Sample records for highly sensitive biosensor

  1. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Affinity Biosensors for Detection of Mycotoxins in Food.

    PubMed

    Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor

    2018-01-01

    This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.

  3. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  4. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  5. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors.

    PubMed

    Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong

    2018-05-30

    In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.

  6. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  7. Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor using Enzyme Immobilized in Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae

    2005-12-05

    We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.

  8. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang

    2017-06-01

    The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Wingo, J.; Mai, T. T. T.; Nguyen, X. P.; Huong, N. T.; Mukherjee, P.; Srikanth, H.; Phan, M. H.

    2014-05-01

    We report on a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with a nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to superparamagnetic (Fe3O4) nanoparticles. Fe3O4 nanoparticles (mean size, ˜10 nm) were first coated with Alginate, and Curcumin was then tagged to the nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the Fe3O4 nanoparticles to which Curcumin was tagged. A high capacity of the MX-based biosensor in quantitative analysis of Curcumin-loaded Fe3O4 nanoparticles was achieved in the range of 0-50 ng/ml, beyond which the detection sensitivity of the sensor remained unchanged. The detection sensitivity of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems.

  10. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  11. Recent Advances in Exosomal Protein Detection Via Liquid Biopsy Biosensors for Cancer Screening, Diagnosis, and Prognosis.

    PubMed

    Liu, Chang; Yang, Yunchen; Wu, Yun

    2018-03-08

    Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.

  12. A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS₂†.

    PubMed

    Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang

    2017-08-05

    A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.

  13. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Yu, Xin; Guo, Weibo; Qiu, Jichuan; Mou, Xiaoning; Li, Aixue; Liu, Hong

    2016-04-01

    The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring.The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01360k

  14. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  15. Film bulk acoustic resonators (FBARs) as biosensors: A review.

    PubMed

    Zhang, Yi; Luo, Jikui; Flewitt, Andrew J; Cai, Zhiqiang; Zhao, Xiubo

    2018-09-30

    Biosensors play important roles in different applications such as medical diagnostics, environmental monitoring, food safety, and the study of biomolecular interactions. Highly sensitive, label-free and disposable biosensors are particularly desired for many clinical applications. In the past decade, film bulk acoustic resonators (FBARs) have been developed as biosensors because of their high resonant frequency and small base mass (hence greater sensitivity), lower cost, label-free capability and small size. This paper reviews the piezoelectric materials used for FBARs, the optimisation of device structures, and their applications as biosensors in a wide range of biological applications such as the detection of antigens, DNAs and small biomolecules. Their integration with microfluidic devices and high-throughput detection are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor.

    PubMed

    Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju

    2014-12-24

    We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.

  17. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.

    Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.

  18. A low-cost photonic biosensor built on a polymer platform

    NASA Astrophysics Data System (ADS)

    Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan

    2011-12-01

    Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.

  19. MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2017-10-04

    To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).

  20. Methylamine-Sensitive Amperometric Biosensor Based on (His)6-Tagged Hansenula polymorpha Methylamine Oxidase Immobilized on the Gold Nanoparticles

    PubMed Central

    Stasyuk, Nataliya Ye.; Smutok, Oleh V.; Zakalskiy, Andriy E.; Zakalska, Oksana M.; Gonchar, Mykhailo V.

    2014-01-01

    A novel methylamine-selective amperometric bienzyme biosensor based on recombinant primary amine oxidase isolated from the recombinant yeast strain Saccharomyces cerevisiae and commercial horseradish peroxidase is described. Two amine oxidase preparations were used: free enzyme (AMO) and covalently immobilized on the surface of gold nanoparticles (AMO-nAu). Some bioanalytical parameters (sensitivity, selectivity, and storage stability) of the developed biosensors were investigated. The sensitivity for both sensors is high: 1450 ± 113 and 700 ± 30 A−1 ·M−1 ·m−2 for AMO-nAu biosensor, respectively. The biosensors exhibit the linear range from 15 μM to 150 μM (AMO-nAu) and from 15 μM to 60 μM (AMO). The developed biosensor demonstrated a good selectivity toward methylamine (MA) (signal for dimethylamine and trimethylamine is less than 5% and for ethylamine 15% compared to MA output) and reveals a satisfactory storage stability. The constructed amperometric biosensor was used for MA assay in real samples of fish products in comparison with chemical method. The values obtained with both approaches different methods demonstrated a high correlation. PMID:25136590

  1. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    PubMed

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-07

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

  2. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples.

    PubMed

    Li, Xin; Kaattari, Stephen L; Vogelbein, Mary A; Vadas, George G; Unger, Michael A

    2016-03-01

    Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC 50 values between 1.68-31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.

  3. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip.

    PubMed

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-15

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL(-1) and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose.

  4. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    PubMed Central

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  5. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun

    2015-06-15

    A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure.

    PubMed

    Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing

    2013-11-15

    This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Progress in chemical luminescence-based biosensors: A critical review.

    PubMed

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  9. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase.

    PubMed

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-28

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.

  10. Photonic crystal fiber-based plasmonic biosensor with external sensing approach

    NASA Astrophysics Data System (ADS)

    Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider

    2018-01-01

    We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.

  11. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  12. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  13. An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis

    PubMed Central

    Alvi, Naveed ul Hassan; Gómez, Victor J.; Rodriguez, Paul E.D. Soto; Kumar, Praveen; Zaman, Saima; Willander, Magnus; Nötzel, Richard

    2013-01-01

    Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications. PMID:24132228

  14. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples

    PubMed Central

    Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary A.; Vadas, George G.; Unger, Michael A.

    2016-01-01

    Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68–31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples. PMID:26925369

  15. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  16. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell.

    PubMed

    Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping

    2012-12-01

    Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.

  17. On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.

    PubMed

    Arshavsky-Graham, Sofia; Massad-Ivanir, Naama; Paratore, Federico; Scheper, Thomas; Bercovici, Moran; Segal, Ester

    2017-12-22

    Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.

  18. Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.

    PubMed

    Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth

    2018-06-13

    Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.

  19. Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode.

    PubMed

    Yang, Zhengpeng; Yan, Jinlong; Zhang, Chunjing

    2012-02-01

    A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for bilirubin determination, based on the modification of bilirubin-imprinted titania film onto a quartz crystal by molecular imprinting and surface sol-gel techniques. The performance of the developed bilirubin biosensor was evaluated and the results indicated that a sensitive bilirubin biosensor could be fabricated. The obtained bilirubin biosensor presents high-selectivity monitoring of bilirubin, better reproducibility, shorter response time (30 min), wider linear range (0.1-50 μM), and lower detection limit (0.05 μM). The analytical application of the bilirubin biosensor confirms the feasibility of bilirubin determination in serum sample. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide.

    PubMed

    Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua

    2016-08-15

    A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface

    NASA Astrophysics Data System (ADS)

    Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong

    2017-05-01

    Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.

  2. Investigation of a Photoelectrochemical Passivated ZnO-Based Glucose Biosensor

    PubMed Central

    Lee, Ching-Ting; Chiu, Ying-Shuo; Ho, Shu-Ching; Lee, Yao-Jung

    2011-01-01

    A vapor cooling condensation system was used to deposit high quality intrinsic ZnO thin films and intrinsic ZnO nanorods as the sensing membrane of extended-gate field-effect-transistor (EGFET) glucose biosensors. The sensing sensitivity of the resulting glucose biosensors operated in the linear range was 13.4 μA mM−1 cm−2. To improve the sensing sensitivity of the ZnO-based glucose biosensors, the photoelectrochemical method was utilized to passivate the sidewall surfaces of the ZnO nanorods. The sensing sensitivity of the ZnO-based glucose biosensors with passivated ZnO nanorods was significantly improved to 20.33 μA mM−1 cm−2 under the same measurement conditions. The experimental results verified that the sensing sensitivity improvement was the result of the mitigation of the Fermi level pinning effect caused by the dangling bonds and the surface states induced on the sidewall surface of the ZnO nanorods. PMID:22163867

  3. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  4. Current trends in nanomaterial embedded field effect transistor-based biosensor.

    PubMed

    Nehra, Anuj; Pal Singh, Krishna

    2015-12-15

    Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization.

    PubMed

    Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai

    2014-01-01

    In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility.

  6. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    NASA Astrophysics Data System (ADS)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  7. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Developing Highly Sensitive Micro-Biosensors for in-situ Monitoring Mercury and Chromium(IV) Contaminants by Genetically-evolving and Computer-designing Metal-binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qinghong; Fang, Xiangdong; Goddard, William

    2013-10-17

    Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less

  9. Graphene-based biosensors.

    PubMed

    Szunerits, Sabine; Boukherroub, Rabah

    2018-06-06

    Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples have become a fundamental and crucial part of human health diagnostics and therapy. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. Bioanalysis is thus a progressive discipline for which the future holds many exciting opportunities. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In the past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. When it comes to sensing of biomarkers with the required picomolar (pM) sensitivity for real-time sensing of biological samples, only a handful of sensing systems have been proposed, and these are often rather complex and costly. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphene-based sensor interfaces are numerous, including enhanced surface loading of the desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphene-based biosensors in the field of medical diagnosis.

  10. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.

    PubMed

    Sun, Liping; Zhong, Yong; Gui, Jie; Wang, Xianwu; Zhuang, Xiaorong; Weng, Jian

    2018-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrP C ) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. The specific binding between AβO and PrP C probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.

  11. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  12. Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    PubMed Central

    Sharma, Deepti; Lee, Jongmin; Seo, Junyoung; Shin, Heungjoo

    2017-01-01

    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005–10 mM) and high sensitivity (~993.91 µA mM−1 cm−2; limit of detection (LOD) ~1.28 µM). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection. PMID:28914766

  13. Design of surface modifications for nanoscale sensor applications.

    PubMed

    Reimhult, Erik; Höök, Fredrik

    2015-01-14

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  14. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  15. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity

    DOE PAGES

    Qin, Kun; Hu, Shuren; Retterer, Scott T.; ...

    2016-02-05

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  16. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    PubMed

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  18. Highly sensitive surface-scanning detector for the direct bacterial detection using magnetoelastic (ME) biosensors

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhe; Horikawa, Shin; Chen, I.-Hsuan; Du, Songtao; Wikle, Howard C.; Suh, Sang-Jin; Chin, Bryan A.

    2017-05-01

    This paper demonstrates a highly sensitive surface-scanning detector used for magnetoelastic (ME) biosensors for the detection of Salmonella on the surface of a polyethylene (PE) food preparation surface. The design and fabrication methods of the new planar spiral coil are introduced. Different concentrations of Salmonella were measured on the surface of a PE board. The efficacy of Salmonella capture and detection is discussed.

  19. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor

    NASA Astrophysics Data System (ADS)

    Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie

    2016-06-01

    We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.

  1. Novel amperometric glucose biosensor based on MXene nanocomposite.

    PubMed

    Rakhi, R B; Nayak, Pranati; Xia, Chuan; Alshareef, Husam N

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM -1 cm -2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  2. Novel amperometric glucose biosensor based on MXene nanocomposite

    PubMed Central

    Rakhi, R. B.; Nayuk, Pranati; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors. PMID:27830757

  3. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    PubMed

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  4. U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Gowri, A.; Sai, V. V. R.

    2017-05-01

    This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.

  5. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  6. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure.

    PubMed

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    NASA Astrophysics Data System (ADS)

    Ahmadalinezhad, Asieh

    Electrochemical detection methods are highly attractive for the monitoring of glucose, cholesterol, cancer, infectious diseases, and biological warfare agents due to their low cost, high sensitivity, functionality despite sample turbidity, easy miniaturization via microfabrication, low power requirements, and a relatively simple control infrastructure. The development of implantable biosensors is laden with great challenges, which include longevity and inherent biocompatibility, coupled with the continuous monitoring of analytes. Deficiencies in any of these areas will necessitate their surgical replacement. In addition, random signals arising from non-specific adsorption events can cause problems in diagnostic assays. Hence, a great deal of effort has been devoted to the specific control of surface structures. Nanotechnology involves the creation and design of structures with at least one dimension that is below 100 nm. The optical, magnetic, and electrical properties of nanostructures may be manipulated by altering their size, shape, and composition. These attributes may facilitate improvements in biocompatibility, sensitivity and the specific attachment of biomaterials. Thus, the central theme of this dissertation pertains to highlighting the critical roles that are played by the morphology and intrinsic properties of nanomaterials when they are applied in the development of electrochemical biosensors. For this PhD project, we initially designed and fabricated a novel amperometric glucose biosensor based on the immobilization of glucose oxidase (GOx) on a Prussian blue modified nanoporous gold surface, which exhibited a rapid response and a low detection limit of 2.5 microM glucose. The sensitivity of the biosensor was found to be very high (177 microA/mM) and the apparent Michaelis--Menten constant was calculated to be 2.1 mM. Our study has demonstrated that nanoporous gold provides an excellent matrix for enzyme immobilization. To adopt these advanced properties, we fabricated a highly sensitive and mediator-free electrochemical biosensor for the determination of total cholesterol. The developed biosensor possessed high selectivity and sensitivity (29.33 microA mM--1cm --2). The apparent Michaelis--Menten constant, KappM of this biosensor was very low (0.64 mM), which originated from both the effective immobilization process and the nanoporous structure of the substrate. The biosensor exhibited a wide linear range, up to 300 mg dL--1 , in a physiological environment (pH 7.4); making it a promising candidate for the clinical determination of cholesterol. The fabricated biosensor was tested further by utilizing actual food samples (e.g., margarine, butter and fish oil). The results indicated that it has the potential capacity to be employed as a facile cholesterol detection tool in the food industry and for supplement quality control. To enhance the stability of the biosensors in the continuous monitoring of glucose, we designed a novel platform that was based on buckypaper. The fabricated biosensor responded to glucose with a considerable functional lifetime of over 80 days and detected glucose with a dynamic linear range of over 9 mM with a detection limit of 0.01 mM. To investigate the effects of the physical dimensions of nanomaterials on electrochemical biosensing, we synthesized TiO2 nanowires with controllable dimensions via a facile thermal oxidation treatment of a Ti substrate. To improve the conductivity of the TiO2 nanowires and to facilitate the immobilization of enzymes, a thin layer of carbon was deposited onto the TiO2 nanowires via a chemical vapour deposition method. Upon the immobilization of glucose oxidase as a model protein, direct electron transfer was observed in a mediator-free biosensing environment. Our electrochemical studies have revealed that the electron transfer rate of the immobilized glucose oxidase is strongly dependent on the dimensions of the carbonized TiO 2 nanowires, and that the designed glucose biosensor exhibits a wide linear range, up to 18 mM glucose, as well as high sensitivity and selectivity. Glucose measurements of human serum using the developed biosensor showed excellent agreement with the data recorded by a commercial blood glucose monitoring assay. Finally, we fabricated an enzyme-free glucose sensor based on nanoporous palladium-cadmium (PdCd) networks. A hydrothermal method was applied in the synthesis of PdCd nanomaterials. The effect of the composition of the PdCd nanomaterials on the performance of the electrode was investigated by cyclic voltammetry (CV). Amperometric studies showed that the nanoporous PdCd electrode was responsive to the direct oxidation of glucose with high electrocatalytic activity. The sensitivity of the sensor for continuous glucose monitoring was 146.21 microAmM--1cm--2, with linearity up to 10 mM and a detection limit of 0.05 mM. In summary, the electrochemical biosensors proposed in my PhD study exhibited high sensitivity and selectivity for the continuous monitoring of analytes in the presence of common interference species. Our results have shown that the performance of the biosensors is significantly dependent on the dimensions and morphologies of nanostructured materials. The unique nanomaterials-based platforms proposed in this dissertation open the door to the design and fabrication of high-performance electrochemical biosensors for medical diagnostics.

  8. A robust high-throughput fungal biosensor assay for the detection of estrogen activity.

    PubMed

    Zutz, Christoph; Wagener, Karen; Yankova, Desislava; Eder, Stefanie; Möstl, Erich; Drillich, Marc; Rychli, Kathrin; Wagner, Martin; Strauss, Joseph

    2017-10-01

    Estrogenic active compounds are present in a variety of sources and may alter biological functions in vertebrates. Therefore, it is crucial to develop innovative analytical systems that allow us to screen a broad spectrum of matrices and deliver fast and reliable results. We present the adaptation and validation of a fungal biosensor for the detection of estrogen activity in cow derived samples and tested the clinical applicability for pregnancy diagnosis in 140 mares and 120 cows. As biosensor we used a previously engineered genetically modified strain of the filamentous fungus Aspergillus nidulans, which contains the human estrogen receptor alpha and a reporter construct, in which β-galactosidase gene expression is controlled by an estrogen-responsive-element. The estrogen response of the fungal biosensor was validated with blood, urine, feces, milk and saliva. All matrices were screened for estrogenic activity prior to and after chemical extraction and the results were compared to an enzyme immunoassay (EIA). The biosensor showed consistent results in milk, urine and feces, which were comparable to those of the EIA. In contrast to the EIA, no sample pre-treatment by chemical extraction was needed. For 17β-estradiol, the biosensor showed a limit of detection of 1ng/L. The validation of the biosensor for pregnancy diagnosis revealed a specificity of 100% and a sensitivity of more than 97%. In conclusion, we developed and validated a highly robust fungal biosensor for detection of estrogen activity, which is highly sensitive and economic as it allows analyzing in high-throughput formats without the necessity for organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  10. High sensitivity optical biosensor based on polymer materials and using the Vernier effect.

    PubMed

    Azuelos, Paul; Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Thual, Monique; Lemaître, Jonathan; Pirasteh, Parastesh; Hardy, Isabelle; Charrier, Joël

    2017-11-27

    We demonstrate the fabrication of a Vernier effect SU8/PMATRIFE polymer optical biosensor with high homogeneous sensitivity using a standard photolithography process. The sensor is based on one micro-resonator embedded on each arm of a Mach-Zehnder interferometer. Measurements are based on the refractive index variation of the optical waveguide superstrate with different concentrations of glucose solutions. The sensitivity of the sensor has been measured as 17558 nm/RIU and the limit of detection has been estimated to 1.1.10 -6 RIU.

  11. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor.

    PubMed

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok

    2015-01-01

    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and may be used in the future as a screening method for AD.

  12. Label-free colorimetric sensor for sensitive detection of choline based on DNAzyme-choline oxidase coupling.

    PubMed

    Nikzad, Nasrin; Karami, Zahra

    2018-04-14

    Changes in choline levels can be associated with diseases such as Alzheimer, Parkinson, Huntington, fatty liver, interstitial lung abnormalities, autism and so on. Therefore, quantitative determination of choline is important in the biological and clinical analysis. So far, several methods have been investigated for measuring choline in the body fluids, each of which has disadvantages such as the need for specialist ability, complexity, and high cost. For this purpose, a facile and sensitive colorimetric biosensor based on DNAzyme-choline oxidase coupling used for the determination of choline. In this method, the first, choline oxidase produces H 2 O 2 and betaine in the presence of choline and oxygen, then, the DNAzyme converts colorless ABTS into green ABTS + radicals. Compared to the previous methods, the linear range and the limit of detection of this talented biosensor were 0.1-25 μM and 22 nM. Choline measurement using this biosensor has shown satisfactory selectivity and repeatability. Its recovery was 96.9-103.7%, which shows the reliability of biosensor assay in biological samples. Simplicity, low cost, naked eye, high sensitivity, and precision are the benefits of this biosensor. Taken to gather, the proposed system can be considered as a great biosensor for measuring choline levels especially in point of care diagnostic. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  14. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  15. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    DTIC Science & Technology

    2016-04-01

    AFCEC-CX-TY-TR-2016-0007 HANDHELD CHEM/ BIOSENSOR USING EXTREME CONFORMATIONAL CHANGES IN DESIGNED BINDING PROTEINS TO ENHANCE SURFACE PLASMON...Include area code) 03/24/2016 Abstract 08/14/2015--03/31/2016 Handheld chem/ biosensor using extreme conformational changes in designed binding...Baltimore, Maryland on 17-21 April 2016. We propose the development of a highly sensitive handheld chem/ biosensor device using a novel class of engineered

  16. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  17. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin.

    PubMed

    Zhao, Changzhi; Wan, Li; Jiang, Li; Wang, Qin; Jiao, Kui

    2008-12-01

    A cholesterol biosensor based on direct electron transfer of a hemoglobin-encapsulated chitosan-modified glassy carbon electrode has been developed for highly sensitive and selective analysis of serum samples. Modified by films containing hemoglobin and cholesterol oxidase, the electrode was prepared by encapsulation of enzyme in chitosan matrix. The hydrogen peroxide produced by the catalytic oxidation of cholesterol by cholesterol oxidase was reduced electrocatalytically by immobilized hemoglobin and used to obtain a sensitive amperometric response to cholesterol. The linear response of cholesterol concentrations ranged from 1.00 x 10(-5) to 6.00 x 10(-4) mol/L, with a correlation coefficient of 0.9969 and estimated detection limit of cholesterol of 9.5 micromol/L at a signal/noise ratio of 3. The cholesterol biosensor can efficiently exclude interference by the commonly coexisting ascorbic acid, uric acid, dopamine, and epinephrine. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 0.596 A/M. The relative standard deviation was under 4.0% (n=5) for the determination of real samples. The biosensor is satisfactory in the determination of human serum samples.

  18. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors

    NASA Astrophysics Data System (ADS)

    Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik

    2014-03-01

    The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.

  19. A Highly Sensitive Oligonucleotide Hybridization Assay for Klebsiella pneumoniae Carbapenemase with the Probes on a Gold Nanoparticles Modified Glassy Carbon Electrode.

    PubMed

    Pan, Hong-zhi; Yu, Hong- Wei; Wang, Na; Zhang, Ze; Wan, Guang-Cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-01-01

    To develop a new electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase, a highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-nano). The Au-nano/GCE was characterized by scanning electromicroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The hybridization detection was measured by differential pulse voltammetry using methylene blue as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-11) to 1 × 10(-8) M, with an LOD of 1 × 10(-12) M. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The Au-nano/GCE showed significant improvement in electrochemical characteristics, and this biosensor was successfully applied for determination of K. pneumoniae.

  20. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    PubMed Central

    Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-01-01

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291

  1. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  2. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors

    PubMed Central

    2018-01-01

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011

  3. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors.

    PubMed

    Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie

    2018-06-13

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.

  4. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution.

    PubMed

    Jha, Ramesh K; Bingen, Jeremy M; Johnson, Christopher W; Kern, Theresa L; Khanna, Payal; Trettel, Daniel S; Strauss, Charlie E M; Beckham, Gregg T; Dale, Taraka

    2018-06-01

    Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli- based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.

  5. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.

    Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less

  6. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution

    DOE PAGES

    Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.; ...

    2018-06-01

    Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less

  7. High-throughput label-free microcontact printing graphene-based biosensor for valley fever.

    PubMed

    Tsai, Shih-Ming; Goshia, Tyler; Chen, Yen-Chang; Kagiri, Agnes; Sibal, Angelo; Chiu, Meng-Hsuen; Gadre, Anand; Tung, Vincent; Chin, Wei-Chun

    2018-06-18

    The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (μCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  9. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase.

    PubMed

    Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-11-20

    We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages.

    PubMed

    Charbgoo, Fahimeh; Ramezani, Mohammad; Darroudi, Majid

    2017-10-15

    Cerium oxide nanoparticles (CNPs) contain several properties such as catalytic activity, fluorescent quencher and electrochemical, high surface area, and oxygen transfer ability, which have attracted considerable attention in developing high-sensitive biosensors. CNPs can be used as a whole sensor or a part of recognition or transducer element. However, reports have shown that applying these nanoparticles in sensor design could remarkably enhance detection sensitivity. CNP's outstanding properties in biosensors which go from high catalytic activity and surface area to oxygen transfer and fluorescent quenching capabilities are also highlighted. Herein, we discuss the advantages and disadvantages of CNPs-based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemoluminescent regarding the detection of small organic chemicals, metal ions and biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Progress in utilisation of graphene for electrochemical biosensors.

    PubMed

    Lawal, Abdulazeez T

    2018-05-30

    This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    NASA Astrophysics Data System (ADS)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  13. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    PubMed

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    PubMed

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Field-Effect Biosensors for On-Site Detection: Recent Advances and Promising Targets.

    PubMed

    Choi, Jaebin; Seong, Tae Wha; Jeun, Minhong; Lee, Kwan Hyi

    2017-10-01

    There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  17. Paper-based chemiresistor for detection of ultralow concentrations of protein.

    PubMed

    Pozuelo, Marta; Blondeau, Pascal; Novell, Marta; Andrade, Francisco J; Xavier Rius, F; Riu, Jordi

    2013-11-15

    A new paper-based chemiresistor composed of a network of single-wall carbon nanotubes (SWCNTs) and anti-human immunoglobulin G (anti-HIgG) is reported herein. SWCNTs act as outstanding transducers because they provide high sensitivity in terms of resistance changes due to immunoreaction. As a result, the resistance-based biosensor reaches concentration detection as low as picomolar. The resulting paper-based biosensor is sensitive, selective and employs low-cost substrate and simple manufacturing stages. Since chemiresistors require low-power equipment and are able to detect low concentrations with inexpensive materials, the present approach may pave the way for the development of resistive biosensors at very low-cost with high performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  19. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail

    2017-08-01

    We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.

  20. Fabrication of nanoporous thin-film working electrodes and their biosensing applications.

    PubMed

    Li, Tingjie; Jia, Falong; Fan, Yaxi; Ding, Zhifeng; Yang, Jun

    2013-04-15

    Electrochemical detection for point-of-care diagnostics is of great interest due to its high sensitivity, fast analysis time and ability to operate on a small scale. Herein, we report the fabrication of a nanoporous thin-film electrode and its application in the configuration of a simple and robust enzymatic biosensor. The nanoporous thin-film was formed in a planar gold electrode through an alloying/dealloying process. The nanoporous electrode has an electroactive surface area up to 40 times higher than that of a flat gold electrode of the same size. The nanoporous electrode was used as a substrate to build an enzymatic electrochemical biosensor for the detection of glucose in standard samples and control serum samples. The example glucose biosensor has a linear response up to 30 mM, with a high sensitivity of 0.50 μA mM⁻¹ mm⁻², and excellent anti-interference ability against lactate, uric acid and ascorbic acid. Abundant catalyst and enzyme were stably entrapped in the nanoporous structure, leading to high stability and reproducibility of the biosensor. Development of such nanoporous structure enables the miniaturization of high-performance electrochemical biosensors for point-of-care diagnostics or environmental field testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Construction of uric acid biosensor based on biomimetic titanate nanotubes.

    PubMed

    Tao, Haisheng; Wang, Xuebin; Wang, Xizhang; Hu, Yemin; Ma, Yanwen; Lu, Yinong; Hu, Zheng

    2010-02-01

    A uric acid biosensor has been fabricated through the immobilization of uricase on glassy carbon electrode modified by biomimetic titanate nanotubes of high specific surface area synthesized by hydrothermal decomposition. The so-constructed biosensor presents a high affinity to uric acid with a small apparent Michaelis-Menten constant of only 0.66 mM. The biosensor exhibits fairly good electrochemical properties such as the high sensitivity of 184.3 microAcm(-2)mM(-1), the fast response of less than 2 s, as well as the wide linear range from 1 microM to 5 mM. These performances indicate that titanate nanotubes could provide a favorable microenvironment for uricase immobilization, stabilize its biological activity, and function as an efficient electron conducting tunnel to facilitate the electron transfer. This suggests an important potential of titanate nanotubes in uric acid biosensors.

  2. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula.

    PubMed

    Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe

    2016-06-15

    This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates.

    PubMed

    Hondred, John A; Breger, Joyce C; Alves, Nathan J; Trammell, Scott A; Walper, Scott A; Medintz, Igor L; Claussen, Jonathan C

    2018-04-04

    Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here, we report a graphene-based electrode developed via inkjet maskless lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML-printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ∼25 nm) to improve its electrical conductivity (sheet resistance decreased from ∼10 000 to 100 Ω/sq), surface area, and electroactive nature for subsequent enzyme functionalization and biosensing. The enzyme phosphotriesterase (PTE) was conjugated to the electrode surface via glutaraldehyde cross-linking. The resulting biosensor was able to rapidly measure (5 s response time) the insecticide paraoxon (a model OP) with a low detection limit (3 nM), and high sensitivity (370 nA/μM) with negligible interference from similar nerve agents. Moreover, the biosensor exhibited high reusability (average of 0.3% decrease in sensitivity per sensing event), stability (90% anodic current signal retention over 1000 s), longevity (70% retained sensitivity after 8 weeks), and the ability to selectively sense OP in actual soil and water samples. Hence, this work presents a scalable printed graphene manufacturing technique that can be used to create OP biosensors that are suitable for in-field applications as well as, more generally, for low-cost biosensor test strips that could be incorporated into wearable or disposable sensing paradigms.

  4. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    PubMed

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Development of phage/antibody immobilized magnetostrictive biosensors

    NASA Astrophysics Data System (ADS)

    Fu, Liling

    There is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: (1) wireless/remote driving and sensing; (2) easy to fabricate; (3) works well in liquid; (4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was modified using Traut's Reagent by introducing the sulfhydryl group. To improve the mass sensitivity of magnetostrictive biosensors, several blocking agents were used to resist the nonspecific adsorption of S. aureus on the surface of the magnetostrictive biosensors and the blocking effects were studied by using ELISA and SEM. The results showed casein was one of the best blocking agents to resist the nonspecific binding in this experiment. Casein blocked antibody immobilized MSP biosensors exhibited high sensitivity and the limit of detection is 102 cfu/ml.

  6. Advantages and application of label-free detection assays in drug screening.

    PubMed

    Cunningham, Brian T; Laing, Lance G

    2008-08-01

    Adoption is accelerating for a new family of label-free optical biosensors incorporated into standard format microplates owing to their ability to enable highly sensitive detection of small molecules, proteins and cells for high-throughput drug discovery applications. Label-free approaches are displacing other detection technologies owing to their ability to provide simple assay procedures for hit finding/validation, accessing difficult target classes, screening the interaction of cells with drugs and analyzing the affinity of small molecule inhibitors to target proteins. This review describes several new drug discovery applications that are under development for microplate-based photonic crystal optical biosensors and the key issues that will drive adoption of the technology. Microplate-based optical biosensors are enabling a variety of cell-based assays, inhibition assays, protein-protein binding assays and protein-small molecule binding assays to be performed with high-throughput and high sensitivity.

  7. QCM-nanomagnetic beads biosensor for lead ion detection.

    PubMed

    Zhang, Qingli; Cui, Haixia; Xiong, Xingliang; Chen, Jun; Wang, Ying; Shen, Jia; Luo, Yiting; Chen, Longcong

    2018-01-15

    As lead poses a serious threat to humans even in small amounts, all kinds of lead detection sensors with high sensitivity and selectivity are being constantly improved and put forward. In this report, a novel, simple and label-free quartz crystal microbalance (QCM) biosensor is proposed for detecting lead ions (Pb 2+ ). The biosensor takes full advantage of the high specificity of GR-5 DNAzyme to Pb 2+ and the high sensitivity of QCM. In particular, nanomagnetic beads (NMBs) are used as a novel and effective mean of signal amplification in the biosensor because of their mass and their ability to enhance the inductive effect, which are very beneficial for both higher sensitivity and a lower detection limit. In practice, GR-5 DNAzyme, innovatively combined with NMBs, was modified on the gold electrode of the QCM through gold-sulfur self-assembly. When the electrode was exposed to Pb 2+ solution, DNAzyme was severed into two parts at the RNA site (rA), along with the release of NMBs, which caused a great increase in frequency shift of the QCM electrode. Finally, a perfect linear correlation between the logarithm of Pb 2+ concentration and the change in frequency was obtained from 1 pM to 50 nM, with a detection limit as low as 0.3 pM. Moreover, the biosensor shows both an average recovery of 97 ± 6% in a drinking water sample and an excellent specificity for Pb 2+ compared with other metal ions.

  8. Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode.

    PubMed

    Xie, Lingling; Xu, Yuandong; Cao, Xiaoyu

    2013-07-01

    In this work, a highly sensitive hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at Au nanoparticles (AuNPs)/flower-like zinc oxide/graphene (AuNPs/ZnO/Gr) composite modified glassy carbon electrode (GCE) was constructed, where ZnO and Au nanoparticles were modified through layer-by-layer onto Gr/GCE. Flower-like ZnO nanoparticles could be easily prepared by adding ethanol to the precursor solution having higher concentration of hydroxide ions. The Hb/AuNPs/ZnO/Gr composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E(0)) of -0.367 V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.3 s(-1). The developed biosensor showed a very fast response (<2 s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.8 μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of Gr, and good biocompatibility of ZnO and AuNPs. The fabrication method of this biosensor was simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods.

    PubMed

    Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib

    2017-03-15

    A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  11. Evaluation of an affinity-amplified immunoassay of graphene oxide using surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan

    2015-05-01

    We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.

  12. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks.

    PubMed

    Wang, Zonghua; Yan, Zhiyong; Wang, Feng; Cai, Jibao; Guo, Lei; Su, Jiakun; Liu, Yang

    2017-11-15

    A turn-on photoelectrochemical (PEC) biosensor based on the surface defect recognition and multiple signal amplification of metal-organic frameworks (MOFs) was proposed for highly sensitive protein kinase activity analysis and inhibitor evaluation. In this strategy, based on the phosphorylation reaction in the presence of protein kinase A (PKA), the Zr-based metal-organic frameworks (UiO-66) accommodated with [Ru(bpy) 3 ] 2+ photoactive dyes in the pores were linked to the phosphorylated kemptide modified TiO 2 /ITO electrode through the chelation between the Zr 4+ defects on the surface of UiO-66 and the phosphate groups in kemptide. Under visible light irradiation, the excited electrons from [Ru(bpy) 3 ] 2+ adsorbed in the pores of UiO-66 injected into the TiO 2 conduction band to generate photocurrent, which could be utilized for protein kinase activities detection. The large surface area and high porosities of UiO-66 facilitated a large number of [Ru(bpy) 3 ] 2+ that increased the photocurrent significantly, and afforded a highly sensitive PEC analysis of kinase activity. The detection limit of the as-proposed PEC biosensor was 0.0049UmL -1 (S/N!=!3). The biosensor was also applied for quantitative kinase inhibitor evaluation and PKA activities detection in MCF-7 cell lysates. The developed visible-light PEC biosensor provides a simple detection procedure and a cost-effective manner for PKA activity assays, and shows great potential in clinical diagnosis and drug discoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol.

    PubMed

    Povedano, Eloy; Cincotto, Fernando H; Parrado, Concepción; Díez, Paula; Sánchez, Alfredo; Canevari, Thiago C; Machado, Sergio A S; Pingarrón, José M; Villalonga, Reynaldo

    2017-03-15

    A novel nanocomposite material consisting of reduced graphene oxide/Rh nanoparticles was prepared by a one-pot reaction process. The strategy involved the simultaneous reduction of RhCl 3 and graphene oxide with NaBH 4 and the in situ deposition of the metal nanoparticles on the 2D carbon nanomaterial planar sheets. Glassy carbon electrode coated with this nanocomposite was employed as nanostructured support for the cross-linking of the enzyme laccase with glutaraldehyde to construct a voltammperometric biosensor for 17β-estradiol in the 0.9-11 pM range. The biosensor showed excellent analytical performance with high sensitivity of 25.7AµM -1 cm -1 , a very low detection limit of 0.54pM and high selectivity. The biosensor was applied to the rapid and successful determination of the hormone in spiked synthetic and real human urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis.

    PubMed

    Weng, Xuan; Zhao, Wenting; Neethirajan, Suresh; Duffield, Todd

    2015-02-12

    Determination of β-hydroxybutyrate (βHBA) is a gold standard for diagnosis of Subclinical Ketosis (SCK), a common disease in dairy cows that causes significant economic loss. Early detection of SCK can help reduce the risk of the disease progressing into clinical stage, thus minimizing economic losses on dairy cattle. Conventional laboratory methods are time consuming and labor-intensive, requiring expensive and bulky equipment. Development of portable and robust devices for rapid on-site SCK diagnosis is an effective way to prevent and control ketosis and can significantly aid in the management of dairy animal health. Microfluidic technology provides a rapid, cost-effective way to develop handheld devices for on-farm detection of sub-clinical ketosis. In this study, a highly sensitive microfluidics-based biosensor for on-site SCK diagnosis has been developed. A rapid, low-cost microfluidic biosensor with high sensitivity and specificity was developed for SCK diagnosis. Determination of βHBA was employed as the indicator in the diagnosis of SCK. On-chip detection using miniaturized and cost-effective optical sensor can be finished in 1 minute with a detection limit of 0.05 mM concentration. Developed microfluidic biosensor was successfully tested with the serum samples from dairy cows affected by SCK. The results of the developed biosensor agreed well with two other laboratory methods. The biosensor was characterized by high sensitivity and specificity towards βHBA with a detection limit of 0.05 mM. The developed microfluidic biosensor provides a promising prototype for a cost-effective handheld meter for on-site SCK diagnosis. By using microfluidic method, the detection time is significantly decreased compared to other laboratory methods. Here, we demonstrate a field-deployable device to precisely identify and measure subclinical ketosis by specific labeling and quantification of β-hydroxybutyate in cow blood samples. A real-time on-site detection system will maximize convenience for the farmers.

  15. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  16. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers

    PubMed Central

    Wang, Huan; Wang, Xiaomei; Wang, Jue; Fu, Weiling; Yao, Chunyan

    2016-01-01

    The detection of tumor markers is very important in early cancer diagnosis; however, tumor markers are usually present at very low concentrations, especially in the early stages of tumor development. Surface plasmon resonance (SPR) is widely used to detect biomolecular interactions; it has inherent advantages of being high-throughput, real-time, and label-free technique. However, its sensitivity needs essential improvement for practical applications. In this study, we developed a signal amplification strategy using antibody-quantum dot (QD) conjugates for the sensitive and quantitative detection of α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cytokeratin fragment 21-1 (CYFRA 21-1) in clinical samples. The use of a dual signal amplification strategy using AuNP-antibody and antibody-QD conjugates increased the signal amplification by 50-folds. The constructed SPR biosensor showed a detection limit as low as 0.1 ng/mL for AFP, CEA, and CYFRA 21-1. Moreover, the results obtained using this SPR biosensor were consistent with those obtained using the electrochemiluminescence method. Thus, the constructed SPR biosensor provides a highly sensitive and specific approach for the detection of tumor markers. This SPR biosensor can be expected to be readily applied for the detection of other tumor markers and can offer a potentially powerful solution for tumor screening. PMID:27615417

  17. Development of anodic titania nanotubes for application in high sensitivity amperometric glucose and uric acid biosensors.

    PubMed

    Lee, Hsiang-Ching; Zhang, Li-Fan; Lin, Jyh-Ling; Chin, Yuan-Lung; Sun, Tai-Ping

    2013-10-21

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrations in the range between 2 and 14 mg/dL, with 23.3 (µA·cm-2)·(mg/dL)-1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (µA·cm-2)·(100 mg/dL)-1 glucose, with a correlation coefficient of 0.973.

  18. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    PubMed Central

    Lee, Hsiang-Ching; Zhang, Li-Fan; Lin, Jyh-Ling; Chin, Yuan-Lung; Sun, Tai-Ping

    2013-01-01

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrations in the range between 2 and 14 mg/dL, with 23.3 (μA·cm−2)·(mg/dL)−1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (μA·cm−2)·(100 mg/dL)−1 glucose, with a correlation coefficient of 0.973. PMID:24152934

  19. Highly Sensitive Detection of Glucose by a "Turn-Off-On" Fluorescent Probe Using Gadolinium-Doped Carbon Dots and Carbon Microparticles.

    PubMed

    Hu, Meixin; Qi, Jianrong; Ruan, Jing; Shen, Guangxia

    2018-06-01

    Carbon dots, as a potential substitute for semiconductor quantum dots, have drawn great interest in recent years. The preparation of fluorescent carbon dots has been made easy with many significant advances, but the complicated purifying processes, low quantum yield, and blue emission wavelength still limit its wider application in biosensors, biomedicine, and photonic devices. Here we report a strategy to synthesis Gd-doped carbon dots (Gd-Cdots) of super-high quantum yield with a microwave assisted hydrothermal method. The Gd-Cdots, with a diameter of 47∼8 nm, can be purified easily with conventional centrifugal techniques. Carbon microparticles (CMPs) have also been synthesized with a similar procedure. Meanwhile, we demonstrated a novel "turn-off-on" fluorescent biosensor, which has been developed for highly sensitive detection of glucose using Gd-doped carbon dots as probes. The proposed biosensor has exhibited low-cost and non-toxic properties, with high sensitivity and good specificity. In addition, the results in real blood samples further confirmed it as a promising application in diabetes diagnosis.

  20. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer.

    PubMed

    Li, Yanyan; Zhao, Manru; Wang, Haiyan

    2017-11-01

    We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.

  1. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    NASA Astrophysics Data System (ADS)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  2. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  3. Ion-Sensitive Field-Effect Transistor for Biological Sensing

    PubMed Central

    Lee, Chang-Soo; Kim, Sang Kyu; Kim, Moonil

    2009-01-01

    In recent years there has been great progress in applying FET-type biosensors for highly sensitive biological detection. Among them, the ISFET (ion-sensitive field-effect transistor) is one of the most intriguing approaches in electrical biosensing technology. Here, we review some of the main advances in this field over the past few years, explore its application prospects, and discuss the main issues, approaches, and challenges, with the aim of stimulating a broader interest in developing ISFET-based biosensors and extending their applications for reliable and sensitive analysis of various biomolecules such as DNA, proteins, enzymes, and cells. PMID:22423205

  4. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  5. Biosensors and their applications in detection of organophosphorus pesticides in the environment.

    PubMed

    Hassani, Shokoufeh; Momtaz, Saeideh; Vakhshiteh, Faezeh; Maghsoudi, Armin Salek; Ganjali, Mohammad Reza; Norouzi, Parviz; Abdollahi, Mohammad

    2017-01-01

    This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.

  6. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    NASA Astrophysics Data System (ADS)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  7. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing.

    PubMed

    Hui, Ni; Sun, Xiaotian; Niu, Shuyan; Luo, Xiliang

    2017-01-25

    Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.

  8. An interferometric imaging biosensor using weighted spectrum analysis to confirm DNA monolayer films with attogram sensitivity.

    PubMed

    Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang

    2018-05-01

    Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

    PubMed Central

    Hossain, Md Faruk; Park, Jae Y.

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943

  10. Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction.

    PubMed

    Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng

    2012-08-21

    Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.

  11. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.

    PubMed

    Shin, Hae Ja

    2011-02-01

    Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

  12. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  13. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  14. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight

    NASA Astrophysics Data System (ADS)

    Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye

    2018-04-01

    This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119  ×  10-7). Detection sensitivity up to 7.4914  ×  104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.

  15. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

    NASA Astrophysics Data System (ADS)

    Ozgur, Erol; Toren, Pelin; Aktas, Ozan; Huseyinoglu, Ersin; Bayindir, Mehmet

    2015-08-01

    Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.

  16. A highly-sensitive label-free biosensor based on two dimensional photonic crystals with negative refraction

    NASA Astrophysics Data System (ADS)

    Malmir, Narges; Fasihi, Kiazand

    2017-11-01

    In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.

  17. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  18. Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism.

    PubMed

    Feng, Yuncai; Liu, Youwen; Teng, Jinghua

    2018-05-10

    We propose, to the best of our knowledge, a new configuration of a biosensor based on the graphene-MoS 2 hybrid structure by adopting the lower refractive index MgF 2 prism in order to improve the sensitivity and the figure of merit (FOM). We can obtain an ultrasensitive sensor with values of sensitivity and FOM as high as 540.8°/RIU and 145/RIU, respectively, by modulating the parameters in the configuration and comparatively choosing a different absentee layer material. The proposed structure is applicable in the realization of an integrated device for the surface plasmon resonance biosensor.

  19. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    PubMed

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  20. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  1. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  2. 170-MHz electrodeless quartz crystal microbalance biosensor: capability and limitation of higher frequency measurement.

    PubMed

    Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi

    2009-10-01

    We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.

  3. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    PubMed

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Advances in nano-scaled biosensors for biomedical applications.

    PubMed

    Wang, Jianling; Chen, Guihua; Jiang, Hui; Li, Zhiyong; Wang, Xuemei

    2013-08-21

    Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.

  5. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    PubMed

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    PubMed

    Zhang, Jing; Wang, Liang-Liang; Hou, Mei-Feng; Xia, Yao-Kun; He, Wen-Hui; Yan, An; Weng, Yun-Ping; Zeng, Lu-Peng; Chen, Jing-Hua

    2018-04-15

    Sensitive and selective detection of microRNAs (miRNAs) in cancer cells derived exosomes have attracted rapidly growing interest owing to their potential in diagnostic and prognostic applications. Here, we design a ratiometric electrochemical biosensor based on bipedal DNA walkers for the attomolar detection of exosomal miR-21. In the presence of miR-21, DNA walkers are activated to walk continuously along DNA tracks, resulting in conformational changes as well as considerable increases of the signal ratio produced by target-respond and target-independent reporters. With the signal cascade amplification of DNA walkers, the biosensor exhibits ultrahigh sensitivity with the limit of detection (LOD) down to 67 aM. Furthermore, owing to the background-correcting function of target-independent reporters termed as reference reporters, the biosensor is robust and stable enough to be applied in the detection of exosomal miR-21 extracted from breast cancer cell lines and serums. In addition, because locked nucleic acid (LNA) modified toehold mediate strand displacement reaction (TMSDR) has extraordinary discriminative ability, the biosensor displays excellent selectivity even against the single-base-mismatched target. It is worth mentioning that our sensor is regenerative and stable for at least 5 cycles without diminution in sensitivity. In brief, the high sensitivity, selectivity and reproducibility, together with cheap, make the proposed biosensor a promising approach for exosomal miRNAs detection, in conjunction with early point-of-care testing (POCT) of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Hoseinian, M.; Ahmadi, A. R.; Bolorizadeh, M. A.

    2016-09-01

    Surface Plasmon Resonance (SPR) optical fiber sensors can be used as cost-effective small sized biosensors that are relatively simple to operate. Additionally, these instruments are label-free, hence rendering them highly sensitive to biological measurements. In this study, a three-channel microstructure optical fiber plasmonic-based portable biosensor is designed and analyzed using Finite Element Method. The proposed system is capable of determining changes in sample's refractive index with precision of order one thousandth. The biosensor measures three absorption resonance wavelengths of the analytes simultaneously. This property is one of the main advantages of the proposed biosensor since it reduces the error in the measured wavelength and enhances the accuracy of the results up to 10-5 m/RIU by reducing noise. In this paper, Jurkat cell, an indicator cell for leukemia cancer, is considered as the analyte; and its absorption resonance wavelengths as well as sensitivity in each channel are determined.

  11. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  12. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

    PubMed Central

    Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian

    2008-01-01

    Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731

  13. An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker.

    PubMed

    Wang, Yifei; Ali, Md Azahar; Chow, Edmond K C; Dong, Liang; Lu, Meng

    2018-06-01

    The rapid growth of point-of-care tests demands for biosensors with high sensitivity and small size. This paper demonstrates an optofluidic metasurface that combines silicon-on-insulator (SOI) nanophotonics and nanofluidics to realize a high-performance, lateral flow-through biosensor. The metasurface is made of a periodic array of silicon nanoposts on an SOI substrate, and functionalized with specific receptor molecules. Bonding of a polydimethylsiloxane slab directly onto the surface results in an ultracompact biosensor, where analyte solutions are restricted to flow only in the space between the nanoposts. No flow exists above the nanoposts. This sensor design overcomes the issue with diffusion-limited detection of many other biosensors. The lateral flow-through feature, in conjunction with high-Q resonance modes associated with optical bound states of the metasurface, offers an improved sensitivity to subtle molecule-bonding induced changes in refractive index. The device exhibits a resonance mode around 1550 nm wavelength and provides an index sensitivity of 720 nm/RIU. Biosensing is conducted to detect the epidermal growth factor receptor 2 (ErbB2), a protein biomarker for early-stage breast cancer screening, by monitoring resonance wavelength shifts in response to specific analyte-ligand binding events at the metasurface. The limit of detection of the device is 0.7 ng mL -1 for ErbB2. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    PubMed Central

    Ronkainen, Niina J.; Okon, Stanley L.

    2014-01-01

    Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700

  15. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    PubMed

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A biosensor generated via high throughput screening quantifies cell edge Src dynamics

    PubMed Central

    Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.

    2011-01-01

    Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688

  17. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi Jun; Mandelis, Andreas, E-mail: mandelis@mie.utoronto.ca; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that couldmore » be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.« less

  18. Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose.

    PubMed

    Soldatkin, O O; Peshkova, V M; Saiapina, O Y; Kucherenko, I S; Dudchenko, O Y; Melnyk, V G; Vasylenko, O D; Semenycheva, L M; Soldatkin, A P; Dzyadevych, S V

    2013-10-15

    The aim of this work was to develop an array of biosensors for simultaneous determination of four carbohydrates in solution. Several enzyme systems selective to lactose, maltose, sucrose and glucose were immobilised on the surface of four conductometric transducers and served as bio-recognition elements of the biosensor array. Direct enzyme analysis carried out by the developed biosensors was highly sensitive to the corresponding substrates. The analysis lasted 2 min. The dynamic range of substrate determination extended from 0.001 mM to 1.0-3.0mM, and strongly depended on the enzyme system used. An effect of the solution pH, ionic strength and buffer capacity on the biosensors responses was investigated; the conditions of simultaneous operation of all biosensors were optimised. The data on cross-impact of the substrates of all biosensors were obtained; the biosensor selectivity towards possible interfering carbohydrates was tested. The developed biosensor array showed good signal reproducibility and storage stability. The biosensor array is suited for simultaneous, quick, simple, and selective determination of maltose, lactose, sucrose and glucose. © 2013 Elsevier B.V. All rights reserved.

  19. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor based on Quantum Dots and a Lateral Flow Test Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaohui; Wang, Ying; Wang, Jun

    2010-08-15

    A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less

  20. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods.

    PubMed

    Wang, Chengyan; Tan, Xingrong; Chen, Shihong; Yuan, Ruo; Hu, Fangxin; Yuan, Dehua; Xiang, Yun

    2012-05-30

    A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules. The combination of MWCNTs and Pt-Au@ZnONRs provided a favorable environment for ChOx and resulted in the enhanced analytical response of the biosensor. The resulted biosensor exhibited a linear response to cholesterol in the wide range of 0.1-759.3 μM with a low detection limit of 0.03 μM and a high sensitivity of 26.8 μA mM(-1). The calculated apparent Michaelis constant K(M)(app) was 1.84 mM, indicating a high affinity between ChOx and cholesterol. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Biosensors Fabricated through Electrostatic Assembly of Enzymes/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Liu, Guodong; Wang, Jun

    2006-06-01

    Carbon nanotubes (CNTs) have emerged as new class of nanomaterials that is receiving considerable interest because of their unique structure, mechanical, and electronic properties. One promising application of CNTs is to fabricate highly sensitive chemo/biosensors.1-4 For construction of these CNT-based sensors, the CNTs first have to be modified with some molecules specific to the interests. Generally, covalent binding, affinity, and electrostatic interaction have been utilized for the modification of CNTs. Among them, the electrostatic method is attractive due to its simplicity and high efficiency. In present work, we have developed highly sensitively amperometric biosensors for glucose, choline, organophosphate pesticide (OPP)more » and nerve agents (NAs) based on electrostatically assembling enzymes on the surface of CNTs. All these biosensors were fabricated by immobilization of enzymes on the negatively charged CNTs surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer (LBL) technique, a bioactive nanocomposite film was fabricated on the electrode surface. Owing to the electrocatalytic effect of CNTs, an amplified electrochemical signal was achieved, which leads to low detections limits for glucose, choline, and OPP and NAs.« less

  2. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents.

    PubMed

    Lee, Joon Hwan; Park, Jae Yeon; Min, Kyoungseon; Cha, Hyung Joon; Choi, Suk Soon; Yoo, Young Je

    2010-03-15

    To detect organophosphate chemicals, which are used both as pesticides and as nerve agents, a novel biosensor based on organophosphorus hydrolase was developed. By using mesoporous carbon (MC) and carbon black (CB) as an anodic layer, the sensitivity of the sensor to p-nitrophenol (PNP), which is the product of the organophosphorus hydrolase reaction, was greatly improved. The MC/CB/glass carbon (GC) layer exhibited an enhanced amperometric response relative to a carbon nanotube (CNT)-modified electrode because it promoted electron transfer of enzymatically generated phenolic compounds (p-nitrophenol). The well-ordered nanopores, many edge-plane-like defective sites (EDSs), and high surface area of the MC resulted in increased sensitivity, and allowed for nanomolar-range detection of the analyte paraoxon. Thus, MCs are suitable for use in real-time biosensors. Under the optimized experimental conditions, the biosensor had a detection limit of 0.12 microM (36 ppb) and a sensitivity of 198 nA/microM for paraoxon. (c) 2009 Elsevier B.V. All rights reserved.

  3. Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles.

    PubMed

    Wang, Le; Zhang, Yuanyuan; Cheng, Chuansheng; Liu, Xiaoli; Jiang, Hui; Wang, Xuemei

    2015-08-26

    High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nanocomposites decorated with Au, Fe3O4, and Pt nanoparticles (RGO/AuFe3O4/Pt) modified glassy carbon electrode (GCE) and used to detect the released H2O2 from cancer cells and assess the oxidative stress elicited from H2O2 in living cells. Electrochemical behavior of RGO/AuFe3O4/Pt nanocomposites exhibits excellent catalytic activity toward the relevant reduction with high selection and sensitivity, low overpotential of 0 V, low detection limit of ∼0.1 μM, large linear range from 0.5 μM to 11.5 mM, and outstanding reproducibility. The as-prepared biosensor was applied in the measurement of efflux of H2O2 from living cells including healthy normal cells and tumor cells under the external stimulation. The results display that this new nanocomposites-based biosensor is a promising candidate of nonenzymatic H2O2 sensor which has the possibility of application in clinical diagnostics to assess oxidative stress of different kinds of living cells.

  4. Biotunable Nanoplasmonic Filter on Few-Layer MoS2 for Rapid and Highly Sensitive Cytokine Optoelectronic Immunosensing.

    PubMed

    Park, Younggeun; Ryu, Byunghoon; Oh, Bo-Ram; Song, Yujing; Liang, Xiaogan; Kurabayashi, Katsuo

    2017-06-27

    Monitoring of the time-varying immune status of a diseased host often requires rapid and sensitive detection of cytokines. Metallic nanoparticle-based localized surface plasmon resonance (LSPR) biosensors hold promise to meet this clinical need by permitting label-free detection of target biomolecules. These biosensors, however, continue to suffer from relatively low sensitivity as compared to conventional immunoassay methods that involve labeling processes. Their response speeds also need to be further improved to enable rapid cytokine quantification for critical care in a timely manner. In this paper, we report an immunobiosensing device integrating a biotunable nanoplasmonic optical filter and a highly sensitive few-layer molybdenum disulfide (MoS 2 ) photoconductive component, which can serve as a generic device platform to meet the need of rapid cytokine detection with high sensitivity. The nanoplasmonic filter consists of anticytokine antibody-conjugated gold nanoparticles on a SiO 2 thin layer that is placed 170 μm above a few-layer MoS 2 photoconductive flake device. The principle of the biosensor operation is based on tuning the delivery of incident light to the few-layer MoS 2 photoconductive flake thorough the nanoplasmonic filter by means of biomolecular surface binding-induced LSPR shifts. The tuning is dependent on cytokine concentration on the nanoplasmonic filter and optoelectronically detected by the few-layer MoS 2 device. Using the developed optoelectronic biosensor, we have demonstrated label-free detection of IL-1β, a pro-inflammatory cytokine, with a detection limit as low as 250 fg/mL (14 fM), a large dynamic range of 10 6 , and a short assay time of 10 min. The presented biosensing approach could be further developed and generalized for point-of-care diagnosis, wearable bio/chemical sensing, and environmental monitoring.

  5. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems.

    PubMed

    Monteiro, Tiago; Almeida, Maria Gabriela

    2018-05-14

    Worldwide legislation is driving the development of novel and highly efficient analytical tools for assessing the composition of every material that interacts with Consumers or Nature. The biosensor technology is one of the most active R&D domains of Analytical Sciences focused on the challenge of taking analytical chemistry to the field. Electrochemical biosensors based on redox enzymes, in particular, are highly appealing due to their usual quick response, high selectivity and sensitivity, low cost and portable dimensions. This review paper aims to provide an overview of the most important advances made in the field since the proposal of the first biosensor, the well-known hand-held glucose meter. The first section addresses the current needs and challenges for novel analytical tools, followed by a brief description of the different components and configurations of biosensing devices, and the fundamentals of enzyme kinetics and amperometry. The following sections emphasize on enzyme-based amperometric biosensors and the different stages of their development.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Kun; Hu, Shuren; Retterer, Scott T.

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  8. Interdigitated electrodes as impedance and capacitance biosensors: A review

    NASA Astrophysics Data System (ADS)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  9. Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites.

    PubMed

    Li, Lei; Sheng, Qinglin; Zheng, Jianbin; Zhang, Hongfang

    2008-11-01

    A glucose biosensor based on polyvinylpyrrolidone (PVP) protected Prussian blue nanoparticles (PBNPs)-polyaniline/multi-walled carbon nanotubes hybrid composites was fabricated by electrochemical method. A novel route for PBNPs preparation was applied in the fabrication with the help of PVP, and from scanning electron microscope images, Prussian blue particles on the electrode were found nanoscaled. The biosensor exhibits fast current response (<6 s) and a linearity in the range from 6.7x10(-6) to 1.9x10(-3) M with a high sensitivity of 6.28 microA mM(-1) and a detection limit of 6x10(-7) M (S/N=3) for the detection of glucose. The apparent activation energy of enzyme-catalyzed reaction and the apparent Michaelis-Menten constant are 23.9 kJ mol(-1) and 1.9 mM respectively, which suggests a high affinity of the enzyme-substrate. This easy and controllable construction method of glucose biosensor combines the characteristics of the components of the hybrid composites, which favors the fast and sensitive detection of glucose with improved analytical capabilities. In addition, the biosensor was examined in human serum samples for glucose determination with a recovery between 95.0 and 104.5%.

  10. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  11. Nanophotonics for Lab-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    Optical methods are the preferred measurement techniques for biosensors and lab-on-chip applications. Their key properties are sensitivity, selectivity and robustness. To simplify the systems and their operation, it is desirable to employ label-free optical methods, requiring the functionalization of interfaces. Evanescent electromagnetic waves are probing the optical proper ties near the interfaces, a few 100 nm deep into the sample fluid. The sensitivity of these measurements can be improved with optical micro-resonators, in particular whispering gallery mode devices. Q factors as high as 2x108 have been achieved in practice. The resulting narrow-linewidth resonances and an unexpected thermo-optic effect make it possible to detect single biomolecules using a label-free biosensor principle. Future generations of biosensors and labs-on-chip for point-of-care and high-troughput screening applications will require large numbers of parallel measurement channels, necessitating optical micro-resonators in array format produced very cost-effectively.

  12. Label-free electrical detection using carbon nanotube-based biosensors.

    PubMed

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2009-01-01

    Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.

  13. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.

    PubMed

    Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M

    2015-04-15

    A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Near field detector for integrated surface plasmon resonance biosensor applications.

    PubMed

    Bora, Mihail; Celebi, Kemal; Zuniga, Jorge; Watson, Colin; Milaninia, Kaveh M; Baldo, Marc A

    2009-01-05

    Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.

  15. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    PubMed

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  16. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+

    NASA Astrophysics Data System (ADS)

    Yang, Xia; He, Yi; Wang, Xueling; Yuan, Ruo

    2017-09-01

    Mercuric ion (Hg2+) is one toxic metal ion existed in aquatic ecosystems which would seriously damage human central nervous system and other organs. So developing an approach to sensitively detect Hg2+ in our living environment is urgent and important. In this work, a novel surface enhancement Raman spectrum(SERS) sensor is fabricated for high selective and ultrasensitive detection of Hg2+ in aqueous solution, based on a stable thymine-Hg2+-thymine (T-Hg2+-T) structure and the π-π interaction between single-stranded DNA (ssDNA) and single walled carbon nanotubes (SWCNTs). Herein, SWCNTs act as Raman labels to produce characteristic Raman peaks which can be a beacon to quantitative detect Hg2+. In the presence of Hg2+, the ssDNA can capture Hg2+ forming T-Hg2+-T structure, which makes SWCNTs leave the hot spots of the SERS-based biosensor. With this design, the Raman intensity of SWCNTs decreased with the increasing concentration of Hg2+. At the same time, CoFe2O4@Ag as active SERS substrates can effectively enhance sensitivity and uniformity of the biosensor through aggregation by magnet. Under optimal conditions, this proposed biosensor can detect Hg2+ at a range from 1 pM to 100 nM with a detection limit of 0.84 pM. With the advantages of good sensitivity, selectivity, simplicity and rapidity, the biosensor is potentially suitable for monitoring of Hg2+ in environmental applications.

  17. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    PubMed

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  18. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    PubMed

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocom-patible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocryst...

  20. Detection of protein-small molecule binding using a self-referencing external cavity laser biosensor.

    PubMed

    Meng Zhang; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2014-01-01

    High throughput screening of protein-small molecule binding interactions using label-free optical biosensors is challenging, as the detected signals are often similar in magnitude to experimental noise. Here, we describe a novel self-referencing external cavity laser (ECL) biosensor approach that achieves high resolution and high sensitivity, while eliminating thermal noise with sub-picometer wavelength accuracy. Using the self-referencing ECL biosensor, we demonstrate detection of binding between small molecules and a variety of immobilized protein targets with binding affinities or inhibition constants in the sub-nanomolar to low micromolar range. The demonstrated ability to perform detection in the presence of several interfering compounds opens the potential for increasing the throughput of the approach. As an example application, we performed a "needle-in-the-haystack" screen for inhibitors against carbonic anhydrase isozyme II (CA II), in which known inhibitors are clearly differentiated from inactive molecules within a compound library.

  1. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    PubMed

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  2. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    PubMed Central

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring. PMID:29279864

  3. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  4. A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor.

    PubMed

    Pan, Tung-Ming; Huang, Ming-De; Lin, Wan-Ying; Wu, Min-Hsien

    2010-06-11

    A urea biosensor based on pH-sensitive Sm(2)TiO(5) electrolyte-insulator-semiconductor (EIS) has been described. We used X-ray diffraction, Auger electron spectroscopy, and atomic force microscopy to investigate the structural and morphological features of high-k Sm(2)TiO(5) sensing membranes that had been subjected to annealing at different temperatures. The EIS device incorporating a high-k Sm(2)TiO(5) sensing film that had been annealed at 900 degrees C exhibited good sensing characteristics, including a high sensitivity of 60.5 mV/pH (in solutions from pH 2 to 12), a small hysteresis voltage of 2.72 mV (in the pH loop 7-->4-->7-->10-->7), and a low drift rate of 1.15 mV h(-1) (in the buffer solution at pH 7). The Sm(2)TiO(5) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the urea biosensor based on pH-sensitive EIS incorporating a Sm(2)TiO(5) sensing membrane annealed at 900 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 0.1 to 32 mM, with a sensitivity of 72.85 mV/purea. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine

    NASA Astrophysics Data System (ADS)

    Thanh Cao, Thi; Chuc Nguyen, Van; Binh Nguyen, Hai; Thang Bui, Hung; Thu Vu, Thi; Phan, Ngoc Hong; Thang Phan, Bach; Hoang, Le; Bayle, Maxime; Paillet, Matthieu; Sauvajol, Jean Louis; Phan, Ngoc Minh; Tran, Dai Lam

    2016-09-01

    We describe the fabrication of highly sensitive graphene-based field effect transistor (FET) enzymatic biosensor for trace-detection of atrazine. The few-layers graphene films were prepared on polycrystalline copper foils by atmospheric pressure chemical vapor deposition method using an argon/hydrogen/methane mixture. The characteristics of graphene films were investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results indicated low uniformity of graphene layers, which is probably induced by heterogeneous distribution of graphene nucleation sites on the Cu surface. The pesticide detection is accomplished through the measurement of the drain-source current variations of the FET sensor upon the urea enzymatic hydrolysis reaction. The obtained biosensor is able to detect atrazine with a sensitivity of 56 μA/logCATZ in range between 2 × 10-4 and 20 ppb and has a limit of detection as low as 0.05 ppt. The elaboration of such highly sensitive biosensors will provide better biosensing performances for the detection of biochemical targets.

  6. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Li, Jia-dong; Cheng, Jun-jie; Miao, Bin; Wei, Xiao-wei; Xie, Jie; Zhang, Jin-cheng; Zhang, Zhi-qiang; Wu, Dong-min

    2014-07-01

    In order to improve the sensitivity of AlGaN/GaN high electron mobility transistor (HEMT) biosensors, a simple biomolecule-gated AlGaN/GaN HEMT structure was designed and successfully fabricated for prostate specific antigen (PSA) detection. UV/ozone was used to oxidize the GaN surface and then a 3-aminopropyl trimethoxysilane (APTES) self-assembled monolayer was bound to the sensing region. This monolayer serves as a binding layer for attachment of the prostate specific antibody (anti-PSA). The biomolecule-gated AlGaN/GaN HEMT sensor shows a rapid and sensitive response when the target prostate-specific antigen in buffer solution was added to the antibody-immobilized sensing area. The current change showed a logarithm relationship against the PSA concentration from 0.1 pg/ml to 0.993 ng/ml. The sensitivity of 0.215% is determined for 0.1 pg/ml PSA solution. The above experimental result of the biomolecule-gated AlGaN/GaN HEMT biosensor suggested that this biosensor might be a useful tool for prostate cancer screening.

  7. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode.

    PubMed

    Dai, Hong; Chi, Yuwu; Wu, Xiaoping; Wang, Youmei; Wei, Mingdeng; Chen, Guonan

    2010-02-15

    A new biocompatible ECL biosensor based on enzyme/titanate nanotubes/chitosan composite film was developed for the determination of analytes in biological samples. In the fabrication of the new ECL biosensor, biocompatible titanate nanotubes (TNTs) and a model enzyme, i.e., choline oxidase (ChOX), were immobilized on a chitosan modified glassy carbon electrode (GCE) via electrostatic adsorption and covalent interaction, respectively. By this ECL biosensor, choline was enzymatically oxidized to hydrogen peroxide and detected by a sensitive luminol ECL system. The use of TNTs not only provided a biocompatible microenvironment for the immobilized enzyme, which resulted in an excellent stability and long lifetime of the ECL biosensor, but also exhibited great enhancement towards luminol ECL and thus led to a significant improvement in sensitivity of ECL biosensor. Satisfactory results were obtained when employing this biosensor in assaying the total choline in milk samples. The work would provide a common platform to develop various sensitive, selective and biocompatible ECL biosensors based on using enzyme/TNTs/CHIT composite films. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  9. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection.

    PubMed

    Jung, Il Young; Lee, Eun Hee; Suh, Ah Young; Lee, Seung Jin; Lee, Hyukjin

    2016-04-01

    Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.

  10. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2017-08-15

    A novel polypyrrole (PPy)-based bilayer amperometric glucose biosensor integrated with a permselective layer has been developed for detection of glucose in the presence of interferences. It comprises of a PPy-GOx film grown, in the absence of electrolyte, as an inner layer, and a permselective PPy-Cl film as an outer layer. The PPy-GOx/PPy-Cl bilayer biosensor was effective in rejecting 98% of ascorbic acid and 100% of glycine, glutamic acid and uric acid. With an outer layer thickness of 6.6nm, the bilayer biosensor gave nearly identical glucose response to that of a single layer PPy-GOx biosensor. The biosensor also exhibited good reproducibility (1.9% rsd, n=10), high stability (more than 2months), wide linear range (0.5-24mM), low K m (8.4mM), high I max (77.2μAcm -2 ), low detection limit (26.9μM) and good sensitivity (3.5μAcm -2 mM -1 ). The bilayer biosensor was successfully employed for glucose determination in various fruit juices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    PubMed

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  13. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    PubMed Central

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  14. Novel multichannel surface plasmon resonance photonic crystal fiber biosensor

    NASA Astrophysics Data System (ADS)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.

    2016-04-01

    In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.

  15. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il

    2013-07-01

    In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.

  16. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites.

    PubMed

    Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu

    2012-02-01

    One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.

  19. Immunodetection of salivary biomarkers by an optical microfluidic biosensor with polyethylenimine-modified polythiophene-C70 organic photodetectors.

    PubMed

    Dong, Tao; Pires, Nuno Miguel Matos

    2017-08-15

    This work reports a novel optical microfluidic biosensor with highly sensitive organic photodetectors (OPDs) for absorbance-based detection of salivary protein biomarkers at the point of care. The compact and miniaturized biosensor has comprised OPDs made of polythiophene-C 70 bulk heterojunction for the photoactive layer; whilst a calcium-free cathode interfacial layer, made of linear polyethylenimine, was incorporated to the photodetectors to enhance the low cost. The OPDs realized onto a glass chip were aligned to antibody-functionalized chambers of a poly(methyl methacrylate) microfluidic chip, in where immunogold-silver assays were conducted. The biosensor has detected IL-8, IL-1β and MMP-8 protein in spiked saliva with high detection specificity and short analysis time exhibiting detection limits between 80pgmL -1 and 120pgmL -1 . The result for IL-8 was below the clinical established cut-off of 600pgmL -1 , which revealed the potential of the biosensor to early detection of oral cancer. The detection limit was also comparable to other previously reported immunosensors performed with bulky instrumentation or using inorganic photodetectors. The optical detection sensitivity of the polythiophene-C 70 OPD was enhanced by optimizing the thickness of the photoactive layer and anode interfacial layer prior to the saliva immunoassays. Further, the biosensor was tested with unspiked human saliva samples, and the results of measuring IL-8 and IL-1β were in statistical agreement with those provided by two commercial assays of ELISA. The optical microfluidic biosensor reported hereby offers an attractive and cost-effective tool to diagnostics or screening purposes at the point of care. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    NASA Astrophysics Data System (ADS)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  1. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  2. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    PubMed

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  3. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing

    2011-11-15

    A novel piezoelectric sensor has been developed for bilirubin (BR) detection, based on the modification of molecularly imprinted hydroxyapatite (HAP) film onto a quartz crystal by molecular imprinting and surface sol-gel technique. The performance of the developed BR biosensor was evaluated and the results indicated that a sensitive BR biosensor could be fabricated. The obtained BR biosensor presents high-selectivity monitoring of BR, better reproducibility, shorter response time (37 min), wider linear range (0.05-80μM) and lower detection limit (0.01μM). The analytical application of the BR biosensor confirms the feasibility of BR detection in serum sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.

    PubMed

    Abdolahad, Mohammad; Taghinejad, Mohammad; Taghinejad, Hossein; Janmaleki, Mohsen; Mohajerzadeh, Shams

    2012-03-21

    A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.

  6. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells.

    PubMed

    Piontek, Anna; Witte, Christopher; May Rose, Honor; Eichner, Miriam; Protze, Jonas; Krause, Gerd; Piontek, Jörg; Schröder, Leif

    2017-06-01

    The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection. © 2017 New York Academy of Sciences.

  7. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef.

    PubMed

    Abdalhai, Mandour H; Fernandes, António Maximiano; Bashari, Mohand; Ji, Jian; He, Qian; Sun, Xiulan

    2014-12-31

    Rapid early detection of food contamination is the main key in food safety and quality control. Biosensors are emerging as a vibrant area of research, and the use of DNA biosensor recognition detectors is relatively new. In this study a genomic DNA biosensor system with a fixing and capture probe was modified by a sulfhydryl and amino group, respectively, as complementary with target DNA. After immobilization and hybridization, the following sandwich structure fixing DNA-target DNA-capture DNA-PbS NPs was formed to detect pathogenic bacteria (Staphylococuus aureus EF529607.1) by using GCE modified with (multiwalled carbon nanotubes-chitosan-bismuth) to increase the sensitivity of the electrode. The modification procedure was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The sandwich structure was dissolved in 1 M nitric acid to become accessible to the electrode, and the PbS NPs was measured in solution by differential pulse voltammetry (DPV). The results showed that the detection limit of the DNA sensor was 3.17 × 10(-14) M S. aureus using PbS NPs, whereas the result for beef samples was 1.23 ng/mL. Thus, according to the experimental results presented, the DNA biosensor exhibited high sensitivity and rapid response, and it will be useful for the food matrix.

  8. Advances in arsenic biosensor development--a comprehensive review.

    PubMed

    Kaur, Hardeep; Kumar, Rabindra; Babu, J Nagendra; Mittal, Sunil

    2015-01-15

    Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling.

    PubMed

    Zhang, Ling; Wang, Yangzhong; Tian, Qianqian; Liu, Yang; Li, Jinghong

    2017-03-15

    A novel ECL biosensor for cytosensing and cell surface carbohydrate expression evaluation was developed, by the integration of the peptide modified interface for highly specific carbohydrate recognition and sodium alginate loaded glucose oxidase as the signal probe with high signal amplification efficiency. A cysteine-terminated peptide self-assembled on the electrode through Au-S bond to construct a functional interface for cell capture, with decent biocompatibility and high affinity for the human breast cancer cell MCF-7. Concanavalin A lectin modified gold nanoparticles specifically recognized the cell surface carbohydrates and were absorbed on the electrode, followed by the immobilization of multiple glucose oxidase conjugated sodium alginate, which could remarkably increase the sensitivity of the biosensor with enhanced catalysis. The as-proposed ECL cytosensor was successfully applied for the detection of the MCF-7 tumor cells, whose glycans on the cell membranes are over-expressed. A low detection limit of 150cellsmL -1 was obtained, with a wide dynamic linear range from 5.0×10 2 to 5.0×10 5 cellsmL -1 . Due to the excellent sensitivity, stability and biocompatibility, the ECL biosensor would be promising in reliable diagnostics of glycan relevant biomarkers for cancer and other diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors

    NASA Astrophysics Data System (ADS)

    Zhan, Xiang-Mi; Hao, Mei-Lan; Wang, Quan; Li, Wei; Xiao, Hong-Ling; Feng, Chun; Jiang, Li-Juan; Wang, Cui-Mei; Wang, Xiao-Liang; Wang, Zhan-Guo

    2017-03-01

    Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ( {V}{DS}=0.5 V) shows a clear decrease of 69 μA upon the introduction of 1 μmolL {}-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.

  11. Label-free nano-biosensing on the road to tuberculosis detection.

    PubMed

    Golichenari, Behrouz; Velonia, Kelly; Nosrati, Rahim; Nezami, Alireza; Farokhi-Fard, Aref; Abnous, Khalil; Behravan, Javad; Tsatsakis, Aristidis M

    2018-08-15

    Tuberculosis, an ailment caused by the bacterium Mycobacterium tuberculosis (Mtb) complex, is one of the catastrophic transmittable diseases that affect human. Reports published by WHO indicate that in 2017 about 6.3 million people progressed to TB and 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. Common diagnostics like the traditional PPD test and antibody-assisted assays suffer the lack of sensitivity, long processing time and cumbersome post-test proceedings. These shortcomings restrict their use and encourage innovations in TB diagnostics. In recent years, the biosensor concept opened up new horizons in sensitive and fast detection of the disease, reducing the interval time between sampling and diagnostic result. Among new diagnostics, label-free nano-biosensors are highly promising for sensitive and accessible detection of tuberculosis. Various specific label-free nano-biosensors have been recently reported detecting the whole cell of M. tuberculosis, mycobacterial proteins and IFN-γ as crucial markers in early diagnosis of TB. This article provides a focused overview on nanomaterial-based label-free biosensors for tuberculosis detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Rafya, R.

    2018-06-01

    Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.

  13. Improvement of up-converting phosphor technology-based biosensor

    NASA Astrophysics Data System (ADS)

    Xie, Chengke; Huang, Lihua; Zhang, Youbao; Guo, Xiaoxian; Qu, Jianfeng; Huang, Huijie

    2008-12-01

    A novel biosensor based on up-converting phosphor technology (UPT) was developed several years ago. It is a kind of optical biosensor using up-converting phosphor (UCP) particles as the biological marker. From then on, some improvements have been made for this UPT-based biosensor. The primary aspects of the improvement lie in the control system. On one hand, the hardware of the control system has been optimized, including replacing two single chip microcomputers (SCM) with only one, the optimal design of the keyboard interface circuit and the liquid crystal module (LCM) control circuit et al.. These result in lower power consumption and higher reliability. On the other hand, a novel signal processing algorithm is proposed in this paper, which can improve the automation and operating simplicity of the UPT-based biosensor. It has proved to have high sensitivity (~ng/ml), high stability and good repeatability (CV<5%), which is better than the former system. It can meet the need of some various applications such as rapid immunoassay, chemical and biological detection and so on.

  14. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Zhang, Aidong; Du, Dan

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicatingmore » the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.« less

  15. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-18

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  16. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7.

    PubMed

    Pandey, Ashish; Gurbuz, Yasar; Ozguz, Volkan; Niazi, Javed H; Qureshi, Anjum

    2017-05-15

    E. coli O157:H7 is an enterohemorrhagic bacteria responsible for serious foodborne outbreaks that causes diarrhoea, fever and vomiting in humans. Recent foodborne E. coli outbreaks has left a serious concern to public health. Therefore, there is an increasing demand for a simple, rapid and sensitive method for pathogen detection in contaminated foods. In this study, we developed a label-free electrical biosensor interfaced with graphene for sensitive detection of pathogenic bacteria. This biosensor was fabricated by interfacing graphene with interdigitated microelectrodes of capacitors that were biofunctionalized with E. coli O157:H7 specific antibodies for sensitive pathogenic bacteria detection. Here, graphene nanostructures on the sensor surface provided superior chemical properties such as high carrier mobility and biocompatibility with antibodies and bacteria. The sensors transduced the signal based on changes in dielectric properties (capacitance) through (i) polarization of captured cell-surface charges, (ii) cells' internal bioactivity, (iii) cell-wall's electronegativity or dipole moment and their relaxation and (iv) charge carrier mobility of graphene that modulated the electrical properties once the pathogenic E. coli O157:H7 captured on the sensor surface. Sensitive capacitance changes thus observed with graphene based capacitors were specific to E. coli O157:H7 strain with a sensitivity as low as 10-100 cells/ml. The proposed graphene based electrical biosensor provided advantages of speed, sensitivity, specificity and in-situ bacterial detection with no chemical mediators, represents a versatile approach for detection of a wide variety of other pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor.

    PubMed

    Zhao, Wei; Ge, Pei-Yu; Xu, Jing-Juan; Chen, Hong-Yuan

    2009-09-01

    We report on a pair of highly sensitive amperometric biosensors for organophosphate pesticides (OPs) based on assembling acetylcholinesterase (AChE) on poly(dimethylsiloxane) (PDMS)-poly(diallydimethylemmonium) (PDDA)/gold nanoparticles (AuNPs) composite film. Two AChE immobilization strategies are proposed based on the composite film with hydrophobic and hydrophilic surface tailored by oxygen plasma. The twin biosensors show interesting different electrochemical performances. The hydrophobic surface based PDMS-PDDAN AuNPs/choline oxidase (ChO)/AChE biosensor (biosensor-1) shows excellent stability and unique selectivity to hypertoxic organophosphate. At optimal conditions, this biosensor-1 could measure 5.0 x 10(-10) g/L paraoxon and 1.0 x 10(-9) g/L parathion. As for the hydrophilic surface based biosensor (biosensor-2), it shows no selectivity but can be commonly used for the detection of most OPs. Based on the structure of AChE, it is assumed that via the hydrophobic interaction between enzyme molecules and hydrophobic surface, the enzyme active sites surrounded by hydrophobic amino acids face toward the surface and get better protection from OPs. This assumption may explain the different performances of the twin biosensors and especially the unique selectivity of biosensor-1 to hypertoxic OPs. Real sample detection was performed and the omethoate residue on Cottomrose Hibiscus leaves was detected with biosensor-1.

  18. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.

    PubMed

    Yi, Yue; Xie, Beizhen; Zhao, Ting; Liu, Hong

    2018-06-13

    Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Photonic crystal-based optical biosensor: a brief investigation

    NASA Astrophysics Data System (ADS)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  20. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    PubMed

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor.

    PubMed

    Yang, Zhanjun; Tang, Yan; Li, Juan; Zhang, Yongcai; Hu, Xiaoya

    2014-04-15

    A tetragonal columnar-shaped TiO2 (TCS-TiO2) nanorods are synthesized via a facile route for the immobilization of glucose oxidase (GOx). A novel electrochemical glucose biosensor is constructed based on the direct electrochemistry of GOx at TCS-TiO2 modified glassy carbon electrode. The fabricated biosensor is characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, electrochemical impedance spectra and cyclic voltammetry. The immobilized enzyme molecules on TCS-TiO2 nanorods retain its native structure and bioactivity and show a surface controlled, quasi-reversible and fast electron transfer process. The TCS-TiO2 nanorods have large surface area and provide a favorable microenvironment for enhancing the electron transfer between enzyme and electrode surface. The constructed glucose biosensor shows wide linear range from 5.0×10(-6) to 1.32×10(-3) M with a high sensitivity of 23.2 mA M(-1) cm(-2). The detection limit is calculated to be 2.0×10(-6) M at signal-to-noise of 3. The proposed glucose biosensor also exhibits excellent selectivity, good reproducibility, and acceptable operational stability. Furthermore, the biosensor can be successfully applied in the detection of glucose in serum sample at the applied potential of -0.50 V. The TCS-TiO2 nanorods provide an efficient and promising platform for the immobilization of proteins and development of excellent biosensors. © 2013 Published by Elsevier B.V.

  2. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol

    PubMed Central

    Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi

    2017-01-01

    In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea. PMID:28117357

  3. Application of recombinant fluorescent mammalian cells as a toxicity biosensor.

    PubMed

    Kim, E J; Lee, Y; Lee, J E; Gu, M B

    2002-01-01

    With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.

  4. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction.

    PubMed

    Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying

    2017-12-15

    In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency was used for the detection experiments. The biosensor was able to detect 106 CFU/mL in phosphate buffered saline (PBS) with a detection time of 3 minutes. Additional use of nanoparticles significantly enhanced the detection performance. By using the nanoparticles the biosensor could detect 104 CFU/mL of Salmonella enteritidis in PBS and 105 CFU/mL of cells in milk.

  6. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate.

    PubMed

    Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2018-07-01

    Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Au/NiFe/M(Au, MoS2, graphene) trilayer magnetoplasmonics DNA-hybridized sensors with high record of sensitivity

    NASA Astrophysics Data System (ADS)

    Faridi, Ehsan; Moradi, Maryam; Ansari, Narges; Ghasemi, Amir Hossein Baradaran; Afshar, Amir; Mohseni, Seyed Majid

    2017-12-01

    The demonstration of biosensors based on the surface plasmon effect holds promise for future high-sensitive electrodeless biodetection. The combination of magnetic effects with surface plasmon waves brings additional freedom to improve sensitivity and signal selectivity. Stacking biosensors with two-dimensional (2-D) materials, e.g., graphene (Gr) and MoS2, can influence plasmon waves and facilitate surface physiochemical properties as additional versatility aspects. We demonstrate magnetoplasmonic biosensors through the detuning of surface plasmon oscillation modes affected by magnetic effect via the presence of the NiFe (Py) layer and different light absorbers of Gr, MoS2, and Au ultrathin layers in three stacks of Au/Py/M(MoS2, Gr, Au) trilayers. We found minimum reflection, resonance angle shift, and transverse magneto-optical Kerr effect (TMOKE) responses of all sensors in the presence of the ss-DNA monolayer. Very few changes of ˜5×10-7 in the ss-DNA's refractive index result in valuable TMOKE response. We found that the presence of three-layer Gr and two-layer MoS2 on top of the Au/Py bilayer can dramatically increase the sensitivity by nine and four times, respectively, than the conventional Au/Co/Au trilayer. Our results show the highest reported DNA sensitivity based on the coupling of light with 2-D materials in magnetoplasmonic devices.

  9. High S/N Ratio Slotted Step Piezoresistive Microcantilever Designs for Biosensors

    PubMed Central

    Ansari, Mohd Zahid; Cho, Chongdu

    2013-01-01

    This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts. PMID:23535637

  10. High S/N ratio slotted step piezoresistive microcantilever designs for biosensors.

    PubMed

    Ansari, Mohd Zahid; Cho, Chongdu

    2013-03-26

    This study proposes new microcantilever designs in slotted step configuration to improve the S/N ratio of surface stress-based sensors used in physical, chemical, biochemical and biosensor applications. The cantilevers are made of silicon dioxide with a u-shaped silicon piezoresistor in p-doped. The cantilever step length and piezoresistor length is varied along with the operating voltage to characterise the surface stress sensitivity and thermal drifting sensitivity of the cantilevers when used as immunosensor. The numerical analysis is performed using ANSYS Multiphysics. Results show the surface stress sensitivity and the S/N ratio of the slotted step cantilevers is improved by more than 32% and 22%, respectively, over its monolithic counterparts.

  11. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  12. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system.

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng

    2016-11-14

    Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.

  13. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    PubMed

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus.

    PubMed

    Jiang, Lixiang; Luo, Jing; Dong, Wenjie; Wang, Chengmin; Jin, Wen; Xia, Yuetong; Wang, Haijing; Ding, Hua; Jiang, Long; He, Hongxuan

    2015-07-01

    H5N1 avian influenza has caused serious economic losses as well as posed significant threats to public health, agriculture and wildlife. It is important to develop a rapid, sensitive and specific detection platform suitable for disease surveillance and control. In this study, a highly sensitive, specific and rapid biosensor based on polydiacetylene was developed for detecting H5 influenza virus. The polydiacetylene based biosensor was produced from an optimized ratio of 10,12-pentacosadiynoic acid and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, with the anti-H5 influenza antibody embedded onto the vesicle surface. The optimized polydiacetylene vesicle could detect H5 influenza virus sensitively with a detection limit of 0.53 copies/μL, showing a dramatic blue-to-red color change that can be observed directly by the naked eye and recorded by a UV-vis spectrometer. The sensitivity, specificity and accuracy of the biosensor were also evaluated. The sensor could specifically differentiate H5 influenza virus from H3 influenza virus, Newcastle disease virus and porcine reproductive and respiratory syndrome virus. Detection using tracheal swabs was in accord with virus isolation results, and comparable to the RT-PCR method. These results offer the possibility and potential of simple polydiacetylene based bio-analytical method for influenza surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    PubMed Central

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-01-01

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080

  16. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.

    PubMed

    Wang, Jin

    2018-06-01

    A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.

  17. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  18. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    NASA Astrophysics Data System (ADS)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  19. An enzymatic biosensor based on three-dimensional ZnO nanotetrapods spatial net modified AlGaAs/GaAs high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015; Zhang, Xiaohui

    2014-11-24

    We designed and constructed three dimensional (3D) zinc oxide Nanotetrapods (T-ZnOs) modified AlGaAs/GaAs high electron mobility transistors (HEMTs) for enzymatic uric acid (UA) detection. The chemical vapor deposition synthesized T-ZnOs was distributed on the gate areas of HEMTs in order to immobilize uricase and improve the sensitivity of the HEMTs. Combining with the high efficiency of enzyme immobilization by T-ZnOs and high sensitivity from HEMT, the as-constructed uricase/T-ZnOs/HEMTs biosensor showed fast response towards UA at ∼1 s, wide linear range from 0.2 nM to 0.2 mM and the low detect limit at 0.2 nM. The results point out an avenue to design electronic devicemore » as miniaturized lab-on-chip device for high sensitive and specific in biomedical and clinical diagnosis applications.« less

  20. Functional CuO Microstructures for Glucose Sensing

    NASA Astrophysics Data System (ADS)

    Ali, Gulzar; Tahira, Aneela; Mallah, Arfana Begum; Mallah, Sarfraz Ahmed; Ibupoto, Akila; Khand, Aftab Ahmed; Baradi, Waryani; Willander, Magnus; Yu, Cong; Ibupoto, Zafar Hussain

    2018-02-01

    CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.

  1. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    PubMed

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.

  2. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Cancer.gov

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  3. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    PubMed Central

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  4. Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars

    NASA Astrophysics Data System (ADS)

    Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V.

    2016-02-01

    The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)—18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) ( R = 0.99).

  5. S-Layer Protein-Based Biosensors.

    PubMed

    Schuster, Bernhard

    2018-04-11

    The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.

  6. Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up.

    PubMed

    Soler, Maria; Estevez, M-Carmen; Moreno, Maria de Lourdes; Cebolla, Angel; Lechuga, Laura M

    2016-05-15

    Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing

    PubMed Central

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-01-01

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects. PMID:28025540

  8. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection.

    PubMed

    Malekzad, Hedieh; Zangabad, Parham Sahandi; Mohammadi, Hadi; Sadroddini, Mohsen; Jafari, Zahra; Mahlooji, Niloofar; Abbaspour, Somaye; Gholami, Somaye; Ghanbarpoor, Mana; Pashazadeh, Rahim; Beyzavi, Ali; Karimi, Mahdi; Hamblin, Michael R

    2018-03-01

    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.

  9. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches.

    PubMed

    Saxena, Urmila; Das, Asim Bikas

    2016-01-15

    Importance of cholesterol biosensors is already recognized in the clinical diagnosis of cardiac and brain vascular diseases as discernible from the enormous amount of research in this field. Nevertheless, the practical application of a majority of the fabricated cholesterol biosensors is ordinarily limited by their inadequate performance in terms of one or more analytical parameters including stability, sensitivity and detection limit. Nanoscale materials offer distinctive size tunable electronic, catalytic and optical properties which opened new opportunities for designing highly efficient biosensor devices. Incorporation of nanomaterials in biosensing devices has found to improve the electroactive surface, electronic conductivity and biocompatibility of the electrode surfaces which then improves the analytical performance of the biosensors. Here we have reviewed recent advances in nanomaterial-based cholesterol biosensors. Foremost, the diverse roles of nanomaterials in these sensor systems have been discussed. Later, we have exhaustively explored the strategies used for engineering cholesterol biosensors with nanotubes, nanoparticles and nanocomposites. Finally, this review concludes with future outlook signifying some challenges of these nanoengineered cholesterol sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors

    NASA Astrophysics Data System (ADS)

    Guo, Jingxing; Zhang, Tao; Hu, Chengguo; Fu, Lei

    2015-01-01

    In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells.In recent years, graphene-based enzyme biosensors have received considerable attention due to their excellent performance. Enormous efforts have been made to utilize graphene oxide and its derivatives as carriers of enzymes for biosensing. However, the performance of these sensors is limited by the drawbacks of graphene oxide such as slow electron transfer rate, low catalytic area and poor conductivity. Here, we report a new graphene-based enzyme carrier, i.e. a highly conductive 3D nitrogen-doped graphene structure (3D-NG) grown by chemical vapour deposition, for highly effective enzyme-based biosensors. Owing to the high conductivity, large porosity and tunable nitrogen-doping ratio, this kind of graphene framework shows outstanding electrical properties and a large surface area for enzyme loading and biocatalytic reactions. Using glucose oxidase (GOx) as a model enzyme and chitosan (CS) as an efficient molecular binder of the enzyme, our 3D-NG based biosensors show extremely high sensitivity for the sensing of glucose (226.24 μA mM-1 m-2), which is almost an order of magnitude higher than those reported in most of the previous studies. The stable adsorption and outstanding direct electrochemical behaviour of the enzyme on the nanocomposite indicate the promising application of this 3D enzyme carrier in high-performance electrochemical biosensors or biofuel cells. Electronic supplementary information (ESI) available: Procedures for CVD growth of 3D-NG, XRD and TEM measurements, a comparison with other graphene-based biosensors, a detailed study on the universality of 3D-NG as an enzyme carrier and more CV data on selectivity and stability. See DOI: 10.1039/c4nr05325g

  11. Application of the SSB biosensor to study in vitro transcription.

    PubMed

    Cook, Alexander; Hari-Gupta, Yukti; Toseland, Christopher P

    2018-02-12

    Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2013-01-01

    A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034

  13. Amperometric biosensor for Salmonella typhimurium detection in milk

    USDA-ARS?s Scientific Manuscript database

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  14. An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue.

    PubMed

    Guo, Jing; Yuan, Changjing; Yan, Qi; Duan, Qiuyue; Li, Xiaolu; Yi, Gang

    2018-05-15

    A simple and sensitive electrochemical biosensor was developed for microRNA-196a detection, which is of important diagnostic significance for pancreatic cancer. It was based on cyclic enzymatic signal amplification (CESA) and template-free DNA extension reaction. In the presence of microRNA-196a, duplex-specific nuclease (DSN) catalyzed the digestion of the 3'-PO 4 terminated capture probe (CP), resulting in the target recycling amplification. Meanwhile, the 3'-OH terminal of CP was exposed. Then, template-free DNA extension reaction was triggered by terminal deoxynucleotidyl transferase (TdT), producing amounts of single-stranded DNA (ssDNA). After ssDNA absorbed numerous methylene blue (MB), an ultrasensitive electrochemical readout was obtained. Based on this dual amplification mechanism, the proposed biosensor exhibited a high sensitivity for detection of microRNA-196a down to 15 aM with a linear range from 0.05 fM to 50 pM. This biosensor displayed high specificity, which could discriminate target microRNAs from one base mismatched microRNAs. It also showed good reproducibility and stability. Furthermore, it was successfully applied to the determination of microRNA-196a in plasma samples. In conclusion, with the excellent analytical performance, this biosensor might have the potential for application in clinical diagnostics of pancreatic cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  16. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices.

    PubMed

    Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong

    2018-02-15

    Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDs<5%) with minimal interference from the coexisting electroactive compounds such as ascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  18. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae.

    PubMed

    Zhou, Ya; Xiao, Jingfan; Ma, Xin; Wang, Qiyao; Zhang, Yuanxing

    2018-06-01

    In purpose of valid Streptococcus iniae detection, we established a colorimetric biosensor using gold nanoparticles (AuNPs) labeled with dual functional probes and along with loop-mediated isothermal amplification (LAMP) assay (LAMP-AuNPs). Based on the characteristics of self-aggregation and bio-conjugation with ligands, AuNPs were chosen for observable color change in tandem with LAMP amplification method to reach high sensitivity and easy operation. Meanwhile, the improvement of dual probes that could fully utilize the LAMP product gave the biosensor a stable result exhibition. LAMP-AuNPs targeting gene ftsB, one of the ATP transporter-related genes, turned out favorable specificity in cross reaction among other fish pathogens. The detect limit of 10 2 CFU revealed a better sensitivity compared with polymerase chain reaction (PCR) method and AuNPs lateral flow test strip (LFTS). It was also proved to be effective by zebrafish infection model trials with less than 2-h time consumption and nearly no devices which make it a convenient biosensor for point-to-care S. iniae detection.

  19. New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors.

    PubMed

    Barsan, Madalina M; Pifferi, Valentina; Falciola, Luigi; Brett, Christopher M A

    2016-07-13

    A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  1. Development of Novel Piezoelectric Biosensor Using PZT Ceramic Resonator for Detection of Cancer Markers.

    PubMed

    Su, Li; Fong, Chi-Chun; Cheung, Pik-Yuan; Yang, Mengsu

    2017-01-01

    A novel biosensor based on piezoelectric ceramic resonator was developed for direct detection of cancer markers in the study. For the first time, a commercially available PZT ceramic resonator with high resonance frequency was utilized as transducer for a piezoelectric biosensor. A dual ceramic resonators scheme was designed wherein two ceramic resonators were connected in parallel: one resonator was used as the sensing unit and the other as the control unit. This arrangement minimizes environmental influences including temperature fluctuation, while achieving the required frequency stability for biosensing applications. The detection of the cancer markers Prostate Specific Antigen (PSA) and α-Fetoprotein (AFP) was carried out through frequency change measurement. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small samples (1 μl), which is compatible with the requirements of clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and had the potential to be further developed into biosensor arrays with different specificities for simultaneous detection of multiple analytes.

  2. Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor

    PubMed Central

    Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J.

    2017-01-01

    A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out. PMID:27277703

  3. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe

    2016-10-01

    We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.

  4. A sensitive glucose biosensor based on Ag@C core-shell matrix.

    PubMed

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An interference-free glucose biosensor based on an anionic redox polymer-mediated enzymatic oxidation of glucose.

    PubMed

    Deng, Huimin; Shen, Wei; Gao, Zhiqiang

    2013-07-22

    Herein a novel strategy for the construction of an amperometric biosensor for highly sensitive and selective determination of glucose is described. The biosensor is made of a biocomposite membrane of glucose oxidase (GOx) and an Os(bpy)2 (bpy=2,2'-bipyridine)-based anionic redox polymer (Os-RP) mediator. The biosensor is fabricated through the co-immobilization of GOx and the Os-RP on the surface of a glassy carbon electrode by a simple one-step chemical crosslinking process. The crosslinked Os-RP/GOx composite membrane shows excellent catalytic activity toward the oxidation of glucose. Under optimal experimental conditions, a linear correlation between the oxidation current of glucose in amperometry at 0.25 V (vs. Ag/AgCl) and glucose concentration up to 10 mM with a sensitivity of 16.5 μA mM(-1) cm(-2) and a response time <5 s. Due to the presence of anionic sulfonic acid groups in the backbone of the redox polymer, the biosensor exhibits excellent selectivity to glucose in the presence of ascorbic acid and uric acid. The low hydrophobicity of the composite membrane also effectively retards the transport of molecular oxygen within the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  7. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    PubMed

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  8. A novel alcohol dehydrogenase biosensor based on solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)(3)2+-Au nanoparticles aggregates.

    PubMed

    Zhang, Lihua; Xu, Zhiai; Sun, Xuping; Dong, Shaojun

    2007-01-15

    Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+)-AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

  9. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    PubMed Central

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527

  10. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    PubMed

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  11. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  12. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders.

    PubMed

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J

    2015-02-01

    This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    PubMed

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (<3s), a wider linear response from 0.01 to 1.3mM with an ultralow LOD=5µm, and the ultrahigh sensitivities of 131.31 and 481.20µAmM -1 cm -2 for the detections of glucose and hydrogen peroxide (H 2 O 2 ), respectively. Furthermore, the biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    PubMed Central

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  15. Au/NiFe/M(Au, MoS2, graphene) trilayer magnetoplasmonics DNA-hybridized sensors with high record of sensitivity.

    PubMed

    Faridi, Ehsan; Moradi, Maryam; Ansari, Narges; Baradaran Ghasemi, Amir Hossein; Afshar, Amir; Mohseni Armaki, Seyed Majid

    2017-12-01

    The demonstration of biosensors based on the surface plasmon effect holds promise for future high-sensitive electrodeless biodetection. The combination of magnetic effects with surface plasmon waves brings additional freedom to improve sensitivity and signal selectivity. Stacking biosensors with two-dimensional (2-D) materials, e.g., graphene (Gr) and MoS2, can influence plasmon waves and facilitate surface physiochemical properties as additional versatility aspects. We demonstrate magnetoplasmonic biosensors through the detuning of surface plasmon oscillation modes affected by magnetic effect via the presence of the NiFe (Py) layer and different light absorbers of Gr, MoS2, and Au ultrathin layers in three stacks of Au/Py/M(MoS2, Gr, Au) trilayers. We found minimum reflection, resonance angle shift, and transverse magneto-optical Kerr effect (TMOKE) responses of all sensors in the presence of the ss-DNA monolayer. Very few changes of ∼5×10-7 in the ss-DNA's refractive index result in valuable TMOKE response. We found that the presence of three-layer Gr and two-layer MoS2 on top of the Au/Py bilayer can dramatically increase the sensitivity by nine and four times, respectively, than the conventional Au/Co/Au trilayer. Our results show the highest reported DNA sensitivity based on the coupling of light with 2-D materials in magnetoplasmonic devices. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.

    PubMed

    Yang, Weijuan; Zhang, Hongyan; Li, Mengxue; Wang, Zonghua; Zhou, Jie; Wang, Shihua; Lu, Guodong; Fu, FengFu

    2014-11-19

    As one of the most destructive and widespread disease of rice, Magnaporthe oryzae (also called Magnaporthe grisea) has a significant negative impact on rice production. Therefore, it is still in high demand to develop extremely sensitive and accurate methods for the early diagnosis of Magnaporthe oryzae (M. oryzae). In this study, we developed a novel magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of M. oryzae in rice plant by using M. oryzae's chitinases (Mgchi) as biochemical marker and a rice (Oryza sativa) cDNA encoding mannose-binding jacalin-related lectin (Osmbl) as recognition probe. The proposed biosensor combined with the merits of chronoamperometry, electrically magnetic-controllable gold electrode and magnetic beads (MBs)-based palladium nano-particles (PdNPs) catalysis amplification, has an ultra-high sensitivity and specificity for the detection of trace M. oryzae in rice plant. It could be used to detect M. oryzae in rice plant in the initial infection stage (before any symptomatic lesions were observed) to help farmers timely manage the disease. In comparison with previous methods, the proposed method has notable advantages such as higher sensitivity, excellent specificity, short analysis time, robust resistibility to complex matrix and low cost etc. The success in this study provides a reliable approach for the early diagnosis and fast screening of M. oryzae in rice plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    NASA Astrophysics Data System (ADS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  18. Comparison of the efficiency control of mycotoxins by some optical immune biosensors

    NASA Astrophysics Data System (ADS)

    Slyshyk, N. F.; Starodub, N. F.

    2013-11-01

    It was compared the efficiency of patulin control at the application of such optical biosensors which were based on the surface plasmon resonance (SPR) and nano-porous silicon (sNPS). In last case the intensity of the immune reaction was registered by measuring level of chemiluminescence (ChL) or photocurrent of nPS. The sensitivity of this mycotoxin determination by first type of immune biosensor was 0.05-10 mg/L Approximately the same sensitivity as well as the overall time analysis were demonstrated by the immune biosensor based on the nPS too. Nevertheless, the last type of biosensor was simpler in technical aspect and the cost of analysis was cheapest. That is why, it was recommend the nPS based immune biosensor for wide screening application and SPR one for some additional control or verification of preliminary obtained results. In this article a special attention was given to condition of sample preparation for analysis, in particular, micotoxin extraction from potao and some juices. Moreover, it was compared the efficiency of the above mentioned immune biosensors with such traditional approach of mycotoxin determination as the ELISA-method. In the result of investigation and discussion of obtained data it was concluded that both type of the immune biosensors are able to fulfill modern practice demand in respect sensitivity, rapidity, simplicity and cheapness of analysis.

  19. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    PubMed

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polymer dual ring resonators for label-free optical biosensing using microfluidics.

    PubMed

    Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M

    2013-04-18

    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.

  1. Angle-resolved diffraction grating biosensor based on porous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less

  2. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.

    PubMed

    Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir

    2018-05-25

    Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  4. Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant.

    PubMed

    Song, Dandan; Li, Qian; Lu, Xiong; Li, Yanshan; Li, Yan; Wang, Yuanzhe; Gao, Faming

    2018-06-18

    A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS 2 nanosheet (m-MoS 2 ). The bimetallic alloy NWs/m-MoS 2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS 2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS 2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS 2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10 -13 M∼10 -7 M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS 2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. System-level integration of active silicon photonic biosensors

    NASA Astrophysics Data System (ADS)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

  6. A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH3NH3PbI3 heterojunction.

    PubMed

    Pang, Xuehui; Zhang, Yong; Pan, Jihong; Zhao, Yanxia; Chen, Yao; Ren, Xiang; Ma, Hongmin; Wei, Qin; Du, Bin

    2016-03-15

    Based on ZnO nanorods (NRs)/CH3NH3PbI3/nitrogen-doped carbon quantum dots (NCQDs) nanocomposites, the highly sensitive detection of fibroblast-like synoviocyte (FLS) cell was realized by a photoelectrochemical (PEC) biosensor. ZnO/CH3NH3PbI3/NCQDs nanocomposites were exploited as the photo-to-electron generator to produce the signal. CH3NH3PbI3 was spin-coated on ZnO surface after ZnO NRs grew on ITO electrode then by dropping on the modified electrode, NCQDs were diffused and adhered to the surface of ZnO and CH3NH3PbI3. In the presence of EDC/NHS, the combination of CH3NH3PbI3 and NCQDs was achieved by the carboxyl groups (-COOH) and amino groups (-NH2) in the preparation process. Furthermore, the capture probe of FLS cell, CD95 antibody, can be anchored by -COOH and -NH2 groups through EDC/NHS. The specific recognition between the antibody capture probes and cell targets gained high-sensitive detection for FLS cell for the first time. The developed biosensor showed a wide linear range from 1.0 × 10(4)cell/mL to 10 cell/mL and a low detection limit of 2 cell/mL. This kind of biosensor would provide a novel detection strategy for FLS cell. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification.

    PubMed

    Cho, Il-Hoon; Lee, Jongsung; Kim, Jiyeon; Kang, Min-Soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung

    2018-01-12

    An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

  8. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    PubMed Central

    Cho, Il-Hoon; Kim, Jiyeon; Kang, Min-soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung

    2018-01-01

    An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms. PMID:29329274

  9. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2017-08-01

    An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae ( V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M ( R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% ( n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% ( n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.

  10. Gold nanoparticles-decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide biosensor.

    PubMed

    Boujakhrout, Abderrahmane; Díez, Paula; Sánchez, Alfredo; Martínez-Ruíz, Paloma; Pingarrón, José M; Villalonga, Reynaldo

    2016-11-15

    Au nanoparticles modified with 4-mercaptopyridine and 6-mercapto-1-hexanol were used as coordination agents to prepare a novel hybrid nanomaterial with Ag:4,4'-bipyridine nanobelts. This nanohybrid was employed to modify glassy carbon electrodes and to construct a horseradish peroxidase-based mediatorless amperometric biosensor for H2O2. The electrode, poised at -100mV, exhibited a rapid response within 4s and a linear calibration range from 90pM to 6.5nM H2O2. The biosensor showed a high sensitivity of 283A/Mcm(2) and a very low detection limit of 45pM at a signal-to-noise ratio of 3. The enzyme biosensor showed high stability when stored at 4°C under dry conditions, retaining over 96% and 78% of its initial activity after 15 and 30days of storage at 4°C, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    PubMed

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  13. Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.

    PubMed

    Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija

    2014-02-07

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.

  14. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    PubMed Central

    Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882

  15. Potentiometric glucose biosensor based on core-shell Fe3O4-enzyme-polypyrrole nanoparticles.

    PubMed

    Yang, Zhengpeng; Zhang, Chunjing; Zhang, Jianxin; Bai, Wanbei

    2014-01-15

    Core-shell Fe3O4-enzyme-polypyrrole (Ppy) nanoparticles with excellent magnetism and conductivity were successfully prepared via the surface modification and enzyme self-encapsulation within Ppy. A novel potentiometric glucose biosensor has been constructed by effectively attaching the proposed Fe3O4-enzyme-Ppy nanoparticles to the surface of the magnetic glassy carbon electrode (MGCE). The optimum biosensing conditions could be provided with polymerization time of pyrrole for 6h and 0.42 mg immobilization amount of Fe3O4-enzyme-Ppy nanoparticles on MGCE. The performance of the developed glucose biosensor was evaluated and the results indicated that a sensitive glucose biosensor could be fabricated. The obtained glucose biosensor presents shorter response time (6 s), wider linear range (0.5 μM to 34 mM), lower limit of detection (LOD, 0.3 μM), high-selectivity monitoring of glucose and good stability (with about 98.1% of the initial response signal retained after 20 days). The analytical application of the glucose biosensor confirms the feasibility of glucose detection in serum sample. © 2013 Elsevier B.V. All rights reserved.

  16. Amperometric L-lysine biosensor based on carboxylated multiwalled carbon nanotubes-SnO2 nanoparticles-graphene composite

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Erden, Pınar Esra; Kılıç, Esma

    2017-10-01

    A novel matrix, carboxylated multiwalled carbon nanotubes-tin oxide nanoparticles-graphene-chitosan (c-MWCNTs-SnO2-GR-CS) composite, was prepared for biosensor construction. Lysine oxidase (LOx) enzyme was immobilized covalently on the surface of c-MWCNTs-GR-SnO2-CS composite modified glassy carbon electrode (GCE) using N-ethyl-N‧-(3-dimethyaminopropyl) carbodiimide (EDC) and N-hydroxyl succinimide (NHS). Effects of electrode composition and buffer pH on biosensor response were investigated to optimize the working conditions. The biosensor exhibited wide linear range (9.9 × 10-7 M-1.6 × 10-4 M), low detection limit (1.5 × 10-7 M), high sensitivity (55.20 μA mM-1 cm-2) and fast amperometric response (<25 s) at +0.70 V vs. Ag/AgCl. With good repeatability and long-term stability, the c-MWCNTs-SnO2-GR-CS based biosensor offered an alternative for L-lysine biosensing. The practical applicability of the biosensor in two dietary supplements has also been addressed.

  17. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection.

    PubMed

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-03-24

    This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10(-8) M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved.

  18. Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale.

    PubMed

    Soleymani, Leyla; Li, Feng

    2017-04-28

    Over the past few decades, there has been tremendous interest in developing biosensing systems that combine high sensitivity and specificity with rapid sample-to-answer times, portability, low-cost operation, and ease-of-use. Miniaturizing the biosensor dimensions into the nanoscale has been identified as a strategy for addressing the functional requirements of point-of-care and wearable biosensors. However, it is important to consider that decreasing the critical dimensions of biosensing elements impacts the two most important performance metrics of biosensors: limit-of-detection and response time. Miniaturization into the nanoscale enhances signal-to-noise-ratio by increasing the signal density (signal/geometric surface area) and reducing background signals. However, there is a trade-off between the enhanced signal transduction efficiency and the longer time it takes to collect target analytes on sensor surfaces due to the increase in mass transport times. By carefully considering the signal transduction mechanisms and reaction-transport kinetics governing different classes of biosensors, it is possible to develop structure-level and device-level strategies for leveraging miniaturization toward creating biosensors that combine low limit-of-detection with rapid response times.

  19. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-01-01

    This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10−8 M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved. PMID:27023541

  20. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    PubMed

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  1. Functional design of electrolytic biosensor

    NASA Astrophysics Data System (ADS)

    Gamage Preethichandra, D. M.; Mala Ekanayake, E. M. I.; Onoda, M.

    2017-11-01

    A novel amperometric biosensbased on conjugated polypyrrole (PPy) deposited on a Pt modified ITO (indium tin oxide) conductive glass substrate and their performances are described. We have presented a method of developing a highly sensitive and low-cost nano-biosensor for blood glucose measurements. The fabrication method proposed decreases the cost of production significantly as the amount of noble metals used is minimized. A nano-corrugated PPy substrate was developed through pulsed electrochemical deposition. The sensitivity achieved was 325 mA/(Mcm2) and the linear range of the developed sensor was 50-60 mmol/l. Then the application of the electrophoresis helps the glucose oxidase (GOx) on the PPy substrate. The main reason behind this high enzyme loading is the high electric field applied across the sensor surface (working electrode) and the counter electrode where that pushes the nano-scale enzyme particles floating in the phosphate buffer solution towards the substrate. The novel technique used has provided an extremely high sensitivities and very high linear ranges for enzyme (GOx) and therefore can be concluded that this is a very good technique to load enzyme onto the conducting polymer substrates.

  2. A universal aptameric biosensor: Multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher.

    PubMed

    Hu, Rong; Zhang, Xi; Xu, Qiang; Lu, Dan-Qing; Yang, Yun-Hui; Xu, Quan-Qing; Ruan, Qiong; Mo, Liu-Ting; Zhang, Xiao-Bing

    2017-06-15

    A universal aptameric system based on the taking advantage of double-stranded DNA/perylene diimide (dsDNA/PDI) as the signal probe was developed for multiplexed detection of small molecules. Aptamers are single-stranded DNA or RNA oligonucleotides which are selected in vitro by a process known as systematic evolution of ligands by exponential enrichment. In this work, we synthesized a new kind of PDI and reported this aggregated PDI could quench the double-stranded DNA (dsDNA)-labeled fluorophores with a high quenching efficiency. The quenching efficiencies on the fluorescence of FAM, TAMRA and Cy5 could reach to 98.3%±0.9%, 97.2%±0.6% and 98.1%±1.1%, respectively. This broad-spectrum quencher was then adopted to construct a multicolor biosensor via a label-free approach. A structure-switching-triggered enzymatic recycling amplification was employed for signal amplification. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity towards small analytes. For other targets, changing the corresponding aptamer can achieve the goal. The quencher did not interfere with the catalytic activity of nuclease. The biosensor could be manipulated with similar sensitivity no matter in pre-addition or post-addition manner. Moreover, simultaneous and multiplexed analysis of several small molecules in homogeneous solution was achieved, demonstrating its potential application in the rapid screening of multiple biotargets. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  4. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  5. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    PubMed

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  6. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi

    2016-08-01

    ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.

  8. On the origin of enhanced sensitivity in nanoscale FET-based biosensors

    PubMed Central

    Shoorideh, Kaveh; Chui, Chi On

    2014-01-01

    Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861

  9. Enzyme-labeled Pt@BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination.

    PubMed

    Hu, Chenyi; Yang, Da-Peng; Zhu, Fengjuan; Jiang, Fengjing; Shen, Shuiyun; Zhang, Junliang

    2014-03-26

    Electrocatalytic reactions of glucose oxidation based on enzyme-labeled electrochemical biosensors demand a high enzymatic activity and fast electron transfer property to produce the amplified signal response. Through a "green" synthesis method, Pt@BSA nanocomposite was prepared as a biosensing interface for the first time. Herein we presented a convenient and effective glucose sensing matrix based on Pt@BSA nanocomposite along with the covalent adsorption of glucose oxidase (GOD). The electrocatalytic activity toward oxygen reduction was significantly enhanced due to the excellent bioactivity of anchored GOD and superior catalytic performance of interior platinum nanoparticles, which was gradually restrained with the addition of glucose. A sensitive glucose biosensor was then successfully developed upon the restrained oxygen reduction peak current. Differential pulse voltammetry (DPV) was employed to investigate the determination performance of the enzyme biosensor, resulting in a linear response range from 0.05 to 12.05 mM with an optimal detection limit of 0.015 mM. The as-proposed sensing technique revealed high selectivity against endogenous interfering species, satisfactory storage stability, acceptable durability, and favorable fabrication reproducibility with the RSD of 3.8%. During the practical application in human blood serum samples, this glucose biosensor obtained a good detection accuracy of analytical recoveries within 97.5 to 104.0%, providing an alternative scheme for glucose level assay in clinical application.

  10. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    PubMed

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    PubMed

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose.

  12. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.

    PubMed

    Zhybak, M; Beni, V; Vagin, M Y; Dempsey, E; Turner, A P F; Korpan, Y

    2016-03-15

    The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hydrolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The sensitivity was found to be 85 ± 3.4 mAM(-1)cm(-2) for the creatinine biosensor and 112 ± 3.36 mAM(-1)cm(-2) for the urea biosensor, with apparent Michaelis-Menten constants (KM,app), obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1-125 µM, with a limit of detection of 0.5 µM and a response time of 15s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good correlation with standard spectrophotometric clinical laboratory techniques was found. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development and testing of a fluorescence biosensor for glucose sensing

    NASA Astrophysics Data System (ADS)

    Aloraefy, Mamdouh; Pfefer, Joshua; Ramella-Roman, Jessica; Sapsford, Kim

    2012-06-01

    Rapid, accurate, and minimally-invasive biosensors for glucose measurement have the potential to enhance management of diabetes mellitus and improve patient outcome in intensive care settings. Recent studies have indicated that implantable biosensors based on Förster Resonance Energy Transfer (FRET) can provide high sensitivity in quantifying glucose concentrations. However, standard approaches for determining the potential for interference from other biological constituents have not been established. The aim of this work was to design and optimize a FRET-based glucose sensor and assess its specificity to glucose. A sensor based on competitive binding between concanavalin A and dextran, labeled with long-wavelength acceptor and donor fluorophores, was developed. This process included optimization of dextran molecular weight and donor concentration, acceptor to donor ratio, and hydrogel concentration, as well as the number of polymer layers for encapsulation. The biosensor performance was characterized in terms of its response to clinically relevant glucose concentrations. The potential for interference and the development of test methods to evaluate this effect were studied using a potential clinical interferent, maltose. Results indicated that our biosensor had a prediction accuracy of better than 11% and that the robustness to maltose was highly dependent on glucose level.

  14. Development of a Strategy Based on the Surface Plasmon Resonance Technology for Platelet Compatibility Testing.

    PubMed

    Wu, Chang-Lin; He, Jian-An; Gu, Da-Yong; Shao, Chao-Peng; Zhu, Yi; Dang, Xin-Tang

    2018-01-01

    This study was aimed to establish a novel strategy based on the surface plasmon resonance (SPR) technology for platelet compatibility testing. A novel surface matrix was prepared based on poly (OEGMA-co-HEMA) via surface-initiated polymerization as a biosensor surface platform. Type O universal platelets and donor platelets were immobilized on these novel matrices via amine-coupling reaction and worked as a capturing ligand for binding the platelet antibody. Antibodies binding to platelets were monitored in real time by injecting the samples into a microfluidic channel. Clinical serum samples (n = 186) with multiple platelet transfusions were assayed for platelet antibodies using the SPR technology and monoclonal antibody-immobilized platelet antigen (MAIPA) assay. The novel biosensor surface achieved nonfouling background and high immobilization capacity and showed good repeatability and stability after regeneration. The limit of detection of the SPR biosensor for platelet antibody was estimated to be 50 ng/mL. The sensitivity and specificity were 92% and 98.7%. It could detect the platelet antibody directly in serum samples, and the results were similar to MAIPA assay. A novel strategy to facilitate the sensitive and reliable detection of platelet compatibility for developing an SPR-based biosensor was established in this study. The SPR-based biosensor combined with novel surface chemistry is a promising method for platelet compatibility testing.

  15. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    NASA Astrophysics Data System (ADS)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07243c

  16. Flexure-FET biosensor to break the fundamental sensitivity limits of nanobiosensors using nonlinear electromechanical coupling

    PubMed Central

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad A.

    2012-01-01

    In this article, we propose a Flexure-FET (flexure sensitive field effect transistor) ultrasensitive biosensor that utilizes the nonlinear electromechanical coupling to overcome the fundamental sensitivity limits of classical electrical or mechanical nanoscale biosensors. The stiffness of the suspended gate of Flexure-FET changes with the capture of the target biomolecules, and the corresponding change in the gate shape or deflection is reflected in the drain current of FET. The Flexure-FET is configured to operate such that the gate is biased near pull-in instability, and the FET-channel is biased in the subthreshold regime. In this coupled nonlinear operating mode, the sensitivity (S) of Flexure-FET with respect to the captured molecule density (Ns) is shown to be exponentially higher than that of any other electrical or mechanical biosensor. In other words, while , classical electrical or mechanical biosensors are limited to Sclassical ∼ γ3NS or γ4 ln(NS), where γi are sensor-specific constants. In addition, the proposed sensor can detect both charged and charge-neutral biomolecules, without requiring a reference electrode or any sophisticated instrumentation, making it a potential candidate for various low-cost, point-of-care applications. PMID:22623527

  17. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  18. Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins

    NASA Astrophysics Data System (ADS)

    Melnyk, Yulia; Pavlova, Karyna; Myndrul, Valerii; Viter, Roman; Smyntyna, Valentyn; Iatsunskyi, Igor

    2017-08-01

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A(OTA) and Aflatoxine B1 (AfB1) has been developed. This biosensor was based on porous silicon (PSi) fabricated by metal-assisted chemical etching (MACE) and modified by antibodies against OTA/AfB1 (anti-OTA/anti-AfB1). Biofunctionalization method of the PSi surface by anti-OTA/ anti-AfB1 was developed. The changes of the PL intensity after interaction of the immobilized anti-OTA/anti-AfB1with OTA/AfB1 antigens were used as biosensor signal, allowing sensitive and selective detection of OTA/AfB1 antigens in BSA solution. The sensitivity of the reported optical biosensor towards OTA/AfB1 antigens is in the range from 10-3 to 102 ng/ml.

  19. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  20. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  1. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Lin, Yuehe

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatlymore » improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.« less

  2. Whole‐cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    PubMed Central

    Goers, Lisa; Ainsworth, Catherine; Goey, Cher Hui; Kontoravdi, Cleo; Freemont, Paul S.

    2017-01-01

    ABSTRACT Many high‐value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole‐cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole‐cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole‐cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole‐cell biosensors. Biotechnol. Bioeng. 2017;114: 1290–1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28112405

  3. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Rapid detection of Salmonella Typhimurium in chicken carcass using a SPR biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Shizhou; Lan, Yubin; Yin, Yongguang; Dasari, Thirumala R.

    2005-11-01

    The SPR biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor was specific to Salmonella Typhimurium at concentrations of 106 CFU/ml. Initial results show potential for its application for pathogenic bacteria monitoring.

  5. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods.

    PubMed

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-07-02

    We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  6. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    PubMed Central

    Lee, Kuang-Li; Wu, Tsung-Yeh; Hsu, Hsuan-Yeh; Yang, Sen-Yeu; Wei, Pei-Kuen

    2017-01-01

    We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications. PMID:28671600

  7. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide.

    PubMed

    Zhai, Chen; Guo, Yemin; Sun, Xia; Zheng, Yuhe; Wang, Xiangyou

    2014-05-10

    In this study, a novel acetylcholinesterase-based biosensor was fabricated. Acetylcholinesterase (AChE) was immobilized onto a glassy carbon electrode (GCE) with the aid of Cu-Mg-Al calcined layered double hydroxide (CLDH). CLDH can provide a bigger effective surface area for AChE loading, which could improve the precision and stability of AChE biosensor. However, the poor electroconductibility of CLDHs could lead to the low sensitivity of AChE biosensor. In order to effectively compensate the disadvantages of CLDHs, graphene-gold nanocomposites were used for improving the electron transfer rate. Thus, the graphene-gold nanocomposite (GN-AuNPs) was firstly modified onto the GCE, and then the prepared CLDH-AChE composite was immobilized onto the modified GCE to construct a sensitive AChE biosensor for pesticides detection. Relevant parameters were studied in detail and optimized, including the pH of the acetylthiocholine chloride (ATCl) solution, the amount of AChE immobilized on the biosensor and the inhibition time governing the analytical performance of the biosensor. The biosensor detected chlorpyrifos at concentrations ranging from 0.05 to 150μg/L. The detection limit for chlorpyrifos was 0.05μg/L. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Ahn, Jae-Hyuk; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu

    2009-06-01

    A unique direct electrical detection method of biomolecules, charge pumping, was demonstrated using a nanogap embedded field-effect-transistor (FET). With aid of a charge pumping method, sensitivity can fall below the 1 ng/ml concentration regime in antigen-antibody binding of an avian influenza case. Biomolecules immobilized in the nanogap are mainly responsible for the acute changes of the interface trap density due to modulation of the energy level of the trap. This finding is supported by a numerical simulation. The proposed detection method for biomolecules using a nanogap embedded FET represents a foundation for a chip-based biosensor capable of high sensitivity.

  9. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  10. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, themore » measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.« less

  11. Superior Sensitivity of Copper-Based Plasmonic Biosensors.

    PubMed

    Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S

    2018-04-17

    Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.

  12. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.

    PubMed

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-29

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  13. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity

    NASA Astrophysics Data System (ADS)

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-01

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  14. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    PubMed Central

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J.; Xie, Huaqing; Moussy, Francis; Milne, William I.

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  15. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide linearity, and good sensitivity with enhanced viability.

  16. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments.

    PubMed

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2006-02-28

    Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.

  17. Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures.

    PubMed

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-12-15

    A concept for characterizing a radiofrequency (RF) patch biosensor combined with volume-fixed structures is presented for timely monitoring of an individual's glucose levels based on frequency variation. Two types of patch biosensors-separately integrated with a backside slot (0.53μL) and a front-side tank (0.70μL) structure-were developed to achieve precise and efficient detection while excluding the effects of interference due to the liquidity, shape, and thickness of the tested glucose sample. A glucose test analyte at different concentrations (50-600mg/dL) was dropped into the volume-fixed structures. It fully interacted with the RF patch electromagnetic field, effectively and sensitively changing the resonance frequency and magnitude of the reflection coefficient. Measurement results based on the resonance frequency showed high sensitivity up to 1.13MHz and 1.97MHz per mg/dL, and low detection limits of 26.54mg/dL and 15.22mg/dL, for the two types of patch biosensors, respectively, as well as a short response time of less than 1s. Excellent reusability of the proposed biosensors was verified through three sets of measurements for each individual glucose sample. Regression analysis revealed a good linear correlation between glucose concentrations and the resonance frequency shift. Moreover, to facilitate a multi-parameter-sensitive detection of glucose, the magnitude of the reflection coefficient was also tested, and it showed a good linear correlation with the glucose concentration. Thus, the proposed approach can be adopted for distinguishing glucose solution levels, and it is a potential candidate for early-stage detection of glucose levels in diabetes patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device.

    PubMed

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S; Davis, Ronald W

    2013-11-22

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow 'real-time' detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  19. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.

    2013-11-01

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  20. Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Han, Kun; Wang, Bidou; Luo, Gangyin; Wang, Peng; Chen, Mingli; Tang, Yuguo

    2015-03-01

    In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag+ is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag+, cytosine-Ag+-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag+ can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag+ from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.

  1. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods †

    PubMed Central

    Gonzalez-Navarro, Felix F.; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A.; Flores-Rios, Brenda L.; Ibarra-Esquer, Jorge E.

    2016-01-01

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization. PMID:27792165

  2. Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies.

    PubMed

    Soler, Maria; Estevez, M-Carmen; Alvarez, Mar; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M

    2014-01-29

    Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.

  3. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    phase biosensor. Zinc oxide (ZnO) yielded results far superior to the tantalum pentoxide ( Ta2O5 ) alternative that was attempted. Preliminary results...secondary crosslinking with GMBS was performed for ZnO surfaces coated with MTS and MPA. To provide visual confirmation of the density and uniformity of...contained 8 devices coated with the same antibody species. Fluoroscein Isothyocyanate (FITC) was selected as the negative control since FITC is a

  4. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  5. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned bymore » OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.« less

  6. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection.

    PubMed

    Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet

    2015-08-15

    A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biomolecule detection based on Si single-electron transistors for practical use

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Kudo, Takashi; Furuse, Sadaharu

    2013-07-01

    Experimental and theoretical analyses demonstrated that ultra-sensitive biomolecule detection can be achieved using a Si single-electron transistor (SET). A multi-island channel structure was used to enable room-temperature operation. Coulomb oscillation increases transconductance without increasing channel width, which increases detection sensitivity to a charged target. A biotin-modified SET biosensor was used to detect streptavidin at a dilute concentration. In addition, an antibody-functionalized SET biosensor was used for immunodetection of prostate-specific antigen, demonstrating its suitability for practical use. The feasibility of ultra-sensitive detection of biomolecules for practical use by using a SET biosensor was clearly proven through this systematic study.

  8. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  9. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    PubMed

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    PubMed

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    PubMed

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor.

    PubMed

    Razmi, Nasrin; Baradaran, Behzad; Hejazi, Maryam; Hasanzadeh, Mohammad; Mosafer, Jafar; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2018-08-15

    Platelet-derived growth factor (PDGF-BB), a significant serum cytokine, is an important protein biomarker in diagnosis and recognition of cancer, which straightly rolled in proceeding of various cell transformations, including tumor growth and its development. Fibrosis, atherosclerosis are certain appalling diseases, which PDGF-BB is near to them. Generally, the expression amount of PDGF-BB increases in human life-threatening tumors serving as an indicator for tumor angiogenesis. Thus, identification and quantification of PDGF-BB in biomedical fields are particularly important. Affinity chromatography, immunohistochemical methods and enzyme-linked immunosorbent assay (ELISA), conventional methods for PDGF-BB detection, requiring high-cost and complicated instrumentation, take too much time and offer deficient sensitivity and selectivity, which restrict their usage in real applications. Hence, it is essential to design and build enhanced systems and platforms for the recognition and quantification of protein biomarkers. In the past few years, biosensors especially aptasensors have been received noticeable attention for the detection of PDGF-BB owing to their high sensitivity, selectivity, accuracy, fast response, and low cost. Since the role and importance of developing aptasensors in cancer diagnosis is undeniable. In this review, optical and electrochemical aptasensors, which have been applied by many researchers for PDGF-BB cancer biomarker detection, have been mentioned and merits and demerits of them have been explained and compared. Efforts related to design and development of aptamer-based biosensors using nanoparticles for sensitive and selective detection of PDGF-BB have been reviewed considering: Aptamer importance as recognition elements, principal, application and the recent improvements and developments of aptamer based optical and electrochemical methods. In addition, commercial biosensors and future perspectives for rapid and on-site detection of PDGF-BB have been summarized. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Field Trial of the CareStart Biosensor Analyzer for the Determination of Glucose-6-Phosphate Dehydrogenase Activity in Haiti.

    PubMed

    Weppelmann, Thomas A; von Fricken, Michael E; Wilfong, Tara D; Aguenza, Elisa; Philippe, Taina T; Okech, Bernard A

    2017-10-01

    Throughout many developing and tropical countries around the world, malaria remains a significant threat to human health. One barrier to malaria elimination is the ability to safely administer primaquine chemotherapy for the radical cure of malaria infections in populations with a high prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the current study, a field trial of the world's first quantitative, point-of-care assay for measuring G6PD activity was conducted in Haiti. The performance of the CareStart Biosensor Analyzer was compared with the gold standard spectrophotometric assay and genotyping of the G6PD allele in schoolchildren ( N = 343) from the Ouest Department of Haiti. In this population, 19.5% of participants (67/343) had some form of G6PD deficiency (< 60% residual activity) and 9.9% (34/343) had moderate-to-severe G6PD deficiency (< 30% residual activity). Overall, 18.95% of participants had the presence of the A-allele (65/343) with 7.87% (27/343) considered at high risk for drug-induced hemolysis (hemizygous males and homozygous females). Compared with the spectrophotometric assay, the sensitivity and specificity to determine participants with < 60% residual activity were 53.7% and 94.6%, respectively; for participants with 30% residual activity, the sensitivity and specificity were 5.9% and 99.7%, respectively. The biosensor overestimated the activity in deficient individuals and underestimated it in participants with normal G6PD activity, indicating the potential for a systematic measurement error. Thus, we suggest that the current version of the biosensor lacks adequate sensitivity and should be improved prior to its use as a point-of-care diagnostic for G6PD deficiency.

  14. A novel glucose oxidase biosensor based on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) modified electrode.

    PubMed

    Guler, Muhammet; Turkoglu, Vedat; Kivrak, Arif

    2015-08-01

    In the study, the electrochemical behavior of glucose oxidase (GOx) immobilized on poly([2,2';5',2″]-terthiophene-3'-carbaldehyde) (poly(TTP)) modified glassy carbon electrode (GCE) was investigated. The biosensor (poly(TTP)/GOx/GCE) showed a pair of redox peaks in 0.1 M phosphate buffer (pH 7.4) solution in the absence of oxygen the co-substrate of GOx. In here, Poly(TTP)/GOx/GCE biosensor acts as the co-substrate instead of oxygen. Upon the addition of glucose, the reduction and oxidation peak currents increased until the active site of GOx was fully saturated with glucose. The apparent m was estimated 26.13 mM from Lineweaver-Burk graph. The biosensor displayed a good stability and bioactivity. The biosensor showed a high sensitivity (56.1 nA/mM), a linear range (from 0.5 to 20.15 mM), and a good reproducibility with 3.6% of relative standard deviation. In addition, the interference currents of glycin, ascorbic acid, histidine, uric acid, dopamine, arginine, and fructose on GOx biosensor were investigated. All that substances exhibited an interference current under 10%. It was not shown a marked difference between GOx biosensor and spectrophotometric measurement of glucose in serum examples. UV-visible spectroscopy and scanning electron microscopy (SEM) experiments of the biosensor were also performed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor.

    PubMed

    Hajian, A; Ghodsi, J; Afraz, A; Yurchenko, O; Urban, G

    2016-12-01

    This work describes the development of a new biosensor for methylparaben determination using electrocatalytic properties of hemoglobin in the presence of hydrogen peroxide. The voltammetric oxidation of methylparaben by the proposed biosensor in phosphate buffer (pH=7.0), a physiological pH, was studied and it was confirmed that methylparaben undergoes a one electron-one proton reaction in a diffusion-controlled process. The biosensor was fabricated by carbon paste electrode modified with hemoglobin and multiwalled carbon nanotube. Based on the excellent electrochemical properties of the modified electrode, a sensitive voltammetric method was used for determination of methylparaben within a linear range from 0.1 to 13μmolL(-1) and detection limit of 25nmolL(-1). The developed biosensor possessed accurate and rapid response to methylparaben and showed good sensitivity, stability, and repeatability. Finally, the applicability of the proposed biosensor was verified by methylparaben evaluation in various real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Measurement of salivary cortisol by a chemiluminescent organic-based immunosensor.

    PubMed

    Pires, N M M; Dong, T

    2014-01-01

    A highly sensitive chemiluminescent immunoassay (CLIA) using a sensitive organic photodetector was developed to detect human cortisol, an important biomarker for stress-related diseases. The developed CLIA was performed onto gold-coated glass chips, on which anti-cortisol antibodies were immobilised and chemiluminescent horseradish peroxidase-luminol-peroxide reactions were generated. Using cortisol-spiked artificial saliva samples, the CLIA biosensor showed a linear range of detection between 0.1 ng/mL and 175 ng/mL and a detection limit of 80 pg/mL. The sensor response was highly specific to cortisol and did not vary significantly between assays. The results indicate the potential clinical application of the CLIA sensor. Furthermore, the simple layered structure of the organic photodetector may encourage the realisation of integrated optical biosensors for point-of-use measurement of salivary cortisol levels.

  17. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  18. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects.

    PubMed

    Uniyal, Shivani; Sharma, Rajesh Kumar

    2018-09-30

    Chlorpyrifos (CP), an organophosphate insecticide is broadly used in the agricultural and industrial sectors to control a broad-spectrum of insects of economically important crops. CP detection has been gaining prominence due to its widespread contamination in different environmental matrices, high acute toxicity, and potential to cause long-term environmental and ecological damage even at trace levels. Traditional chromatographic methods for CP detection are complex and require sample preparation and highly skilled personnel for their operation. Over the past decades, electrochemical biosensors have emerged as a promising technology for CP detection as these circumvent deficiencies associated with classical chromatographic techniques. The advantageous features such as appreciable detection limit, miniaturization, sensitivity, low-cost and onsite detection potential are the propulsive force towards sustainable growth of electrochemical biosensing platforms. Recent development in enzyme immobilization methods, novel surface modifications, nanotechnology and fabrication techniques signify a foremost possibility for the design of electrochemical biosensing platforms with improved sensitivity and selectivity. The prime objective of this review is to accentuate the recent advances in the design of biosensing platforms based on diverse biomolecules and biomimetic molecules with unique properties, which would potentially fascinate their applicability for detection of CP residues in real samples. The review also covers the sensing principle of the prime biomolecule and biomimetic molecule based electrochemical biosensors along with their analytical performance, advantages and shortcomings. Present challenges and future outlooks in the field of electrochemical biosensors based CP detection are also discussed. This deep analysis of electrochemical biosensors will provide research directions for further approaching towards commercial development of the broad range of organophosphorus compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  20. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  1. Open Loop Structure Low Cost Integrated Differential Inductive Micro Magnetic Volumetric Bio-Sensors

    NASA Astrophysics Data System (ADS)

    Khodadadi, Mohammad; Chang, Long; Litvinov, Dimitri

    This investigation proposes a study, model, simulate and experiment innovative very low cost Magnetic induction biosensor for point of care diagnostics. The biosensor consists of 2 ``semi-loops'' in a micro fluidic channel, one as a sensor and one as a reference, the design takes advantage of microfabrication processes to produce more precise structures to improve sensitivity. Besides the attractively low cost, this biosensor has many advantages. Since the detector is basically a shaped wire, it is inherently robust and reliable. Typical errors in fabricating the wires will not affect its performance and it is sensing volumetric, unlike GMR-based sensors used in biosensor systems that boast single particle detection. Due to small dimensions the sensors do not need to be calibrated. This sensor also has a large range of detection since its sensitivity is proportional to the excitation frequency. Being able to sense Magnetic nano particles in the volume is an advantage in term of trapping MNPs and sensitivity and functionality. Basically, this new brilliant design, fill the gap between the fabricated sensors and hand wounded sensors.

  2. Rapid, quantitative and sensitive immunochromatographic assay based on stripping voltammetric detection of a metal ion label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fang; Wang, Kaihua; Lin, Yuehe

    2005-10-10

    A novel, sensitive immunochromatographic electrochemical biosensor (IEB) which combines an immunochromatographic strip technique with an electrochemical detection technique is demonstrated. The IEB takes advantages of the speed and low-cost of the conventional immunochromatographic test kits and high-sensitivity of stripping voltammetry. Bismuth ions (Bi3+) have been coupled with the antibody through the bifunctional chelating agent diethylenetriamine pentaacetic acid (DTPA). After immunoreactions, Bi3+ was released and quantified by anodic stripping voltammetry at a built-in single-use screen-printed electrode. As an example for the applications of such novel device, the detection of human chorionic gonadotronphin (HCG) in a specimen was performed. This biosensor providesmore » a more user-friendly, rapid, clinically accurate, and less expensive immunoassay for such analysis in specimens than currently available test kits.« less

  3. Aptamer-Immobilized Surface Plasmon Resonance Biosensor for Rapid and Sensitive Determination of Virulence Determinant.

    PubMed

    Song, Myeong-Sub; Sekhon, Simranjeet Singh; Shin, Woo-Ri; Rhee, Sung-Keun; Ko, Jung Ho; Kim, Sang Yong; Min, Jiho; Ahn, Ji-Young; Kim, Yang-Hoon

    2018-05-01

    Shigella sonnei isolate invasion plasmid antigen protein, IpaH, was successfully expressed in recombinant overexpression bacterial system. The soluble expression IpaH was enhanced with molecular chaperon co-expressed environment. Specific aptamer IpaH17 was isolated through the SELEX process and showed fM binding affinity. IpaH17-SPR biosensor platform was involved to verify the binding sensitivity and specificity. The IpaH concentration dependent IpaH17-SPR sensor response was highly linear with a linear regression constant of 99.4% in the range between 0 and 100 ng/mL. In addition, S. sonnei revealed the specific RU value and detected in a real-time manner within 1 hour. Our study indicated that IpaH17-SPR sensor can allow for rapid, sensitive and specific determination of Shigella sonnei virulent factor.

  4. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  5. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors.

    PubMed

    Eguílaz, Marcos; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Martínez, María T; Rivas, Gustavo

    2016-12-15

    We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation.

    PubMed

    Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit

    2018-06-01

    Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.

  7. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.

    PubMed

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N

    2017-08-23

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.

  8. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection

    PubMed Central

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N.

    2017-01-01

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW. PMID:28832523

  9. Recent advances in rapid pathogen detection method based on biosensors.

    PubMed

    Chen, Ying; Wang, Zhenzhen; Liu, Yingxun; Wang, Xin; Li, Ying; Ma, Ping; Gu, Bing; Li, Hongchun

    2018-06-01

    As strain variation and drug resistance become more pervasive, the prevention and control of infection have been a serious problem in recent years. The detection of pathogen is one of the most important parts of the process of diagnosis. Having a series of advantages, such as rapid response, high sensitivity, ease of use, and low cost, biosensors have received much attention and been studied deeply. Moreover, relying on its characteristics of small size, real time, and multiple analyses, biosensors have developed rapidly and used widely and are expected to be applied for microbiological detection in order to meet higher accuracy required by clinical diagnosis. The main goal of this contribution is not to simply collect and list all papers related to pathogen detection based on biosensors published recently, but to discuss critically the development and application of many kinds of biosensors such as electrochemical (amperometric, impedimetric, potentiometric, and conductometric), optical (fluorescent, fibre optic and surface plasmon resonance), and piezoelectric (quartz crystal microbalances and atomic force microscopy) biosensors in pathogen detection as well as the comparisons with the existing clinical detection methods (traditional culture, enzyme-linked immunosorbent assay, polymerase chain reaction, and mass spectrometry).

  10. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  11. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors

    PubMed Central

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870

  12. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  13. Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids.

    PubMed

    Rauf, Sana; Zhang, Ling; Ali, Asghar; Liu, Yang; Li, Jinghong

    2017-02-24

    Detection of very low amounts of illicit drugs such as cocaine in clinical fluids like serum continues to be important for many areas in the fight against drug trafficking. Herein, we constructed a label-free nanopore biosensor for rapid and highly sensitive detection of cocaine in human serum and saliva samples based on target-induced strand release strategy. In this bioassay, an aptamer for cocaine was prehybridized with a short complementary DNA. Owing to cocaine specific binding with aptamer, the short DNA strand was displaced from aptamer and translocation of this output DNA through α-hemolysin nanopore generated distinct spike-like current blockages. When plotted in double-logarithmic scale, a linear relationship between target cocaine concentration and output DNA event frequency was obtained in a wide concentration range from 50 nM to 100 μM of cocaine, with the limit of detection down to 50 nM. In addition, this aptamer-based sensor method was successfully applied for cocaine detection in complex biological fluids like human saliva and serum samples with great selectivity. Simple preparation, low cost, rapid, label-free, and real sample detection are the motivating factors for practical application of the proposed biosensor.

  14. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  15. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  16. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.

    PubMed

    Siqueira, José R; Abouzar, Maryam H; Poghossian, Arshak; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2009-10-15

    Silicon-based sensors incorporating biomolecules are advantageous for processing and possible biological recognition in a small, reliable and rugged manufactured device. In this study, we report on the functionalization of field-effect (bio-)chemical sensors with layer-by-layer (LbL) films containing single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. A capacitive electrolyte-insulator-semiconductor (EIS) structure modified with carbon nanotubes (EIS-NT) was built, which could be used as a penicillin biosensor. From atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) images, the LbL films were shown to be highly porous due to interpenetration of SWNTs into the dendrimer layers. Capacitance-voltage (C/V) measurements pointed to a high pH sensitivity of ca. 55 mV/pH for the EIS-NT structures. The biosensing ability towards penicillin of an EIS-NT-penicillinase biosensor was also observed as the flat-band voltage shifted to lower potentials at different penicillin concentrations. A dynamic response of penicillin concentrations, ranging from 5.0 microM to 25 mM, was evaluated for an EIS-NT with the penicillinase enzyme immobilized onto the surfaces, via constant-capacitance (ConCap) measurements, achieving a sensitivity of ca. 116 mV/decade. The presence of the nanostructured PAMAM/SWNT LbL film led to sensors with higher sensitivity and better performance.

  17. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor.

    PubMed

    Zhang, Zhihong; Guo, Chuanpan; Zhang, Shuai; He, Linghao; Wang, Minghua; Peng, Donglai; Tian, Junfeng; Fang, Shaoming

    2017-03-15

    We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL -1 . In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine.

    PubMed

    Monošík, Rastislav; Ukropcová, Dana; Streďanský, Miroslav; Šturdík, Ernest

    2012-02-01

    Amperometric biosensors based on gold planar or nanocomposite electrode containing multiwalled carbon nanotubes for determination of glycerol were developed. The biosensors were constructed by immobilization of a novel multienzyme cascade consisting of glycerol kinase/creatine kinase/creatinase/sarcosine oxidase/peroxidase between a chitosan "sandwich." A measuring buffer contained adenosine 5'-triphosphate (ATP), creatine phosphate, and an artificial electrochemical mediator ferrocyanide. The currents proportional to glycerol concentration were measured at working potential of -50 mV against Ag/AgCl reference electrode. The biosensors showed linearity over the ranges of 5-640 μM and 5-566 μM with detection limits of 1.96 and 2.24 μM and sensitivities of 0.80 and 0.81 nA μM(-1), respectively. Both types of biosensors had a response time of 70s. The biosensors demonstrated satisfactory operational stability (no loss of sensitivity after 90 consecutive measurements) and excellent storage stability (90% of the initial sensitivity after 15 months of storage at room temperature). The results obtained from measurements of wines correlated well with those obtained with an enzymatic-spectrophotometric assay. The presented multienzyme cascade can be used also for determination of triglycerides or various kinase substrates when glycerol kinase is replaced by other kinases. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    PubMed

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin).

    PubMed

    Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili

    2013-12-15

    A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification.

    PubMed

    Liu, Zhongyuan; Zhang, Wei; Zhu, Shuyun; Zhang, Ling; Hu, Lianzhe; Parveen, Saima; Xu, Guobao

    2011-11-15

    Combining the advantages of signal-on strategy and nicking endonuclease assisted electrochemistry signal amplification (NEAESA), a new sensitive and signal-on electrochemical DNA biosensor for the sequence specific DNA detection based on NEAESA has been developed for the first time. A Hairpin-shape probe (HP), containing the target DNA recognition sequence, is thiol-modified at 5' end and immobilized on gold electrode via Au-S bonding. Subsequently, the HP modified electrode is hybridized with target DNA to form a duplex. Then the nicking endonuclease is added and nicks the HP strand in the duplex. After nicking, 3'-ferrocene (Fc)-labeled part complementary probe (Fc-PCP) is introduced on the electrode surface by hybridizing with the thiol-modified HP fragment, which results in the generation of electrochemical signal. Hence, the DNA biosensor is constructed successfully. The present DNA biosensor shows a wide linear range of 5.0×10(-13)-5.0×10(-8)M for detecting target DNA, with a low detection limit of 0.167pM. The proposed strategy does not require any amplifying labels (enzymes, DNAzymes, nanoparticles, etc.) for biorecognition events, which avoids false-positive results to occur frequently. Moreover, the strategy has the benefits of simple preparation, convenient operation, good selectivity, and high sensitivity. With the advantages mentioned above, this simple and sensitive strategy has the potential to be integrated in portable, low cost and simplified devices for diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    PubMed

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-06-13

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  3. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    PubMed

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  4. Aptamer-functionalized nano-biosensors.

    PubMed

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  5. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  6. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    PubMed

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-03

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions.

  7. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film.

    PubMed

    Ibáñez-Redín, Gisela; Silva, Tiago Almeida; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2018-09-01

    Carbon Black (CB) has acquired a prominent position as a carbon nanomaterial for the development of electrochemical sensors and biosensors due to its low price and extraordinary electrochemical and physical properties. These properties are highly dependent on the surface chemistry and thus, the effect of functionalization has been widely studied for different applications. Meanwhile, the influence of CB functionalization over its properties for electroanalytical applications is still being poorly explored. In this study, we describe the use of chemically functionalized CB Vulcan XC 72R for the development of sensitive electrochemical biosensors. The chemical pre-treatment increased the material wettability by raising the concentration of surface oxygenated functional groups verified from elemental analysis and FTIR measurements. In addition, it was observed an enhancement of almost 100-fold on the electron transfer rate constant (k 0 ) related to unfunctionalized CB, confirming a remarkable improvement of the electrocatalytic properties. Finally, we constructed a Tyrosinase (Tyr) biosensor based on functionalized CB and dihexadecylphosphate (DHP) for the determination of catechol in water samples. The resulting device displayed an excellent stability with a limit of detection of 8.7 × 10 -8  mol L -1 and a sensitivity of 539 mA mol -1  L. Our results demonstrate that functionalized CB provides an excellent platform for biosensors development. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  9. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    PubMed

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Need and Potential of Biosensors to Detect Dioxins and Dioxin-Like Polychlorinated Biphenyls along the Milk, Eggs and Meat Food Chain

    PubMed Central

    Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688

  11. The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain.

    PubMed

    Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G

    2011-01-01

    Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.

  12. Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system.

    PubMed

    Wang, Wei; Wang, Yi; Tu, Liang; Klein, Todd; Feng, Yinglong; Li, Qin; Wang, Jian-Ping

    2014-04-15

    We have demonstrated a novel sensing strategy employing a giant magnetoresistance (GMR) biosensor and DNA chemistry for the detection of mercuric ion (Hg(2+)). This assay takes advantages of high sensitivity and real-time signal readout of GMR biosensor and high selectivity of thymine-thymine (T-T) pair for Hg(2+). The assay has a detection limit of 10 nM in both buffer and natural water, which is the maximum mercury level in drinking water regulated by U.S. Environmental Protection Agency (EPA). The magnitude of the dynamic range for Hg(2+) detection is up to three orders (10 nM to 10 μM). Herein, GMR sensing technology is first introduced into a pollutant monitoring area. It can be foreseen that the GMR biosensor could become a robust contender in the areas of environmental monitoring and food safety testing.

  13. Bioorthogonal in Situ Hydrogels Based on Polyether Polyols for New Biosensor Materials with High Sensitivity.

    PubMed

    Herrmann, Anna; Kaufmann, Lena; Dey, Pradip; Haag, Rainer; Schedler, Uwe

    2018-04-04

    Both noncovalent and covalent encapsulations of active biomolecules, for example, proteins and oligonucleotides, for a new biosensor matrix in an in situ bioorthogonal hydrogel formation via a strain-promoted azide-alkyne cycloaddition reaction were investigated. Unspecific interaction between the gel and the biomolecules as well as protein denaturation was prevented by the bioorthogonal gel components, which ensure a uniform aqueous environment in the hydrogel network. No leaching of the active biomolecules was observed. Additionally, a much higher and also adjustable loading of biomolecules in the hydrogel matrix was achieved compared to conventional biosensor surfaces, where the sensor molecules are immobilized on monolayers (2D surfaces) or brushlike structures (3D surfaces). Spotting experiments of the hydrogel confirm the possibility to use this new surface for microarray-based multiplex applications which require very high signal-to-noise ratios.

  14. A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor.

    PubMed

    Kim, Yong Kwan; Lim, Seong-In; Choi, Sarah; Cho, In-Soo; Park, Eun-Hye; An, Dong-Jun

    2015-07-01

    Rapid and accurate diagnosis is crucial to reduce both the shedding and clinical signs of canine parvovirus (CPV). The quartz crystal microbalance (QCM) is a new tool for measuring frequency changes associated with antigen-antibody interactions. In this study, the QCM biosensor and ProLinker™ B were used to rapidly diagnosis CPV infection. ProLinker™ B enables antibodies to be attached to a gold-coated quartz surface in a regular pattern and in the correct orientation for antigen binding. Receiver operating characteristics (ROC) curves were used to set a cut-off value using reference CPVs (two groups: one CPV-positive and one CPV-negative). The ROC curves overlapped and the point of intersection was used as the cut-off value. A QCM biosensor with a cut-off value of -205 Hz showed 95.4% (104/109) sensitivity and 98.0% (149/152) specificity when used to test 261 field fecal samples compared to PCR. In conclusion, the QCM biosensor described herein is eminently suitable for the rapid diagnosis of CPV infection with high sensitivity and specificity. Therefore, it is a promising analytical tool that will be useful for clinical diagnosis, which requires rapid and reliable analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole-Chitosan-Titanium Dioxide Nanocomposite Films.

    PubMed

    Al-Mokaram, Ali M A Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M; Mahmud, Habibun Nabi Muhammad Ekramul

    2017-05-31

    The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO₂ in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1-14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO₂ nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  16. Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection.

    PubMed

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2017-03-01

    Nanostructured nickel oxide (NiO) thin film has been explored as a matrix to develop a reagentless biosensor for free and total cholesterol as well as low density lipoprotein (LDL) detection. The redox property of the matrix has been exploited to enhance the electron transfer between the enzyme and the electrode as well as to eliminate the toxic mediator in solution. X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy were carried out to characterize the NiO thin film. Biosensing response studies were accomplished using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The developed biosensors exhibited a high sensitivity of 27 and 63 μA/mM/cm 2 over a linear range of 0.12-10.23 and 1-12 mM, respectively, for free and total cholesterol. Reagentless estimation of LDL was also achieved over the wide range 0.018-0.5 μM with a sensitivity of 0.12 mA/μM/cm 2 . The results are extremely promising for the realization of an integrated biosensor for complete detection of cholesterol in the serum samples. Graphical Abstract Reagentless sensing mechanism of (a) free cholesterol and (b) total cholesterol using nanostructured NiO matrix.

  17. Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-Chips

    PubMed Central

    Rahman, Mohammed M.

    2014-01-01

    A reusable and mediator-free cholesterol biosensor based on cholesterol oxidase (ChOx) was fabricated based on self-assembled monolayer (SAM) of thioglycolic acid (TGA) (covalent enzyme immobilization by dropping method) using bio-chips. Cholesterol was detected with modified bio-chip (Gold/Thioglycolic-acid/Cholesterol-oxidase i.e., Au/TGA/ChOx) by reliable cyclic voltammetric (CV) technique at room conditions. The Au/TGA/ChOx modified bio-chip sensor demonstrates good linearity (1.0 nM to 1.0 mM; R = 0.9935), low-detection limit (∼0.42 nM, SNR∼3), and higher sensitivity (∼74.3 µAµM−1cm−2), lowest-small sample volume (50.0 μL), good stability, and reproducibility. To the best of our knowledge, this is the first statement with a very high sensitivity, low-detection limit, and low-sample volumes are required for cholesterol biosensor using Au/TGA/ChOx-chips assembly. The result of this facile approach was investigated for the biomedical applications for real samples at room conditions with significant assembly (Au/TGA/ChOx) towards the development of selected cholesterol biosensors, which can offer analytical access to a large group of enzymes for wide range of biomedical applications in health-care fields. PMID:24949733

  18. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    PubMed Central

    Gan, Ning; Yang, Xin; Xie, Donghua; Wu, Yuanzhao; Wen, Weigang

    2010-01-01

    A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis. PMID:22315558

  19. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor

    PubMed Central

    Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi

    2016-01-01

    ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM−1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2–1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future. PMID:27572675

  20. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  1. Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzhao; Liu, Yiwei; Zhan, Qingfeng; Liu, J. Ping; Li, Run-Wei

    2017-05-01

    A rapid method for the sensitive detection of bacteria using magnetic immunoassay, which are measured with a tunneling magnetoresistance (TMR) sensor, is described. For the measurement of Escherichia coli O157:H7 (E. coli O157:H7) bacteria, the target was labeled by magnetic beads through magnetic immunoassay. The magnetic beads produce a weak magnetic fringe field when external field is applied, thus induce the magnetoresistance change of TMR sensor. A detection limit of 100 CFU/mL E. coli O157:H7 bacteria in 5 hours was obtained. With its high sensitive and rapid detection scheme based on the TMR biosensor, the detection system is an excellent candidate suitable and promising for food safety and biomedical detection.

  2. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, R P.; Wang, Joseph; Block, I

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25more » and 6 nA/{micro}M, respectively.« less

  3. Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen.

    PubMed

    Nordin, Noordiana; Yusof, Nor Azah; Radu, Son; Hushiarian, Roozbeh

    2018-06-03

    Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm 2 ). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.

  4. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.

    PubMed

    Dekker, Linda; Polizzi, Karen M

    2017-10-01

    Biosensors use biological elements to detect or quantify an analyte of interest. In bioprocessing, biosensors are employed to monitor key metabolites. There are two main types: fully biological systems or biological recognition coupled with physical/chemical detection. New developments in chemical biosensors include multiplexed detection using microfluidics. Synthetic biology can be used to engineer new biological biosensors with improved characteristics. Although there have been few biosensors developed for bioprocessing thus far, emerging trends can be applied in the future. A range of new platform technologies will enable rapid engineering of new biosensors based on transcriptional activation, riboswitches, and Förster Resonance Energy Transfer. However, translation to industry remains a challenge and more research into the robustness biosensors at scale is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles

    PubMed Central

    Bertok, Tomas; Sediva, Alena; Katrlik, Jaroslav; Gemeiner, Pavol; Mikula, Milan; Nosko, Martin; Tkac, Jan

    2016-01-01

    We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinylalcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade-1 and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade-1 with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade-1. These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. PMID:23601864

  6. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    NASA Astrophysics Data System (ADS)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  7. A reduced graphene oxide based electrochemical biosensor for tyrosine detection.

    PubMed

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-24

    In this paper, a 'green' and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10(-7) M to 2 × 10(-5) M with a detection limitation of 7.5 × 10(-8) M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  8. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  9. Highly sensitive "signal-on" electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction.

    PubMed

    Lou, Jing; Wang, Zhaoyin; Wang, Xiao; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-10-07

    A "signal-on" electrochemiluminescent DNA biosensing platform was proposed based on the dual quenching and strand displacement reaction. This novel "signal-on" detection strategy revealed its sensitivity in achieving a detection limit of 2.4 aM and its selectivity in distinguishing single nucleotide polymorphism of target DNA.

  10. Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection.

    PubMed

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni-Pd/core-shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni-Pd/core-shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM(-1) cm(-2)), and a wide, useful linear range (0.1-500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    PubMed

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  12. A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene.

    PubMed

    Barsan, Madalina M; David, Melinda; Florescu, Monica; Ţugulea, Laura; Brett, Christopher M A

    2014-10-01

    The layer-by-layer (LbL) technique has been used for the construction of a new enzyme biosensor. Multilayer films containing glucose oxidase, GOx, and nitrogen-doped graphene (NG) dispersed in the biocompatible positively-charged polymer chitosan (chit(+)(NG+GOx)), together with the negatively charged polymer poly(styrene sulfonate), PSS(-), were assembled by alternately immersing a gold electrode substrate in chit(+)(NG+GOx) and PSS(-) solutions. Gravimetric monitoring during LbL assembly by an electrochemical quartz microbalance enabled investigation of the adsorption mechanism and deposited mass for each monolayer. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the LbL modified electrodes, in order to establish the contribution of each monolayer to the overall electrochemical properties of the biosensor. The importance of NG in the biosensor architecture was evaluated by undertaking a comparative study without NG in the chit layer. The GOx biosensor's analytical properties were evaluated by fixed potential chronoamperometry and compared with similar reported biosensors. The biosensor operates at a low potential of -0.2V vs., Ag/AgCl, exhibiting a high sensitivity of 10.5 μA cm(-2) mM(-1), and a detection limit of 64 μM. This study shows a simple approach in developing new biosensor architectures, combining the advantages of nitrogen-doped graphene with the LbL technique for enzyme immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications.

    PubMed

    Gessei, Tomoko; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2015-09-21

    Accumulation of sorbitol in the tissue is known to cause microvascular diabetic complications. In this paper, a fiber-optic biosensor for sorbitol which is used as a biomarker of diabetic complications was developed and tested. The biosensor used a sorbitol dehydrogenase from microorganisms of the genus Flavimonas with high substrate specificity and detected the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) by the enzymatic reaction. An ultraviolet light emitting diode (UV-LED) was used as the excitation light source of NADH. The fluorescence of NADH was detected using a spectrometer or a photomultiplier tube (PMT). The UV-LED and the photodetector were coupled using a Y-shaped optical fiber. In the experiment, an optical fiber probe with a sorbitol dehydrogenase immobilized membrane was placed in a cuvette filled with a phosphate buffer containing the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). The changes in NADH fluorescence intensity were measured after adding a standard sorbitol solution. According to the experimental assessment, the calibration range of the sorbitol biosensor systems using a spectrometer and a PMT was 5.0-1000 μmol L(-1) and 1.0-1000 μmol L(-1), respectively. The sorbitol biosensor system using the sorbitol dehydrogenase from microorganisms of the genus Flavimonas has high selectivity and sensitivity compared with that from sheep liver. The sorbitol biosensor allows for point-of-care testing applications or daily health care tests for diabetes patients.

  14. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.

    2018-06-01

    Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).

  15. Effect of platinum nanoparticle deposition parameters on hydrogen peroxide transduction for applications in wearable electrochemical glucose biosensors

    NASA Astrophysics Data System (ADS)

    Cargill, Allison A.; Neil, Kathrine M.; Hondred, John A.; McLamore, Eric S.; Claussen, Jonathan C.

    2016-05-01

    Enhanced interest in wearable biosensor technology over the past decade is directly related to the increasing prevalence of diabetes and the associated requirement of daily blood glucose monitoring. In this work we investigate the platinum-carbon transduction element used in traditional first-generation glucose biosensors which rely on the concentration of hydrogen peroxide produced by the glucose-glucose oxidase binding scheme. We electrodeposit platinum nanoparticles on a commercially-available screen printed carbon electrode by stepping an applied current between 0 and 7.12 mA/cm2 for a varying number of cycles. Next, we examine the trends in deposition and the effect that the number of deposition cycles has on the sensitivity of electrochemical glucose sensing. Results from this work indicate that applying platinum nanoparticles to screen printed carbon via electrodeposition from a metal salt solution improves overall biosensor sensitivity. This work also pinpoints the amount of platinum (i.e., number of deposition cycles) that maximizes biosensor sensitivity in an effort to minimize the use of the precious metals, viz., platinum, in electrode fabrication. In summary, this work quantifies the relationship between platinum electrodeposition and sensor performance, which is crucial in designing and producing cost-effective sensors.

  16. Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide.

    PubMed

    Thenmozhi, K; Narayanan, S Sriman

    2017-01-01

    The enzyme horseradish peroxidase and the water-soluble mediator toluidine blue were covalently immobilized to 3-aminopropyl trimethoxy silane precursor through glutaraldehyde crosslinker. A rigid ceramic composite electrode was fabricated from this modified silane along with graphite powder, which resulted in an amperometric biosensor for H 2 O 2 . The electrochemical behaviour of the modified biosensor was monitored using cyclic voltammetry in the potential range of 0.2V to -0.4V vs SCE. The biosensor exhibited a stable voltammogram with cathodic peak at -0.234V and anodic peak at -0.172V, with a formal potential of -0.203V. Various factors influencing the performance of the biosensor such as buffer solution, pH, temperature and potential were examined for optimizing the working conditions. The modified biosensor exhibited a good catalytic behaviour for the reduction of H 2 O 2 at a lower potential of -0.25V without any barrier from possible interferents. The analytical working range was found to be 0.429μM to 0.455mM of H 2 O 2 with a detection limit of 0.171μM. The fabricated biosensor is robust for long-term usage in addition to the high sensitivity, rapid response and having an advantage of surface renewability by simple mechanical polishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode.

    PubMed

    Batra, Bhawna; Pundir, C S

    2013-09-15

    A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Thickness dependence of polydopamine thin films on detection sensitivity of surface plasmon-enhanced fluorescence biosensors

    NASA Astrophysics Data System (ADS)

    Toma, Mana; Tawa, Keiko

    2018-03-01

    A bioinspired polydopamine (PDA) coating is a good candidate for the rapid and cheap chemical modification of biosensor surfaces. Herein, we report the effect of PDA thickness on the detection sensitivity of a fluorescence biosensor utilizing surface plasmon-enhanced fluorescence. The thickness of PDA films was tuned by the incubation time of the dopamine solution and varied from 1 to 17 nm. The detection sensitivity was evaluated as the limit of detection (LOD) of a fluorescently labelled target analyte by a model immunoassay. The LOD was determined to be 1.6 pM for the thickest PDA film and was improved to 1.0 pM by reducing the thickness to the range from 1 to 5 nm, corresponding to the incubation time of 10 to 60 min. The experimental results indicate that the PDA coating is suitable for the surface functionalization of biosensors in mass production as it does not require precise control of the incubation time.

  19. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.

    PubMed

    Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-01-15

    Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  2. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    PubMed Central

    Rahman, Md. Mahbubur; Saleh Ahammad, A. J.; Jin, Joon-Hyung; Ahn, Sang Jung; Lee, Jae-Joon

    2010-01-01

    Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors. PMID:22399911

  3. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    PubMed

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.

    PubMed

    Labroo, Pratima; Cui, Yue

    2014-02-27

    The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3-15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A silicon-based peptide biosensor for label-free detection of cancer cells

    NASA Astrophysics Data System (ADS)

    Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa

    2015-05-01

    Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.

  6. Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies

    PubMed Central

    Soler, Maria; Estevez, M.-Carmen; Alvarez, Mar; Otte, Marinus A.; Sepulveda, Borja; Lechuga, Laura M.

    2014-01-01

    Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis. PMID:24481229

  7. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  8. A glucose biosensor based on partially unzipped carbon nanotubes.

    PubMed

    Hu, Huifang; Feng, Miao; Zhan, Hongbing

    2015-08-15

    An amperometric glucose biosensor based on direct electron transfer of glucose oxidase (GOD) self-assembled on the surface of partially unzipped carbon nanotubes (PUCNTs) modified glassy carbon electrode (GCE) has been successfully fabricated. PUCNTs were synthesized via a facile chemical oxidative etching CNTs and used as a novel immobilization matrix for GOD. The cyclic voltammetric result of the PUCNT/GOD/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -0.470V and a peak to peak separation of 37mV, revealing that the fast direct electron transfer between GOD and the electrode has been achieved. It is notable that the glucose determination has been achieved in mediator-free condition. The developed biosensor displayed satisfactory analytical performance toward glucose including high sensitivity (19.50μA mM(-1)cm(-2)), low apparent Michaelis-Menten (5.09mM), a wide linear range of 0-17mM, and also preventing the interference from ascorbic acid, uric acid and dopamine usually coexisting with glucose in human blood. In addition, the biosensor acquired excellent storage stabilities. This facile, fast, environment-friendly and economical preparation strategy of PUCNT-GOD may provide a new platform for the fabrication of biocompatible glucose biosensors and other types of biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food.

    PubMed

    Rubab, Momna; Shahbaz, Hafiz Muhammad; Olaimat, Amin N; Oh, Deog-Hwan

    2018-05-15

    Foodborne illness outbreaks caused by the consumption of food contaminated with harmful bacteria has drastically increased in the past decades. Therefore, detection of harmful bacteria in the food has become an important factor for the recognition and prevention of problems associated with food safety and public health. Staphylococcus aureus is one of the most commonly isolated foodborne pathogen and it is considered as a major cause of foodborne illnesses worldwide. A number of different methods have been developed for the detection and identification of S. aureus in food samples. However, some of these methods are laborious and time-consuming and are not suitable for on-site applications. Therefore, it is highly important to develop rapid and more approachable detection methods. In the last decade, biosensors have gained popularity as an attractive alternative method and now considered as one of most rapid and on-site applicable methods. An overview of the biosensor based methods used for the detection of S. aureus is presented herein. This review focuses on the state-of-the-art biosensor methods towards the detection and quantification of S. aureus, and discusses the most commonly used biosensor methods based on the transducing mode, such as electrochemical, optical, and mass-based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  12. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples.

    PubMed

    Artigues, Margalida; Abellà, Jordi; Colominas, Sergi

    2017-11-14

    Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO₂NTAs) has been evaluated. The GOx-Chitosan/TiO₂NTAs biosensor showed a sensitivity of 5.46 μA·mM -1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95-105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx-Chitosan/TiO₂NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.

  13. Label-free detection of biomolecules with Ta2O5-based field effect devices

    NASA Astrophysics Data System (ADS)

    Branquinho, Rita Maria Mourao Salazar

    Field-effect-based devices (FEDs) are becoming a basic structural element in a new generation of micro biosensors. Their numerous advantages such as small size, labelfree response and versatility, together with the possibility of on-chip integration of biosensor arrays with a future prospect of low-cost mass production, make their development highly desirable. The present thesis focuses on the study and optimization of tantalum pentoxide (Ta2O5) deposited by rf magnetron sputtering at room temperature, and their application as sensitive layer in biosensors based on field effect devices (BioFEDs). As such, the influence of several deposition parameters and post-processing annealing temperature and surface plasma treatment on the film¡¦s properties was investigated. Electrolyte-insulator-semiconductor (EIS) field-effect-based sensors comprising the optimized Ta2O5 sensitive layer were applied to the development of BioFEDs. Enzyme functionalized sensors (EnFEDs) were produced for penicillin detection. These sensors were also applied to the label free detection of DNA and the monitoring of its amplification via polymerase chain reaction (PCR), real time PCR (RT-PCR) and loop mediated isothermal amplification (LAMP). Ion sensitive field effect transistors (ISFETs) based on semiconductor oxides comprising the optimized Ta2O5 sensitive layer were also fabricated. EIS sensors comprising Ta2O5 films produced with optimized conditions demonstrated near Nernstian pH sensitivity, 58+/-0.3 mV/pH. These sensors were successfully applied to the label-free detection of penicillin and DNA. Penicillinase functionalized sensors showed a 29+/-7 mV/mM sensitivity towards penicillin detection up to 4 mM penicillin concentration. DNA detection was achieved with 30 mV/mugM sensitivity and DNA amplification monitoring with these sensors showed comparable results to those obtained with standard fluorescence based methods. Semiconductor oxides-based ISFETs with Ta2O5 sensitive layer were also produced. Finally, the high quality and sensitivity demonstrated by Ta2O5 thin films produced at low temperature by rf magnetron sputtering allows for their application as sensitive layer in field effect sensors.

  14. Application of ionic liquids in electrochemical sensing systems.

    PubMed

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate

    NASA Astrophysics Data System (ADS)

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-01

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  16. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate.

    PubMed

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-04

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor's oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s -1 ), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  17. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    PubMed

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    PubMed

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  19. Chromatic biosensor for detection of phosphinothricin acetyltransferase by use of polydiacetylene vesicles encapsulated within automatically generated immunohydrogel beads.

    PubMed

    Jung, Sung-Ho; Jang, Huisoo; Lim, Min-Cheol; Kim, Jae-Hwan; Shin, Kong-Sik; Kim, Sun Min; Kim, Hae-Yeong; Kim, Young-Rok; Jeon, Tae-Joon

    2015-02-17

    We developed a simple and sensitive colorimetric biosensor in the form of microparticles by using polydiacetylene (PDA) vesicles encapsulated within a hydrogel matrix for the detection of phosphinothricin acetyltransferase (PAT) protein, which is one of the most important marker proteins in genetically modified (GM) crops. Although PDA is commonly used as a sensing material due to its unique colorimetric properties, existing PDA biosensors are ineffective due to their low sensitivity as well as their lack of robustness. To overcome these disadvantages, we devised immunohydrogel beads made of anti-PAT-conjugated PDA vesicles embedded at high density within a poly(ethylene glycol) diacrylate (PEG-DA) hydrogel matrix. In addition, the construction of immunohydrogel beads was automated by use of a microfluidic device. In the immunoreaction, the sensitivity of antibody-conjugated PDA vesicles was significantly amplified, as monitored by the unaided eye. The limit of detection for target molecules reached as low as 20 nM, which is sufficiently low enough to detect target materials in GM organisms. Collectively, the results show that immunohydrogel beads constitute a promising colorimetric sensing platform for onsite testing in a number of fields, such as the food and medical industries, as well as warfare situations.

  20. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    PubMed

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  1. Effect of immobilization technique on performance ZnO nanorods based enzymatic electrochemical glucose biosensor

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this paper, ZnO Nanorods (ZNR) have been synthesized over Platinum (Pt) coated glass substrate with in-situ addition KMnO4 during hydrothermal growth process. Significant variation in ZnO nanostructures was observed by KMnO4 addition during the growth. Glucose oxidase was later immobilized over ZNRs. The as-prepared ZNRs were further utilized for glucose detection by employing amperometric electrochemical transduction method. In order to optimize the performance of the prepared biosensor two different immobilization techniques i.e. physical adsorption and cross linking have been employed and compared. Further investigations suggest that immobilization via cross linking method resulted in the improvement of the biosensor performance, thereby significantly affecting the sensitivity and linear range of the fabricated biosensor. Among the two types of biosensors fabricated using ZNR, the best performance was shown by cross linked electrodes. The sensitivity for the same was found to be 17.7 mA-cm-2-M-1, along with a wide linear range of 0.5-8.5 mM.

  2. An improved biosensor for acetaldehyde determination using a bienzymatic strategy at poly(neutral red) modified carbon film electrodes.

    PubMed

    Ghica, Mariana Emilia; Pauliukaite, Rasa; Marchand, Nicolas; Devic, Eric; Brett, Christopher M A

    2007-05-15

    Improved biosensors for acetaldehyde determination have been developed using a bienzymatic strategy, based on a mediator-modified carbon film electrode and co-immobilisation of NADH oxidase and aldehyde dehydrogenase. Modification of the carbon film electrode with poly(neutral red) mediator resulted in a sensitive, low-cost and reliable NADH detector. Immobilisation of the enzymes was performed using encapsulation in a sol-gel matrix or cross-linking with glutaraldehyde. The bienzymatic biosensors were characterized by studying the influence of pH, applied potential and co-factors. The sol-gel and glutaraldehyde biosensors showed a linear response up to 60 microM and 100 microM, respectively, with detection limits of 2.6 microM and 3.3 microM and sensitivities were 1.7 microA mM(-1) and 5.6 microA mM(-1). The optimised biosensors showed good stability and good selectivity and have been tested for application for the determination of acetaldehyde in natural samples such as wine.

  3. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    PubMed

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  4. Brilliant molecular nanocrystals emerging from sol-gel thin films: towards a new generation of fluorescent biochips.

    PubMed

    Dubuisson, E; Monnier, V; Sanz-Menez, N; Boury, B; Usson, Y; Pansu, R B; Ibanez, A

    2009-08-05

    To develop highly sensitive biosensors, we made directly available to biological aqueous solutions organic nanocrystals previously grown in the pores of sol-gel films. Through the controlled dissolution of the sol-gel surface, we obtained emerging nanocrystals that remained strongly anchored to the sol-gel coating for good mechanical stability of the final sensing device. We demonstrated that in the presence of a solution of DNA functionalized with a molecular probe, the nanocrystal fluorescence is strongly quenched by Förster resonance energy transfer thus opening the way towards very sensitive fluorescent biosensors through biomolecules grafted onto fluorescent nanocrystals. Finally, this controlled dissolution, involving weak concentrated NaOH solution, is a generic process that can be used for the thinning of any kind of sol-gel layer.

  5. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid.

    PubMed

    Tu, Wenwen; Lei, Jianping; Ju, Huangxian

    2009-01-01

    A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.

  6. Innovations in biomedical nanoengineering: nanowell array biosensor.

    PubMed

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-01-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  7. Innovations in biomedical nanoengineering: nanowell array biosensor

    NASA Astrophysics Data System (ADS)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  8. Detection of Ammonia-Oxidizing Bacteria (AOB) Using a Porous Silicon Optical Biosensor Based on a Multilayered Double Bragg Mirror Structure.

    PubMed

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2018-01-01

    We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.

  9. Bioelectrocatalytic application of titania nanotube array for molecule detection.

    PubMed

    Xie, Yibing; Zhou, Limin; Huang, Haitao

    2007-06-15

    A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.

  10. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene.

    PubMed

    Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan

    2018-08-01

    A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Carbon Nanotube Matrix for Highly Sensitive Biosensors To Detect Pancreatic Cancer Biomarker CA19-9.

    PubMed

    Thapa, Anshu; Soares, Andrey Coatrini; Soares, Juliana Coatrini; Awan, Iram Taj; Volpati, Diogo; Melendez, Matias Eliseo; Fregnani, José Humberto Tavares Guerreiro; Carvalho, André Lopes; Oliveira, Osvaldo N

    2017-08-09

    Biosensors fabricated with nanomaterials promise faster, cheaper, and more efficient alternatives to traditional, often bulky devices for early cancer diagnosis. In this study, we fabricated a thin film sensing unit on interdigitated gold electrodes combining polyethyleneimine and carbon nanotubes in a layer by layer fashion, onto which antibodies anti-CA19-9 were adsorbed with a supporting layer of N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide solution. By use of impedance spectroscopy, the pancreatic cancer biomarker CA19-9 was detected in a buffer with limit of detection of 0.35 U/mL. This high sensitivity allowed for distinction between samples of blood serum from patients with distinct probabilities to develop pancreatic cancer. The selectivity of the biosensor was confirmed in subsidiary experiments with HT-29 and SW-620 cell lines and possible interferents, e.g., p53 protein, ascorbic acid, and glucose, where significant changes in capacitance could only be measured with HT-29 that contained the CA19-9 biomarker. Chemisorption of CA19-9 molecules onto the layer of anti-CA19-9 antibodies was the mechanism responsible for sensing while electrostatic interactions drove the adsorption of carbon nanotubes, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The adsorption behavior was successfully described by the Langmuir-Freundlich isotherm.

  12. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.

    PubMed

    Wu, Weitai; Zhou, Ting; Aiello, Michael; Zhou, Shuiqin

    2010-08-15

    A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid) copolymer microgels, via both in situ growth method and "breathing in" method, respectively. The polymeric gel can adapt to surrounding glucose concentrations, and regulate the fluorescence of the embedded QDs, converting biochemical signals into optical signals. The gradual swelling of the gel would lead to the quenching of the fluorescence at the elevated glucose concentrations. The hybrid microgels displayed high selectivity to glucose over the potential primary interferents of lactate and human serum albumin in the physiologically important glucose concentration range. The stability, reversibility, and sensitivity of the organic-inorganic hybrid microgel-based biosensors were also systematically studied. These general properties of our nanobiosensors are well tunable under appropriate tailor on the hybrid microgels, in particular, simply through the change in the crosslinking degree of the microgels. The optical glucose nanobiosensors based on the organic-inorganic hybrid microgels have shown the potential for a third generation fluorescent biosensor. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  14. Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip†

    PubMed Central

    Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A.; Chung, Jae-Hyun

    2013-01-01

    Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I–V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors. PMID:23585927

  15. Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip.

    PubMed

    Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2013-01-01

    Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (10 3 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.

  16. Label-free optical detection of C-reactive protein by nanoimprint lithography-based 2D-photonic crystal film.

    PubMed

    Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki

    2016-06-01

    The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and biochips technology. Also, the major technological advancements of nanotechnology in the field of biosensor technology are discussed. Various biosensors mentioned in manuscript are found to exhibit storage stability of biocomponent ranging from 30-60 days, detection limit of 10(-6) - 10(-16) M, response time of 1-20 min and applications of developed biosensors in environmental samples (water, food, vegetables, milk, and juice samples, etc.) are also discussed. Researchers all over the globe are working towards the development of different biosensing techniques based on contrast approaches for the detection of pesticides in various environmental samples.

  18. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    NASA Technical Reports Server (NTRS)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate without losing radiation sensitivity. We employed Next-Generation Sequencing technology to better understand this phenotypic variation. Current effort is focusing on the analysis of high-throughput sequencing data to look for genomic changes in these reisolated clones compared to their original isolate.

  19. Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing.

    PubMed

    Guo, Qiaohui; Liu, Lijuan; Zhang, Man; Hou, Haoqing; Song, Yonghai; Wang, Huadong; Zhong, Baoying; Wang, Li

    2017-06-15

    Effective immobilization of enzymes on an electrode surface is of great importance for biosensor development, but it still remains challenging because enzymes tend to denaturation and/or form close-packed structures. In this work, a free-standing TiO 2 hollow nanofibers (HNF-TiO 2 ) was successfully prepared by a simple and scalable electrospun nanofiber film template-assisted sol-gel method, and was further explored for glucose oxidase (GOD) immobilization and biosensing. This porous and nanotubular HNF-TiO 2 provides a well-defined hierarchical nanostructure for GOD loading, and the fine TiO 2 nanocrystals facilitate direct electron transfer from GOD to the electrode, also the strong interaction between GOD and HNF-TiO 2 greatly enhances the stability of the biosensor. The as-prepared glucose biosensors show good sensing performances both in O 2 -free and O 2 -containing conditions with good sensitivity, satisfactory selectivity, long-term stability and sound reliability. The novel textile formation, porous and hierarchically mesostructured nature of HNF-TiO 2 with excellent analytical performances make it a superior platform for the construction of high-performance glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    PubMed

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  2. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant ( K m) and the maximum current density ( i max) values for the biosensor were 10.94 mM and 887 μA cm-2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  3. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    PubMed

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  4. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    PubMed

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Anomalous resonance in a nanomechanical biosensor

    PubMed Central

    Gupta, Amit K.; Nair, Pradeep R.; Akin, Demir; Ladisch, Michael R.; Broyles, Steve; Alam, Muhammad A.; Bashir, Rashid

    2006-01-01

    The decrease in resonant frequency (−Δωr) of a classical cantilever provides a sensitive measure of the mass of entities attached on its surface. This elementary phenomenon has been the basis of a new class of bio-nanomechanical devices as sensing components of integrated microsystems that can perform rapid, sensitive, and selective detection of biological and biochemical entities. Based on classical analysis, there is a widespread perception that smaller sensors are more sensitive (sensitivity ≈ −0.5ωr/mC, where mC is the mass of the cantilever), and this notion has motivated scaling of biosensors to nanoscale dimensions. In this work, we show that the response of a nanomechanical biosensor is far more complex than previously anticipated. Indeed, in contrast to classical microscale sensors, the resonant frequencies of the nanosensor may actually decrease or increase after attachment of protein molecules. We demonstrate theoretically and experimentally that the direction of the frequency change arises from a size-specific modification of diffusion and attachment kinetics of biomolecules on the cantilevers. This work may have broad impact on microscale and nanoscale biosensor design, especially when predicting the characteristics of bio-nanoelectromechanical sensors functionalized with biological capture molecules. PMID:16938886

  7. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    PubMed Central

    AL-Mokaram, Ali M. A. Abdul Amir; Yahya, Rosiyah; Abdi, Mahnaz M.; Mahmud, Habibun Nabi Muhammad Ekramul

    2017-01-01

    The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS) spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV). The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS). The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell. PMID:28561760

  8. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore.

    PubMed

    Zargoosh, Kiomars; Chaichi, Mohammad Javad; Shamsipur, Mojtaba; Hossienkhani, Saman; Asghari, Sakineh; Qandalee, Mohammad

    2012-05-15

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated H(2)O(2) was constructed by the effective immobilization of glucose oxidase (GOD)/carbon-nanotubes (CNTs)/gold nanoparticles (GNPs) in nafion film on graphite support. The influences of various experimental parameters such as solution pH, the action time of the enzyme, interferents and the concentration of CL reagents were investigated. Carbon nanotubes and gold nanoparticles offer excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between glucose oxidase and glucose, which would enable sensitive determination of glucose. Under the optimum condition, the linear response range of glucose was found to be 2.25 × 10(-6) to 1.75 × 10(-4 ) mol L(-1), and the detection limit (defined as the concentration that could be detected at the signal-to-noise ratio of 3) was 1.00 × 10(-6) mol L(-1). The CL biosensor exhibited good storage stability, i.e., 80% of its initial response was retained after 10 days storage at pH 7.0. The present CL biosensor has been used to determine the glucose concentrations in real serum and urine samples with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine.

    PubMed

    Soler, Maria; Belushkin, Alexander; Cavallini, Andrea; Kebbi-Beghdadi, Carole; Greub, Gilbert; Altug, Hatice

    2017-08-15

    Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.

    PubMed

    Tani, Hidenori; Torimura, Masaki

    2015-05-01

    Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Clinical determination of glucose in human serum by a tomato skin biosensor.

    PubMed

    Han, Hui; Li, Yi; Yue, Huan; Zhou, Zaide; Xiao, Dan; Choi, Martin M F

    2008-09-01

    Glucose biosensors based on enzyme reaction of glucose oxidase were studied because the symptomatic therapy of diabetes mellitus requires reliable assessment of blood glucose level at frequent intervals. Tomato skin membranes have been successfully employed to entrap glucose oxidase for fabrication of glucose biosensor. Glucose oxidase was immobilized onto the tomato skin and the enzyme membrane was then positioned on the surface of an oxygen electrode. The glucose concentration was quantified by the change of dissolved oxygen. All the serum samples were also simultaneously determined by a Hitachi 7060 chemistry analyzer. The response of the biosensor showed a linear relationship with a concentration range of 1.0-30.0 mmol/l glucose. The limit of detection was 0.20 mmol/l. Error Grid analysis demonstrated that 100% of the results fell within clinically acceptable zones A and B. The F- and t-tests showed no significant differences between the 2 methods. The recovery was 95.0-110.0% for 30 serum samples analysis. The tomato skin biosensor possesses the advantages of simple fabrication, fast response time, low cost and high sensitivity. The results of our method are more accurate than and match well with the current clinical instrument method.

  12. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng

    2017-11-01

    The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.

  13. Nanoparticle-based biosensor for the detection of emerging pandemic influenza strains.

    PubMed

    Kamikawa, Tracy L; Mikolajczyk, Malgorzata G; Kennedy, Michael; Zhang, Pei; Wang, Wei; Scott, Dorothy E; Alocilja, Evangelyn C

    2010-12-15

    Electrically active magnetic (EAM) nanoparticles, consisting of aniline monomer polymerized around gamma iron(III) oxide (γ-Fe(2)O(3)) cores, serve as the basis of a direct-charge transfer biosensor developed for detection of surface glycoprotein hemagglutinin (HA) from the Influenza A virus (FLUAV) H5N1 (A/Vietnam/1203/04). H5N1 preferentially binds α2,3-linked host glycan receptors. EAM nanoparticles were immunofunctionalized with antibodies against target HA. Glycans preincubated with HA in 10% mouse serum were incubated with anti-HA-EAM complexes. The anti-HA-EAM complexes effectively acted as immunomagnetic separator of HA from mouse serum matrix. EAM nanoparticles served as the biosensor transducer for cyclic voltammetry measurements. The polyaniline was made electrically active by hydrochloric acid doping. Experimental results indicate that the biosensor is able to detect recombinant H5 HA at 1.4 μM in 10% mouse serum, with high specificity for H5 as compared to H1 (H1N1 A/South Carolina/1/18). This novel design applies EAM nanoparticles in a sensitive, specific, affordable, and easy-to-use biosensor with applications in disease monitoring and biosecurity. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  15. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials.

    PubMed

    Vanegas, Diana C; Patiño, Laksmi; Mendez, Connie; Oliveira, Daniela Alves de; Torres, Alba M; Gomes, Carmen L; McLamore, Eric S

    2018-04-24

    In foods, high levels of biogenic amines (BA) are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.

  16. The whispering gallery mode biosensor: label-free detection from virus to single protein

    NASA Astrophysics Data System (ADS)

    Holler, S.; Dantham, V. R.; Keng, D.; Kolchenko, V.; Arnold, S.; Mulroe, Brigid; Paspaley-Grbavac, M.

    2014-08-01

    The whispering gallery mode (WGM) biosensor is a micro-optical platform capable of sensitive label-free detection of biological particles. Described by the reactive sensing principle (RSP), this analytic formulation quantifies the response of the system to the adsorption of bioparticles. Guided by the RSP, the WGM biosensor enabling from detection of virus (e.g., Human Papillomavirus, HPV) to the ultimate goal of single protein detection. The latter was derived from insights into the RSP, which resulted in the development of a hybrid plasmonic WGM biosensor, which has recently demonstrated detection of individual protein cancer markers. Enhancements from bound gold nanoparticles provide the sensitivity to detect single protein molecules (66 kDa) with good signal-to-noise (S/N > 10), and project that detection of proteins as small as 5 kDa.

  17. Electro-Immobilization of Acetylcholinesterase Using Polydopamine for Carbaryl Microsensor

    NASA Astrophysics Data System (ADS)

    Ha, Trung B.; Le, Huyen T.; Cao, Ha H.; Binh, Nguyen Thanh; Nguyen, Huy L.; Dang, Le Hai; Do, Quan P.; Nguyen, Dzung T.; Lam, Tran Dai; Nguyen, Vân-Anh

    2018-02-01

    A simple and sensitive electrochemical acetylcholinesterase (AChE) biosensor for determination of carbaryl, one of the most commonly used carbamate pesticides, is described. The AChE enzyme was successfully entrapped by a polydopamine-graphene composite on polypyrrole nanowires that modified interdigitated planar platinum-film microelectrodes . The influence of different parameters on the operation of the biosensor was also studied. The selected parameters for the biosensor performance in detecting carbaryl were as follows: applied potential + 0.7 V, pH 7.4 at 25°C. The inhibition of carbaryl was proportional to its concentrations ranging from 0.05 to 1.5 μg/mL with the detection limit of 0.008 μg/mL using chronoamperometry. This study provides a promising approach in fabrication of sensitive biosensors for the analysis of carbamate pesticides as well as other hazardous compounds.

  18. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.

    PubMed

    Zhou, Ming; Shang, Li; Li, Bingling; Huang, Lijian; Dong, Shaojun

    2008-11-15

    In this work, the excellent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors. The high density of edge-plane-like defective sites and high specific surface area of OMCs could be responsible for the electrocatalytic behavior at OMCs modified glassy carbon electrode (OMCs/GE), which induced a substantial decrease in the overpotential of NADH and H(2)O(2) oxidation reaction compared to carbon nanotubes modified glassy carbon electrode (CNTs/GE). Such ability of OMCs permits effective low-potential amperometric biosensing of ethanol and glucose, respectively, at Nafion/ADH-OMCs/GE and Nafion/GOD-OMCs/GE. Especially, as an amperometric glucose biosensor, Nafion/GOD-OMCs/GE showed large determination range (500-15,000 micromoll(-1)), high sensitivity (0.053 nA micromol(-1)), fast (9+/-1s) and stable response (amperometric response retained 90% of the initial activity after 10h stirring of 2 mmoll(-1) glucose solution) to glucose as well as the effective discrimination to the possible interferences, which may make it to readily satisfy the need for the routine clinical diagnosis of diabetes. By comparing the electrochemical performance of OMCs with that of CNTs as electrode material for the construction of ADH- and GOD-biosensors in this work, we reveal that OMCs could be a favorable and promising carbon electrode material for constructing other electrochemical dehydrogenase- and oxidase-based biosensors, which may have wide potential applications in biocatalysis, bioelectronics and biofuel cells.

  19. MRI biosensor for lead detection based on the DNAzyme-induced catalytic reaction.

    PubMed

    Xu, Liguang; Yin, Honghong; Ma, Wei; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2013-11-21

    A MRI biosensor for sensitive and specific detection of lead ions (Pb(2+)) was developed based on DNAzyme-induced cleavage of magnetic nanoparticles (MNPs). A low limit of detection (LOD) of 0.05 ng mL(-1) was obtained. This biosensor has the potential to serve as a general platform for the detection of heavy metal ions.

  20. PEGylation of a Maltose Biosensor Promotes Enhanced Signal Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Andrew; Baker, Gary A; Fox, John M

    2009-01-01

    A robust method to immobilize a maltose biosensor is described using an engineered maltose periplasmic binding protein (PBP) covalently coupled to NBDamide, an environmentally sensitive fluorophore. A mesoporous silica sol-gel derived from diglycerylsilane (DGS) was constructed to embed the maltose biosensor, and the ligand reporting fluorescence properties were meas red. When sequestered in the DGS-derived silica matrix, the biosensor retained maltose-dependent fluorescence sensing capability with micromolar affinity, which is consistent with the protein free in solution. The MBP-NBD conjugate was further modified by covalent conjugation with poly(ethylene glycol)-5000 (PEG) to promote the retention of water molecules around the protein andmore » to reduce possible steric effects between the silica matrix and protein. Bioconjugation with PEG molecules does not significantly affect the signaling response of the protein in solution. When immobilized in the DGS polymer, a consistent increase in fluorescence intensity was observed as compared to the protein not functionalized with PEG. To our knowledge, this report presents the first successful method to embed a PBP biosensor in a polymerized matrix and retain signaling response using an environmentally sensitive probe. The immobilization method presented here should be easily adaptable to all conformation-dependent biosensors.« less

  1. Construction of highly ordered polyaniline nanowires and their applications in DNA sensing.

    PubMed

    Hao, Yuanqiang; Zhou, Binbin; Wang, Fangbin; Li, Juan; Deng, Liu; Liu, You-Nian

    2014-02-15

    A novel electrochemical active polyaniline (PANI) nanowire was fabricated and utilized for the construction of a highly sensitive and selective electrochemical sensor for hepatitis B virus gene. The uniform PANI nanowire was prepared by the enzymatic polymerization of aniline monomers on the amyloid-like nanofiber (AP nanowire), which was self-assembled from an aniline-attached nonapeptide, aniline-GGAAKLVFF (AP). The prepared PANI nanowires were characterized by electron microscopy, UV-vis absorption spectra, and cyclic voltammetry (CV). These ultra-thin nanowires displayed high electrochemical activity. Then the nucleic acid biosensor was constructed by modifying a glass carbon electrode with AP nanowires which were functionalized by a designed hair-pin loop DNA. Upon the presence of target nucleic acid and horseradish peroxidase (HRP) labeled oligonucleotide, the HRP will catalyze the polymerization of aniline monomers conjugated in AP nanowires, leading to the formation of PANI nanowires which can bring about a dramatical increase in the current response of the biosensor. The dynamic range of the sensor for hepatitis B virus gene is 2.0-800.0 fM with a low detection limit of 1.0 fM (3σ, n=10). The biosensor also displayed highly selectivity and stability. All these excellent performances of the developed biosensor indicate that this platform can be easily extended to the detection of other nucleic acids. © 2013 Elsevier B.V. All rights reserved.

  2. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging from 100-10000cell/mL. Compared with the traditional heterogeneous electrochemical FR biosensors, the proposed biosensor owns the merits of the simplicity and high specificity, presenting the great potential application in the area of early diagnosis of cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings

    NASA Astrophysics Data System (ADS)

    Gifford, Erika; Wang, Z.; Ramachandran, S.; Heflin, J. R.

    2007-09-01

    Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive, robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody- PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and robust platform for designing and building efficient optical biosensors.

  4. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  5. Disease-Related Detection with Electrochemical Biosensors: A Review.

    PubMed

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  6. Biosensors Based on Urease Adsorbed on Nickel, Platinum, and Gold Conductometric Transducers Modified with Silicalite and Nanozeolites

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan S.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurç, Burcu Akata; Melnyk, Volodymir G.; Semenycheva, Lyudmila M.; Dzyadevych, Sergei V.; Soldatkin, Alexei P.

    This work describes urease-based conductometric biosensors that were created using nontypical method of urease immobilization via adsorption on micro- and nanoporous particles: silicalite and nanocrystalline zeolites Beta (BEA) and L. Conductometric transducers with nickel, gold, and platinum interdigitated electrodes were used. Active regions of the nickel transducers were modified with microparticles using two procedures—spin coating and drop coating. Gold and platinum transducers were modified with silicalite using drop coating since it was more effective. Scanning electron microscopy was used to evaluate effectiveness of these procedures. The procedure of spin coating produced more uniform layers of particles (and biosensors had good reproducibility of preparation), but it was more complicated, drop coating was easier and led to formation of a bulk of particles; thus, biosensors had bigger sensitivity but worse reproducibility of preparation. Urease was immobilized onto transducers modified with particles by physical adsorption. Analytical characteristics of the obtained biosensors for determination of urea (calibration curves, sensitivity, limit of detection, linear concentration range, noise of responses, reproducibility of signal during a day, and operational stability during 3 days) were compared. Biosensors with all three particles deposited by spin coating showed similar characteristics; however, silicalite was a bit more effective. Biosensors based on nickel transducers modified by drop coating had better characteristics in comparison with modification by spin coating (except reproducibility of preparation). Transducers with gold electrodes showed best characteristics while creating biosensors, platinum electrodes were slightly inferior to them, and nickel electrodes were the worst.

  7. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability.

    PubMed

    Giménez-Gómez, Pablo; Gutiérrez-Capitán, Manuel; Capdevila, Fina; Puig-Pujol, Anna; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia

    2016-01-28

    L-lactic acid is monitored during malolactic fermentation process of wine and its evolution is strongly related with the quality of the final product. The analysis of L-lactic acid is carried out off-line in a laboratory. Therefore, there is a clear demand for analytical tools that enabled real-time monitoring of this process in field and biosensors have positioned as a feasible alternative in this regard. The development of an amperometric biosensor for L-lactate determination showing long-term stability is reported in this work. The biosensor architecture includes a thin-film gold electrochemical transducer selectively modified with an enzymatic membrane, based on a three-dimensional matrix of polypyrrole (PPy) entrapping lactate oxidase (LOX) and horseradish peroxidase (HRP) enzymes. The experimental conditions of the biosensor fabrication regarding the pyrrole polymerization and the enzymes entrapment are optimized. The biosensor response to L-lactate is linear in a concentration range of 1 × 10(-6)-1 × 10(-4) M, with a detection limit of 5.2 × 10(-7) M and a sensitivity of - (13500 ± 600) μA M(-1) cm(-2). The biosensor shows an excellent working stability, retaining more than 90% of its original sensitivity after 40 days. This is the determining factor that allowed for the application of this biosensor to monitor the malolactic fermentation of three red wines, showing a good agreement with the standard colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Noninvasive Evaluation of Heavy Metal Uptake and Storage in Micoralgae Using a Fluorescence Resonance Energy Transfer-Based Heavy Metal Biosensor1[C][W][OPEN

    PubMed Central

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard

    2014-01-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336

  9. Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor.

    PubMed

    Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A; Colepicolo, Pio; Sayre, Richard

    2014-02-01

    We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+≈Pb2+>Zn2+>Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+>Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations.

  10. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j

  11. An optical biosensor using MEMS-based V-grooves

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ma, Xiaodong; Zou, Xiaotian; Wu, Nan; Wang, Xingwei

    2011-05-01

    An optical fiber biosensor featuring miniaturization, electromagnetic interference (EMI)-immunity, and flexibility is presented. The sensor was fabricated by aligning two gold-deposited optical single-mode fiber facets inside V-grooves on a silicon chip to form a Fabry-Perot (FP) cavity. The mirrors on the fiber facets were made of deposited gold (Au) films, which provided a high finesse to produce a highly sensitivity. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and angle of the V-grooves on the silicon. The biotin-terminated thiol molecule was firstly immobilized on the gold surface. Subsequently, the molecules of Neutravidin were specifically bound to the biotin-terminated self-assembled monolayers (SAMs). The induced changes of cavity length and refractive index (RI) upon the gold surface lead to an optical path difference (OPD) of the FP cavity, which was detected by demodulating the transmission spectrum phase shift. By taking advantage of MEMS techniques, multiple biosensors can be integrated into one small silicon chip for detecting various biomolecule targets simultaneously.

  12. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  13. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  14. Micromechanical sensors based on conformational change of proteins

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Buchapudi, Koutilya R.; Gao, Hongyan; Xu, Xiaohe; Ji, Hai-Feng

    2008-04-01

    Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental, and fast throughput analysis. One of recently focus in this technology is the development of biosensors based on the conformational change of proteins on MCL surfaces. The surface stress changes due to conformational change of the proteins upon interaction with specific analytes are promising as transducers of chemical information. We will discuss our recent results on several biosensors due to conformational change of proteins. The proteins include glucose oxidase (GOx), organophosphorus hydrolyses (OPH), Calmodulin (CaM), and Horseradish peroxidase (HRP).

  15. Experimental demonstration and theoretical explanation of the efficiency of the nano-structured silicon as the transducer for optical immune biosensors

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Slyshyk, Nelya F.; Shavanova, Kateryna E.; Karpyuk, Andrij; Mel'nichenko, Mykola M.; Zherdev, Anatolij V.; Dzantiev, Boris B.

    2014-10-01

    It is presented the experimental results about the investigations of the efficiency of the structured nano-pourous silicon (sNPS) application as transducer in the immune biosensors designed for the control of retroviral bovine leucosis (RBL) and the determination of the level such mycotoxins as T2 and patulin among environmental objects. Today, there is an arsenal of the traditional immunological methods that allow for the biochemical diagnostics of the above diseases and control of toxins but they are deeply routine and can not provide the requirements of practice for express analysis, its low cost and simplicity. Early to provide practical demands we developed immune biosensors based on SPR, TIRE and thermistors. To find more simple variant of the assay we studied the efficiency sNPS as trasducer in immune biosensor. The registration of the specific signals was made by measuremets of level of chemiluminescence (ChL) or photocurrent. The sensitivity of biosensor for both variants of the specific signal registration at the determination of T2 and patulin was about 10-20 ng/ml. Sensitivity analysis of RBL by this immune biosensors exceeds traditionally used approaches including the ELISA-method too. The optimal serum dilution of blood at the screening leukemia should be no less than 1:100, or even 1:500. The immune biosensor may be applied too for express screening leucosis through analysis of milk. In this case the optimal serum dilution of milk should be about 1:20. The total time of analysis including all steps (immobilization of specific Ab or antigens on the transducer surface and measurements) was about 40 min and it may be a sharp decline if the above mentione sensitive elements will be immobilized preliminary measurements. It is concluded that the proposed type of transducer for immune biosensor is effective for analysis of mycotoxins in screening regime.

  16. Evaluation of a GFP Report Gene Construct for Environmental Arsenic Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, F.F.; Barnes, J.M.; Bruhn, D.F.

    Detection of arsenic and other heavy metal contaminants in the environment is critical to ensuring safe drinking water and effective cleanup of historic activities that have led to widespread contamination of soil and groundwater. Biosensors have the potential to significantly reduce the costs associated with site characterization and long term environmental monitoring. By exploiting the highly selective and sensitive natural mechanisms by which bacteria and other living organisms respond to heavy metals, and fusing transcriptionally active components of these mechanisms to reporter genes, such as B-galactosidase, bacterial luciferase (lux), or green fluorescent protein (GFP) from marine jellyfish, it is possiblemore » to produce inexpensive, yet effective biosensors. This article describes the response to submicrogram quantities of arsenite and arsenate of a whole cell arsenic biosensor utilizing a GFP reporter gene.« less

  17. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  18. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    PubMed

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomoya; Hirowatari, Anna; Ikeda, Takeshi; Fukuyama, Masataka; Amemiya, Yoshiteru; Kuroda, Akio; Yokoyama, Shin

    2016-04-01

    Biosensors using ring resonators with silicon nitride (SiN) slot waveguides have been fabricated. The temperature coefficient of the resonance wavelength of the SiN resonator is 0.006 nm/°C, which is one order of magnitude smaller than that of Si. The sensitivity of the biosensor has been improved by using slot waveguide together with Si-binding protein (designated as Si-tag), which bonds to SiN or SiO2 surface, as an anchoring molecule to immobilize bioreceptors on the SiN rings in an oriented manner. Furthermore, the protein G, which strongly bonds to many kinds of mammalian antibodies only by mixing the antibody solution, is used to efficiently immobilize the antigen on the sensor surface. By means of these devises the sensitivity of the biosensor has been improved by factor of 10-100 compared with that of normal Si ring resonator sensors without slot. Then the detection of prostate specific antigen (PSA) with the sensitivity of ~1×10-8 g/ml, which is the concentration of strongly suspicious for the prostate cancer, has been achieved.

  20. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples

    PubMed Central

    2017-01-01

    Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs) has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95–105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated. PMID:29135931

Top