar, Abhinav; Thirupathaiah, S.; Sezen, H.; Amati, M.; Gregoratti, Luca; Waghmare, Umesh V.; Sarma, D. D.

    2017-11-01

    A metastable trigonal phase, existing only as small patches on a chemically exfoliated few-layered, thermodynamically stable 1 H phase of Mo S2 , is believed to critically influence the properties of Mo S2 -based devices. The electronic structure of this metastable phase is little understood in the absence of a direct experimental investigation of its electronic properties, complicated further by conflicting claims from theoretical investigations. We address this issue by investigating the electronic structure of this minority phase in chemically exfoliated Mo S2 few-layered systems by enhancing its contributions with the use of highly spatially resolved (≤120 nm resolution) photoemission spectroscopy and Raman spectroscopy in conjunction with state-of-the-art electronic structure calculations. Based on these results, we establish that the ground state of this phase, arrived at by the chemical exfoliation of Mo S2 using the usual Li intercalation technique, is a small gap (˜90 ±40 meV ) semiconductor in contrast to most claims in the literature; we also identify the specific trigonal structure it has among many suggested ones.

  9. A Magnesium-Activated Carbon Hybrid Capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, HD; Shterenberg, I; Gofer, Y

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionicmore » complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.« less

  10. On the stability analysis of approximate factorization methods for 3D Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1993-01-01

    The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Wencan; Vishwanath, Suresh; Liu, Jianpeng

    Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi 2Se 3 has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED) intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111}more » thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50 x 10 6 m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.« less

  12. Remission induction using alemtuzumab can permit chemotherapy-refractory chronic lymphocytic leukemia (CLL) patients to undergo allogeneic stem cell transplantation.

    PubMed

    Knauf, Wolfgang; Rieger, Kathrin; Blau, Wolfgang; Hegenbart, Ute; Von Gruenhagen, Ulrich; Niederwieser, Dietger; Thiel, Eckhard

    2004-12-01

    The outcome of allogeneic stem cell transplantation depends upon the disease status before transplantation. Patients with refractory disease are at high risk for relapse. To improve the curative potential of the transplant procedure, we treated 3 chemotherapy-refractory CLL patients with alemtuzumab before allogeneic stem cell transplantation. Prior to therapy, all patients suffered from B-symptoms, and had massive adenopathy, splenomegaly, thrombocytopenia, and anemia; two patients had hepatomegaly. Alemtuzumab greatly reduced tumor mass in blood and bone marrow, B-symptoms resolved, and organomegaly improved. Two patients became blood product independent. All patients proceeded to transplantation after conditioning with TBI 2 Gy (n=1) or Treosulfan (n=2) in combination with Fludarabine either from an HLA-matched sibling (n=2) or from an HLA-matched unrelated donor (n=1). All patients engrafted, and are alive and well. Two patients reached complete remission (CR); one patient attained stable partial remission (PR). These heavily pre-treated refractory patients gained substantial clinical benefit from alemtuzumab, and received successful allografts.

  13. Evidence for monoclinic distortion in the ground state phase of underdoped La 1.95Sr 0.05CuO 4: A single crystal neutron diffraction study

    DOE PAGES

    Singh, Anar; Schefer, Jurg; Sura, Ravi; ...

    2016-03-24

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  14. Evidence for monoclinic distortion in the ground state phase of underdoped La{sub 1.95}Sr{sub 0.05}CuO{sub 4}: A single crystal neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias

    2016-03-28

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  15. The birth order puzzle.

    PubMed

    Zajonc, R B; Markus, H; Markus, G B

    1979-08-01

    Studies relating intellectual performance to birth order report conflicting results, some finding intellectual scores to increase, others to decrease with birth order. In contrast, the relationship between intellectual performance and family size is stable and consistently replicable. Why do these two highly related variables generate such divergent results? This birth order puzzle is resolved by means of the confluence model that quantifies the influences upon intellectual growth arising within the family context. At the time of a new birth, two opposing influences act upon intellectual growth of the elder sibling: (a) his or her intellectual environment is "diluted" and (b) he or she loses the "last-born's handicap" and begins serving as an intellectual resource to the younger sibling. Since these opposite effects are not equal in magnitude, the differences in intellectual performance among birth ranks are shown to be age dependent. While elder children may surpass their younger siblings in intellectual performance at some ages, they may be overtaken by them at others. Thus when age is taken into consideration, the birth order literature loses its chaotic character and an orderly pattern of results emerges.

  16. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less

  17. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  18. Spike processing with a graphene excitable laser

    PubMed Central

    Shastri, Bhavin J.; Nahmias, Mitchell A.; Tait, Alexander N.; Rodriguez, Alejandro W.; Wu, Ben; Prucnal, Paul R.

    2016-01-01

    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved “spiking” of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation—fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms. PMID:26753897

  19. Principles and applications of laser-induced liquid-phase jet-chemical etching

    NASA Astrophysics Data System (ADS)

    Stephen, Andreas; Metev, Simeon; Vollertsen, Frank

    2003-11-01

    In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.

  20. Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheichl, Robert; Vassilevski, Panayot S.; Zikatanov, Ludmil T.

    2012-06-21

    We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of crossmore » points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.« less

  1. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.

    Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements formore » electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.« less

  2. Photolysis frequency and cloud dynamics during DC3 and SEAC4RS

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Ullmann, K.; Madronich, S.; Hair, J. W.; Butler, C. F.; Fenn, M. A.

    2013-12-01

    Cloud shading plays a critical role in extending the lifetime of short-lived chemical species. During convection, photochemistry is reduced such that short-lived species may be transported from the boundary layer to the upper troposphere/ lower stratosphere. In the anvil outflow, shading continues within and below the cloud. However, near the highly scattering cloud top, the chemistry is greatly accelerated. In this rapidly evolving environment, accurate photolysis frequencies are required to study photochemical evolution of the complex composition. During the Deep Convective Clouds and Chemistry (DC3, 2012) and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) campaigns, photolysis frequencies were determined by measurement of spectrally resolved actinic flux by the Charge-coupled device Actinic Flux Spectroradiometer (CAFS) on the NASA DC-8 and the HIAPER Airborne Radiation Package (HARP) on the NCAR G-V aircraft. Vertical flight profiles allowed in situ characterization of the radiation environment. Input of geometrical cloud characteristics into the Tropospheric Ultraviolet and Visible (TUV) Radiation was used to constrain cloud optical depths for more spatially and temporally stable conditions.

  3. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location

    NASA Astrophysics Data System (ADS)

    Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej

    2014-05-01

    The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.

  4. Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission

    NASA Technical Reports Server (NTRS)

    Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul; hide

    2017-01-01

    We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.

  5. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  7. Wrist Arthrodesis for Failed Total Wrist Arthroplasty.

    PubMed

    Adams, Brian D; Kleinhenz, Ben P; Guan, Justin J

    2016-06-01

    Treatment options for failed total wrist arthroplasty include implant revision, resection arthroplasty, and arthrodesis. Variable results associated with different techniques have been reported for arthrodesis and the procedure has substantial technical challenges, including restoration of wrist height, obtaining stable fixation, and achieving bony fusion. This study evaluates the radiographic results of a surgical technique for conversion of a failed arthroplasty to an arthrodesis. A retrospective chart and radiograph review was performed in 20 wrists in 18 patients in whom conversion to an arthrodesis was performed using a contoured cancellous femoral head structural allograft and a wrist arthrodesis plate. Supplemental demineralized bone matrix combined with corticocancellous allograft chips was also used in 15 wrists. Median age at arthrodesis was 61 years (range, 45-78 years), and median follow-up was 34 months (range, 4-71 months). Nineteen of 20 wrists fused following the index procedure at a median of 4 months (range, 3-7 months). Proximal plate loosening occurred in 1 wrist but the joint still fused at 6 months; a successful osteotomy and revision of screw fixation was done 2 years later to correct the deformity and hardware irritation in this case. Complications were otherwise limited to 1 superficial infection that resolved with intravenous antibiotics. This technique for conversion of a failed total wrist arthroplasty to a wrist arthrodesis is safe, effective, and versatile. Wrist deformity is corrected, wrist height can be restored, stable fixation is obtained, and a high rate of fusion is achieved despite filling large defects using structural cancellous allograft. Therapeutic IV. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  9. Microscale imaging and identification of Fe speciation and distribution during fluid-mineral reactions under highly reducing conditions.

    PubMed

    Mayhew, L E; Webb, S M; Templeton, A S

    2011-05-15

    The oxidation state, speciation, and distribution of Fe are critical determinants of Fe reactivity in natural and engineered environments. However, it is challenging to follow dynamic changes in Fe speciation in environmental systems during progressive fluid-mineral interactions. Two common geological and aquifer materials-basalt and Fe(III) oxides-were incubated with saline fluids at 55 °C under highly reducing conditions maintained by the presence of Fe(0). We tracked changes in Fe speciation after 48 h (incipient water-rock reaction) and 10 months (extensive water-rock interaction) using synchrotron-radiation μXRF maps collected at multiple energies (ME) within the Fe K-edge. Immediate PCA analysis of the ME maps was used to optimize μXANES analyses; in turn, refitting the ME maps with end-member XANES spectra enabled us to detect and spatially resolve the entire variety of Fe-phases present in the system. After 48 h, we successfully identified and mapped the major Fe-bearing components of our samples (Fe(III) oxides, basalt, and rare olivine), as well as small quantities of incipient brucite associated with olivine. After 10 months, the Fe(III)-oxides remained stable in the presence of Fe(0), whereas significant alteration of basalt to minnesotaite and chlinochlore had occurred, providing new insights into heterogeneous Fe speciation in complex geological media under highly reducing conditions.

  10. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  11. Climatic variability in sclerochronological records from the northern North Sea

    NASA Astrophysics Data System (ADS)

    Trofimova, T.; Andersson Dahl, C.; Bonitz, F. G. W.

    2016-12-01

    Highly resolved palaeoreconstructions that can extend instrumental records back through time is a fundament for our understanding of a climate of the last millennia. Only a few established extratropical marine paleo archives enable the reconstruction of key ocean processes at annual to sub-annual time scales. Bivalves have been shown to provide a useful archive with high temporal resolution. The species Arctica islandica is unique proxy due to its exceptional longevity combined with sensitivity to changes in environmental conditions. In this study, we investigate the impact of climate variability on sclerochronological records of A. islandica from the Viking Bank in the northern North Sea. The hydrographical characteristics of this location are mainly controlled by the major inflow of Atlantic water in the North Sea and can potentially be reflected in the shell composition and growth of A. islandica. To reconstruct environment conditions, we use shells of living and subfossil specimens of A. islandica collected by dredging at depths around 100 meters. The annual growth bands within the shells were determined and growth increments widths were measured. By cross-matching 30 individual increment-width time series, we built an absolutely dated 265-year long shell-growth chronology spanning the time interval 1748-2013 AD. The relatively high Rbar (>0.5) and EPS (>0.85) values indicate a common environmental forcing on the shell growth within the population. The growth chronology preserves a 20-30 yr variability prior to 1900 which fades out towards the present. That change suggests a possible regime shift at the beginning of a 20th century. Ongoing work mainly focuses on comparing the shell-growth chronology with existing observational time series of climatic parameters to determine controlling factors and test the use of growth chronologies for climate reconstruction in this area. For reconstructing seasonality, we analyse the stable oxygen isotope composition of the shell carbonate. Preliminary results of temperature reconstruction are in agreement with observations and show a seasonal variability with an amplitude of less than 4oC. Future work includes the development of an annually resolved oxygen isotope record and subsequent temperature reconstruction.

  12. Trajectories of maternal verbal aggression across the middle school years: associations with negative view of self and social problems.

    PubMed

    Donovan, Kera L; Brassard, Marla R

    2011-10-01

    The primary research objective was to explore the relationship between trajectories of maternal verbal aggression (VA) experienced by low-income, community middle school students across a three-year period and outcomes that have been found to be related to VA in previous work, including a negative view of self and social problems. Longitudinal data were collected from 421 youth (51.8% male) attending two middle schools over 3 years using a multiple-informant survey design. K-means cluster analysis was used to identify trajectories of VA using youth ratings of the Conflict Tactics Scale: Parent-Child (Straus, Hamby, Finkelhor, Moore, & Runyan, 1998). Dependent variables were self-reported depression, self-esteem, delinquency, and peer victimization as well as peer-rated aggression and sensitive-isolated reputation. Four trajectory groups of VA were identified: Low Stable, Increasing, Decreasing, and High Stable. The 3-year average occurrence of VA was: 1.31, 9.18, 10.24, and 31.14 instances, respectively. Gender-specific MANOVAs revealed dramatic differences between the High Stable and Low Stable groups. High Stable boys reported significantly more depressive symptoms, delinquency, peer overt and relational victimization, and were less likely to have a sensitive/isolated reputation than Low Stable boys. High Stable girls reported significantly more depressive symptoms, low self-esteem, delinquency, peer overt and relational victimization and were rated by peers as having more aggressive/disruptive and relationally aggressive reputations than Low Stable girls. Girls in the High Stable group were more likely than other youth to report levels of depressive symptoms and delinquency >1 SD above the mean, while boys in the High Stable group were more likely to report levels of delinquency >1 SD above the mean. The Increasing and Decreasing groups also demonstrated significantly poorer functioning than the Low Stable group on most outcomes. Growth curve analysis revealed that VA showed a contemporaneous association with self-reported delinquency suggesting these factors are closely related. Any level of VA greater than the 1-2 instances per year reported by youth in the Low Stable group was associated with less favorable outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring

    DOE PAGES

    Zou, Lianfeng; Li, Jonathan; Zakharov, Dmitri; ...

    2017-12-01

    Using in situ transmission electron microscopy that spatially and temporally resolves the evolution of the atomic structure in the surface and subsurface regions, we Find that the surface segregation of Au atoms in a Cu(Au) solid solution results in the nucleation and growth of a (2 × 1) missing-row reconstructed, half-unit-cell thick L1 2 Cu 3Au(110) surface alloy. Our in situ electron microscopy observations and atomistic simulations demonstrate that the (2 × 1) reconstruction of the Cu 3Au(110) surface alloy remains as a stable surface structure as a result of the favored Cu-Au diatom configuration.

  14. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part II, higher order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Garain, Sudip; Taflove, Allen; Montecinos, Gino

    2018-02-01

    The Finite Difference Time Domain (FDTD) scheme has served the computational electrodynamics community very well and part of its success stems from its ability to satisfy the constraints in Maxwell's equations. Even so, in the previous paper of this series we were able to present a second order accurate Godunov scheme for computational electrodynamics (CED) which satisfied all the same constraints and simultaneously retained all the traditional advantages of Godunov schemes. In this paper we extend the Finite Volume Time Domain (FVTD) schemes for CED in material media to better than second order of accuracy. From the FDTD method, we retain a somewhat modified staggering strategy of primal variables which enables a very beneficial constraint-preservation for the electric displacement and magnetic induction vector fields. This is accomplished with constraint-preserving reconstruction methods which are extended in this paper to third and fourth orders of accuracy. The idea of one-dimensional upwinding from Godunov schemes has to be significantly modified to use the multidimensionally upwinded Riemann solvers developed by the first author. In this paper, we show how they can be used within the context of a higher order scheme for CED. We also report on advances in timestepping. We show how Runge-Kutta IMEX schemes can be adapted to CED even in the presence of stiff source terms brought on by large conductivities as well as strong spatial variations in permittivity and permeability. We also formulate very efficient ADER timestepping strategies to endow our method with sub-cell resolving capabilities. As a result, our method can be stiffly-stable and resolve significant sub-cell variation in the material properties within a zone. Moreover, we present ADER schemes that are applicable to all hyperbolic PDEs with stiff source terms and at all orders of accuracy. Our new ADER formulation offers a treatment of stiff source terms that is much more efficient than previous ADER schemes. The computer algebra system scripts for generating ADER time update schemes for any general PDE with stiff source terms are also given in the electronic supplements to this paper. Second, third and fourth order accurate schemes for numerically solving Maxwell's equations in material media are presented in this paper. Several stringent tests are also presented to show that the method works and meets its design goals even when material permittivity and permeability vary by an order of magnitude over just a few zones. Furthermore, since the method is unconditionally stable and sub-cell-resolving in the presence of stiff source terms (i.e. for problems involving giant variations in conductivity over just a few zones), it can accurately handle such problems without any reduction in timestep. We also show that increasing the order of accuracy offers distinct advantages for resolving sub-cell variations in material properties. Most importantly, we show that when the accuracy requirements are stringent the higher order schemes offer the shortest time to solution. This makes a compelling case for the use of higher order, sub-cell resolving schemes in CED.

  15. Residence times and age distributions of spring waters at the Semmering catchment area, Eastern Austria, as inferred from tritium, CFCs and stable isotopes.

    PubMed

    Han, Liangfeng; Hacker, Peter; Gröning, Manfred

    2007-03-01

    The groundwater system in the mountainous area of Semmering, Austria, was studied by environmental tracers in several karst springs. The tracers used included stable isotopes ((18)O, (2)H), tritium ((3)H) and chlorofluorocarbons (CFCs). The tracers provided valuable information in regard to (1) the mean altitude of the spring catchment areas; (2) the residence time and age distribution of the spring waters; and (3) the interconnection of the springs to a sinkhole. The combination of the stable isotopic data and the topography/geology provided the estimates of the mean altitudes of the catchment areas. Based on the stable isotopic data the recharge temperature of the spring waters was estimated. The smoothing of precipitation's isotopic signal in spring discharge provided information on the minimum transit time of the spring waters. Due to short observation time, (3)H data alone cannot be used for describing the mean residence time of the karst waters. CFCs, though useful in recognizing the co-existence of young (post-1993) water with old (CFC-free) water, could not be used to resolve age distribution models. It is shown in this article, however, that the combined use of tritium and CFCs can provide a better assessment of models to account for different groundwater age distributions. In Appendix A, a simplified method for collecting groundwater samples for the analysis of CFCs is described. The method provides a real facilitation for fieldwork. Test data are given for this sampling method in regard to potential contamination by atmospheric CFCs.

  16. CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry

    DOE PAGES

    Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...

    2016-06-17

    Here, we describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze,more » for the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between 58Fe and 58Ni was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI’s ultimate goals, 10 nm lateral resolution and 30–40% useful yield.« less

  17. Processing silicon microparticles recycled from wafer waste via Rapid Thermal Process for lithium-ion battery anode materials

    NASA Astrophysics Data System (ADS)

    Tan, Hui-Gee; Duh, Jenq-Gong

    2016-12-01

    A vast quantity of waste sludge is generated during the silicon wafers slicing process in semiconductor and photovoltaic industries. Turning the waste powder into high-value products is of strategic importance for industrial processes. The purified Si microparticles (Si-MP) are recycled by a simple and fast procedure, Rapid Thermal Process (RTP). A prominent anodic material of Si-MP/Carbon composite with porous structure is obtained via in-spaced carbonization of water-soluble binder sodium carboxymethyl cellulose during RTP. This strategy provides buffer space, which is constructed by carbon porous continuous conductive framework throughout the entire electrode, to resist local stress and intense volume variation. In addition, a sufficiently electrochemically stable solid-electrolyte interphase layer is accomplished with the coating of SiOx film and amorphous carbon on the surface of Si-MP. Under these circumstances, the enhanced electrodes achieve a first cycle efficiency of approximately 80% and a reversible charge capacity of 800 mAhg-1 over 100 cycles at 0.5 Ag-1 with good retention. Through a green and simple procedure, a remarkable Si-MP embedded carbon-matrix with porous structure is established to achieve commercially high performance Si-MP/C composite anodes and also to resolve the issues of waste disposal.

  18. CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.

    2016-08-01

    We describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze, formore » the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between Fe-58 and Ni-58 was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI's ultimate goals, similar to 10 nm lateral resolution and 30-40% useful yield.« less

  19. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    NASA Astrophysics Data System (ADS)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.

    2016-01-01

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  20. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, themore » theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.« less

  1. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eV

  2. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  3. Rotational Spectroscopy of Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Methyl vinyl ketone, MVK, along with previously studied by our team methacrolein, is a major oxidation product of isoprene, which is one of the primary contributors to annual global VOC emissions. In this talk we present the analysis of the rotational spectrum of MVK recorded at room temperature in the 50 -- 650 GHz region using the Lille spectrometer. The spectroscopic characterization of MVK ground state will be useful in the detailed analysis of high resolution infrared spectra. Our study is supported by high level quantum chemical calculations to model the structure of the two stable s-trans and s-cis conformers and to obtain the harmonic force field parameters, internal rotation barrier heights, and vibrational frequencies. In the Doppler-limited spectra the splittings due to the internal rotation of methyl group are resolved, therefore for analysis of this molecule we used the Rho-Axis-Method Hamiltonian and RAM36 code to fit the rotational transitions. At the present time the ground state of two conformers is analyzed. Also we intend to study some low lying excited states. The analysis is in progress and the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged.

  4. Structure and Stability of One-Dimensional Detonations in Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.; Perkins, High D. (Technical Monitor)

    2003-01-01

    The propagation of one-dimensional detonations in ethylene-air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit, first-order-accurate, time marching algorithm. The ethylene-air combustion is modeled with a 20-species, 36-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies over an equivalence ratio range of 0.5 less than phi less than 3 for different initial pressures and degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel-air equivalence ratio. For equivalence ratios less than approximately 1.2 the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures (phi greater than 1.2) exhibit a low-frequency mode that includes large fluctuations in the detonation wave speed; that is, a galloping propagation mode is established. At high degrees of overdrive, stable detonation wave propagation is obtained. A modified McVey-Toong short-period wave-interaction theory is in excellent agreement with the numerical simulations.

  5. A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years

    NASA Astrophysics Data System (ADS)

    Zhao, Kan; Wang, Yongjin; Edwards, R. Lawrence; Cheng, Hai; Liu, Dianbing; Kong, Xinggong

    2015-08-01

    Two annually-laminated and 230Th-dated stalagmite oxygen isotope (δ18O) records from Dongge Cave, China, provided a high-resolution Asian Summer Monsoon (ASM) history for the past 1200 years. A close similarity between annual band thickness and stable isotope analyses (δ13C and δ18O) suggests the calcite δ18O is most likely a proxy associated with ASM precipitation. The two duplicated stalagmite δ18O records show that the ASM varies at a periodicity of ∼220 years, concordant with a dominant cycle of solar activity. A period of strong ASM activity occurred during the Spörer Minimum (1450-1550 A.D.), followed by a striking drop circa 1580 A.D., potentially consistent with the social unrest in the final decades of China's Ming Dynasty (1368-1644 A.D.). Centennial-scale changes in ASM precipitation over the last millennium match well with changes in tropical Atlantic sea surface temperatures (SSTs) and South American summer monsoon precipitation. Our findings suggest that variations in low-latitude monsoon precipitation are probably driven by shifts in the mean position of the intertropical convergence zone (ITCZ), which is further mediated by solar activity and tropical SSTs.

  6. A 1200-Year Record of Rapid Climate Changes Across the Tropical Americas Identified from Lake Sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Abbott, M.; Rodbell, D. T.; Stansell, N.; Bird, B. W.; Vuille, M.

    2009-12-01

    Well-dated, highly resolved lake sediment stratigraphies from similar catchments across the tropical Americas provide a means to investigate the timing, rate and direction of climate variability as well as providing a way to evaluate whether rapid changes occur synchronously in both hemispheres. This presentation focuses on the last 1500 years from three new high-resolution stable isotope records including Yuraicocha (12°32'S, 75°29'W), Pumacocha (10°41'S, 76° 3'36W), and Gancho (8°27'N, 80°51'W). These lakes are all sensitive to changes in P/E and the sediment records respond at subdecadal timescales. Additionally, the results from these sites are compared with lake level records from Titicaca (16°14'S, 68°37'W) and Blanca (8°19'N, 71°46'W) as well as other lake core and speleothem records from the region. The results show that in general conditions are dry across South America from ~800 AD until ~1300 AD with wetter conditions in Central America and the Caribbean. This pattern of dry conditions in tropical South America and wet conditions in the north reverses after ~1300 when conditions become wetter in South America, and drier in Central America and the Carrabin.

  7. Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae).

    PubMed

    Mishra, Priyanka; Kumar, Amit; Rodrigues, Vereena; Shukla, Ashutosh K; Sundaresan, Velusamy

    2016-01-01

    The internal transcribed spacer (ITS) region is situated between 18S and 26S in a polycistronic rRNA precursor transcript. It had been proved to be the most commonly sequenced region across plant species to resolve phylogenetic relationships ranging from shallow to deep taxonomic levels. Despite several taxonomical revisions in Cassiinae, a stable phylogeny remains elusive at the molecular level, particularly concerning the delineation of species in the genera Cassia, Senna and Chamaecrista . This study addresses the comparative potential of ITS datasets (ITS1, ITS2 and concatenated) in resolving the underlying morphological disparity in the highly complex genera, to assess their discriminatory power as potential barcode candidates in Cassiinae. A combination of experimental data and an in-silico approach based on threshold genetic distances, sequence similarity based and hierarchical tree-based methods was performed to decipher the discriminating power of ITS datasets on 18 different species of Cassiinae complex. Lab-generated s equences were compared against those available in the GenBank using BLAST and were aligned through MUSCLE 3.8.31 and analysed in PAUP 4.0 and BEAST1.8 using parsimony ratchet, maximum likelihood and Bayesian inference (BI) methods of gene and species tree reconciliation with bootstrapping. DNA barcoding gap was realized based on the Kimura two-parameter distance model (K2P) in TaxonDNA and MEGA. Based on the K2P distance, significant divergences between the inter- and intra-specific genetic distances were observed, while the presence of a DNA barcoding gap was obvious. The ITS1 region efficiently identified 81.63% and 90% of species using TaxonDNA and BI methods, respectively. The PWG-distance method based on simple pairwise matching indicated the significance of ITS1 whereby highest number of variable (210) and informative sites (206) were obtained. The BI tree-based methods outperformed the similarity-based methods producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. The reticulated phylogenetic hypothesis using the ITS1 region mainly supported the relationship between the species of Cassiinae established by traditional morphological methods. The ITS1 region showed a higher discrimination power and desirable characteristics as compared to ITS2 and ITS1 + 2, thereby concluding to be the locus of choice. Considering the complexity of the group and the underlying biological ambiguities, the results presented here are encouraging for developing DNA barcoding as a useful tool for resolving taxonomical challenges in corroboration with morphological framework.

  8. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    NASA Astrophysics Data System (ADS)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  9. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope analysis (via elemental analysis IRMS and gas bench IRMS) we are employing laser ablation IRMS (LA-IRMS) to provide a spatially-resolved accounting of label uptake through the mat cross section. This technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within each mat strata. By coupling LA-IRMS analysis with laminar sectioning of the mat and amplicon sequencing of the rrnA gene, we seek to establish linkages between phylogeny and function over the course of a diel cycle with highlighted emphasis on evidence of carbon transfer between mat laminae and the phylotypes that inhabit them. We are also using a series of carbon accumulation microcosms to quantify net carbon fixation over the seasonal cycle. These microcosms are deployed at multiple depths to provide an accounting of carbon cycling under the specific geochemical conditions experienced at variable depth. Coupling the data from these individual microcosms to our bathymetric survey of Hot Lake permits us to estimate total mat carbon fixation, and therefore to begin to assess the impact of the mat on the greater lake carbon cycle.

  10. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  11. Obtaining sparse distributions in 2D inverse problems.

    PubMed

    Reci, A; Sederman, A J; Gladden, L F

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L 1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L 1 regularization to a class of inverse problems; relaxation-relaxation, T 1 -T 2 , and diffusion-relaxation, D-T 2 , correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L 1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L 1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L 1 regularization algorithm stably recovers a distribution at a signal to noise ratio<20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise. Copyright © 2017. Published by Elsevier Inc.

  12. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this processmore » that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.« less

  13. Obtaining sparse distributions in 2D inverse problems

    NASA Astrophysics Data System (ADS)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio < 20 and that it resolves relaxation time constants and diffusion coefficients differing by as little as 10%. The enhanced resolving capability is used to measure the inter and intra particle concentrations of a mixture of hexane and dodecane present within porous silica beads immersed within a bulk liquid phase; neither NNLS nor Tikhonov regularization are able to provide this resolution. This experimental study shows that the approach enables discrimination between different chemical species when direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.

  14. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  15. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    PubMed

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  16. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  17. Resolved H I Observations of Local Analogs to z ∼ 1 Luminous Compact Blue Galaxies: Evidence for Rotation-supported Disks

    NASA Astrophysics Data System (ADS)

    Rabidoux, Katie; Pisano, D. J.; Garland, C. A.; Guzmán, Rafael; Castander, Francisco J.; Wolfe, Spencer A.

    2018-01-01

    While bright, blue, compact galaxies are common at z∼ 1, they are relatively rare in the local universe, and their evolutionary paths are uncertain. We have obtained resolved H I observations of nine z∼ 0 luminous compact blue galaxies (LCBGs) using the Giant Metrewave Radio Telescope and Very Large Array in order to measure their kinematic and dynamical properties and better constrain their evolutionary possibilities. We find that the LCBGs in our sample are rotating galaxies that tend to have nearby companions, relatively high central velocity dispersions, and can have disturbed velocity fields. We calculate rotation velocities for each galaxy by measuring half of the velocity gradient along their major axes and correcting for inclination using axis ratios derived from SDSS images of each galaxy. We compare our measurements to those previously made with single dishes and find that single-dish measurements tend to overestimate LCBGs’ rotation velocities and H I masses. We also compare the ratio of LCBGs’ rotation velocities and velocity dispersions to those of other types of galaxies and find that LCBGs are strongly rotationally supported at large radii, similar to other disk galaxies, though within their half-light radii the {V}{rot}/σ values of their H I are comparable to stellar {V}{rot}/σ values of dwarf elliptical galaxies. We find that LCBGs’ disks on average are gravitationally stable, though conditions may be conducive to local gravitational instabilities at the largest radii. Such instabilities could lead to the formation of star-forming gas clumps in the disk, resulting eventually in a small central bulge or bar.

  18. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  19. Appropriate Minimal Dose of Gadobutrol for 3D Time-Resolved MRA of the Supra-Aortic Arteries: Comparison with Conventional Single-Phase High-Resolution 3D Contrast-Enhanced MRA.

    PubMed

    Bak, S H; Roh, H G; Moon, W-J; Choi, J W; An, H S

    2017-07-01

    The development of nephrogenic systemic fibrosis and neural tissue deposition is gadolinium dose-dependent. The purpose of this study was to determine the appropriate minimal dose of gadobutrol with time-resolved MRA to assess supra-aortic arterial stenosis with contrast-enhanced MRA as a reference standard. Four hundred sixty-two consecutive patients underwent both standard-dose contrast-enhanced MRA and low-dose time-resolved MRA and were classified into 3 groups; group A (a constant dose of 1 mL for time-resolved MRA), group B (2 mL), or group C (3 mL). All studies were independently evaluated by 2 radiologists for image quality by using a 5-point scale (from 0 = failure to 4 = excellent), grading of arterial stenosis (0 = normal, 1 = mild [<30%], 2 = moderate [30%-69%], 3 = severe to occlusion [≥70%]), and signal-to-noise ratio. The image quality of time-resolved MRA was similar to that of contrast-enhanced MRA in groups B and C, but it was inferior to contrast-enhanced MRA in group A. For the grading of arterial stenosis, there was an excellent correlation between contrast-enhanced MRA and time-resolved MRA ( R = 0.957 for group A, R = 0.988 for group B, R = 0.991 for group C). The SNR of time-resolved MRA tended to be lower than that of contrast-enhanced MRA in groups A and B. However, SNR was higher for time-resolved MRA compared with contrast-enhanced MRA in group C. Low-dose time-resolved MRA is feasible in the evaluation of supra-aortic stenosis and could be used as an alternative to contrast-enhanced MRA for a diagnostic technique in high-risk populations. © 2017 by American Journal of Neuroradiology.

  20. High-speed quantitative phase imaging using time-stretch spectral shearing contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Foster, Mark A.

    2017-02-01

    Photonic time-stretch microscopy (TSM) provides an ideal platform for high-throughput imaging flow cytometry, affording extremely high shutter speeds and frame rates with high sensitivity. In order to resolve weakly scattering cells in biofluid and solve the issue of signal-to-noise in cell labeling specificity of biomarkers in imaging flow cytometry, several quantitative phase (QP) techniques have recently been adapted to TSM. However, these techniques have relied primarily on sensitive free-space optical configurations to generate full electric field measurements. The present work draws from the field of ultrashort pulse characterization to leverage the coherence of the ultrashort optical pulses integral to all TSM systems in order to do self-referenced single-shot quantitative phase imaging in a TSM system. Self-referencing is achieved via spectral shearing interferometry in an exceptionally stable and straightforward Sagnac loop incorporating an electro-optic phase modulator and polarization-maintaining fiber that produce sheared and unsheared copies of the pulse train with an inter-pulse delay determined by polarization mode dispersion. The spectral interferogram then yields a squared amplitude and a phase derivative image that can be integrated for conventional phase. We apply this spectral shearing contrast microscope to acquire QP images on a high-speed flow microscope at 90-MHz line rates with <400 pixels per line. We also consider the extension of this technique to compressed sensing (CS) acquisition by intensity modulating the interference spectra with pseudorandom binary waveforms to reconstruct the images from a highly sub-Nyquist number of random inner products, providing a path to even higher operating rates and reduced data storage requirements.

  1. Functional brain microstate predicts the outcome in a visuospatial working memory task.

    PubMed

    Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna

    2016-11-01

    Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fast and Accurate Construction of Ultra-Dense Consensus Genetic Maps Using Evolution Strategy Optimization

    PubMed Central

    Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham

    2015-01-01

    Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943

  3. Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.

    PubMed

    Correia, Teresa; Ginami, Giulia; Cruz, Gastão; Neji, Radhouene; Rashid, Imran; Botnar, René M; Prieto, Claudia

    2018-04-22

    To develop a robust and efficient reconstruction framework that provides high-quality motion-compensated respiratory-resolved images from free-breathing 3D whole-heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Recently, XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory-resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory-resolved motion-compensated images by incorporating 2D beat-to-beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory-resolved Cartesian Coronary MR Angiography (XD-ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD-GRASP. The proposed XD-ORCCA provides high-quality respiratory-resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD-GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p < .05) in visible vessel length and proximal vessel sharpness were found between the 2 methods. The XD-GRASP method provides good-quality images in the absence of intraphase motion. However, motion blurring is observed in XD-GRASP images for respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. A robust respiratory-resolved motion-compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD-ORCCA provides high-quality images for all respiratory phases, independently of the regularity of the breathing pattern. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  4. Iao: The New Adaptive Optics Visible Imaging and Photometric System for AEOS

    DTIC Science & Technology

    2008-09-01

    observations of binary stars, asteroids and planets such as Mercury and Mars [2,3,4]. The Visible Imager is also used to take time resolved photometry ...role it takes high spatial resolution imagery of resolved targets. These targets are primarily low Earth orbiting satellites acquired for the...albedo pattern: Comparing the AEOS and TES data sets [5] D.T. Hall et al. 2007, Journal of Spacecraft and Rockets, 44, 910-919, Time - Resolved I-Band

  5. Research in computational fluid dynamics and analysis of algorithms

    NASA Technical Reports Server (NTRS)

    Gottlieb, David

    1992-01-01

    Recently, higher-order compact schemes have seen increasing use in the DNS (Direct Numerical Simulations) of the Navier-Stokes equations. Although they do not have the spatial resolution of spectral methods, they offer significant increases in accuracy over conventional second order methods. They can be used on any smooth grid, and do not have an overly restrictive CFL dependence as compared with the O(N(exp -2)) CFL dependence observed in Chebyshev spectral methods on finite domains. In addition, they are generally more robust and less costly than spectral methods. The issue of the relative cost of higher-order schemes (accuracy weighted against physical and numerical cost) is a far more complex issue, depending ultimately on what features of the solution are sought and how accurately they must be resolved. In any event, the further development of the underlying stability theory of these schemes is important. The approach of devising suitable boundary clusters and then testing them with various stability techniques (such as finding the norm) is entirely the wrong approach when dealing with high-order methods. Very seldom are high-order boundary closures stable, making them difficult to isolate. An alternative approach is to begin with a norm which satisfies all the stability criteria for the hyperbolic system, and look for the boundary closure forms which will match the norm exactly. This method was used recently by Strand to isolate stable boundary closure schemes for the explicit central fourth- and sixth-order schemes. The norm used was an energy norm mimicking the norm for the differential equations. Further research should be devoted to BC for high order schemes in order to make sure that the results obtained are reliable. The compact fourth order and sixth order finite difference scheme had been incorporated into a code to simulate flow past circular cylinders. This code will serve as a verification of the full spectral codes. A detailed stability analysis by Carpenter (from the fluid Mechanics Division) and Gottlieb gave analytic conditions for stability as well as asymptotic stability. This had been incorporated in the code in form of stable boundary conditions. Effects of the cylinder rotations had been studied. The results differ from the known theoretical results. We are in the middle of analyzing the results. A detailed analysis of the effects of the heating of the cylinder on the shedding frequency had been studied using the above schemes. It has been found that the shedding frequency decreases when the wire was heated. Experimental work is being carried out to affirm this result.

  6. Synthesis of Highly Dispersed and Highly Stable Supported Au–Pt Bimetallic Catalysts by a Two-Step Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaofeng; Zhao, Haiyan; Wu, Tianpin

    2016-11-01

    Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous γ-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/γ-Al2O3 particles. The Au–Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation.

  7. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  8. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  9. Tellurium Stable Isotope Fractionation in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Fehr, M. A.; Hammond, S. J.; Parkinson, I. J.

    2014-09-01

    New Te double spike procedures were set up to obtain high-precision accurate Te stable isotope data. Tellurium stable isotope data for 16 chondrite falls are presented, providing evidence for significant Te stable isotope fractionation.

  10. Patterns of Change in Collaboration Are Associated with Baseline Characteristics and Predict Outcome and Dropout Rates in Treatment of Multi-Problem Families. A Validation Study

    PubMed Central

    Bachler, Egon; Fruehmann, Alexander; Bachler, Herbert; Aas, Benjamin; Nickel, Marius; Schiepek, Guenter K.

    2017-01-01

    Objective: The present study validates the Multi-Problem Family (MPF)-Collaboration Scale), which measures the progress of goal directed collaboration of patients in the treatment of families with MPF and its relation to drop-out rates and treatment outcome. Method: Naturalistic study of symptom and competence-related changes in children of ages 4–18 and their caregivers. Setting: Integrative, structural outreach family therapy. Measures: The data of five different groups of goal directed collaboration (deteriorating collaboration, stable low collaboration, stable medium collaboration, stable high collaboration, improving collaboration) were analyzed in their relation to treatment expectation, individual therapeutic goals (ITG), family adversity index, severity of problems and global assessment of a caregiver’s functioning, child, and relational aspects. Results: From N = 810 families, 20% displayed stable high collaboration (n = 162) and 21% had a pattern of improving collaboration. The families with stable high or improving collaboration rates achieved significantly more progress throughout therapy in terms of treatment outcome expectancy (d = 0.96; r = 0.43), reaching ITG (d = 1.17; r = 0.50), family adversities (d = 0.55; r = 0.26), and severity of psychiatric symptoms (d = 0.31; r = 0.15). Furthermore, families with stable high or improving collaboration maintained longer treatments and had a bigger chance of finishing the therapy as planned. The odds of having a stable low or deteriorating collaboration throughout treatment were significantly higher for subjects who started treatment with low treatment expectation or high family-related adversities. Conclusion: The positive outcomes of homebased interventions for multi-problem families are closely related to “stable high” and an “improving” collaboration as measured with the MPF-Collaboration Scale. Patients who fall into these groups have a high treatment outcome expectancy and reduce psychological stress. For therapeutic interventions with multi-problem families it seems beneficial to maintain a stable high collaboration or help the collaboration, e.g., by fostering treatment expectation. PMID:28785232

  11. Online stable isotope analysis of dissolved organic carbon size classes using size exclusion chromatography coupled to an isotope ratio mass spectrometer.

    PubMed

    Malik, Ashish; Scheibe, Andrea; LokaBharathi, P A; Gleixner, Gerd

    2012-09-18

    Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.

  12. Fixation of supraglenoid tubercle fractures using distal femoral locking plates in three Warmblood horses.

    PubMed

    Frei, Sina; Fürst, Anton E; Sacks, Murielle; Bischofberger, Andrea S

    2016-05-18

    Three horses that were presented with supraglenoid tubercle fractures were treated with open reduction and internal fixation using distal femoral locking plates (DFLP). Placing the DFLP caudal to the scapular spine in order to preserve the suprascapular nerve led to a stable fixation, however, it resulted in infraspinatus muscle atrophy and mild scapulohumeral joint instability (case 1). Placing the DFLP cranial to the scapular spine and under the suprascapular nerve resulted in a stable fixation, however, it resulted in severe atrophy of the supraspinatus and infraspinatus muscles and scapulohumeral joint instability (case 2). Placing the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage site resulted in the best outcome (case 3). Only a mild degree of supraspinatus and infraspinatus muscle atrophy was apparent, which resolved quickly and with no effect on scapulohumeral joint stability. In all cases, fixation of supraglenoid tubercle fractures using DFLP in slightly different techniques led to stable fixations with good long-term outcome. One case suffered from a mild incisional infection and plates were removed in two horses. Placement of the DFLP cranial to the scapular spine and slightly overbending it at the suprascapular nerve passage prevented major nerve damage. Further cases investigating the degree of muscle atrophy following the use of the DFLP placed in the above-described technique are justified to improve patient outcome.

  13. Solar system science with ESA Euclid

    NASA Astrophysics Data System (ADS)

    Carry, B.

    2018-01-01

    Context. The ESA Euclid mission has been designed to map the geometry of the dark Universe. Scheduled for launch in 2020, it will conduct a six-year visible and near-infrared imaging and spectroscopic survey over 15 000 deg2 down to VAB 24.5. Although the survey will avoid ecliptic latitudes below 15°, the survey pattern in repeated sequences of four broadband filters seems well-adapted to detect and characterize solar system objects (SSOs). Aims: We aim at evaluating the capability of Euclid of discovering SSOs and of measuring their position, apparent magnitude, and spectral energy distribution. We also investigate how the SSO orbits, morphology (activity and multiplicity), physical properties (rotation period, spin orientation, and 3D shape), and surface composition can be determined based on these measurements. Methods: We used the current census of SSOs to extrapolate the total amount of SSOs that will be detectable by Euclid, that is, objects within the survey area and brighter than the limiting magnitude. For each different population of SSO, from neighboring near-Earth asteroids to distant Kuiper-belt objects (KBOs) and including comets, we compared the expected Euclid astrometry, photometry, and spectroscopy with the SSO properties to estimate how Euclid will constrain the SSOs dynamical, physical, and compositional properties. Results: With the current survey design, about 150 000 SSOs, mainly from the asteroid main-belt, should be observable by Euclid. These objects will all have high inclination, which is a difference to many SSO surveys that focus on the ecliptic plane. Euclid may be able to discover several 104 SSOs, in particular, distant KBOs at high declination. The Euclid observations will consist of a suite of four sequences of four measurements and will refine the spectral classification of SSOs by extending the spectral coverage provided by Gaia and the LSST, for instance, to 2 microns. Combined with sparse photometry such as measured by Gaia and the LSST, the time-resolved photometry will contribute to determining the SSO rotation period, spin orientation, and 3D shape model. The sharp and stable point-spread function of Euclid will also allow us to resolve binary systems in the Kuiper belt and detect activity around Centaurs. Conclusions: The depth of the Euclid survey (VAB 24.5), its spectral coverage (0.5 to 2.0 μm), and its observation cadence has great potential for solar system research. A dedicated processing for SSOs is being set up within the Euclid consortium to produce astrometry catalogs, multicolor and time-resolved photometry, and spectral classification of some 105 SSOs, which will be delivered as Legacy Science.

  14. Flow-Through Leaching of Marine Barite: New Insights on its Composition and Diagenesis

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Torres, M. E.; Ungerer, A.; Klinkhammer, G. P.

    2007-12-01

    The distribution of stable mineral barite (BaSO4) in marine sediments has long been studied as a proxy for paleoproductivity. It is important to investigate the variation in Sr/Ba ratios of crystal barite, as it has a great influence on barite solubility and its early diagenetic processes. In addition, the role of alternative barium carriers to the sediments (e.g. aluminum silicates and oxyhydroxides) and their contributions to overall barium budget and burial efficiency need to be resolved. The techniques currently used to describe and quantify barium phases are all based on batch leaching techniques that define barium phases operationally, not chemically. Because during batch analyses each phase is characterized by a single-point measurement, variations due to phase heterogeneities cannot be resolved; nor can the results of these experiments be related in any systematic way to what happens in nature. To overcome this problem, we are developing a flow-through method that makes use of automated chromatographic techniques, which allows complete monitoring of the dissolution of barite samples with time-resolved analysis (TRA) as each phase is sequentially leached using different reagents. We have analyzed a barite sample recovered from seeps along the San Clemente escarpment, and show that we can attain complete dissolution of the sample (>85%) in 2 hours, using DTPA at 80°C. Approximately 100 μg of barite are first leached with distilled water (pH 5) for 30 minutes. During this step ~2% of the barite is removed. This highly soluble phase has Sr/Ba ratios that range from 30 to 120 mmol/mol. Acid leaching of the samples with 10 mM HNO3 removes an additional 4~8% of the barite, and this phase has Sr/Ba ratios ranging from 13 to 35 mmol/mol. Higher acid concentration (100 mM HNO3) dissolves up to 40% of the barite. These results are consistent with electron microprobe data that show clear oscillatory zoning of the (Ba,Sr)SO4. Unlike the barite sample, sediment samples collected at the base of the escarpment did not show a Ba release in the water leach. We might speculate that the highly susceptible Sr-rich barium phase present in the barite sample, dissolved during transport from a seep site leaving a barite with a lower Sr/Ba ratio, as found in the sediment samples. Our analytical approach has the potential to further address a variety of outstanding questions on the complex geochemical cycle of barium and its applications to climate change, upper ocean fertility and ocean circulation through time.

  15. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  16. Resolve Instrument on X-ray Astronomy Recovery Mission (XARM)

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Ezoe, Y.; Yamada, S.; Ichinohe, Y.; Fujimoto, R.; Takei, Y.; Yasuda, S.; Ishida, M.; Yamasaki, N. Y.; Maeda, Y.; Tsujimoto, M.; Iizuka, R.; Koyama, S.; Noda, H.; Tamagawa, T.; Sawada, M.; Sato, K.; Kitamoto, S.; Hoshino, A.; Brown, G. V.; Eckart, M. E.; Hayashi, T.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Mori, H.; Okajima, T.; Porter, F. S.; Soong, Y.; McCammon, D.; Szymkowiak, A. E.

    2018-04-01

    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.

  17. Tridacna Derived ENSO Records From The Philippines During The Last Interglacial Show Similar ENSO Activity To The Present Day

    NASA Astrophysics Data System (ADS)

    Welsh, K.; Morgan, Z.; Suzuki, A.

    2016-12-01

    Although modeled predictions for the relative strength and frequency of ENSO under mean warming conditions suggest an increase in the number and strength of ENSO event, however there are limited seasonally resolved records of ENSO variability during previous warm periods for example the last interglacial to test these models as reliable archives such as corals are not generally well preserved over these time periods. Presented here are two multi decadal Tridacna gigas derived stable isotopic time series from a coral terrace on the island of Cebu in the Philippines that formed during MIS5e based upon geomorphology and open-system corrected U/Th dating of corals. The ENSO activity observed in these time well preserved records indicate a similar level of ENSO activity during the last interglacial period as the present day based upon comparisons with recent coral derived stable isotopic records. Though these are relatively short records they provide further windows into ENSO activity from this important time period and demonstrate this area may be provide more opportunities to gather these archives.

  18. DNA methylation in memory formation: Emerging insights

    PubMed Central

    Heyward, Frankie D.; Sweatt, J. David

    2016-01-01

    The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the central nervous system (CNS). This review details the foundational discoveries from both gene-targeted, as well as whole-genome sequencing, studies that have successfully brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework with which the disparate experimental findings dealing with distinct manipulations of the DNA methylation, and their effect on memory, might be resolved while taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation. PMID:25832671

  19. Distinguishing Sulfotyrosine Containing Peptides from their Phosphotyrosine Counterparts Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangming; Zhang, Yixiang; Trinidad, Jonathan C.; Dann, Charles

    2018-03-01

    Sulfotyrosine and phosphotyrosine are two post-translational modifications present in higher eukaryotes. A simple and direct mass spectrometry method to distinguish between these modifications is crucial to advance our understanding of the sulfoproteome. While sulfation and phosphorylation are nominally isobaric, the accurate mass of the sulfuryl moiety is 9.6 mDa less than the phosphoryl moiety. Based on this difference, we have used an Orbitrap Fusion Lumos mass spectrometer to characterize, resolve, and distinguish between sulfotyrosine and phosphotyrosine modifications using a set of model peptides. Multiple fragmentation techniques, namely HCD, CID, ETD, ETciD, and EThcD, have been used to compare the different fragmentation behaviors between peptides modified with these species. Sulfotyrosine undergoes neutral loss using HCD and CID, but the sulfuryl moiety is largely stable under ETD. In contrast, phosphotyrosine is stable during fragmentation using all these methods. This differential stability provides a mechanism to distinguish sulfopeptides from phosphopeptides. Based on the rigorous characterization presented herein, this work serves as a model for accurate identification of phosphotyrosine and, more challenging, sulfotyrosine, in complex proteomic samples. [Figure not available: see fulltext.

  20. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods.

    PubMed

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2016-11-23

    Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.

  1. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Kirkerowicz, J.; Klaus, J. S.

    2015-10-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z-corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z-corals. The z-corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z-corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion was non-linear and responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from subannually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene where ∼ 2 °C higher than they are in the present-day, intermittent upwelling of cool, nutrient rich water mitigated water temperatures off southwestern Florida in the middle of the Atlantic warm pool and created temporary refuges for z-coral growth. Based on the subannually resolved δ18O and δ13C records, the duration of the upwelling episodes causing the endmember 2 conditions was variable and lasted from a few years to a number of decades. The episodes of upwelling were interrupted by phases without upwelling (endmember 1) which lasted for at least a few years and led to high surface water temperatures. This variable environment is likely one of the reasons why the coral fauna is dominated by the eurytopic genus Solenastrea, also a species resistant to high turbidity. Over a period of ∼ 50 years, the oldest subannually resolved proxy record available (3.2 Ma) documents a persistent occurrence of the HDB during winter. In contrast, the HDB forms in summer in modern z-corals from the Florida reef tract. We suggest this difference to be the expression of a tendency towards decreasing upwelling since the middle Pliocene. The number of z-coral sclerochronological records for this time period is still, however, rather low and requires an improved resolution through data from additional time-slices. These data can contribute to predicting the effects of future ocean warming on z-coral health along the Florida reef tract.

  2. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically molecular aspects, such as the vibration and rotation, of photoionization dynamics over an extended spectral range when used in conjunction with synchrotron radiation as the exciting source. Furthermore, the high resolution made possible by this technique provides high selectivity for accessing weaker ionization channels which are the ones strongly affected by resonant activity, and the present study repeatedly stresses the importance of this capability in discovering and deciphering new trends in resonant molecular ionization dynamics.

  3. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20%more » of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.« less

  4. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preschool Executive Functions, Single-Parent Status, and School Quality Predict Diverging Trajectories of Classroom Inattention in Elementary School

    PubMed Central

    Sasser, Tyler R.; Beekman, Charles R.; Bierman, Karen L.

    2016-01-01

    A sample of 356 children recruited from Head Start (58% European American, 25% African American, and 17% Hispanic; 54% girls; Mage ¼ 4.59 years) were followed longitudinally from prekindergarten through fifth grade. Latent profile analyses of teacher-rated inattention from kindergarten through third grade identified four developmental trajectories: stable low (53% of the sample), stable high (11.3%), rising over time (16.4%), and declining over time (19.3%). Children with stable low inattention had the best academic outcomes in fifth grade, and children exhibiting stable high inattention had the worst, with the others in between. Self-regulation difficulties in preschool (poor executive function skills and elevated opposition–aggression) differentiated children with rising versus stable low inattention. Elementary schools characterized by higher achievement differentiated children with declining versus stable high inattention. Boys and children from single-parent families were more likely to remain high or rise in inattention, whereas girls and children from dual-parent families were more likely to remain low or decline in inattention. PMID:25200465

  6. Preschool executive functions, single-parent status, and school quality predict diverging trajectories of classroom inattention in elementary school.

    PubMed

    Sasser, Tyler R; Beekman, Charles R; Bierman, Karen L

    2015-08-01

    A sample of 356 children recruited from Head Start (58% European American, 25% African American, and 17% Hispanic; 54% girls; M age = 4.59 years) were followed longitudinally from prekindergarten through fifth grade. Latent profile analyses of teacher-rated inattention from kindergarten through third grade identified four developmental trajectories: stable low (53% of the sample), stable high (11.3%), rising over time (16.4%), and declining over time (19.3%). Children with stable low inattention had the best academic outcomes in fifth grade, and children exhibiting stable high inattention had the worst, with the others in between. Self-regulation difficulties in preschool (poor executive function skills and elevated opposition-aggression) differentiated children with rising versus stable low inattention. Elementary schools characterized by higher achievement differentiated children with declining versus stable high inattention. Boys and children from single-parent families were more likely to remain high or rise in inattention, whereas girls and children from dual-parent families were more likely to remain low or decline in inattention.

  7. Short-lived high-amplitude cooling on Svalbard during the Dark Ages

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; D`Andrea, William; Bakke, Jostein; Balascio, Nicholas; Werner, Johannes; Hoek, Wim

    2016-04-01

    As the paradigm of a stable Holocene climate has shifted, an increasing number of high-resolution proxy timeseries reveal dynamic conditions, characterized by high-amplitude climate shifts. Some of these events occurred during historical times and allow us to study the interaction between environmental and cultural change, providing valuable lessons for the near future. These include the Dark Ages Cold Period (DACP) between 300 and 800 AD, a period marked by political upheaval and climate instability that remains poorly investigated. Here, we present two temperature reconstructions from the High Arctic Svalbard Archipelago. To this end, we applied the established alkenone-based UK37 paleothermometer on sediments from two lakes on western Spitsbergen, Lake Hajeren and Lake Hakluyt. The Arctic is presently warming twice as fast as the global average and proxy data as well as model simulations suggest that this amplified response is characteristic for regional climate. The Arctic therefore provides a uniquely sensitive environment to study relatively modest climate shifts, like the DACP, that may not be adequately captured at lower-latitude sites. Owing to undisturbed sediments, a high sampling resolution and robust chronological control, the presented reconstructions resolve the attendant sub-centennial-scale climate shifts. Our findings suggest that the DACP marks a cold spell within the cool Neoglacial period, which started some 4 ka BP on Svalbard. Close investigation reveals a distinct temperature minimum around 500 AD that is reproduced in another alkenone-based temperature reconstruction from a nearby lake. At ± 1.75 °C, cooling underlines the sensitivity of Arctic climate as well as the magnitude of the DACP.

  8. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  9. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  10. Experimental and analytical investigations of longitudinal combustion instability in a continuously variable resonance combustor (CVRC)

    NASA Astrophysics Data System (ADS)

    Yu, Yen Ching

    An analytical model based on linearized Euler equations (LEE) is developed and used in conjunction with a validating experiment to study combustion instability. The LEE model features mean flow effects, entropy waves, adaptability for more physically-realistic boundary conditions, and is generalized for multiple-domain conditions. The model calculates spatial modes, resonant frequencies and linear growth rates of the overall system. The predicted resonant frequencies and spatially-resolved mode shapes agree with the experimental data from a longitudinally-unstable model rocket combustor to within 7%. Different gaseous fuels (methane, ethylene, and hydrogen) were tested under fixed geometry. Tests with hydrogen were stable, whereas ethylene, methane, and JP-8 were increasingly unstable. A novel method for obtaining large amounts of stability data under variable resonance conditions in a single test was demonstrated. The continuously variable resonance combustor (CVRC) incorporates a traversing choked axial oxidizer inlet to vary the overall combustion system resonance. The CVRC experiment successfully demonstrates different level of instability, transitions between stability levels, and identifies the most stable and unstable geometric combination. Pressure oscillation amplitudes ranged from less than 10% of mean pressure to greater than 60%. At low amplitudes, measured resonant frequency changed with inlet location but at high amplitude the measured resonance frequency matched the frequency of the combustion chamber. As the system transitions from linear to non-linear instability, the higher harmonics of the fundamental resonant mode appear nearly simultaneously. Transient, high-amplitude, broadband noise, at lower frequencies (on the order of 200 Hz) are also observed. Conversely, as the system transitions back to a more linear stability regime, the higher harmonics disappear sequentially, led by the highest order. Good agreements between analytical and experimental results are attained by treating the experiment as quasi-stationary. The stability characteristics from the high frequency measurements are further analyzed using filtered pressure traces, spectrograms, power spectral density plots, and oscillation decrements. Future works recommended include: direct measurements, such as chemiluminescence or high-speed imaging to examine the unsteady combustion processes; three-way comparisons between the acoustic-based, linear Euler-based, and non-linear Euler/RANS model; use the high fidelity computation to investigate the forcing terms modeled in the acoustic-based model.

  11. Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate.

    PubMed

    Hodson, Mark E; Benning, Liane G; Demarchi, Bea; Penkman, Kirsty E H; Rodriguez-Blanco, Juan D; Schofield, Paul F; Versteegh, Emma A A

    Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg -1 (n = 3; ± std dev) per individual amino acid); the CaCO 3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν 2 : ν 4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. ACC present in earthworm CaCO 3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. Graphical abstractSynchrotron-based μ-FTIR mapping was used to determine the spatial distribution of amorphous calcium carbonate in earthworm-produced CaCO 3 granules.

  12. Transitions of Developmental Trajectories of Depressive Symptoms Between Junior and Senior High School Among Youths in Taiwan: Linkages to Symptoms in Young Adulthood.

    PubMed

    Wang, Yu-Chung Lawrence; Chan, Hsun-Yu; Chen, Pei-Chun

    2018-02-21

    We investigated the heterogeneous developmental trajectories of depressive symptoms in junior and senior high school, the transitions to different trajectories after entering senior high school, and the linkages to the development of depressive symptoms in early adulthood among Taiwanese adolescents. An eight-wave longitudinal data set was analyzed, including 2687 Taiwanese adolescents (51.2% boys, M age = 14.3 at first wave). Using a manual three-step latent transition growth mixture model, we found that a three-class solution fit the data for both junior high school (termed high-improving, cumulative, and JS-low-stable) and senior high school period (termed heightening, moderate-stable, and HS-low-stable). The depressive symptoms of most individuals maintained at a low level (i.e., low-stable) from adolescence to early adulthood; however, nearly a quarter of the adolescents reported depressive symptoms that were moderately or highly severe in senior high school and beyond. More than 30% of the participants experienced transitioning into a different developmental trajectory between junior and senior high school. When perceiving a higher level of paternal behavioral control, adolescents categorized in the high-improving class in junior high school would have a higher chance to transition to the moderate-stable class than to HS-low-stable class in senior high school. Adolescent boys and girls did not differ in the probability of transitioning between trajectories across junior and senior high school. However, a clear and consistent pattern of symptoms between late adolescence and early adulthood was not observed. These results help elucidate the heterogeneity and fluidity associated with the development of depressive symptoms between early adolescence and early adulthood in light of school transition among youths in Taiwan.

  13. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.; Bindeman, I. N.; Kingsley, R. H.

    2017-12-01

    An outstanding puzzle in mantle geochemistry has been the origin and evolution of Earth's volatile components. The "dehydration paradox" refers to the following conundrum. Mantle compositions for some enriched mid-ocean ridge (MORB) and ocean island (OIB) basalts basalts require involvement of a mostly dehydrated slab component to explain the trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain the stable isotopic compositions. Volatile and stable isotopic data on enriched MORB show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the north Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. North Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than north Atlantic MORB. South Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to dDSMOW for Pacific MORB. North EPR EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). Boron and lithium isotopic ratios parallel the trends observed for dDSMOW. A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. The dehydration paradox is resolved by decoupling of volatiles from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration and re-equilibration by fluids derived from subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. The "expanded subduction factory" model includes melting at several key depths, including 1) 180 to 280 km, where EM-type mantle compositions are generated above slabs with average to hot thermal profiles by addition of <1% carbonated sediment-derived supercritical fluids/melts to depleted asthenospheric or subcontinental lithospheric mantle, and 2) 410 to 660 km, where PREMA-type mantle sources are generated, above slabs with average to cool thermal profiles, by addition of <1% carbonated eclogite ± sediment-derived supercritical fluids to depleted mantle.

  14. Predictors and the distal outcome of general Internet use: The identification of children's developmental trajectories.

    PubMed

    Yu, Jeong Jin; Park, Su Jung

    2017-11-01

    This study examined the predictors and distal outcome in relation to the frequency of online activities and investigated the presence of prototypical trajectories following different patterns of general Internet use over 5 years. The data set consisted of a nationally representative sample of 2,840 fourth graders (M age  = 9.86 years) in South Korea at baseline. Analyses revealed rank-order stability in general Internet use with four latent classes: high stable (5.8%), high quadratic (20.3%), moderate stable (32.7%), and low stable (41.2%). Youth with higher levels of perceived parental monitoring knowledge, friendship closeness, and depressed mood at baseline were more likely to belong to the high stable class, while girls were more likely to be in the high quadratic or moderate stable classes relative to the low stable class. The high stable class had the greatest odds of reporting alcohol use at grade eight, whereas the low stable class had the lowest odds. Statement of contribution What is already known on this subject? Internet usage increases as children progress through to early adolescence and then levels off Longitudinal data have shown that adolescents' greater Internet use is predictive of their higher levels of drinking What does this study add? To explore different developmental pathways of Internet use in relation to its antecedents and distal outcome Early adolescents who spend more time on the Internet have a greater chance of starting to drink The interindividual rank-order stability of general Internet usage exists at least before late childhood. © 2017 The British Psychological Society.

  15. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz

    2011-05-01

    This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.

  16. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  17. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  18. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  19. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  20. FANCJ promotes DNA synthesis through G-quadruplex structures

    PubMed Central

    Castillo Bosch, Pau; Segura-Bayona, Sandra; Koole, Wouter; van Heteren, Jane T; Dewar, James M; Tijsterman, Marcel; Knipscheer, Puck

    2014-01-01

    Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ−/− cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes. PMID:25193968

  1. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M.; Tynan, G. R.; Holland, C.

    2010-03-15

    Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less

  2. Resolving the Evolution of Extant and Extinct Ruminants With High-Throughput Phylogenomics

    USDA-ARS?s Scientific Manuscript database

    The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families; Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve and eleven of the fift...

  3. A Framework for Widespread Replication of a Highly Spatially Resolved Childhood Lead Exposure Risk Model

    PubMed Central

    Kim, Dohyeong; Galeano, M. Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn

    2008-01-01

    Background Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels < 10 μg/dL highlights the need for improved exposure prevention interventions. Objectives Geographic information system–based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. Methods We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. Results The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. Conclusions This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities. PMID:19079729

  4. Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same

    DOEpatents

    O'Connor, Paul

    1998-08-11

    A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit.

  5. Lattice Commissioning Stretgy Simulation for the B Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.; Whittum, D.; Yan, Y.

    2011-08-26

    To prepare for the PEP-II turn on, we have studied one commissioning strategy with simulated lattice errors. Features such as difference and absolute orbit analysis and correction are discussed. To prepare for the commissioning of the PEP-II injection line and high energy ring (HER), we have developed a system for on-line orbit analysis by merging two existing codes: LEGO and RESOLVE. With the LEGO-RESOLVE system, we can study the problem of finding quadrupole alignment and beam position (BPM) offset errors with simulated data. We have increased the speed and versatility of the orbit analysis process by using a command filemore » written in a script language designed specifically for RESOLVE. In addition, we have interfaced the LEGO-RESOLVE system to the control system of the B-Factory. In this paper, we describe online analysis features of the LEGO-RESOLVE system and present examples of practical applications.« less

  6. Assessing compartmentalized flux in lipid metabolism with isotopes

    DOE PAGES

    Allen, Doug K.

    2016-03-18

    Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations.Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolismmore » where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field.« less

  7. Assessing compartmentalized flux in lipid metabolism with isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Doug K.

    Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations.Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolismmore » where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field.« less

  8. Transient impairment of olfactory threshold in acute multiple sclerosis relapse.

    PubMed

    Bsteh, Gabriel; Hegen, Harald; Ladstätter, Felix; Berek, Klaus; Amprosi, Matthias; Wurth, Sebastian; Auer, Michael; Di Pauli, Franziska; Deisenhammer, Florian; Lutterotti, Andreas; Berger, Thomas

    2018-05-18

    Impairment of olfactory threshold is a feature of early and active relapsing remitting multiple sclerosis (RRMS). It predicts inflammatory disease activity and was reported to be transient. However, the timing of onset and resolve of olfactory threshold impairment remains unclear. To prospectively assess the development of olfactory threshold in acute MS relapse over time in comparison to stable MS patients. In a prospective observational design, we measured olfactory threshold by performing the Sniffin' Sticks test (minimum score 0, maximum score 16 reflecting optimal olfactory function) at baseline and after 4, 12 and 24 weeks. We included 30 RRMS patients with acute MS relapse and 30 clinically stable RRMS patients (defined as no relapse within the last 12 months) as a control group. Olfactory threshold was impaired in patients with acute MS relapse at baseline (median difference = -3.5; inter-quartile range [IQR] -4.5- - 2.5; p < 0.001), week 4 (-2.5; IQR -3.0 - -2.0; p < 0.001), week 12 (-1.5; IQR -2.0 - -0.5; p = 0.002) and week 24 (-0.5; IQR -1.0 - 0.0; p = 0.159) compared to stable MS patients. Of note, in relapsing patients in whom disease-modifying treatment was initiated or escalated after relapse, threshold did not differ anymore from stable patients at week 12 (-0.5; IQR -1.0 - 0.5; p = 0.247) and week 24 (0.0; IQR -1.0 - 1.0; p = 0.753). Olfactory threshold impairment seems to be a transient bystander feature of MS relapse. It may be correlated to the level of inflammation within the CNS and might be a useful biomarker in this regard. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. High-power laser interaction with low-density C–Cu foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, F.; Colvin, J. D.; May, M. J.

    2015-11-15

    We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  10. High-power laser interaction with low-density C–Cu foams

    DOE PAGES

    Pérez, F.; Colvin, J. D.; May, M. J.; ...

    2015-11-19

    Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  11. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  12. Science objectives for ground- and space-based optical/IR interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen T.

    1992-01-01

    Ground-based interferometry will make spectacular strides in the next decade. However, it will always be limited by the turbulence of the terrestrial atmosphere. Some of the most exciting and subtle problems may only be addressed from a stable platform above the atmosphere. The lunar surface offers such a platform, nearly ideal in many respects. Once built, such a telescope array will not only resolve key fundamental problems, but will revolutionize virtually every topic in observational astronomy. Estimates of the possible performance of lunar and ground-based interferometers of the 21st century shows that the lunar interferometer reaches the faintest sources of all wavelengths, but has the most significant advantage in the infrared.

  13. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1

    PubMed Central

    Kim, Si-Wook

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage. PMID:26904244

  14. Faraday waves in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun

    2018-04-01

    We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.

  15. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285

  16. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pu; Lu, Kai-Xing; Hu, Chen

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 andmore » Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.« less

  17. Targeting pro-resolution pathways to combat chronic inflammation in COPD

    PubMed Central

    Anthony, Desiree; Vlahos, Ross

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation. PMID:25478196

  18. Targeting pro-resolution pathways to combat chronic inflammation in COPD.

    PubMed

    Bozinovski, Steven; Anthony, Desiree; Vlahos, Ross

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation.

  19. Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight

    PubMed Central

    Diop, Mamadou; St. Lawrence, Keith

    2013-01-01

    Time-resolved (TR) techniques provide a means of discriminating photons based on their time-of-flight. Since early arriving photons have a lower probability of probing deeper tissue than photons with long time-of-flight, time-windowing has been suggested as a method for improving depth sensitivity. However, TR measurements also contain instrument contributions (instrument-response-function, IRF), which cause temporal broadening of the measured temporal point-spread function (TPSF) compared to the true distribution of times-of-flight (DTOF). The purpose of this study was to investigate the influence of the IRF on the depth sensitivity of TR measurements. TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved using a stable algorithm to recover the DTOFs. The microscopic Beer-Lambert law was applied to the TPSFs and DTOFs to obtain depth-resolved absorption changes. In contrast to the DTOF, the latest part of the TPSF was not the most sensitive to absorption changes in the lower layer, which was confirmed by computer simulations. The improved depth sensitivity of the DTOF was illustrated in a pig model of the adult human head. Specifically, it was shown that dynamic absorption changes obtained from the late part of the DTOFs recovered from TPSFs acquired by probes positioned on the scalp were similar to absorption changes measured directly on the brain. These results collectively demonstrate that this method improves the depth sensitivity of TR measurements by removing the effects of the IRF. PMID:23504445

  20. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.

    PubMed

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the CH^{*} chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

Top