The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...
NASA Astrophysics Data System (ADS)
Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura
2018-03-01
We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.
Baladi, Michelle G; France, Charles P
2009-05-21
Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.
Baladi, Michelle G; France, Charles P
2009-01-01
Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use. PMID:19327348
Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng
2012-03-28
We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.
Sensitivity to apomorphine-induced yawning and hypothermia in rats eating standard or high-fat chow.
Baladi, Michelle G; Thomas, Yvonne M; France, Charles P
2012-07-01
Feeding conditions modify sensitivity to indirect- and direct-acting dopamine receptor agonists as well as the development of sensitization to these drugs. This study examined whether feeding condition affects acute sensitivity to apomorphine-induced yawning or changes in sensitivity that occur over repeated drug administration. Quinpirole-induced yawning was also evaluated to see whether sensitization to apomorphine confers cross-sensitization to quinpirole. Drug-induced yawning was measured in different groups of male Sprague Dawley rats (n = 6/group) eating high (34.3%) fat or standard (5.7% fat) chow. Five weeks of eating high-fat chow rendered otherwise drug-naïve rats more sensitive to apomorphine- (0.01-1.0 mg/kg, i.p.) and quinpirole- (0.0032-0.32 mg/kg, i.p.) induced yawning, compared with rats eating standard chow. In other rats, tested weekly with apomorphine, sensitivity to apomorphine-induced yawning increased (sensitization) similarly in rats with free access to standard or high-fat chow; conditioning to the testing environment appeared to contribute to increased yawning in both groups of rats. Food restriction decreased sensitivity to apomorphine-induced yawning across five weekly tests. Rats with free access to standard or high-fat chow and sensitized to apomorphine were cross-sensitized to quinpirole-induced yawning. The hypothermic effects of apomorphine and quinpirole were not different regardless of drug history or feeding condition. Eating high-fat chow or restricting access to food alters sensitivity to direct-acting dopamine receptor agonists (apomorphine, quinpirole), although the relative contribution of drug history and dietary conditions to sensitivity changes appears to vary among agonists.
ERIC Educational Resources Information Center
Vida, Mark D.; Maurer, Daphne; Calder, Andrew J.; Rhodes, Gillian; Walsh, Jennifer A.; Pachai, Matthew V.; Rutherford, M. D.
2013-01-01
We examined the influences of face inversion and facial expression on sensitivity to eye contact in high-functioning adults with and without an autism spectrum disorder (ASD). Participants judged the direction of gaze of angry, fearful, and neutral faces. In the typical group only, the range of directions of gaze leading to the perception of eye…
Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)
NASA Astrophysics Data System (ADS)
Liu, Sijie; Xiao, Wenbo; Zhong, Mianzeng; Pan, Longfei; Wang, Xiaoting; Deng, Hui-Xiong; Liu, Jian; Li, Jingbo; Wei, Zhongming
2018-05-01
Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS3) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W-1. What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm-1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.
Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3).
Liu, Sijie; Xiao, Wenbo; Zhong, Mianzeng; Pan, Longfei; Wang, Xiaoting; Deng, Hui-Xiong; Liu, Jian; Li, Jingbo; Wei, Zhongming
2018-05-04
Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS 3 ) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS 3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W -1 . What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS 3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm -1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS 3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.
Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.
Law, Yan Nei; Jian, Hanbin; Lo, Norman W S; Ip, Margaret; Chan, Mia Mei Yuk; Kam, Kai Man; Wu, Xiaohua
2018-01-01
In countries with high tuberculosis (TB) burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB) from respiratory specimens. To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO) staining, as well as direct smears with AO and Ziehl-Neelsen (ZN) staining, using mycobacterial culture results as gold standard. Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated. Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5%) and slight improvement in sensitivity while requiring only limited manual workload. Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement in specificity was obtained when uncertain results were confirmed by manual smear grading. This approach had potential to substantially reduce workload of microscopists in high burden countries.
NASA Astrophysics Data System (ADS)
Dong, Xinran; Xie, Zheng; Song, Yuxin; Yin, Kai; Luo, Zhi; Duan, Ji'an; Wang, Cong
2017-12-01
A highly sensitive torsion sensor based on long period fiber grating (LPFG) fabricated by 800 nm femtosecond laser pulses is proposed and demonstrated. LPFG with an attenuation depth of ∼14 dB is achieved within the wavelength range of 1425-1575 nm. The experiment results show that the LP02 and LP03 resonant wavelengths experience red-shift when the twist direction is clockwise while they occur blue-shift in the twist counterclockwise direction as the twist rate increases. However, the LP04 resonant wavelength is always shifted toward shorter wavelength independently of the twist directions and higher twist sensitivity is observed. In addition, the loss peak amplitude of LPFG shows a tendency to decrease with the twist rate increases whether the LPFG is twisted clockwise or counterclockwise. Meanwhile, the resonant wavelength occurs splitting phenomenon in the case of higher twist rate as well as the high order resonant wavelength performs more significantly. Additionally, the sensor shows a twist sensitivity as high as 118.7 pm/(rad/m) in the range of -105 to -52.5 rad/m and that of 181.7 pm/(rad/m) in the range of 52.5-105 rad/m.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2015-11-01
One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.
Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities
NASA Astrophysics Data System (ADS)
Yang, Rongyao; Wei, Sina; Jiang, Weizhou
2018-01-01
A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)
Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
2016-09-14
Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
Hasan, Nazim; Gopal, Judy; Wu, Hui-Fen
2011-11-01
Biofilm studies have extensive significance since their results can provide insights into the behavior of bacteria on material surfaces when exposed to natural water. This is the first attempt of using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) for detecting the polysaccharides formed in a complex biofilm consisting of a mixed consortium of marine microbes. MALDI-MS has been applied to directly analyze exopolysaccharides (EPS) in the biofilm formed on aluminum surfaces exposed to seawater. The optimal conditions for MALDI-MS applied to EPS analysis of biofilm have been described. In addition, microbiologically influenced corrosion of aluminum exposed to sea water by a marine fungus was also observed and the fungus identity established using MALDI-MS analysis of EPS. Rapid, sensitive and direct MALDI-MS analysis on biofilm would dramatically speed up and provide new insights into biofilm studies due to its excellent advantages such as simplicity, high sensitivity, high selectivity and high speed. This study introduces a novel, fast, sensitive and selective platform for biofilm study from natural water without the need of tedious culturing steps or complicated sample pretreatment procedures. Copyright © 2011 John Wiley & Sons, Ltd.
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-06
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.
Tang, Bo; Cao, Lihua; Xu, Kehua; Zhuo, Linhai; Ge, Jiechao; Li, Qingling; Yu, Lijuan
2008-01-01
A novel assembled nanobiosensor QDs-ConA-beta-CDs-AuNPs was designed for the direct determination of glucose in serum with high sensitivity and selectivity. The sensing approach is based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) as an energy donor and gold nanoparticles (AuNPs) as an energy acceptor. The specific combination of concanavalin A (ConA)-conjugated QDs and thiolated beta-cyclodextrins (beta-SH-CDs)-modified AuNPs assembles a hyperefficient FRET nanobiosensor. In the presence of glucose, the AuNPs-beta-CDs segment of the nanobiosensor is displaced by glucose which competes with beta-CDs on the binding sites of ConA, resulting in the fluorescence recovery of the quenched QDs. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of glucose within the range of 0.10-50 muM under the optimized experimental conditions. In addition, the nanobiosensor has high sensitivity with a detection limit as low as 50 nM, and has excellent selectivity for glucose over other sugars and most biological species present in serum. The nanobiosensor was applied directly to determine glucose in normal adult human serum, and the recovery and precision of the method were satisfactory. The unique combination of high sensitivity and good selectivity of this biosensor indicates its potential for the clinical determination of glucose directly and simply in serum, and provides the possibility to detect low levels of glucose in single cells or bacterial cultures. Moreover, the designed nanobiosensor achieves direct detection in biological samples, suggesting the use of nanobiotechnology-based assembled sensors for direct analytical applications in vivo or in vitro.
Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
Xu, Shoufang; Lu, Hongzhi
2016-11-15
A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Jeelani, Shazia; Ahmed, Qazi Masood; Lanker, Audil Mohmad; Hassan, Iffat; Jeelani, Nasir; Fazili, Tawheeda
2015-01-01
Onychomycosis is fungal infection of one or more of the nail units. However, because fungi cause only about half of all nail dystrophies, the use of appropriate diagnostic techniques is important to ensure correct diagnosis and treatment. Aim of the present study was to compare direct microscopy, culture and HPE-PAS for diagnosis of onychomycosis by evaluating their sensitivity and various other relevant statistical parameters. A prospective, hospital-based, cross-sectional study was conducted on 216 patients with a high degree of clinical suspicion of onychomycosis. Nail specimens were evaluated using three diagnostic methods, i.e. direct microscopy using 20% Potassium hydroxide (KOH) & 40% Di-methyl-suphoxide (DMSO), culture and histopathological examination using PAS stain (HPE-PAS). Of 216 patients direct microscopy was positive in 138 (63.9%), culture in 147 (68%) and HPE-PAS in 164 patients (76%). One hundred and seventy-nine patients fitted into the criteria set for confirmed diagnosis of onychomycosis. Using this as a denominator; direct microscopy, culture and HPE-PAS had sensitivities of 77.1%, 70% and 91.6% respectively. Also, HPE-PAS showed the highest sensitivity of 94.7% in 19 cases with prediagnostic antimycotic treatment compared to direct microscopy (42.1%) or culture (57.9%). HPE-PAS shows high sensitivity for diagnosis of onychomycosis and can be considered as a gold standard in the diagnosis of onychomycosis. © 2014 Blackwell Verlag GmbH.
Fu, Zi-Ying; Zeng, Hong; Tang, Jia; Li, Jie; Li, Juan; Chen, Qi-Cai
2013-06-25
It has been reported that the frequency modulation (FM) or FM direction sensitivity and forward masking of central auditory neurons are related with the neural inhibition, but there are some arguments, because no direct evidence of inhibitory synaptic input was obtained in previous studies using extracellular recording. In the present study, we studied the relation between FM direction sensitivity and forward masking of the inferior collicular (IC) neurons using in vivo intracellular recordings in 20 Mus musculus Km mice. Thirty seven with complete data among 93 neurons were analyzed and discussed. There was an inhibitory area which consisted of inhibitory postsynaptic potentials (IPSP) at high frequency side of frequency tuning of up-sweep FM (FMU) sensitive neurons (n = 12) and at low frequency side of frequency tuning of down-sweep FM (FMD) selective neurons (n = 8), while there was no any inhibitory area at both sides of frequency tuning of non-FM sweep direction (FMN) sensitive neurons (n = 17). Therefore, these results show that the inhibitory area at low or high frequency side of frequency tuning is one of the mechanisms for forming FM sweep direction sensitivity of IC neurons. By comparison of forward masking produced by FMU and FMD sound stimuli in FMU, FMD and FMN neurons, the selective FM sounds could produce stronger forward masking than the non-selective in FMU and FMD neurons, while there was no forward masking difference between FMU and FMD stimuli in the FMN neurons. We suggest that the post-action potential IPSP is a potential mechanism for producing stronger forward masking in FMU and FMD neurons.
Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.
Kulkarni, Girish S; Zhong, Zhaohui
2012-02-08
Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society
Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping
2018-03-01
A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.
Retinal sensitivity and choroidal thickness in high myopia.
Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose
2015-03-01
To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.
Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats
McGuire, Blaine A.; Baladi, Michelle G.; France, Charles P.
2011-01-01
Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1–10 mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. PMID:21371470
Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats.
McGuire, Blaine A; Baladi, Michelle G; France, Charles P
2011-05-11
Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1-10mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. Copyright © 2011 Elsevier B.V. All rights reserved.
The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.
The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.
Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.
Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R
2016-08-31
In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity.
Broman-Fulks, Joshua J; Storey, Katelyn M
2008-04-01
Anxiety sensitivity, or the belief that anxiety-related sensations can have negative consequences, has been shown to play an important role in the etiology and maintenance of panic disorder and other anxiety-related pathology. Aerobic exercise involves exposure to physiological cues similar to those experienced during anxiety reactions. The present study sought to investigate the efficacy of a brief aerobic exercise intervention for high anxiety sensitivity. Accordingly, 24 participants with high anxiety sensitivity scores (Anxiety Sensitivity Index-Revised scores >28) were randomly assigned to complete either six 20-minute sessions of aerobic exercise or a no-exercise control condition. The results indicated that individuals assigned to the aerobic exercise condition reported significantly less anxiety sensitivity subsequent to exercise, whereas anxiety sensitivity scores among non-exercisers did not significantly change. The clinical research and public health implications of these findings are discussed, and several potential directions for additional research are recommended.
Microgels for multiplex and direct fluorescence detection
NASA Astrophysics Data System (ADS)
Causa, Filippo; Aliberti, Anna; Cusano, Angela M.; Battista, Edmondo; Netti, Paolo A.
2015-05-01
Blood borne oligonucleotides fragments contain useful clinical information whose detection and monitoring represent the new frontier in liquid biopsy as they can transform the current diagnosis procedure. For instance, recent studies have identified a new class of circulating biomarkers such as s miRNAs, and demonstrated that changes in their concentration are closely associated with the development of cancer and other pathologies. However, direct detection of miRNAs in body fluids is particularly challenging and demands high sensitivity -concentration range between atto to femtomolarspecificity, and multiplexing Here we report on engineered multifunctional microgels and innovative probe design for a direct and multiplex detection of relevant clinical miRNAs in fluorescence by single particle assay. Polyethyleneglycol-based microgels have a coreshell architecture with two spectrally encoded fluorescent dyes for multiplex analyses and are endowed with fluorescent probes for miRNA detection. Encoding and detection fluorescence signals are distinguishable by not overlapping emission spectra. Tuneable fluorescence probe conjugation and corresponding emission confinement on single microgel allows for enhanced target detection. Such suspension array has indeed high selectivity and sensitivity with a detection limit of 10-15 M and a dynamic range from 10-9 to 10-15 M. We believe that sensitivity in the fM concentration range, signal background minimization, multiplexed capability and direct measurement of such microgels will translate into diagnostic benefits opening up new roots toward liquid biopsy in the context of point-of-care testing through an easy and fast detection of sensitive diagnostic biomarkers directly in serum.
Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman
2014-02-05
The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*10(5) MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts.
Agger, W A; Maki, D G
1978-01-01
A preponderance of clusters seen on direct Gram stain of blood cultures positive for gram-positive cocci was 98% sensitive and 100% specific for identification of staphylococcal species or of Peptococcus. A preponderance of chains, pairs, or both was 100% sensitive and 98% specific for identifying streptococci. Further presumptive identification of either staphylococci or streptococci based on microscopic morphology was unreliable. The direct Gram stain is highly reliable for differentiating staphylococci from streptococci and should be of considerable value to clinicians selecting initial antimicrobial therapy. PMID:75888
Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman
2014-01-01
The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*105 MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts. Abbreviations: CTC – circulating tumour cells, CxCa – cervical cancer, DD-RT-PCR – Digital-Direct Reverse Transcriptase PCR, HPV – Human Papilloma Virus, MNBC – mononuclear blood cells, ICC – immunocytochemistry. PMID:24496006
Boscaini, Camile; Pellanda, Lucia Campos
2015-01-01
Studies have shown associations of birth weight with increased concentrations of high sensitivity C-reactive protein. This study assessed the relationship between birth weight, anthropometric and metabolic parameters during childhood, and high sensitivity C-reactive protein. A total of 612 Brazilian school children aged 5-13 years were included in the study. High sensitivity C-reactive protein was measured by particle-enhanced immunonephelometry. Nutritional status was assessed by body mass index, waist circumference, and skinfolds. Total cholesterol and fractions, triglycerides, and glucose were measured by enzymatic methods. Insulin sensitivity was determined by the homeostasis model assessment method. Statistical analysis included chi-square test, General Linear Model, and General Linear Model for Gamma Distribution. Body mass index, waist circumference, and skinfolds were directly associated with birth weight (P < 0.001, P = 0.001, and P = 0.015, resp.). Large for gestational age children showed higher high sensitivity C-reactive protein levels (P < 0.001) than small for gestational age. High birth weight is associated with higher levels of high sensitivity C-reactive protein, body mass index, waist circumference, and skinfolds. Large for gestational age altered high sensitivity C-reactive protein and promoted additional risk factor for atherosclerosis in these school children, independent of current nutritional status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yaoyu; Gu, Min, E-mail: mgu@swin.edu.au
We demonstrated an approach to break the diffraction limit and realise deep-subwavelength two-photon direct laser writing by employing a highly sensitive photoreduction process. The photoreduction photosensitivity increased by at least 4 times while the wavelength of the fabrication laser beam was tuned from 800 nm to 580 nm. The increase of the photosensitivity resulted in improved resolution for the silver dot fabrication. By developing the photoreduction material with adding electron donors, the photosensitivity further increased and enabled the realisation of a single silver dot at 22 nm which is λ/26 for the wavelength of the fabrication laser beam.
Avis, Tyler J.; Michaud, Mélanie; Tweddell, Russell J.
2007-01-01
Aluminum chloride and sodium metabisulfite have shown high efficacy at low doses in controlling postharvest pathogens on potato tubers. Direct effects of these two salts included the loss of cell membrane integrity in exposed pathogens. In this work, four fungal potato pathogens were studied in order to elucidate the role of membrane lipids and lipid peroxidation in the relative sensitivity of microorganisms exposed to these salts. Inhibition of mycelial growth in these fungi varied considerably and revealed sensitivity groups within the tested fungi. Analysis of fatty acids in these fungi demonstrated that sensitivity was related to high intrinsic fatty acid unsaturation. When exposed to the antifungal salts, sensitive fungi demonstrated a loss of fatty acid unsaturation, which was accompanied by an elevation in malondialdehyde content (a biochemical marker of lipid peroxidation). Our data suggest that aluminum chloride and sodium metabisulfite could induce lipid peroxidation in sensitive fungi, which may promote the ensuing loss of integrity in the plasma membrane. This direct effect on fungal membranes may contribute, at least in part, to the observed antimicrobial effects of these two salts. PMID:17337539
Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.
2010-01-01
The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779
NASA Astrophysics Data System (ADS)
Zhang, Chen; Yuan, Heng; Zhang, Ning; Xu, Lixia; Zhang, Jixing; Li, Bo; Fang, Jiancheng
2018-04-01
Negatively charged nitrogen vacancy (NV‑) centers in diamond have been extensively studied as high-sensitivity magnetometers, showcasing a wide range of applications. This study experimentally demonstrates a vector magnetometry scheme based on synchronous manipulation of NV‑ center ensembles in all crystal directions using double frequency microwaves (MWs) and multi-coupled-strip-lines (mCSL) waveguide. The application of the mCSL waveguide ensures a high degree of synchrony (99%) for manipulating NV‑ centers in multiple orientations in a large volume. Manipulation with double frequency MWs makes NV‑ centers of all four crystal directions involved, and additionally leads to an enhancement of the manipulation field. In this work, by monitoring the changes in the slope of the resonance line consisting of multi-axes NV‑ centers, measurement of the direction of the external field vector was demonstrated with a sensitivity of {{10}\\prime}/\\sqrt{Hz} . Based on the scheme, the fluorescence signal contrast was improved by four times higher and the sensitivity to the magnetic field strength was improved by two times. The method provides a more practical way of achieving vector sensors based on NV‑ center ensembles in diamond.
Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.
Liu, Wenguang; Yan, Chaoyi
2018-03-28
We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.
Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw
2017-01-01
Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096
Extending Raman's reach: enabling applications via greater sensitivity and speed
NASA Astrophysics Data System (ADS)
Creasey, David; Sullivan, Mike; Paul, Chris; Rathmell, Cicely
2018-02-01
Over the last decade, miniature fiber optic spectrometers have greatly expanded the ability of Raman spectroscopy to tackle practical applications in the field, from mobile pharmaceutical ID to hazardous material assessment in remote locations. There remains a gap, however, between the typical diode array spectrometer and their more sensitive benchtop analogs. High sensitivity, cooled Raman spectrometers have the potential to narrow that gap by providing greater sensitivity, better SNR, and faster measurement times. In this paper, we'll look at the key factors in the design of high sensitivity miniature Raman spectrometers and their associated accessories, as well as the key metric for direct comparison of these systems - limit of detection. With the availability of our high sensitivity Raman systems operating at wavelengths from the UV to NIR, many applications are now becoming practical in the field, from trace level detection to analysis of complex biological samples.
Development of a direct PCR assay to detect Taenia multiceps eggs isolated from dog feces.
Wang, Ning; Wang, Yu; Ye, Qinghua; Yang, Yingdong; Wan, Jie; Guo, Cheng; Zhan, Jiafei; Gu, Xiaobin; Lai, Weimin; Xie, Yue; Peng, Xuerong; Yang, Guangyou
2018-02-15
Taenia multiceps is a tapeworm that leads to the death of livestock, resulting in major economic losses worldwide. The adult stage of this parasite invades the small intestine of dogs and other canids. In the present study, we developed a direct PCR assay to detect T. multiceps eggs isolated from dog feces to help curb further outbreaks. The genomic DNA was rapidly released using a lysis buffer and the PCR reaction was developed to amplify a 433-bp fragment of the T. multiceps mitochondrial gene encoding NADH dehydrogenase subunit 5 (nad5) from eggs isolated from dog feces. The procedure could be completed within 3 h, including flotation. The sensitivity of the assay was determined by detecting DNA from defined numbers of eggs, and the specificity was determined by detecting DNA from other intestinal tapeworm and roundworm species that commonly infect dogs. In addition, 14 taeniid-positive fecal samples determined by the flotation technique were collected and further evaluated by the regular PCR and our direct PCR. The results showed that the direct PCR developed herein was sensitive enough to detect the DNA from as few as 10 T. multiceps eggs and that no cross-reactions with other tapeworm and roundworm were observed, suggesting its high sensitivity and specificity for T. multiceps detection. Moreover, 14 taeniid-positive samples were screened by the regular PCR and direct PCR, with detection rates of 78.6% and 85.7%, respectively. In conclusion, the direct PCR assay developed in the present study has high sensitivity and specificity to identify T. multiceps eggs isolated from dog feces and therefore could represent an invaluable tool to identify T. multiceps outbreaks and would contribute to future clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †
Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung
2017-01-01
We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770
Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode
NASA Astrophysics Data System (ADS)
Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin
2016-10-01
In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.
Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors
NASA Astrophysics Data System (ADS)
Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.
2015-03-01
Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.
Nanocrystalline SiC film thermistors for cryogenic applications
NASA Astrophysics Data System (ADS)
Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.
2018-02-01
We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.
Mirabelli, Mario F; Zenobi, Renato
2018-04-17
A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.
Pai, Madhukar; Kalantri, Shriprakash; Pascopella, Lisa; Riley, Lee W; Reingold, Arthur L
2005-10-01
To summarize, using meta-analysis, the accuracy of bacteriophage-based assays for the detection of rifampicin resistance in Mycobacterium tuberculosis. By searching multiple databases and sources we identified a total of 21 studies eligible for meta-analysis. Of these, 14 studies used phage amplification assays (including eight studies on the commercial FASTPlaque-TB kits), and seven used luciferase reporter phage (LRP) assays. Sensitivity, specificity, and agreement between phage assay and reference standard (e.g. agar proportion method or BACTEC 460) results were the main outcomes of interest. When performed on culture isolates (N=19 studies), phage assays appear to have relatively high sensitivity and specificity. Eleven of 19 (58%) studies reported sensitivity and specificity estimates > or =95%, and 13 of 19 (68%) studies reported > or =95% agreement with reference standard results. Specificity estimates were slightly lower and more variable than sensitivity; 5 of 19 (26%) studies reported specificity <90%. Only two studies performed phage assays directly on sputum specimens; although one study reported sensitivity and specificity of 100 and 99%, respectively, another reported sensitivity of 86% and specificity of 73%. Current evidence is largely restricted to the use of phage assays for the detection of rifampicin resistance in culture isolates. When used on culture isolates, these assays appear to have high sensitivity, but variable and slightly lower specificity. In contrast, evidence is lacking on the accuracy of these assays when they are directly applied to sputum specimens. If phage-based assays can be directly used on clinical specimens and if they are shown to have high accuracy, they have the potential to improve the diagnosis of MDR-TB. However, before phage assays can be successfully used in routine practice, several concerns have to be addressed, including unexplained false positives in some studies, potential for contamination and indeterminate results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
Analytical Glycobiology at High Sensitivity: Current Approaches and Directions
Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.
2013-01-01
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852
Determination of boldine in plasma by high-performance liquid chromatography.
Speisky, H; Cassels, B K; Nieto, S; Valenzuela, A; Nuñez-Vergara, L J
1993-02-26
A sensitive method for the determination of boldine in blood plasma is described. The procedure involves a direct pH-buffered chloroform extraction of boldine from blood plasma, followed by its assay under isocratic conditions by HPLC with UV detection. The extraction recovery is excellent, and sensitivity and precision of the method are very high, when applied to plasma samples containing pharmacologically relevant concentrations of boldine.
NASA Astrophysics Data System (ADS)
Liu, Yuzhe; Horikawa, Shin; Chen, I.-Hsuan; Du, Songtao; Wikle, Howard C.; Suh, Sang-Jin; Chin, Bryan A.
2017-05-01
This paper demonstrates a highly sensitive surface-scanning detector used for magnetoelastic (ME) biosensors for the detection of Salmonella on the surface of a polyethylene (PE) food preparation surface. The design and fabrication methods of the new planar spiral coil are introduced. Different concentrations of Salmonella were measured on the surface of a PE board. The efficacy of Salmonella capture and detection is discussed.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Method and apparatus for determining weldability of thin sheet metal
Goodwin, Gene M.; Hudson, Joseph D.
1988-01-01
A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.
2010-09-15
A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination ofmore » the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article. (author)« less
Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles
Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon
2014-01-01
A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867
Manikandan, M; Gopal, Judy; Hasan, Nazim; Wu, Hui-Fen
2014-12-01
We developed a cancer chip by nano-patterning a highly sensitive SAM titanium surface capable of capturing and sensing concentrations as low as 10 cancer cells/mL from the environment by Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The current approach evades any form of pretreatment and sample preparation processes; it is time saving and does not require the (expensive) conventional MALDI target plate. The home made aluminium (Al) target holder cost, on which we loaded the cancer chips for MALDI-TOF MS analysis, is about 60 USD. While the conventional stainless steel MALDI target plate is more than 700 USD. The SAM surface was an effective platform leading to on-chip direct MALDI-MS detection of cancer cells. We compared the functionality of this chip with the unmodified titanium surfaces and thermally oxidized (TO) titanium surfaces. The lowest detectable concentration of the TO chip was 10(3) cells/mL, while the lowest detectable concentration of the control or unmodified titanium chips was 10(6) cells/mL. Compared to the control surface, the SAM cancer chip showed 100,000 times of enhanced sensitivity and compared with the TO chip, 1000 times of increased sensitivity. The high sensitivity of the SAM surfaces is attributed to the presence of the rutile SAM, surface roughness and surface wettability as confirmed by AFM, XRD, contact angle microscope and FE-SEM. This study opens a new avenue for the potent application of the SAM cancer chip for direct cancer diagnosis by MALDI-TOF MS in the near future. Copyright © 2014. Published by Elsevier B.V.
Evaluation and construction of diagnostic criteria for inclusion body myositis
Mammen, Andrew L.; Amato, Anthony A.; Weiss, Michael D.; Needham, Merrilee
2014-01-01
Objective: To use patient data to evaluate and construct diagnostic criteria for inclusion body myositis (IBM), a progressive disease of skeletal muscle. Methods: The literature was reviewed to identify all previously proposed IBM diagnostic criteria. These criteria were applied through medical records review to 200 patients diagnosed as having IBM and 171 patients diagnosed as having a muscle disease other than IBM by neuromuscular specialists at 2 institutions, and to a validating set of 66 additional patients with IBM from 2 other institutions. Machine learning techniques were used for unbiased construction of diagnostic criteria. Results: Twenty-four previously proposed IBM diagnostic categories were identified. Twelve categories all performed with high (≥97%) specificity but varied substantially in their sensitivities (11%–84%). The best performing category was European Neuromuscular Centre 2013 probable (sensitivity of 84%). Specialized pathologic features and newly introduced strength criteria (comparative knee extension/hip flexion strength) performed poorly. Unbiased data-directed analysis of 20 features in 371 patients resulted in construction of higher-performing data-derived diagnostic criteria (90% sensitivity and 96% specificity). Conclusions: Published expert consensus–derived IBM diagnostic categories have uniformly high specificity but wide-ranging sensitivities. High-performing IBM diagnostic category criteria can be developed directly from principled unbiased analysis of patient data. Classification of evidence: This study provides Class II evidence that published expert consensus–derived IBM diagnostic categories accurately distinguish IBM from other muscle disease with high specificity but wide-ranging sensitivities. PMID:24975859
Wang, Ya-Qian; Cao, Chan; Ying, Yi-Lun; Li, Shuang; Wang, Ming-Bo; Huang, Jin; Long, Yi-Tao
2018-04-27
Selectivity and sensitivity are two key parameters utilized to describe the performance of a sensor. In order to investigate selectivity and sensitivity of the aerolysin nanosensor, we manipulated its surface charge at different locations via single site-directed mutagenesis. To study the selectivity, we replaced the positively charged R220 at the entrance of the pore with negatively charged glutamic acid, resulting in barely no current blockages for sensing negatively charged oligonucleotides. For the sensitivity, we substituted the positively charged lumen-exposed amino acid K238 located at trans-ward third of the β-barrel stem with glutamic acid. This leads to a surprisingly longer duration time at +140 mV, which is about 20 times slower in translocation speed for Poly(dA) 4 compared to that of wild-type aerolysin, indicating the stronger pore-analyte interactions and enhanced sensitivity. Therefore, it is both feasible and understandable to rationally design confined biological nanosensors for single molecule detection with high selectivity and sensitivity.
Kelbauskas, L; Dietel, W
2002-12-01
Amphiphilic sensitizers self-associate in aqueous environments and form aggregated species that exhibit no or only negligible photodynamic activity. However, amphiphilic photosensitizers number among the most potent agents of photodynamic therapy. The processes by which these sensitizers are internalized into tumor cells have yet to be fully elucidated and thus remain the subject of debate. In this study the uptake of photosensitizer aggregates into tumor cells was examined directly using subcellular time-resolved fluorescence spectroscopy with a high temporal resolution (20-30 ps) and high sensitivity (time-correlated single-photon counting). The investigations were performed on selected sensitizers that exhibit short fluorescence decay times (< 50 ps) in aggregated form. Derivatives of pyropheophorbide-a ether and chlorin e6 with varying lipophilicity were used for the study. The characteristic fluorescence decay times and spectroscopic features of the sensitizer aggregates measured in aqueous solution also could be observed in A431 human endothelial carcinoma cells administered with these photosensitizers. This shows that tumor cells can internalize sensitizers in aggregated form. Uptake of aggregates and their monomerization inside cells were demonstrated directly for the first time by means of fluorescence lifetime imaging with a high temporal resolution. Internalization of the aggregates seems to be endocytosis mediated. The degree of their monomerization in tumor cells is strongly influenced by the lipophilicity of the compounds.
Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash
2016-12-15
The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.
2013-12-01
and the signal is read as a photocurrent or at a photovoltaic p-n junction. These detectors can provide high-sensitivity and fast refresh rates and...Alternative methods can be used to modulate the sample temperature directly; for example, by using modern Peltier devices and thermoelectric ...commercially-available hardware. The setup consist of three main components: (1) A temperature regulated thermoelectric stage; (2) A high-sensitivity
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing
Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E.; Ritchie, David A.; Vitiello, Miriam Serena; De Natale, Paolo
2013-01-01
We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range. PMID:23478601
THz QCL-based cryogen-free spectrometer for in situ trace gas sensing.
Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam Serena; De Natale, Paolo
2013-03-11
We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.
Hayashida, Kyoko; Kajino, Kiichi; Simukoko, Humphrey; Simuunza, Martin; Ndebe, Joseph; Chota, Amos; Namangala, Boniface; Sugimoto, Chihiro
2017-01-13
Because of the low sensitivity of conventional rapid diagnostic tests (RDTs) for malaria infections, the actual prevalence of the diseases, especially those caused by non-Plasmodium falciparum (non-Pf) species, in asymptomatic populations remain less defined in countries lacking in well-equipped facilities for accurate diagnoses. Our direct blood dry LAMP system (CZC-LAMP) was applied to the diagnosis of malaria as simple, rapid and highly sensitive method as an alternative for conventional RDTs in malaria endemic areas where laboratory resources are limited. LAMP primer sets for mitochondria DNAs of Plasmodium falciparum (Pf) and human-infective species other than Pf (non-Pf; P. vivax, P. ovale, P. malariae) were designed and tested by using human blood DNA samples from 74 residents from a malaria endemic area in eastern Zambia. These malaria dry-LAMPs were optimized for field or point-of-care operations, and evaluated in the field at a malaria endemic area in Zambia with 96 human blood samples. To determine the sensitivities and specificities, results obtained by the on-site LAMP diagnosis were compared with those by the nested PCR and nucleotide sequencing of its product. The dry LAMPs showed the sensitivities of 89.7% for Pf and 85.7% for non-Pf, and the specificities of 97.2% for Pf and 100% for non-Pf, with purified blood DNA samples. The direct blood LAMP diagnostic methods, in which 1 μl of anticoagulated blood were used as the template, showed the sensitivities of 98.1% for Pf, 92.1% for non-Pf, and the specificities of 98.1% for Pf, 100% for non-Pf. The prevalences of P. falciparum, P. malariae and P. ovale in the surveyed area were 52.4, 25.3 and 10.6%, respectively, indicating high prevalence of asymptomatic carriers in endemic areas in Zambia. We have developed new field-applicable malaria diagnostic tests. The malaria CZC-LAMPs showed high sensitivity and specificity to both P. falciparum and non-P. falciparum. These malaria CZC-LAMPs provide new means for rapid, sensitive and reliable point-of-care diagnosis for low-density malaria infections, and are expected to help update current knowledge of malaria epidemiology, and can contribute to the elimination of malaria from endemic areas.
Breakdown of Spatial Parallel Coding in Children's Drawing
ERIC Educational Resources Information Center
De Bruyn, Bart; Davis, Alyson
2005-01-01
When drawing real scenes or copying simple geometric figures young children are highly sensitive to parallel cues and use them effectively. However, this sensitivity can break down in surprisingly simple tasks such as copying a single line where robust directional errors occur despite the presence of parallel cues. Before we can conclude that this…
Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo
2016-11-15
Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis
NASA Astrophysics Data System (ADS)
Park, Sunyoung; Ishii, Miaki
2018-06-01
A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.
Directional detector of gamma rays
Cox, Samson A.; Levert, Francis E.
1979-01-01
A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.
Baladi, Michelle G; Newman, Amy H; France, Charles P
2013-01-01
Rationale Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. Objectives This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Methods Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high fat (34.3%) chow. Results In rats gaining weight with restricted or free access to high fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032–0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within one week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high fat chow also developed insulin resistance. Conclusions These results show that amount and type of chow alter sensitivity to a direct-acting dopamine receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems. PMID:21544521
Baladi, Michelle G; Newman, Amy H; France, Charles P
2011-10-01
Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high-fat (34.3%) chow. In rats gaining weight with restricted or free access to high-fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032-0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high-fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within 1 week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high-fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high-fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high-fat chow also developed insulin resistance. These results show that amount and type of chow alter sensitivity to a direct-acting dopamine-receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems.
O'Gorman, David E; Colburn, H Steven; Shera, Christopher A
2010-11-01
The response of the auditory nerve to electrical stimulation is highly sensitive to small modulations (<0.5%). This report demonstrates that dynamical instability (i.e., a positive Lyapunov exponent) can account for this sensitivity in a modified FitzHugh-Nagumo model of spike generation, so long as the input noise is not too large. This finding suggests both that spike generator instability is necessary to account for auditory nerve sensitivity and that the amplitude of physiological noise, such as that produced by the random behavior of voltage-gated sodium channels, is small. Based on these results with direct electrical stimulation, it is hypothesized that spike generator instability may be the mechanism that reconciles high sensitivity with the cross-fiber independence observed under acoustic stimulation.
Density functional theory study of direct and indirect photodegradation mechanisms of sulfameter.
Shah, Shaheen; Hao, Ce
2016-10-01
Sulfonamide antibiotics (SAs) have been observed to undergo direct and indirect photodegradation in natural water environments. In this study, the density functional theory (DFT) method was employed for the study of direct and indirect photodegradation mechanisms of sulfameter (SME) with excited triplet states of dissolved organic matter ((3)DOM(*)) and metal ions. SME was adopted as a representative of SAs, and SO2 extrusion product was obtained with different energy paths in the triplet-sensitized photodegradation of the neutral (SME(0)) and the anionic (SME(-)) form of SME. The selected divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) promoted the triplet-sensitized photodegradation of SME(0) but showed an inhibitory effect in triplet-sensitized photodegradation of SME(-). The triplet-sensitized indirect photodegradation mechanism of SME was investigated with the three DOM analogues, i.e., 2-acetonaphthone (2-AN), fluorenone (FN), and thioxanthone (TN). Results indicated that the selected DOM analogues are highly responsible for the photodegradation via attacking on amine moiety of SME. According to the natural bond orbital (NBO) analysis, the triplet-sensitized photodegradation mechanism of SME(0) with 2-AN, FN, and TN was H-transfer, and the SME(-) was proton plus electron transfer with these DOM analogues.
The Role of Coherent Detection
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
2004-01-01
Many interesting astronomical objects, such as galaxies, molecular clouds, PDRs, star - forming regions, protostars, evolved stars, planets, and comets, have rich submillimeter spectra. In order to avoid line blending, and to be able to resolve the line shape, it is often necessary to measure these spectra at high resolution. This paper discusses the relative advantages and limitations of coherent and direct detection for high resolution spectroscopy in the submillimeter and far - infrared. In principle, direct detection has a fundamental sensitivity advantage. In practice, it is di.cult to realize this advantage given the sensitivities of existing detectors and reasonable constraints on the instrument volume. Thus, coherent detection can be expected to play an important role in submillimeter and far - infrared astrophysics well into the future.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Geotechnical properties of ash deposits near Hilo, Hawaii
Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.
1982-01-01
Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.
Angle performance on optima MDxt
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Kamenitsa, Dennis
2012-11-06
Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less
Meaza, Abyot; Kebede, Abebaw; Yaregal, Zelalem; Dagne, Zekarias; Moga, Shewki; Yenew, Bazezew; Diriba, Getu; Molalign, Helina; Tadesse, Mengistu; Adisse, Desalegn; Getahun, Muluwork; Desta, Kassu
2017-04-17
Multi drug resistant tuberculosis (MDR-TB) poses formidable challenges to TB control due to its complex diagnostic and treatment challenges and often associated with a high rate of mortality. Accurate and rapid detection of MDR-TB is critical for timely initiation of treatment. Line Probe Assay (LPA) is a qualitative in vitro diagnostic test based on DNA-STRIP technology for the identification of the M. tuberculosis complex and its resistance to rifampicin (RMP) and/or isoniazid (INH). Hain Lifescience, GmbH, Germany has improved the sensitivity of Genotype MTBDRplus VER 2.0 LPA for the detection of MDR-TB; with the possibility of applying the tool in smear negative sputum samples. A cross sectional study was conducted on 274 presumptive MDR-TB patients referred to the National TB Reference Laboratory (NTRL), Ethiopian Public Health Institute (EPHI) who submitted sputum samples for laboratory diagnosis of drug resistant-TB testing. Seventy-two smear and culture positive samples processed in smear positive direct LPA category and 197 smear negative sputum samples were processed for direct LPA. Among the smear negative samples 145 (73.6%) were culture negative and 26 (13.2%) were culture positive. All specimens were processed using NALC-NaOH method and ZN smear microscopy done from sediments. Genotype MTBDRplus VER 2.0 done from processed sputum sediments and the result was compared against the reference, BACTEC MGIT 960 culture and DST. Sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 assay was determined and P-value <0.05 was considered as statistically significant. The sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 LPA were 96.4, 100, 100 and 96.9%, respectively for the detection of MDR-TB from direct smear positive sputum samples. The sensitivity, specificity, PPV and NPV of Genotype MTBDR plus VER 2.0 LPA were 77.8, 97.2, 82.4 and 97.2%, respectively, for the detection of M. tuberculosis from direct smear negative sputum samples. Fourteen (53.8%) samples had valid results with LPA among the 26 smear negative culture positive samples. The remaining 8 (30.8%) and 4 (15.4%) were invalid and negative with LPA, respectively. The sensitivity and specificity of Genotype MTBDRplus VER 2.0 LPA were 100% for the detection of MDR-TB among 14 direct smear negative and culture positive sputum samples. The most common mutations associated with RMP and INH resistance were S531L and S315TL, respectively. A single rare mutation (C15T/A16G) was detected for INH resistance. The diagnostic performance of Genotype MTBDRplus VER 2.0 LPA in direct smear positive sputum sample was highly sensitive and specific for early detection of MDR-TB. However, the diagnostic performance of this molecular assay in direct smear negative sputum sample was low and showed a high level of invalid results for detection of M. tuberculosis and its resistance to RMP and/or INH so it is unlikely to implement Genotype MTBDRplus VER 2.0 for the detection of MDR-TB in direct smear negative sample in our routine settings. The sensitivity of the assay should be improved for detection of MDR-TB in direct smear negative sputum specimens.
Micó, Miquel; Navarro, Ferran; de Miniac, Daniela; González, Yésica; Brell, Albert; López, Cristina; Sánchez-Reus, Ferran; Mirelis, Beatriz; Coll, Pere
2015-12-01
Molecular-based techniques reduce the delay in diagnosing infectious diseases and therefore contribute to better patient outcomes. We assessed the FilmArray blood culture identification (BCID) panel (Biofire Diagnostics/bioMérieux) directly on clinical specimens other than blood: cerebrospinal, joint, pleural and ascitic fluids, bronchoscopy samples and abscesses. We compared the results from 88 samples obtained by culture-based techniques. The percentage of agreement between the two methods was 75 % with a Cohen κ value of 0.51. Global sensitivity and specificity using the FilmArray BCID panel were 71 and 97 %, respectively. Sensitivity was poorer in samples with a low bacterial load, such as ascitic and pleural fluids (25 %), whereas the sensitivity for abscess samples was high (89 %). These findings suggest that the FilmArray BCID panel could be useful to perform microbiological diagnosis directly from samples other than positive blood cultures, as it offers acceptable sensitivity and moderate agreement with conventional microbiological methods. Nevertheless, cost-benefit studies should be performed before introducing this method into algorithms for microbiological diagnostics.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Yu, Xin; Guo, Weibo; Qiu, Jichuan; Mou, Xiaoning; Li, Aixue; Liu, Hong
2016-04-01
The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring.The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01360k
Baladi, Michelle G; Daws, Lynette C; France, Charles P
2012-01-01
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that the central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. PMID:22710441
Yin, T C; Kuwada, S
1983-10-01
We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Porous silicon ring resonator for compact, high sensitivity biosensing applications
Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.
2015-01-01
A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
NASA Technical Reports Server (NTRS)
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Direct laser writing of polymer micro-ring resonator ultrasonic sensors
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.
NASA Astrophysics Data System (ADS)
Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-07-01
An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.
Region of interest methylation analysis: a comparison of MSP with MS-HRM and direct BSP.
Akika, Reem; Awada, Zainab; Mogharbil, Nahed; Zgheib, Nathalie K
2017-07-01
The aim of this study was to compare and contrast three DNA methylation methods of a specific region of interest (ROI): methylation-specific PCR (MSP), methylation-sensitive high resolution melting (MS-HRM) and direct bisulfite sequencing (BSP). The methylation of a CpG area in the promoter region of Estrogen receptor alpha (ESR1) was evaluated by these three methods with samples and standards of different methylation percentages. MSP data were neither reproducible nor sensitive, and the assay was not specific due to non-specific binding of primers. MS-HRM was highly reproducible and a step forward into categorizing the methylation status of the samples as percent ranges. Direct BSP was the most informative method regarding methylation percentage of each CpG site. Though not perfect, it was reproducible and sensitive. We recommend the use of either method depending on the research question and target amplicon, and provided that the designed primers and expected amplicons are within recommendations. If the research question targets a limited number of CpG sites and simple yes/no results are enough, MSP may be attempted. For short amplicons that are crowded with CpG sites and of single melting domain, MS-HRM may be the method of choice though it only indicates the overall methylation percentage of the entire amplicon. Although the assay is highly reproducible, being semi-quantitative makes it of lesser interest to study ROI methylation of samples with little methylation differences. Direct BSP is a step forward as it gives information about the methylation percentage at each CpG site.
Sakata, Shohei; Katsumi, Sohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi
2015-01-01
Diminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model. Male Sprague Dawley rats fed a high-fat diet were treated with a single administration of JTT-130. Glucose tolerance, hyperglycemic clamp and hyperinsulinemic-euglycemic testing were performed to assess effects on insulin sensitivity and glucose-stimulated insulin secretion, respectively. Plasma GLP-1 and tissue triglyceride content were also determined under the same conditions. A single administration of JTT-130 suppressed plasma glucose elevations after oral glucose loading and increased the disposition index while elevating GLP-1. JTT-130 also enhanced glucose-stimulated insulin secretion in hyperglycemic clamp tests, whereas increased insulin sensitivity was observed in hyperinsulinemic-euglycemic clamp tests. Single-dose administration of JTT-130 decreased lipid content in the liver and skeletal muscle. JTT-130 demonstrated acute and direct hypoglycemic effects by enhancing insulin secretion and/or insulin sensitivity. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Coomans, C P; Geerling, J J; van den Berg, S A A; van Diepen, H C; Garcia-Tardón, N; Thomas, A; Schröder-van der Elst, J P; Ouwens, D M; Pijl, H; Rensen, P C N; Havekes, L M; Guigas, B; Romijn, J A
2013-10-01
Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro. Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells. In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL(-1) ) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[(3) H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells. In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS. © 2013 The British Pharmacological Society.
Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance
NASA Astrophysics Data System (ADS)
Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing
2018-07-01
A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.
42 CFR 494.140 - Condition: Personnel qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... is employed as a dialysis technician; and (2) Have a high school diploma or equivalency; (3) Have..., providing direct patient care, and communication and interpersonal skills, including patient sensitivity...
42 CFR 494.140 - Condition: Personnel qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... is employed as a dialysis technician; and (2) Have a high school diploma or equivalency; (3) Have..., providing direct patient care, and communication and interpersonal skills, including patient sensitivity...
42 CFR 494.140 - Condition: Personnel qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... is employed as a dialysis technician; and (2) Have a high school diploma or equivalency; (3) Have..., providing direct patient care, and communication and interpersonal skills, including patient sensitivity...
42 CFR 494.140 - Condition: Personnel qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... is employed as a dialysis technician; and (2) Have a high school diploma or equivalency; (3) Have..., providing direct patient care, and communication and interpersonal skills, including patient sensitivity...
Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.
Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime
2017-12-05
Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.
Refractive index sensor based on lateral-offset of coreless silica interferometer
NASA Astrophysics Data System (ADS)
Baharin, Nur Faizzah; Azmi, Asrul Izam; Abdullah, Ahmad Sharmi; Mohd Noor, Muhammad Yusof
2018-02-01
A compact, cost-effective and high sensitivity fiber interferometer refractive index (RI) sensor based on symmetrical offset coreless silica fiber (CSF) configuration is proposed, optimized and demonstrated. The sensor is formed by splicing a section of CSF between two CSF sections in an offset manner. Thus, two distinct optical paths are created with large index difference, the first path through the connecting CSF sections and the second path is outside the CSF through the surrounding media. RI sensing is established from direct interaction of light with surrounding media, hence high sensitivity can be achieved with a relatively compact sensor length. In the experimental work, a 1.5 mm sensor demonstrates RI sensitivity of 750 nm/RIU for RI range between 1.33 and 1.345. With the main attributes of high sensitivity and compact size, the proposed sensor can be further developed for related applications including blood diagnosis, water quality control and food industries.
Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Sharma, Sapna
2018-06-01
Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.
Tactile directional sensibility: peripheral neural mechanisms in man.
Olausson, H; Wessberg, J; Kakuda, N
2000-06-02
Tactile directional sensibility, i.e. the ability to tell the direction of an object's motion across the skin, is an easily observed sensory function that is highly sensitive to disturbances of the somatosensory system. Based on previous psychophysical experiments on healthy subjects it was concluded that directional sensibility depends on two kinds of information from cutaneous mechanoreceptors; spatio-temporal information and information about friction-induced changes in skin stretch. In the present study responses to similar probe movements as in the psychophysical experiments were recorded from human single mechanoreceptors in the forearm skin. All slowly adapting type 2 (SA2) units were spontaneously active, and with increasing force of friction their discharge rates were modified by probe movements at increasing distances from the Ruffini end-organ, reflecting the high stretch-sensitivity of these units. Slowly adapting type 1 (SA1) and field units responded to the moving probe within well-defined skin areas directly overlying the individual receptor terminals, and compared to the SA2 units their response properties were less dependent on the force of friction. The results suggest that SA1 and field units have the capacity to signal spatio-temporal information, whereas a population of SA2 units have the capacity to signal direction-specific information about changes in lateral skin stretch.
A sensitive slope: estimating landscape patterns of forest resilience in a changing climate
Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric
2010-01-01
Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...
Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah
2015-10-14
The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.
Zhao, Changzhi; Wan, Li; Jiang, Li; Wang, Qin; Jiao, Kui
2008-12-01
A cholesterol biosensor based on direct electron transfer of a hemoglobin-encapsulated chitosan-modified glassy carbon electrode has been developed for highly sensitive and selective analysis of serum samples. Modified by films containing hemoglobin and cholesterol oxidase, the electrode was prepared by encapsulation of enzyme in chitosan matrix. The hydrogen peroxide produced by the catalytic oxidation of cholesterol by cholesterol oxidase was reduced electrocatalytically by immobilized hemoglobin and used to obtain a sensitive amperometric response to cholesterol. The linear response of cholesterol concentrations ranged from 1.00 x 10(-5) to 6.00 x 10(-4) mol/L, with a correlation coefficient of 0.9969 and estimated detection limit of cholesterol of 9.5 micromol/L at a signal/noise ratio of 3. The cholesterol biosensor can efficiently exclude interference by the commonly coexisting ascorbic acid, uric acid, dopamine, and epinephrine. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 0.596 A/M. The relative standard deviation was under 4.0% (n=5) for the determination of real samples. The biosensor is satisfactory in the determination of human serum samples.
Artificial sensory hairs based on the flow sensitive receptor hairs of crickets
NASA Astrophysics Data System (ADS)
Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.
2005-07-01
This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.
Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron
2015-04-01
We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.
Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.
2003-01-01
Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.
Electro-optical design of a long slit streak tube
NASA Astrophysics Data System (ADS)
Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng
2017-11-01
A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.
Highly charged ion based time of flight emission microscope
Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney
2001-01-01
A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.
High intensity ion beams from an atmospheric pressure inductively coupled plasma
NASA Astrophysics Data System (ADS)
Al Moussalami, S.; Chen, W.; Collings, B. A.; Douglas, D. J.
2002-02-01
This work is directed towards substantially improving the sensitivity of an inductively coupled plasma mass spectrometer (ICP-MS). Ions produced in the ICP at atmospheric pressure have been extracted with comparatively high current densities. The conventional approach to ion extraction, based on a skimmed molecular beam, has been abandoned, and a high extraction field arrangement has been adopted. Although the new approach is not optimized, current densities more than 180 times greater than that of a conventional interface have been extracted and analyte sensitivities ˜10-100× greater than those reported previously for quadrupole ICP-MS have been measured.
Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules
NASA Astrophysics Data System (ADS)
Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun
2016-12-01
We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.
Hunt, Caroline; Keogh, Edmund; French, Christopher C
2006-08-01
Selective attentional biases were examined amongst individuals varying in levels of physical anxiety sensitivity. The dot-probe paradigm was used to examine attention towards anxiety symptomatology, social threat and positive words. Stimuli were presented above (unmasked) and below (masked) the level of conscious awareness. High physical anxiety sensitivity was associated with attentional vigilance for anxiety symptomatology words in both unmasked and masked conditions. For positive words, however, those high in anxiety sensitivity were found to avoid such stimuli when they were masked, whereas they exhibited a relative vigilance when unmasked. If the differences between awareness conditions are reliable, then the impact of the automatic vigilance for threat might be modified by conscious attempts to direct attention towards other types of stimuli. (c) 2006 APA, all rights reserved
Baudart, Julia; Coallier, Josée; Laurent, Patrick; Prévost, Michèle
2002-01-01
Water quality assessment involves the specific, sensitive, and rapid detection of bacterial indicators and pathogens in water samples, including viable but nonculturable (VBNC) cells. This work evaluates the specificity and sensitivity of a new method which combines a fluorescent in situ hybridization (FISH) approach with a physiological assay (direct viable count [DVC]) for the direct enumeration, at the single-cell level, of highly diluted viable cells of members of the family Enterobacteriaceae in freshwater and drinking water after membrane filtration. The approach (DVC-FISH) uses a new direct detection device, the laser scanning cytometer (Scan RDI). Combining the DVC-FISH method on a membrane with Scan RDI detection makes it possible to detect as few as one targeted cell in approximately 108 nontargeted cells spread over the membrane. The ability of this new approach to detect and enumerate VBNC enterobacterial cells in freshwater and drinking water distribution systems was investigated and is discussed. PMID:12324357
Novel EUV photoresist for sub-7nm node (Conference Presentation)
NASA Astrophysics Data System (ADS)
Furukawa, Tsuyoshi; Naruoka, Takehiko; Nakagawa, Hisashi; Miyata, Hiromu; Shiratani, Motohiro; Hori, Masafumi; Dei, Satoshi; Ayothi, Ramakrishnan; Hishiro, Yoshi; Nagai, Tomoki
2017-04-01
Extreme ultraviolet (EUV) lithography has been recognized as a promising candidate for the manufacturing of semiconductor devices as LS and CH pattern for 7nm node and beyond. EUV lithography is ready for high volume manufacturing stage. For the high volume manufacturing of semiconductor devices, significant improvement of sensitivity and line edge roughness (LWR) and Local CD Uniformity (LCDU) is required for EUV resist. It is well-known that the key challenge for EUV resist is the simultaneous requirement of ultrahigh resolution (R), low line edge roughness (L) and high sensitivity (S). Especially high sensitivity and good roughness is important for EUV lithography high volume manufacturing. We are trying to improve sensitivity and LWR/LCDU from many directions. From material side, we found that both sensitivity and LWR/LCDU are simultaneously improved by controlling acid diffusion length and efficiency of acid generation using novel resin and PAG. And optimizing EUV integration is one of the good solution to improve sensitivity and LWR/LCDU. We are challenging to develop new multi-layer materials to improve sensitivity and LWR/LCDU. Our new multi-layer materials are designed for best performance in EUV lithography system. From process side, we found that sensitivity was substantially improved maintaining LWR applying novel type of chemical amplified resist (CAR) and process. EUV lithography evaluation results obtained for new CAR EUV interference lithography. And also metal containing resist is one possibility to break through sensitivity and LWR trade off. In this paper, we will report the recent progress of sensitivity and LWR/LCDU improvement of JSR novel EUV resist and process.
The Quantitative Study of Communicative Success: Politeness and Accidents in Aviation Discourse.
ERIC Educational Resources Information Center
Linde, Charlotte
1988-01-01
Uses transcripts of eight aviation accidents and 14 flight simulator sessions to study mitigation. A four-degree scale is developed to quantify the use of mitigation: (1) high mitigation; (2) low mitigation; (3) direct utterance; and (4) aggravation. Mitigation is sensitive to social rank and sometimes less effective than direct utterances in…
Moret, Sabrina; Scolaro, Marianna; Barp, Laura; Purcaro, Giorgia; Conte, Lanfranco S
2016-04-01
A high throughput, high-sensitivity procedure, involving simultaneous microwave-assisted extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in cereal-based products of different composition. MAS has the advantage of eliminating fat before LC-GC analysis, allowing an increase in the amount of sample extract injected, and hence in sensitivity. The proposed method gave practically quantitative recoveries and good repeatability. Among the different cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta packed in direct contact with recycled paperboard had on average the highest total MOSH level (15.9 mg kg(-1)), followed by cakes (10.4 mg kg(-1)) and bread (7.5 mg kg(-1)). About 50% of the pasta and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 mg kg(-1)) and in a milk bread (3.6 mg kg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua
2017-08-25
As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.
V1 mechanisms underlying chromatic contrast detection
Hass, Charles A.
2013-01-01
To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689
Whole-blood viscosity and the insulin-resistance syndrome.
Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E
1998-02-01
In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.
A new collimator for I-123-IMP SPECT imaging of the brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyamada, H.; Fukukita, H.; Tanaka, E.
1985-05-01
At present, commercially available I-123-IMP is contaminated with I-124 and its concentration on the assay date is said to be approximately 5%. Therefore, the application of medium energy parallel hole collimator (MEPC) used in many places for SPECT results in deterioration of the image quality. Recently, the authors have developed a new collimator for I-123-IMP SPECT imaging comprised of 4 slat type units; ultrahigh resolution (UHR), high resolution (HR), high sensitivity (HS), and ultrahigh sensitivity (UHS). The slit width/septum thickness in mm for UHR, HR, HS, and UHS are 0.9/0.5, 1.5/0.85, 3.2/1.5, and 5.2/2.0, respectively. In practice, either UHR ormore » HR is set to the detector (Shimadzu LFOV-E, modified type) together with either HS or UHS. The former is always set to the detector with the slit direction parallel to the rotation axis, and the latter is set with its slit direction at a right angle to the former. This is based on an idea that, upon sacrifice of resolution to some extent, sensitivity can be gained on the axial direction while the resolution on the transaxial slice will still be sufficiently preserved. Resolutions (transaxial direction/axial direction) in FWHM (mm) for each combination (UHR-HS, UHR-UHS, HR-HS, and HR-UHS) were 15.9/31.4, 15.9/36.5,23.2/33.3, and 23.9/40.7, respectively, whereas the resolution of MEPC was 28.7/29.5. On the other hand, relative sensitivities to MEPC were 0.57, 0.86, 0.80, and 1.16. The authors conclude that the combination of UHR and HS is best suited for clinical practice and, at present they are obtaining I-123-IMP SPECT images of good quality.« less
Optical fiber pressure sensor based on fiber Bragg grating
NASA Astrophysics Data System (ADS)
Song, Dongcao
In oil field, it is important to measure the high pressure and temperature for down-hole oil exploration and well-logging, the available traditional electronic sensor is challenged due to the harsh, flammable environment. Recently, applications based on fiber Bragg grating (FBG) sensor in the oil industry have become a popular research because of its distinguishing advantages such as electrically passive operation, immunity to electromagnetic interference, high resolution, insensitivity to optical power fluctuation etc. This thesis is divided into two main sections. In the first section, the design of high pressure sensor based on FBG is described. Several sensing elements based on FBG for high pressure measurements have been proposed, for example bulk-modulus or free elastic modulus. But the structure of bulk-modulus and free elastic modulus is relatively complex and not easy to fabricate. In addition, the pressure sensitivity is not high and the repeatability of the structure has not been investigated. In this thesis, a novel host material of carbon fiber laminated composite (CFLC) for high pressure sensing is proposed. The mechanical characteristics including principal moduli in three directions and the shape repeatability are investigated. Because of it's Young's modulus in one direction and anisotropic characteristics, the pressure sensor made by CFLC has excellent sensitivity. This said structure can be used in very high pressure measurement due to carbon fiber composite's excellent shape repetition even under high pressure. The experimental results show high pressure sensitivity of 0.101nm/MPa and high pressure measurement up to 70MPa. A pressure sensor based on CFLC and FBG with temperature compensation has been designed. In the second section, the design of low pressure sensor based on FBG is demonstrated. Due to the trade off between measurement range and sensitivity, a sensor for lower pressure range needs more sensitivity. A novel material of carbon fiber ribbon-wound composite cylindrical shell is proposed. The mechanical characteristics are analyzed. Due to the smaller longitudinal Young's modulus of this novel material, the sensitivity is improved to 0.452nm/MPa and the measurement range can reach 8MPa. The experimental results indicated excellent repeatability of the material and a good linearity between Bragg wavelength shift and the applied pressure. The sensor has the potential to find many industrial low pressure applications.
BERRY, DANIEL; BLAIR, CLANCY; WILLOUGHBY, MICHAEL; GRANGER, DOUGLAS A.; MILLS-KOONCE, W. ROGER
2018-01-01
Theory suggests that early experiences may calibrate the “threshold activity” of the hypothalamus–pituitary–adrenal axis in childhood. Particularly challenging or particularly supportive environments are posited to manifest in heightened physiological sensitivity to context. Using longitudinal data from the Family Life Project (N = 1,292), we tested whether links between maternal sensitivity and hypothalamus–pituitary–adrenal axis activity aligned with these predictions. Specifically, we tested whether the magnitude of the within-person relation between maternal sensitivity and children’s cortisol levels, a proxy for physiological sensitivity to context, was especially pronounced for children who typically experienced particularly low or high levels of maternal sensitivity over time. Our results were consistent with these hypotheses. Between children, lower levels of mean maternal sensitivity (7–24 months) were associated with higher mean cortisol levels across this period (measured as a basal sample collected at each visit). However, the magnitude and direction of the within-person relation was contingent on children’s average levels of maternal sensitivity over time. Increases in maternal sensitivity were associated with contemporaneous cortisol decreases for children with typically low-sensitive mothers, whereas sensitivity increases were associated with cortisol increases for children with typically high-sensitive mothers. No within-child effects were evident at moderate levels of maternal sensitivity. PMID:27065311
González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M
2017-01-01
A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ebner, Matthias; Birschmann, Ingvild; Peter, Andreas; Härtig, Florian; Spencer, Charlotte; Kuhn, Joachim; Blumenstock, Gunnar; Zuern, Christine S; Ziemann, Ulf; Poli, Sven
2017-09-01
In patients receiving direct oral anticoagulants (DOACs), emergency treatment like thrombolysis for acute ischemic stroke is complicated by insufficient availability of DOAC-specific coagulation tests. Conflicting recommendations have been published concerning the use of global coagulation assays for ruling out relevant DOAC-induced anticoagulation. Four hundred eighty-one samples from 96 DOAC-treated patients were tested using prothrombin time (PT), activated partial thromboplastin time (aPTT) and thrombin time (TT), DOAC-specific assays (anti-Xa activity, diluted TT), and liquid chromatography-tandem mass spectrometry. Sensitivity and specificity of test results to identify DOAC concentrations <30 ng/mL were calculated. Receiver operating characteristic analyses were used to define reagent-specific cutoff values. Normal PT and aPTT provide insufficient specificity to safely identify DOAC concentrations <30 ng/mL (rivaroxaban/PT: specificity, 77%/sensitivity, 94%; apixaban/PT: specificity, 13%/sensitivity, 94%, dabigatran/aPTT: specificity, 49%/sensitivity, 91%). Normal TT was 100% specific for dabigatran, but sensitivity was 26%. In contrast, reagent-specific PT and aPTT cutoffs provided >95% specificity and a specific TT cutoff enhanced sensitivity for dabigatran to 84%. For apixaban, no cutoffs could be established. Even if highly DOAC-reactive reagents are used, normal results of global coagulation tests are not suited to guide emergency treatment: whereas normal PT and aPTT lack specificity to rule out DOAC-induced anticoagulation, the low sensitivity of normal TT excludes the majority of eligible patients from treatment. However, reagent-specific cutoffs for global coagulation tests ensure high specificity and optimize sensitivity for safe emergency decision making in rivaroxaban- and dabigatran-treated patients. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02371044 and NCT02371070. © 2017 American Heart Association, Inc.
"Silent" NMDA Synapses Enhance Motion Sensitivity in a Mature Retinal Circuit.
Sethuramanujam, Santhosh; Yao, Xiaoyang; deRosenroll, Geoff; Briggman, Kevin L; Field, Greg D; Awatramani, Gautam B
2017-12-06
Retinal direction-selective ganglion cells (DSGCs) have the remarkable ability to encode motion over a wide range of contrasts, relying on well-coordinated excitation and inhibition (E/I). E/I is orchestrated by a diverse set of glutamatergic bipolar cells that drive DSGCs directly, as well as indirectly through feedforward GABAergic/cholinergic signals mediated by starburst amacrine cells. Determining how direction-selective responses are generated across varied stimulus conditions requires understanding how glutamate, acetylcholine, and GABA signals are precisely coordinated. Here, we use a combination of paired patch-clamp recordings, serial EM, and large-scale multi-electrode array recordings to show that a single high-sensitivity source of glutamate is processed differentially by starbursts via AMPA receptors and DSGCs via NMDA receptors. We further demonstrate how this novel synaptic arrangement enables DSGCs to encode direction robustly near threshold contrasts. Together, these results reveal a space-efficient synaptic circuit model for direction computations, in which "silent" NMDA receptors play critical roles. Copyright © 2017 Elsevier Inc. All rights reserved.
Social stress reactivity alters reward and punishment learning
Frank, Michael J.; Allen, John J. B.
2011-01-01
To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishment learning accuracy in highly punishment sensitive individuals, but these measures were inversely related in less sensitive individuals. Combined electrophysiological measurement, performance accuracy and computational estimations of learning parameters suggest that trait and state vulnerability to stress alter cortico-striatal functioning during reinforcement learning, possibly mediated via medio-frontal cortical systems. PMID:20453038
Social stress reactivity alters reward and punishment learning.
Cavanagh, James F; Frank, Michael J; Allen, John J B
2011-06-01
To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishment learning accuracy in highly punishment sensitive individuals, but these measures were inversely related in less sensitive individuals. Combined electrophysiological measurement, performance accuracy and computational estimations of learning parameters suggest that trait and state vulnerability to stress alter cortico-striatal functioning during reinforcement learning, possibly mediated via medio-frontal cortical systems.
Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong
2016-09-22
This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.
Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping
2011-08-15
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.
Ultrasensitive plano-concave optical microresonators for ultrasound sensing
NASA Astrophysics Data System (ADS)
Guggenheim, James A.; Li, Jing; Allen, Thomas J.; Colchester, Richard J.; Noimark, Sacha; Ogunlade, Olumide; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.; Zhang, Edward Z.; Beard, Paul C.
2017-11-01
Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.
Streamflow sensitivity to water storage changes across Europe
NASA Astrophysics Data System (ADS)
Berghuijs, Wouter R.; Hartmann, Andreas; Woods, Ross A.
2016-03-01
Terrestrial water storage is the primary source of river flow. We introduce storage sensitivity of streamflow (ɛS), which for a given flow rate indicates the relative change in streamflow per change in catchment water storage. ɛS can be directly derived from streamflow observations. Analysis of 725 catchments in Europe reveals that ɛS is high in, e.g., parts of Spain, England, Germany, and Denmark, whereas flow regimes in parts of the Alps are more resilient (that is, less sensitive) to storage changes. A regional comparison of ɛS with observations indicates that ɛS is significantly correlated with variability of low (R2 = 0.41), median (R2 = 0.27), and high flow conditions (R2 = 0.35). Streamflow sensitivity provides new guidance for a changing hydrosphere where groundwater abstraction and climatic changes are altering water storage and flow regimes.
Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
NASA Astrophysics Data System (ADS)
Setou, M.; Hayasaka, T.; Shimma, S.; Sugiura, Y.; Matsumoto, M.
2008-12-01
Molecular identification using high-sensitivity tandem mass spectrometry is essential for protein analysis on the tissue surface. Here we report an improved digestion protocol for protein identification directly on the tissue surface using mass spectrometry. By denaturation process and the use of detergent-supplemented trypsin solution, we could successfully detect and identify many molecules such as tubulin, neurofilament, and synaptosomal-associated 25 kDa protein directly from a mouse cerebellum section.
Parametric Amplification For Detecting Weak Optical Signals
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash
1996-01-01
Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.
Technical product bulletin: this surface washing agent is for oil spill cleanups in fresh or salt water, sand beaches, gravel, cobble, coarse/rocky shores, public beaches, other sensitive or high impact sites. Foaming is best in direct applications.
Computed tomography findings of acute gastric volvulus.
Millet, Ingrid; Orliac, Celine; Alili, Chakib; Guillon, Françoise; Taourel, Patrice
2014-12-01
To assess the diagnostic performance of CT signs of gastric volvulus in both confirmed cases and control subjects. We retrospectively reviewed CT findings in 10 patients with surgically confirmed acute gastric volvulus and 20 control subjects with gastric distension. Two radiologists independently evaluated CT images for risk factors of gastric volvulus, direct findings of gastric volvulus by assessing gastric dilatation, the presence of an antropyloric transition point, the respective position of the different stomach segments and of the greater and lesser curvatures, stenosis of the gastric segments through the oesophageal hiatus and for findings of gastric ischemia. The sensitivity and specificity of each finding were calculated. The most sensitive direct signs of gastric volvulus were an antropyloric transition point without any abnormality at the transition zone and the antrum at the same level or higher than the fundus. The presence of both these two findings as diagnostic criteria of gastric volvulus had 100% sensitivity and specificity for the diagnosis of gastric volvulus. There was no association between CT signs of ischemia and final bowel ischemia at pathology. CT is both highly sensitive and specific for diagnosing acute gastric volvulus. CT is highly reliable for diagnosing acute gastric volvulus with two findings. The two signs are gastropyloric transition zone and abnormal location of the antrum. This allows fast surgical management of this emergency.
Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
NASA Technical Reports Server (NTRS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Elsner, Ronald; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Vievering, Juliana; Subramania, Athiray;
2017-01-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
NASA Astrophysics Data System (ADS)
Agawa, Kenichi; Ishizuka, Shinichiro; Majima, Hideaki; Kobayashi, Hiroyuki; Koizumi, Masayuki; Nagano, Takeshi; Arai, Makoto; Shimizu, Yutaka; Maki, Asuka; Urakawa, Go; Terada, Tadashi; Itoh, Nobuyuki; Hamada, Mototsugu; Fujii, Fumie; Kato, Tadamasa; Yoshitomi, Sadayuki; Otsuka, Nobuaki
A 2.4GHz 0.13µm CMOS transceiver LSI, supporting Bluetooth V2.1 + enhanced data rate (EDR) standard, has achieved a high reception sensitivity and high-quality transmission signals between -40°C and +90°C. A low-IF receiver and direct-conversion transmitter architecture are employed. A temperature compensated receiver chain including a low-noise amplifier accomplishes a sensitivity of -90dBm at frequency shift keying modulation even in the worst environmental condition. Design optimization of phase noise in a local oscillator and linearity of a power amplifier improves transmission signals and enables them to meet Bluetooth radio specifications. Fabrication in scaled 0.13µm CMOS and operation at a low supply voltage of 1.5V result in small area and low power consumption.
Flexible scintillator autoradiography for tumor margin inspection using 18F-FDG
NASA Astrophysics Data System (ADS)
Vyas, K. N.; Grootendorst, M.; Mertzanidou, T.; Macholl, S.; Stoyanov, D.; Arridge, S. R.; Tuch, D. S.
2018-03-01
Autoradiography potentially offers high molecular sensitivity and spatial resolution for tumor margin estimation. However, conventional autoradiography requires sectioning the sample which is destructive and labor-intensive. Here we describe a novel autoradiography technique that uses a flexible ultra-thin scintillator which conforms to the sample surface. Imaging with the flexible scintillator enables direct, high-resolution and high-sensitivity imaging of beta particle emissions from targeted radiotracers. The technique has the potential to identify positive tumor margins in fresh unsectioned samples during surgery, eliminating the processing time demands of conventional autoradiography. We demonstrate the feasibility of the flexible autoradiography approach to directly image the beta emissions from radiopharmaceuticals using lab experiments and GEANT-4 simulations to determine i) the specificity for 18F compared to 99mTc-labeled tracers ii) the sensitivity to detect signal from various depths within the tissue. We found that an image resolution of 1.5 mm was achievable with a scattering background and we estimate a minimum detectable activity concentration of 0.9 kBq/ml for 18F. We show that the flexible autoradiography approach has high potential as a technique for molecular imaging of tumor margins using 18F-FDG in a tumor xenograft mouse model imaged with a radiation-shielded EMCCD camera. Due to the advantage of conforming to the specimen, the flexible scintillator showed significantly better image quality in terms of tumor signal to whole-body background noise compared to rigid and optimally thick CaF2:Eu and BC400. The sensitivity of the technique means it is suitable for clinical translation.
NASA Astrophysics Data System (ADS)
He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo
2016-10-01
In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.
NASA Astrophysics Data System (ADS)
So, Hongyun; Senesky, Debbie G.
2016-11-01
Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.
Optical critical dimension metrology for directed self-assembly assisted contact hole shrink
NASA Astrophysics Data System (ADS)
Dixit, Dhairya; Green, Avery; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe E.; Keller, Nick; Race, Joseph; Chun, Jun Sung; O'Sullivan, Michael; Khare, Prasanna; Montgomery, Warren; Diebold, Alain C.
2016-01-01
Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (˜10 nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements' sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.
Baladi, Michelle G; Daws, Lynette C; France, Charles P
2012-07-01
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Highly sensitive beam steering with plasmonic antenna
Rui, Guanghao; Zhan, Qiwen
2014-01-01
In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits. PMID:25091405
NASA Astrophysics Data System (ADS)
Glennon, John J.; Nichols, Terry; Gatt, Phillip; Baynard, Tahllee; Marquardt, John H.; Vanderbeek, Richard G.
2009-05-01
The weaponization and dissemination of biological warfare agents (BWA) constitute a high threat to civilians and military personnel. An aerosol release, disseminated from a single point, can directly affect large areas and many people in a short time. Because of this threat real-time standoff detection of BWAs is a key requirement for national and military security. BWAs are a general class of material that can refer to spores, bacteria, toxins, or viruses. These bioaerosols have a tremendous size, shape, and chemical diversity that, at present, are not well characterized [1]. Lockheed Martin Coherent Technologies (LMCT) has developed a standoff lidar sensor with high sensitivity and robust discrimination capabilities with a size and ruggedness that is appropriate for military use. This technology utilizes multiwavelength backscatter polarization diversity to discriminate between biological threats and naturally occurring interferents such as dust, smoke, and pollen. The optical design and hardware selection of the system has been driven by performance modeling leading to an understanding of measured system sensitivity. Here we briefly discuss the challenges of standoff bioaerosol discrimination and the approach used by LMCT to overcome these challenges. We review the radiometric calculations involved in modeling direct-detection of a distributed aerosol target and methods for accurately estimating wavelength dependent plume backscatter coefficients. Key model parameters and their validation are discussed and outlined. Metrics for sensor sensitivity are defined, modeled, and compared directly to data taken at Dugway Proving Ground, UT in 2008. Sensor sensitivity is modeled to predict performance changes between day and night operation and in various challenging environmental conditions.
Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao
2016-01-19
Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.
Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa
2016-01-01
High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379
Liu, Jin; Hu, Zhao-yang; Ye, Qi-quan; Dai, Shuo-hua
2009-03-05
The mechanisms of action for volatile anesthetics remain unknown for centuries partly owing to the insufficient or ineffective research models. We designed this study to develop three strains derived from a wild-type Drosophila melanogaster with different sensitivities to volatile anesthetics, which may ultimately facilitate molecular and genetic studies of the mechanism involved. Median effective doses (ED(50)) of sevoflurane in seven-day-old virgin female and male wild-type Drosophila melanogaster were determined. The sensitive males and females of percentile 6 - 10 were cultured for breeding sensitive offspring (S(1)). So did median ones of percentile 48 - 52 for breeding median offspring (M(1)), resistant ones of percentile 91 - 95 for breeding resistant offspring (R(1)). Process was repeated through 31 generations, in the 37th generation, S(37), M(37) and R(37) were used to determine ED(50) for enflurane, isoflurane, sevoflurane, desflurane, halothane, methoxyflurane, chloroform and trichloroethylene, then ED(50) values were correlated with minimum alveolar concentration (MAC) values in human. From a wild-type Drosophila melanogaster we were able to breed three strains with high, median and low sevoflurane requirements. The ratio of sevoflurane requirements of three strains were 1.20:1.00:0.53 for females and 1.22:1.00:0.72 for males. Strains sensitive, median and resistant to sevoflurane were also sensitive, median and resistant to other volatile anesthetics. For eight anesthetics, ED(50) values in three strains correlated directly with MAC values in human. Three Drosophila melanogaster strains with high, median and low sensitivity to volatile anesthetics, but with same hereditary background were developed. The ED(50) are directly correlated with MAC in human for eight volatile anesthetics.
LOW-LEVEL DIRECT CURRENT AMPLIFIER
Kerns, Q.A.
1959-05-01
A d-c amplifier is described. Modulation is provided between a d-c signal and an alternating current to give an output signal proportional to the d- c signal. The circuit has high sensitivity and accuracy. (T.R.H.)
Notched strength of beryllium powder and ingot sheets.
NASA Technical Reports Server (NTRS)
Moss, R. G.
1972-01-01
The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.
Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors.
Gong, Shu; Lai, Daniel T H; Wang, Yan; Yap, Lim Wei; Si, Kae Jye; Shi, Qianqian; Jason, Naveen Noah; Sridhar, Tam; Uddin, Hemayet; Cheng, Wenlong
2015-09-09
Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system.
Simple and robust resistive dual-axis accelerometer using a liquid metal droplet
NASA Astrophysics Data System (ADS)
Huh, Myoung; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon
2017-12-01
This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design specifications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was applied along the axial direction, the device showed 6 kΩ/g of sensitivity and negligible crosstalk between the X- and Y-axes. In a diagonal direction test, the device showed 4 kΩ/g of sensitivity.
Reynolds Number Effects on the Stability and Control Characteristics of a Supersonic Transport
NASA Technical Reports Server (NTRS)
Owens, L. R.; Wahls, R. A.; Elzey, M. B.; Hamner, M. P.
2002-01-01
A High Speed Civil Transport (HSCT) configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. A series of tests included longitudinal and lateral/directional studies at transonic and low speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results presented focus on Reynolds number sensitivities of the stability and control characteristics at Mach 0.30 and 0.95 for a complete HSCT aircraft configuration including empennage. The angle of attack where the pitching-moment departure occurred increased with higher Reynolds numbers for both the landing and transonic configurations. The stabilizer effectiveness increased with Reynolds number for both configurations. The directional stability also increased with Reynolds number for both configurations. The landing configuration without forebody chines exhibited a large yawing-moment departure at high angles of attack and zero sideslip that varied with increasing Reynolds numbers. This departure characteristic nearly disappeared when forebody chines were added. The landing configuration's rudder effectiveness also exhibited sensitivities to changes in Reynolds number.
Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan
2015-03-31
A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel-Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5×10(-9) mol cm(-2)) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM(-1) cm(-2)) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability. Copyright © 2015. Published by Elsevier B.V.
Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein.
Li, Wanbo; Jiang, Xueqin; Xue, Jiancai; Zhou, Zhangkai; Zhou, Jianhua
2015-06-15
Localized surface plasmon resonance (LSPR) combined with immunoassay shows greatly potential in fast detection of tumor markers. In this paper, a highly sensitive LSPR substrate has been fabricated and modified for direct detection of alpha-fetoprotein (AFP). The biosensor was prepared by interference lithography, and modified by covalently immobilizing anti-AFP on the surface of gold nano-mushroom arrays (GNMA). The modification process was investigated by Vis-NIR reflectance spectra and cyclic voltammogram measurements. We revealed the optical properties of the modified GNMA by measuring the Vis-NIR reflectance spectra and simulating its electric intensity field distribution under light illumination. The GNMA substrate was highly sensitive, with a refractive index sensitivity of ~465 nm/RIU. The substrate can be applied to label-free detection of AFP, with the linear range and the limit of detection determined to be 20-200 ng/mL and 24 ng/mL (S/N=3), respectively. We also demonstrated its clinical application by directly detecting AFP in human serum samples. It is expected that our biosensor could be integrated on microfluidic chips for high-throughput detection in portable early diagnosis, post-operative and point-of-care (POC) in clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Judson, Richard S.; Rabitz, Herschel
1987-04-01
The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local potential regions affect the behavior of the observables by repeatedly and systematically altering the potential will be prohibitively expensive. The functional sensitivity method enables one to perform this analysis at a fraction of the computational labor required for the direct method.
Direct multiplexed measurement of gene expression with color-coded probe pairs.
Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen
2008-03-01
We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
Highly Sensitive Hot-Wire Anemometry Based on Macro-Sized Double-Walled Carbon Nanotube Strands.
Wang, Dingqu; Xiong, Wei; Zhou, Zhaoying; Zhu, Rong; Yang, Xing; Li, Weihua; Jiang, Yueyuan; Zhang, Yajun
2017-08-01
This paper presents a highly sensitive flow-rate sensor with carbon nanotubes (CNTs) as sensing elements. The sensor uses micro-size centimeters long double-walled CNT (DWCNT) strands as hot-wires to sense fluid velocity. In the theoretical analysis, the sensitivity of the sensor is demonstrated to be positively related to the ratio of its surface. We assemble the flow sensor by suspending the DWCNT strand directly on two tungsten prongs and dripping a small amount of silver glue onto each contact between the DWCNT and the prongs. The DWCNT exhibits a positive TCR of 1980 ppm/K. The self-heating effect on the DWCNT was observed while constant current was applied between the two prongs. This sensor can evidently respond to flow rate, and requires only several milliwatts to operate. We have, thus far, demonstrated that the CNT-based flow sensor has better sensitivity than the Pt-coated DWCNT sensor.
Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing
Shi, Yaocheng; Ma, Ke; Dai, Daoxin
2016-01-01
A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO2 buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity. PMID:26950132
Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing.
Shi, Yaocheng; Ma, Ke; Dai, Daoxin
2016-03-03
A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.
High sensitive vectorial B-probe for low frequency plasma waves.
Ullrich, Stefan; Grulke, Olaf; Klinger, Thomas; Rahbarnia, Kian
2013-11-01
A miniaturized multidimensional magnetic probe is developed for application in a low-temperature plasma environment. A very high sensitivity for low-frequency magnetic field fluctuations with constant phase run, a very good signal-to-noise ratio combined with an efficient electrostatic pickup rejection, renders the probe superior compared with any commercial solution. A two-step calibration allows for absolute measurement of amplitude and direction of magnetic field fluctuations. The excellent probe performance is demonstrated by measurements of the parallel current pattern of coherent electrostatic drift wave modes in the VINETA (versatile instrument for studies on nonlinearity, electromagnetism, turbulence, and applications) experiment.
All-fiber, long-active-length Fabry-Perot strain sensor.
Pevec, Simon; Donlagic, Denis
2011-08-01
This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.
Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku
2010-12-07
A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.
NASA Astrophysics Data System (ADS)
Gehman, V. M.; Goldschmidt, A.; Nygren, D.; Oliveira, C. A. B.; Renner, J.
2013-10-01
Xenon is an especially attractive candidate for both direct WIMP and 0νββ decay searches. Although the current trend has exploited the liquid phase, the gas phase xenon offers remarkable performance advantages for: energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now under construction in the Canfranc Underground Laboratory, Spain, will operate at ~ 15 bars with 100 kg of 136Xe for the 0νββ decay search. We will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay's Q value (2457.83 keV), as well as rejection of γ-rays with topological cuts. However, sensitivity goals for WIMP dark matter and 0νββ decay searches indicate the probable need for ton-scale active masses. NEXT-100 provides the springboard to reach this scale with xenon gas. We describe a scenario for performing both searches in a single, high-pressure, ton-scale xenon gas detector, without significant compromise to either. In addition, even in a single ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist. This plausibly offers an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. We argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible at acceptable cost, within the time frame of interest, and deserves our collective attention.
Individual modulation of pain sensitivity under stress.
Reinhardt, Tatyana; Kleindienst, Nikolaus; Treede, Rolf-Detlef; Bohus, Martin; Schmahl, Christian
2013-05-01
Stress has a strong influence on pain sensitivity. However, the direction of this influence is unclear. Recent studies reported both decreased and increased pain sensitivities under stress, and one hypothesis is that interindividual differences account for these differences. The aim of our study was to investigate the effect of stress on individual pain sensitivity in a relatively large female sample. Eighty female participants were included. Pain thresholds and temporal summation of pain were tested before and after stress, which was induced by the Mannheim Multicomponent Stress Test. In an independent sample of 20 women, correlation coefficients between 0.45 and 0.89 indicated relatively high test-retest reliability for pain measurements. On average, there were significant differences between pain thresholds under non-stress and stress conditions, indicating an increased sensitivity to pain under stress. No significant differences between non-stress and stress conditions were found for temporal summation of pain. On an individual basis, both decreased and increased pain sensitivities under stress conditions based on Jacobson's criteria for reliable change were observed. Furthermore, we found significant negative associations between pain sensitivity under non-stress conditions and individual change of pain sensitivity under stress. Participants with relatively high pain sensitivity under non-stress conditions became less sensitive under stress and vice versa. These findings support the view that pain sensitivity under stress shows large interindividual variability, and point to a possible dichotomy of altered pain sensitivity under stress. Wiley Periodicals, Inc.
Fujikawa, Takashi; Miyata, Shin-Ichi; Iwanami, Toru
2013-01-01
A phloem-limited bacterium, ‘Candidatus Liberibacter asiaticus’ (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification. However, long and laborious procedures for DNA extraction have greatly reduced the applicability of this method. In this study, we found that the Las bacterial cells in the midribs of infected leaves were extracted rapidly and easily by pulverization and centrifugation with mini homogenization tubes. We also found that the Las bacterial cells in the midrib extract were suitable for highly sensitive direct PCR. The performance of direct PCR using this extraction method was not inferior to that of conventional PCR. Thus, the direct PCR method described herein is characterized by its simplicity, sensitivity, and robustness, and is applicable to quarantine testing. PMID:23437295
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
High-sensitivity acoustic sensors from nanofibre webs.
Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong
2016-03-23
Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.
High-sensitivity acoustic sensors from nanofibre webs
Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong
2016-01-01
Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010
Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose
NASA Astrophysics Data System (ADS)
Meng, Shangjun; Wu, Meiyan; Wang, Qian; Dai, Ziyang; Si, Weili; Huang, Wei; Dong, Xiaochen
2016-08-01
Ultra-sensitive and highly selective detection of glucose is essential for the clinical diagnosis of diabetes. In this paper, an ultra-sensitive glucose sensor was successfully fabricated based on cobalt oxide (Co3O4) nanosheets directly grown on nickel foam through a simple hydrothermal method. Characterizations indicated that the Co3O4 nanosheets are completely and uniformly wrapped onto the surface of nickel foam to form a three-dimensional heterostructure. The resulting self-standing electrochemical electrode presents a high performance for the non-enzymatic detection of glucose, including short response time (<10 s), ultra-sensitivity (12.97 mA mM-1 cm-2), excellent selectivity and low detection limit (0.058 μM, S/N = 3). These results indicate that Co3O4 nanosheets wrapped onto nickel foam are a low-cost, practical, and high performance electrochemical electrode for bio sensing.
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.
Souverein, Dennis; Euser, Sjoerd M; van der Reijden, Wil A; Herpers, Bjorn L; Kluytmans, Jan; Rossen, John W A; Den Boer, Jeroen W
2017-09-01
To determine the diagnostic accuracy of the Check-Direct ESBL Screen for BD MAX (ESBL qPCR) and an ESBL culture method to identify ESBLs directly from rectal swabs. Rectal swabs were obtained from clinical patients by performing cross-sectional (point)prevalence measurements in three regional hospitals. Rectal swabs were analysed by direct culture (ChromID ESBL agar) and with the ESBL qPCR. Suspected ESBL-producing isolates were confirmed with the combination disc method and analysed by WGS. Out of 354 rectal swabs and 351 patients, 21 rectal swabs and 20 patients were positive for ESBL-producing isolates, resulting in a regional ESBL colonization prevalence of 5.7%. One rectal swab was false negative with the ESBL qPCR (blaTEM-12) and not covered by the ESBL qPCR. Eight ESBL qPCR-positive rectal swabs could not be confirmed by culture and were classified as false ESBL qPCR positive. The sensitivity and specificity of the ESBL qPCR were 95.2% (n = 20) and 97.6% (n = 323), respectively. When an optimal cycle threshold cut-off value of 37 was used, the ESBL qPCR displayed a sensitivity and specificity of 95.2% (n = 20) and 98.8% (n = 327), respectively (AUC = 0.975, 95% CI = 0.922-1). This ESBL qPCR offers rapid direct detection of the most prevalent ESBL types (blaCTX-M group and blaSHV group) from rectal swabs. The relatively high false-positive rate renders this test the most suitable as a screening test in high-prevalence regions or in an outbreak setting where a fast result is essential. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shanzhi, E-mail: shanzhit@gmail.com; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049; Wang, Zhao
The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely whenmore » the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.« less
Development and testing of a portable wind sensitive directional air sampler
NASA Technical Reports Server (NTRS)
Deyo, J.; Toma, J.; King, R. B.
1975-01-01
A portable wind sensitive directional air sampler was developed as part of an air pollution source identification system. The system is designed to identify sources of air pollution based on the directional collection of field air samples and their analysis for TSP and trace element characteristics. Sources can be identified by analyzing the data on the basis of pattern recognition concepts. The unit, designated Air Scout, receives wind direction signals from an associated wind vane. Air samples are collected on filter slides using a standard high volume air sampler drawing air through a porting arrangement which tracks the wind direction and permits collection of discrete samples. A preset timer controls the length of time each filter is in the sampling position. At the conclusion of the sampling period a new filter is automatically moved into sampling position displacing the previous filter to a storage compartment. Thus the Air Scout may be set up at a field location, loaded with up to 12 filter slides, and left to acquire air samples automatically, according to the wind, at any timer interval desired from 1 to 30 hours.
Dark matter directionality revisited with a high pressure xenon gas detector
Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...
2015-07-20
An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less
NASA Astrophysics Data System (ADS)
Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.
2017-03-01
The planar Fabry-Pérot (FP) sensor provides high quality photoacoustic (PA) images but beam walk-off limits sensitivity and thus penetration depth to ≍1 cm. Planoconcave microresonator sensors eliminate beam walk-off enabling sensitivity to be increased by an order-of-magnitude whilst retaining the highly favourable frequency response and directional characteristics of the FP sensor. The first tomographic PA images obtained in a tissue-realistic phantom using the new sensors are described. These show that the microresonator sensors provide near identical image quality as the planar FP sensor but with significantly greater penetration depth (e.g. 2-3cm) due to their higher sensitivity. This offers the prospect of whole body small animal imaging and clinical imaging to depths previously unattainable using the FP planar sensor.
Zhou, Xinyi Y; Tay, Zhi Wei; Chandrasekharan, Prashant; Yu, Elaine Y; Hensley, Daniel W; Orendorff, Ryan; Jeffris, Kenneth E; Mai, David; Zheng, Bo; Goodwill, Patrick W; Conolly, Steven M
2018-05-10
Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Demeritte, Teresa; Kanchanapally, Rajashekhar; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Dubey, Madan; Zakar, Eugene; Ray, Paresh Chandra
2012-11-07
This paper reports for the first time the development of a large-scale SERS substrate from a popcorn-shaped gold nanoparticle-functionalized single walled carbon nanotubes hybrid thin film for the selective and highly sensitive detection of explosive TNT material at a 100 femtomolar (fM) level.
Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate.
Rios, Natalia; Piacenza, Lucía; Trujillo, Madia; Martínez, Alejandra; Demicheli, Verónica; Prolo, Carolina; Álvarez, María Noel; López, Gloria V; Radi, Rafael
2016-12-01
The specific and sensitive detection of peroxynitrite (ONOO - /ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×10 6 M -1 s -1 , a million times faster than the rate constant measured for H 2 O 2 (k=1.7M -1 s -1 ) and 2,700 faster than HOCl (6.2×10 2 M -1 s -1 ) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO 2 , a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs -1 , while immunostimulated macrophages do so in the order of ∼1μMs -1 inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be more sensitive than the coumarin boronate due to a higher molar absorption coefficient and quantum yield. Overall, our results show that Fl-B is a kinetically selective and highly sensitive probe for the direct detection of cell-derived peroxynitrite. Copyright © 2016 Elsevier Inc. All rights reserved.
Do, Hongdo; Dobrovic, Alexander
2009-01-01
Background Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations. We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Results Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions. LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. Conclusion LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations. PMID:19811662
Two-Arm Flexible Thermal Strap
NASA Technical Reports Server (NTRS)
Urquiza, Eugenio; Vasquez, Cristal; Rodriquez, Jose I.; Leland, Robert S.; VanGorp, Byron E.
2011-01-01
Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components.
Do, Hongdo; Dobrovic, Alexander
2009-10-08
Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.
NASA Astrophysics Data System (ADS)
Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William
2015-02-01
Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2018-04-03
Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke deficit, severely affects functional mobility. Visual perceptual abilities (VPAs) are essential in activities involving mobility. However, whether and to what extent post-stroke USN affects VPAs and how they contribute to mobility impairments remains unclear. To estimate the extent to which VPAs in left and right visual hemispaces are (1) affected in post-stroke USN; and (2) contribute to goal-directed locomotion. Individuals with (USN+, n = 15) and without (USN-, n = 15) post-stroke USN and healthy controls (HC, n = 15) completed (1) psychophysical evaluation of contrast sensitivity, optic flow direction and coherence, and shape discrimination; and (2) goal-directed locomotion tasks. Higher discrimination thresholds were found for all VPAs in the USN+ group compared to USN- and HC groups (p < 0.05). Psychophysical tests showed high sensitivity in detecting deficits in individuals with a history of USN or with no USN on traditional assessments, and were found to be significantly correlated with goal-directed locomotor impairments. Deficits in VPAs may account for the functional difficulties experienced by individuals with post-stroke USN. Psychophysical tests used in the present study offer important advantages and can be implemented to enhance USN diagnostics and rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing
2018-04-11
Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.
Host Genes and Resistance/Sensitivity to Military Priority Pathogens
2010-06-01
Publications 1. Clinton, S. R., J . E. Bina, T. P. Hatch, M. A. Whitt, and M. A. Miller. 2010. Binding and activation of host plasminogen on the surface...outcomes Publications 1. Boon AC, Debeauchamp J , Krauss S, Rubrum A, Webb AD, Webster RG, McElhaney J , Webby RJ. Cross-reactive neutralizing...antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 influenza mouse model. J Virol. 2010; in print
Zhao, Hongwei; Nan, Tiegui; Tan, Guiyu; Gao, Wei; Cao, Zhen; Sun, Shuo; Li, Zhaohu; Li, Qing X; Wang, Baomin
2011-09-19
Availability of highly sensitive assays for metal ions can help monitor and manage the environmental and food contamination. In the present study, a monoclonal antibody against Copper(II)-ethylenediaminetetraacetic acid was used to develop two sensitive ELISAs for Cu(II) analysis. Cobalt(II)-EDTA-BSA was the coating antigen in a heterologous indirect competitive ELISA (hicELISA), whereas Co(II)-EDTA-BSA-horseradish peroxidase (HRP) was the enzyme tracer in a heterologous direct competitive ELISA (hdcELISA). Both ELISAs were validated for detecting the content of Cu(II) in environmental waters. The ELISA data agreed well with those from graphite furnace atomic absorption spectroscopy. The methods of developing the Cu(II) hicELISA and hdcELISA are potentially applicable for developing ELISAs for other metals. The chelator-protein complexes such as EDTA-BSA and EDTA-BSA-HRP can form a suite of metal complexes having the consistent hapten density, location and orientation on the conjugates except the difference of the metal core, which can be used as ideal reagents to investigate the relationship between assay sensitivity and antibody affinities for the haptens and the analytes. The strategy of conjugating a haptenated protein directly with HRP can reduce the loss of HRP activity during the conjugation reaction and thus can be applicable for the development of ELISAs for small molecules. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.
2017-08-01
In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.
Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte
2012-01-01
Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.
Sprowl-Tanio, Stephanie; Habowski, Amber N; Pate, Kira T; McQuade, Miriam M; Wang, Kehui; Edwards, Robert A; Grun, Felix; Lyou, Yung; Waterman, Marian L
2016-01-01
There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 ( PDK1 ) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known. Here, we identify monocarboxylate transporter 1 (MCT-1; encoded by SLC16A1 ) as a direct target gene supporting Wnt-driven Warburg metabolism. We identify and validate Wnt response elements (WREs) in the proximal SLC16A1 promoter and show that they mediate sensitivity to Wnt inhibition via dominant-negative LEF-1 (dnLEF-1) expression and the small molecule Wnt inhibitor XAV939. We also show that WREs function in an independent and additive manner with c-Myc, the only other known oncogenic regulator of SLC16A1 transcription. MCT-1 can export lactate, the byproduct of Warburg metabolism, and it is the essential transporter of pyruvate as well as a glycolysis-targeting cancer drug, 3-bromopyruvate (3-BP). Using sulforhodamine B (SRB) assays to follow cell proliferation, we tested a panel of colon cancer cell lines for sensitivity to 3-BP. We observe that all cell lines are highly sensitive and that reduction of Wnt signaling by XAV939 treatment does not synergize with 3-BP, but instead is protective and promotes rapid recovery. We conclude that MCT-1 is part of a core Wnt signaling gene program for glycolysis in colon cancer and that modulation of this program could play an important role in shaping sensitivity to drugs that target cancer metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego
2015-12-01
Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles aftermore » incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow and critical parameters is presented. • The method could provide a useful tool to complement existing chemical assays.« less
Baladi, Michelle G; France, Charles P
2010-01-01
Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718
Baladi, Michelle G; France, Charles P
2010-10-01
Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.
Grace, M S; Church, D R; Kelly, C T; Lynn, W F; Cooper, T M
1999-01-01
The Python infrared-sensitive pit organ is a natural infrared imager that combines high sensitivity, ambient temperature function, microscopic dimensions, and self-repair. We are investigating the spectral sensitivity and signal transduction process in snake infrared-sensitive neurons, neither of which is understood. For example, it is unknown whether infrared receptor neurons function on a thermal or a photic mechanism. We imaged pit organs in living Python molurus and Python regius using infrared-sensitive digital video cameras. Pit organs were significantly more absorptive and/or emissive than surrounding tissues in both 3-5 microns and 8-12 microns wavelength ranges. Pit organs exhibited greater absorption/emissivity in the 8-12 microns range than in the 3-5 microns range. To directly test the relationship between photoreceptors and pit organ infrared-sensitive neurons, we performed immunocytochemistry using antisera directed against retinal photoreceptor opsins. Retinal photoreceptors were labeled with antisera specific for retinal opsins, but these antisera failed to label terminals of infrared-sensitive neurons in the pit organ. Infrared-receptive neurons were also distinguished from retinal photoreceptors on the basis of their calcium-binding protein content. These results indicate that the pit organ absorbs infrared radiation in two major atmospheric transmission windows, one of which (8-12 microns) matches emission of targeted prey, and that infrared receptors are biochemically distinct from retinal photoreceptors. These results also provide the first identification of prospective biochemical components of infrared signal transduction in pit organ receptor neurons.
NASA Astrophysics Data System (ADS)
Wu, Wei
(Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.
Grezina, N Iu; Suleĭmenova, G M
2011-01-01
The objective of the present study was to evaluate sensitivity and specificity of the HemDirect method on test-plates (Seratec) for detecting human hemoglobin (HHb). These characteristics were compared with those of other widely used methods designed for the detection of blood traces, viz. thin layer chromatography, hemotest, spectrofluorimetry, and identification of blood species specificity (by countercurrent immunoelectrophoresis in agar and on the acetate-cellulose film). It was shown that the HemDirect test is highly specific and far more sensitive than other techniques used for the same purpose in the practical work. It can be recommended as the method of choice for the detection of blood microtraces.
On the direct detection of gravitational waves
NASA Astrophysics Data System (ADS)
Pustovoit, V. I.
2016-10-01
Different types of gravitational wave (GW) detectors are considered. It is noted that interferometric techniques offer the greatest prospects for GW registration due to their high sensitivity and extremely wide frequency band. Using laser interferometers, proposed as far back as 1962 in the work by M E Gertsenshtein and V I Pustovoit published in Russian (Zh. Eksp. Teor. Fiz., vol. 43, p. 605, 1962) and in English translation (Sov. Phys. JETP, vol. 16, p. 433, 1963), it proved possible for the first time to directly detect GW emission from a merger of two black holes. It is noted that the assertion that Gertsen-shtein-Pustovoit's work was unknown to some of those experts involved in direct GW detection is inconsistent with reality. The problems of high-power laser radiation affecting the electrostatic polarization of free-mass mirrors are discussed. It is shown that mirror polarization can lead to additional links with electrically conducting elements of the design resulting in the interferometer's reduced sensitivity. Some new prospects for developing high reflection structures are discussed and heat extraction problems are considered. This article is the revised and extended version of the report “On the first direct detection of gravitational waves” delivered by V I Pustovoit at the Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences (March 2, 2016). All other reports presented at the session were published in the preceding issue of Physics-Uspekhi (September 2016) (see Refs [108, 111-113]). (Editorial note)
Kenrick, Janette R.; Bishop, David G.
1986-01-01
The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol has been measured in the leaves of 27 species of higher plants from six families whose members differed in their degrees of chilling sensitivity. The content of high melting point fatty acids (represented by the sum of hexadecanoic, trans-3-hexadecenoic and octadecanoic acids) in phosphatidylglycerols varied little between members of the same plant family and was not obviously related to the relative chilling sensitivity of members of that family. The saturated fatty acid content (hexadecanoic + octadecanoic acids) of sulfoquinovosyldiacylglycerols also appeared to be characteristic of a plant family, although some exceptions were found. In one case, (Carica papaya) the content of saturated fatty acids in sulfoquinovosyldiacylglycerol was sufficiently high to suggest that this lipid could undergo phase separations above 0°C. It is concluded that the content of high melting point fatty acids in leaf phosphatidylglycerol is not a direct indication of the chilling sensitivity of a plant, but rather may be a reflection of the genetic origin of that plant. PMID:16664962
The trait of sensory processing sensitivity and neural responses to changes in visual scenes
Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu
2011-01-01
This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional magnetic resonance imaging (fMRI). SPS was associated with significantly greater activation in brain areas involved in high-order visual processing (i.e. right claustrum, left occipitotemporal, bilateral temporal and medial and posterior parietal regions) as well as in the right cerebellum, when detecting minor (vs major) changes in stimuli. These findings remained strong and significant after controlling for neuroticism and introversion, traits that are often correlated with SPS. These results provide the first evidence of neural differences associated with SPS, the first direct support for the sensory aspect of this trait that has been studied primarily for its social and affective implications, and preliminary evidence for heightened sensory processing in individuals high in SPS. PMID:20203139
Continuous probing of cold complex molecules with infrared frequency comb spectroscopy
NASA Astrophysics Data System (ADS)
Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun
2016-05-01
For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.
Practical considerations for a second-order directional hearing aid microphone system
NASA Astrophysics Data System (ADS)
Thompson, Stephen C.
2003-04-01
First-order directional microphone systems for hearing aids have been available for several years. Such a system uses two microphones and has a theoretical maximum free-field directivity index (DI) of 6.0 dB. A second-order microphone system using three microphones could provide a theoretical increase in free-field DI to 9.5 dB. These theoretical maximum DI values assume that the microphones have exactly matched sensitivities at all frequencies of interest. In practice, the individual microphones in the hearing aid always have slightly different sensitivities. For the small microphone separation necessary to fit in a hearing aid, these sensitivity matching errors degrade the directivity from the theoretical values, especially at low frequencies. This paper shows that, for first-order systems the directivity degradation due to sensitivity errors is relatively small. However, for second-order systems with practical microphone sensitivity matching specifications, the directivity degradation below 1 kHz is not tolerable. A hybrid order directive system is proposed that uses first-order processing at low frequencies and second-order directive processing at higher frequencies. This hybrid system is suggested as an alternative that could provide improved directivity index in the frequency regions that are important to speech intelligibility.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton
2016-01-01
ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine. PMID:26962221
Multiple Biopsies and Detection of Cervical Cancer Precursors at Colposcopy
Wentzensen, Nicolas; Walker, Joan L.; Gold, Michael A.; Smith, Katie M.; Zuna, Rosemary E.; Mathews, Cara; Dunn, S. Terence; Zhang, Roy; Moxley, Katherine; Bishop, Erin; Tenney, Meaghan; Nugent, Elizabeth; Graubard, Barry I.; Wacholder, Sholom; Schiffman, Mark
2015-01-01
Purpose Women with abnormal cervical cancer screening results are referred to colposcopy and biopsy for diagnosis of cervical cancer precursors (high-grade squamous intraepithelial lesions [HSILs]). Colposcopy with a single biopsy can miss identification of HSILs. No systematic study has quantified the improved detection of HSIL by taking multiple lesion-directed biopsies. Methods The Biopsy Study was an observational study of 690 women referred to colposcopy after abnormal cervical cancer screening results. Up to four directed biopsies were taken from distinct acetowhite lesions and ranked by colposcopic impression. A nondirected biopsy of a normal-appearing area was added if fewer than four directed biopsies were taken. HSIL identified by any biopsy was the reference standard of disease used to evaluate the incremental yield and sensitivity of multiple biopsies. Results In the overall population, sensitivities for detecting HSIL increased from 60.6% (95% CI, 54.8% to 66.6%) from a single biopsy to 85.6% (95% CI, 80.3% to 90.2%) after two biopsies and to 95.6% (95% CI, 91.3% to 99.2%) after three biopsies. A significant increase in sensitivity of multiple biopsies was observed in all subgroups. The highest increase in yield of HSIL was observed for women with a high-grade colposcopic impression, HSIL cytology, and human papillomavirus (HPV) type 16 positivity. Only 2% of all HSILs diagnosed in the participants were detected by biopsies of normal-appearing transformation zone. Conclusion Collection of additional lesion-directed biopsies during colposcopy increased detection of histologic HSIL, regardless of patient characteristics. Taking additional biopsies when multiple lesions are present should become the standard practice of colposcopic biopsy. PMID:25422481
Kutz, Alexander; Hausfater, Pierre; Oppert, Michael; Alan, Murat; Grolimund, Eva; Gast, Claire; Alonso, Christine; Wissmann, Christoph; Kuehn, Christian; Bernard, Maguy; Huber, Andreas; Mueller, Beat; Schuetz, Philipp
2016-04-01
Procalcitonin (PCT) is increasingly being used for the diagnostic and prognostic work up of patients with suspected infections in the emergency department (ED). Recently, B·R·A·H·M·S PCT direct, the first high sensitive point-of-care test (POCT), has been developed for fast PCT measurement on capillary or venous blood samples. This is a prospective, international comparison study conducted in three European EDs. Consecutive patients with suspicion of bacterial infection were included. Duplicate determination of PCT was performed in capillary (fingertip) and venous whole blood (EDTA), and compared to the reference method. The diagnostic accuracy was evaluated by correlation and concordance analyses. Three hundred and three patients were included over a 6-month period (60.4% male, median age 65.2 years). The correlation between capillary or venous whole blood and the reference method was excellent: r2=0.96 and 0.97, sensitivity 88.1% and 93.0%, specificity 96.5% and 96.8%, concordance 93% and 95%, respectively at a 0.25 μg/L threshold. No significant bias was observed (-0.04 and -0.02 for capillary and venous whole blood) although there were 6.8% and 5.1% outliers, respectively. B·R·A·H·M·S PCT direct had a shorter time to result as compared to the reference method (25 vs. 144 min, difference 119 min, 95% CI 110-134 min, p<0.0001). This study found a high diagnostic accuracy and a faster time to result of B·R·A·H·M·S PCT direct in the ED setting, allowing shortening time to therapy and a more wide-spread use of PCT.
Cudahy, Patrick G.T; Schumacher, Samuel G.; Steingart, Karen R.; Pai, Madhukar; Denkinger, Claudia M.
2017-01-01
Only 25% of multidrug-resistant tuberculosis (MDR-TB) cases are currently diagnosed. Line probe assays (LPAs) enable rapid drug-susceptibility testing for rifampicin (RIF) and isoniazid (INH) resistance and Mycobacterium tuberculosis detection. Genotype MTBDRplusV1 was WHO-endorsed in 2008 but newer LPAs have since been developed. This systematic review evaluated three LPAs: Hain Genotype MTBDRplusV1, MTBDRplusV2 and Nipro NTM+MDRTB. Study quality was assessed with QUADAS-2. Bivariate random-effects meta-analyses were performed for direct and indirect testing. Results for RIF and INH resistance were compared to phenotypic and composite (incorporating sequencing) reference standards. M. tuberculosis detection results were compared to culture. 74 unique studies were included. For RIF resistance (21 225 samples), pooled sensitivity and specificity (with 95% confidence intervals) were 96.7% (95.6–97.5%) and 98.8% (98.2–99.2%). For INH resistance (20 954 samples), pooled sensitivity and specificity were 90.2% (88.2–91.9%) and 99.2% (98.7–99.5%). Results were similar for direct and indirect testing and across LPAs. Using a composite reference standard, specificity increased marginally. For M. tuberculosis detection (3451 samples), pooled sensitivity was 94% (89.4–99.4%) for smear-positive specimens and 44% (20.2–71.7%) for smear-negative specimens. In patients with pulmonary TB, LPAs have high sensitivity and specificity for RIF resistance and high specificity and good sensitivity for INH resistance. This meta-analysis provides evidence for policy and practice. PMID:28100546
Evaluation of diffusion models in breast cancer.
Panek, Rafal; Borri, Marco; Orton, Matthew; O'Flynn, Elizabeth; Morgan, Veronica; Giles, Sharon L; deSouza, Nandita; Leach, Martin O; Schmidt, Maria A
2015-08-01
The purpose of this study is to investigate whether the microvascular pseudodiffusion effects resulting with non-monoexponential behavior are present in breast cancer, taking into account tumor spatial heterogeneity. Additionally, methodological factors affecting the signal in low and high diffusion-sensitizing gradient ranges were explored in phantom studies. The effect of eddy currents and accuracy of b-value determination using a multiple b-value diffusion-weighted MR imaging sequence were investigated in test objects. Diffusion model selection and noise were then investigated in volunteers (n = 5) and breast tumor patients (n = 21) using the Bayesian information criterion. 54.3% of lesion voxels were best fitted by a monoexponential, 26.2% by a stretched-exponential, and 19.5% by a biexponential intravoxel incoherent motion (IVIM) model. High correlation (0.92) was observed between diffusion coefficients calculated using mono- and stretched-exponential models and moderate (0.59) between monoexponential and IVIM (medians: 0.96/0.84/0.72 × 10(-3) mm(2)/s, respectively). Distortion due to eddy currents depended on the direction of the diffusion gradient and displacement varied between 1 and 6 mm for high b-value images. Shift in the apparent diffusion coefficient due to intrinsic field gradients was compensated for by averaging diffusion data obtained from opposite directions. Pseudodiffusion and intravoxel heterogeneity effects were not observed in approximately half of breast cancer and normal tissue voxels. This result indicates that stretched and IVIM models should be utilized in regional analysis rather than global tumor assessment. Cross terms between diffusion-sensitization gradients and other imaging or susceptibility-related gradients are relevant in clinical protocols, supporting the use of geometric averaging of diffusion-weighted images acquired with diffusion-sensitization gradients in opposite directions.
Matsuura, K; Deyashiki, Y; Sato, K; Ishida, N; Miwa, G; Hara, A
1997-01-01
Human liver dihydrodiol dehydrogenase isoenzymes (DD1 and DD2), in which only seven amino acid residues are substituted, differ remarkably in specificity for steroidal substrates and inhibitor sensitivity: DD1 shows 20alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas DD2 oxidizes 3alpha-hydroxysteroids and is highly inhibited by bile acids. In the present study we performed site-directed mutagenesis of the seven residues (Thr-38, Arg-47, Leu-54, Cys-87, Val-151, Arg-170 and Gln-172) of DD1 to the corresponding residues (Val, His, Val, Ser, Met, His and Leu respectively) of DD2. Of the seven mutations, only the replacement of Leu-54 with Val produced an enzyme that had almost the same properties as DD2. No significant changes were observed in the other mutant enzymes. An additional site-directed mutagenesis of Tyr-55 of DD1 to Phe yielded an inactive protein, suggesting the catalytically important role of this residue. Thus a residue at a position before the catalytic Tyr residue might play a key role in determining the orientation of the substrates and inhibitors. PMID:9173902
Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.
Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng
2018-03-23
Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.
Commissioning a p-type silicon diode for use in clinical electron beams.
Eveling, J N; Morgan, A M; Pitchford, W G
1999-01-01
Commissioning measurements were carried out on a p-type silicon diode detector for use in patient monitoring in high energy electron beams. Characteristics specific to the diode were examined. The variation in diode sensitivity with dose per pulse was found to be less than 1% over a range 0.069-0.237 mGy/pulse. The diode exhibited a sensitivity variation with accumulated dose of 10% per kGy and a sensitivity variation with surface temperature of 0.26%/degree C. The dependence of the diode response on the direction of the incident electron beam was investigated. Results were found to exceed the manufacturer's specifications. Output factors measured with the diode agree to within 1.5% of those measured with an NACP-02 air ionization chamber. The detector showed a variation in response with energy of 0.8% over the energy range 4-15 MeV. Prior to introducing the diode into clinical use, an assessment of beam perturbation directly behind the diode was made. The maximum reduction in local dose directly behind the diode at a depth of 1.0 cm below the surface was approximately 13% at 4 and 15 MeV.
Coulomb blockade in a single tunnel junction directly connected to a multiwalled carbon nanotube
NASA Astrophysics Data System (ADS)
Haruyama, Junji; Takesue, Izumi; Sato, Yuki
2000-10-01
We report on Coulomb blockade in a single tunnel junction directly connected to a multiwalled carbon nanotube (MWNT) by utilizing a nanoporous alumina film. The MWNT exhibits a weak localization effect with strong spin flip scattering. Experimental results and analysis suggest that a high-impedance external environment caused by the weak localization in the MWNT can yield Coulomb blockade, in accordance with phase correlation theory in a single junction system. It is also revealed that the Coulomb blockade is very sensitive to phase modulation in the MWNT, which also acts as a high-impedance transmission line.
Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels
Chen, Xiaoyin
2014-01-01
Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678
Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung
2017-01-01
Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388
Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum.
Gutiérrez-Sanz, Óscar; Andoy, Nesha M; Filipiak, Marcin S; Haustein, Natalie; Tarasov, Alexey
2017-09-22
Transistor-based biosensors fulfill many requirements posed upon transducers for future point-of-care diagnostic devices such as scalable fabrication and label-free and real-time quantification of chemical and biological species with high sensitivity. However, the short Debye screening length in physiological samples (<1 nm) has been a major drawback so far, preventing direct measurements in serum. In this work, we demonstrate how tailoring the sensing surface with short specific biological receptors and a polymer polyethylene glycol (PEG) can strongly enhance the sensor response. In addition, the sensor performance can be dramatically improved if the measurements are performed at elevated temperatures (37 °C instead of 21 °C). With this novel approach, highly sensitive and selective detection of a representative immunosensing parameter-human thyroid-stimulating hormone-is shown over a wide measuring range with subpicomolar detection limits in whole serum. To the best of our knowledge, this is the first demonstration of direct immunodetection in whole serum using transistor-based biosensors, without the need for sample pretreatment, labeling, or washing steps. The presented sensor is low-cost, can be easily integrated into portable diagnostics devices, and offers a competitive performance compared to state-of-the-art central laboratory analyzers.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada
2017-06-01
In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.
Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films
NASA Astrophysics Data System (ADS)
Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.
2017-03-01
An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.
Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.
Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong
2015-04-24
A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morozumi, Miyuki; Chiba, Naoko; Igarashi, Yuko; Mitsuhashi, Naoki; Wajima, Takeaki; Iwata, Satoshi; Ubukata, Kimiko
2015-01-01
Most group B streptococcus (GBS) infections in newborns are with capsular type Ia, Ib, or III. To prevent these infections more effectively, we developed a real-time PCR method to simultaneously detect GBS species and identify these 3 capsular types in vaginal swab samples from women at 36-39 weeks of gestation. DNA to be detected included those of the dltS gene (encoding a histidine kinase specific to GBS) and cps genes encoding capsular types. PCR sensitivity was 10 CFU/well for a 33-35 threshold cycle. Results were obtained within 2 h. Direct PCR results were compared with results obtained from cultures. Samples numbering 1226 underwent PCR between September 2008 and August 2012. GBS positivity rates by direct PCR and after routine culture were 15.7% (n = 192) and 12.6% (n = 154), respectively. Sensitivity and specificity of direct PCR relative to culture were 96.1% and 95.9%. Of GBS positive samples identified by PCR, capsular types determined directly by real-time PCR were Ia (n = 24), Ib (n = 32), and III (n = 26). Real-time PCR using our designed cycling probe is a practical, highly sensitive method for identification of GBS in pregnant carriers, allowing use of prophylactic intrapartum antibiotics in time to cover the possibility of unexpected premature birth. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity
NASA Astrophysics Data System (ADS)
Dagamseh, A. M. K.; Bruinink, C. M.; Wiegerink, R. J.; Lammerink, T. S. J.; Droogendijk, H.; Krijnen, G. J. M.
2013-03-01
Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s-1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations.
High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong
2016-05-01
In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.
Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A
2016-02-21
A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.
An efficient method of reducing glass dispersion tolerance sensitivity
NASA Astrophysics Data System (ADS)
Sparrold, Scott W.; Shepard, R. Hamilton
2014-12-01
Constraining the Seidel aberrations of optical surfaces is a common technique for relaxing tolerance sensitivities in the optimization process. We offer an observation that a lens's Abbe number tolerance is directly related to the magnitude by which its longitudinal and transverse color are permitted to vary in production. Based on this observation, we propose a computationally efficient and easy-to-use merit function constraint for relaxing dispersion tolerance sensitivity. Using the relationship between an element's chromatic aberration and dispersion sensitivity, we derive a fundamental limit for lens scale and power that is capable of achieving high production yield for a given performance specification, which provides insight on the point at which lens splitting or melt fitting becomes necessary. The theory is validated by comparing its predictions to a formal tolerance analysis of a Cooke Triplet, and then applied to the design of a 1.5x visible linescan lens to illustrate optimization for reduced dispersion sensitivity. A selection of lenses in high volume production is then used to corroborate the proposed method of dispersion tolerance allocation.
Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers
NASA Astrophysics Data System (ADS)
Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il
2013-07-01
In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.
Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires
NASA Astrophysics Data System (ADS)
Wang, X.; Teng, Y.; Wang, C.; Li, Q.
2012-12-01
This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage increase with the change of the outer magnetic field and results in the increase of the sensor sensitivity; it can be enhanced the corresponding rate of the sensor to the low frequency magnetic field by increasing the drive signal frequency. By experiments, the best sensitivity and noise valves is 0.5225 mV/nT, 1.566nT respectively.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.
2017-12-01
Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.
Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong
2017-04-15
Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Fanti, Kostas A; Panayiotou, Georgia; Lazarou, Chrysostomos; Michael, Raphaelia; Georgiou, Giorgos
2016-02-01
The present study examines whether heterogeneous groups of children identified based on their longitudinal scores on conduct problems (CP) and callous-unemotional (CU) traits differ on physiological and behavioral measures of fear. Specifically, it aims to test the hypothesis that children with high/stable CP differentiated on CU traits score on opposite directions on a fear-fearless continuum. Seventy-three participants (M age = 11.21; 45.2% female) were selected from a sample of 1,200 children. Children and their parents completed a battery of questionnaires assessing fearfulness, sensitivity to punishment, and behavioral inhibition. Children also participated in an experiment assessing their startle reactivity to fearful mental imagery, a well-established index of defensive motivation. The pattern of results verifies the hypothesis that fearlessness, assessed with physiological and behavioral measures, is a core characteristic of children high on both CP and CU traits (i.e., receiving the DSM-5 specifier of limited prosocial emotions). To the contrary, children with high/stable CP and low CU traits demonstrated high responsiveness to fear, high behavioral inhibition, and high sensitivity to punishment. The study is in accord with the principle of equifinality, in that different developmental mechanisms (i.e., extremes of high and low fear) may have the same behavioral outcome manifested as phenotypic antisocial behavior.
Kimberly, David A; Salice, Christopher J
2014-07-01
The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.
Baek, Soo Kyoung; Lee, Seung Seok; Park, Eun Jeon; Sohn, Dong Hwan; Lee, Hye Suk
2003-02-05
A rapid and sensitive column-switching semi-micro high-performance liquid chromatography method was developed for the direct analysis of tiropramide in human plasma. The plasma sample (100 microl) was directly injected onto Capcell Pak MF Ph-1 precolumn where deproteinization and analyte fractionation occurred. Tiropramide was then eluted into an enrichment column (Capcell Pak UG C(18)) using acetonitrile-potassium phosphate (pH 7.0, 50 mM) (12:88, v/v) and was analyzed on a semi-micro C(18) analytical column using acetonitrile-potassium phosphate (pH 7.0, 10 mM) (50:50, v/v). The method showed excellent sensitivity (limit of quantification 5 ng/ml), and good precision (C.V.
Meenakshisundaram, Guruguhan; Pandian, Ramasamy P.; Eteshola, Edward; Lee, Stephen C.; Kuppusamy, Periannan
2009-01-01
Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen (Pandian et al. J. Mater. Chem., 19, 4138, 2009). However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. PMID:20006529
Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki
2016-03-01
Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sensitivity of directed networks to the addition and pruning of edges and vertices
NASA Astrophysics Data System (ADS)
Goltsev, A. V.; Timár, G.; Mendes, J. F. F.
2017-08-01
Directed networks have various topologically different extensive components, in contrast to a single giant component in undirected networks. We study the sensitivity (response) of the sizes of these extensive components in directed complex networks to the addition and pruning of edges and vertices. We introduce the susceptibility, which quantifies this sensitivity. We show that topologically different parts of a directed network have different sensitivity to the addition and pruning of edges and vertices and, therefore, they are characterized by different susceptibilities. These susceptibilities diverge at the critical point of the directed percolation transition, signaling the appearance (or disappearance) of the giant strongly connected component in the infinite size limit. We demonstrate this behavior in randomly damaged real and synthetic directed complex networks, such as the World Wide Web, Twitter, the Caenorhabditis elegans neural network, directed Erdős-Rényi graphs, and others. We reveal a nonmonotonic dependence of the sensitivity to random pruning of edges or vertices in the case of C. elegans and Twitter that manifests specific structural peculiarities of these networks. We propose the measurements of the susceptibilities during the addition or pruning of edges and vertices as a new method for studying structural peculiarities of directed networks.
Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings
Chah, Karima; Kinet, Damien; Caucheteur, Christophe
2016-01-01
New dual temperature and strain sensor has been designed using eccentric second-order fiber Bragg gratings produced in standard single-mode optical fiber by point-by-point direct writing technique with tight focusing of 800 nm femtosecond laser pulses. With thin gold coating at the grating location, we experimentally show that such gratings exhibit a transmitted amplitude spectrum composed by the Bragg and cladding modes resonances that extend in a wide spectral range exceeding one octave. An overlapping of the first order and second order spectrum is then observed. High-order cladding modes belonging to the first order Bragg resonance coupling are close to the second order Bragg resonance, they show a negative axial strain sensitivity (−0.55 pm/με) compared to the Bragg resonance (1.20 pm/με) and the same temperature sensitivity (10.6 pm/°C). With this well conditioned system, temperature and strain can be determined independently with high sensitivity, in a wavelength range limited to a few nanometers. PMID:27901059
Hu, Weihua; Chen, Hongming; Shi, Zhuanzhuan; Yu, Ling
2014-05-15
Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong
2017-04-01
This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.
Kennedy, Kieran M; Scriver, Stacey
2016-11-01
Undergraduate medical curricula typically include forensic and legal medicine topics that are of a highly sensitive nature. Examples include suicide, child abuse, domestic and sexual violence. It is likely that some students will have direct or indirect experience of these issues which are prevalent in society. Those students are vulnerable to vicarious harm from partaking in their medical education. Even students with no direct or indirect experience of these issues may be vulnerable to vicarious trauma, particularly students who are especially empathetic to cases presented. Despite these risks, instruction relating to these topics is necessary to ensure the competencies of graduating doctors to respond appropriately to cases they encounter during their professional careers. However, risk can be minimised by a well-designed and thoughtfully delivered educational programme. We provide recommendations for the successful inclusion of sensitive forensic and legal medicine topics in undergraduate medical curricula. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Behera, B; Mathur, P; Gupta, B
2010-01-01
The purpose of this study was to ascertain if the simple practice of Gram stain, acridine orange stain and direct sensitivity determination of positive blood culture bottles could be used to guide early and appropriate treatment in trauma patients with clinical suspicion of sepsis. The study also aimed to evaluate the error in interpreting antimicrobial sensitivity by direct method when compared to standard method and find out if specific antibiotic-organism combination had more discrepancies. Findings from consecutive episodes of blood stream infection at an Apex Trauma centre over a 12-month period are summarized. A total of 509 consecutive positive blood cultures were subjected to Gram staining. AO staining was done in BacT/ALERT-positive Gram-stain negative blood cultures. Direct sensitivity was performed from 369 blood culture broths, showing single type of growth in Gram and acridine orange staining. Results of direct sensitivity were compared to conventional sensitivity for errors. No 'very major' discrepancy was found in this study. About 5.2 and 1.8% minor error rates were noted in gram-positive and gram-negative bacteria, respectively, while comparing the two methods. Most of the discrepancies in gram-negative bacteria were noted in beta lactam - beta lactamase inhibitor combinations. Direct sensitivity testing was not reliable for reporting of methicillin and vancomycin resistance in Staphylococci. Gram stain result together with direct sensitivity testing is required for optimizing initial antimicrobial therapy in trauma patients with clinical suspicion of sepsis. Gram staining and AO staining proved particularly helpful in the early detection of candidaemia.
NASA Astrophysics Data System (ADS)
Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John
2008-04-01
Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.
Rahimi, Frashta; Goire, Namraj; Guy, Rebecca; Kaldor, John M; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M
2013-08-01
Background Rapid point-of-care tests (POCTs) for chlamydia (Chlamydia trachomatis) and gonorrhoea (Neisseria gonorrhoeae) have the potential to confer health benefits in certain populations even at moderate sensitivities; however, suitable POCTs for these organisms are currently lacking. In this study, we investigated the use of direct urine polymerase chain reaction (PCR), with the view of implementing a simplified PCR strategy for high-throughput chlamydia and gonorrhoea screening in remote settings. Briefly, a simple dilution of the urine was performed before adding it directly to a real-time PCR reaction. The method was evaluated using 134 stored urine specimens that had been submitted for chlamydia and gonorrhoea testing and had been tested using a commercial C. trachomatis and N. gonorrhoeae PCR method. These included samples that were PCR-positive for chlamydia (n=87), gonorrhoea (n=16) or both (n=2). Direct urine testing was conducted using previously described in-house real-time PCR methods for C. trachomatis and N. gonorrhoeae as well as for recognised N.gonorrhoeae antimicrobial resistance mechanisms. The overall sensitivities and specificities of the direct urine PCR were 78% and 100% for chlamydia, and 83% and 100% for gonorrhoea. N.gonorrhoeae penicillin and quinolone resistance mechanisms were characterised in 14 of the 18 N. gonorrhoeae-positive samples. The results of this study show that the simplified PCR strategy may be a feasible approach for rapid screening and improving chlamydia and gonorrhoea treatment in remote settings.
NASA Astrophysics Data System (ADS)
Ciavatti, A.; Cramer, T.; Carroli, M.; Basiricò, L.; Fuhrer, R.; De Leeuw, D. M.; Fraboni, B.
2017-10-01
Semiconducting polymer based X-ray detectors doped with high-Z nanoparticles hold the promise to combine mechanical flexibility and large-area processing with a high X-ray stopping power and sensitivity. Currently, a lack of understanding of how nanoparticle doping impacts the detector dynamics impedes the optimization of such detectors. Here, we study direct X-ray radiation detectors based on the semiconducting polymer poly(9,9-dioctyfluorene) blended with Bismuth(III)oxide (Bi2O3) nanoparticles (NPs). Pure polymer diodes show a high mobility of 1.3 × 10-5 cm2/V s, a low leakage current of 200 nA/cm2 at -80 V, and a high rectifying factor up to 3 × 105 that allow us to compare the X-ray response of a polymer detector in charge-injection conditions (forward bias) and in charge-collection conditions (reverse bias), together with the impact of NP-loading in the two operation regimes. When operated in reverse bias, the detectors reach the state of the art sensitivity of 24 μC/Gy cm2, providing a fast photoresponse. In forward operation, a slower detection dynamics but improved sensitivity (up to 450 ± 150 nC/Gy) due to conductive gain is observed. High-Z NP doping increases the X-ray absorption, but higher NP loadings lead to a strong reduction of charge-carrier injection and transport due to a strong impact on the semiconductor morphology. Finally, the time response of optimized detectors showed a cut-off frequency up to 200 Hz. Taking advantage of such a fast dynamic response, we demonstrate an X-ray based velocity tracking system.
NASA Astrophysics Data System (ADS)
Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.
2016-02-01
Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.
Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D
2006-05-01
The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.
Azkar Ul Hasan, Syed; Jung, Youngdo; Kim, Seonggi; Jung, Cho-Long; Oh, Sunjong; Kim, Junhee; Lim, Hyuneui
2016-01-12
High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar⁺ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar⁺ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar⁺ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghong; Fang, Xiangdong; Goddard, William
2013-10-17
Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise
2017-01-01
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4–30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of <−14.5 dB, a small input-output nonlinearity of <10 ppm, and a low gradient noise of 0.16–620 nT/m/Hz in a broad frequency range of 1 Hz–170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/f) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs. PMID:29068428
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.
Zhang, Mingji; Or, Siu Wing
2017-10-25
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of <-14.5 dB, a small input-output nonlinearity of <10 ppm, and a low gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less
A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening.
Jiang, Yu; Liu, Xu; Dang, Tran Chien; Huang, Xiwei; Feng, Hao; Zhang, Qing; Yu, Hao
2018-04-01
Foodborne bacteria, inducing outbreaks of infection or poisoning, have posed great threats to food safety. Potentiometric sensors can identify bacteria levels in food by measuring medium's pH changes. However, most of these sensors face the limitation of low sensitivity and high cost. In this paper, we developed a high-sensitivity ion-sensitive field-effect transistor sensor. It is small sized, cost-efficient, and can be massively fabricated in a standard 65-nm complementary metal-oxide-semiconductor process. A subthreshold pH-to-time-to-voltage conversion scheme was proposed to improve the sensitivity. Furthermore, design parameters, such as chemical sensing area, transistor size, and discharging time, were optimized to enhance the performance. The intrinsic sensitivity of passivation membrane was calculated as 33.2 mV/pH. It was amplified to 123.8 mV/pH with a 0.01-pH resolution, which greatly exceeded 6.3 mV/pH observed in a traditional source-follower based readout structure. The sensing system was applied to Escherichia coli (E. coli) detection with densities ranging from 14 to 140 cfu/mL. Compared to the conventional direct plate counting method (24 h), more efficient sixfold smaller screening time (4 h) was achieved to differentiate samples' E. coli levels. The demonstrated portable, time-saving, and low-cost prescreen system has great potential for food safety detection.
Optically pre-amplified lidar-radar
NASA Astrophysics Data System (ADS)
Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre
2001-09-01
We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.
Venuthurumilli, Prabhu K; Ye, Peide D; Xu, Xianfan
2018-05-22
Black phosphorus, a recently intensely investigated two-dimensional material, is promising for electronic and optoelectronic applications due to its higher mobility and thickness-dependent direct band gap. With its low direct band gap and anisotropic properties in nature, black phosphorus is also suitable for near-infrared polarization-sensitive photodetection. To enhance photoresponsivity of a black phosphorus based photodetector, we demonstrate two designs of plasmonic structures. In the first design, plasmonic bowtie antennas are used to increase the photocurrent, particularly in the armchair direction, where the optical absorption is higher than that in the zigzag direction. The simulated electric field distribution with bowtie structures shows enhanced optical absorption by localized surface plasmons. In the second design, bowtie apertures are used to enhance the inherent polarization selectivity of black phosphorus. A high photocurrent ratio (armchair to zigzag) of 8.7 is obtained. We choose a near-infrared wavelength of 1550 nm to demonstrate the photosensitivity enhancement and polarization selectivity, as it is useful for applications including telecommunication, remote sensing, biological imaging, and infrared polarimetry imaging.
NASA Technical Reports Server (NTRS)
Bivens, Courtland C.; Guercio, Joseph G.
1987-01-01
A piloted simulator experiment was conducted to investigate directional axis handling qualities requirements for low speed and hover tasks performed by a Scout/Attack helicopter. Included were the directional characteristics of various candidate light helicopter family configurations. Also, the experiment focused on conventional single main/tail rotor configurations of the OH-58 series aircraft, where the first-order yaw-axis dynamic effects that contributed to the loss of tail rotor control were modeled. Five pilots flew 22 configurations under various wind conditions. Cooper-Harper handling quality ratings were used as the primary measure of merit of each configuration. The results of the experiment indicate that rotorcraft configurations with high directional gust sensitivity require greater minimum yaw damping to maintain satisfactory handling qualities during nap-of-the-Earth flying tasks. It was also determined that both yaw damping and control response are critical handling qualities parameters in performing the air-to-air target acquisition and tracking task. Finally, the lack of substantial yaw damping and larger values of gust sensitivity increased the possibility of loss of directional control at low airspeeds for the single main/tail rotor configurations.
NASA Astrophysics Data System (ADS)
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-09-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-01-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst, A; Egelhaaf, M
1990-01-01
Direction selectivity of motion-sensitive neurons is generally thought to result from the nonlinear interaction between the signals derived from adjacent image points. Modeling of motion-sensitive networks, however, reveals that such elements may still respond to motion in a rather poor directionally selective way. Direction selectivity can be significantly enhanced if the nonlinear interaction is followed by another processing stage in which the signals of elements with opposite preferred directions are subtracted from each other. Our electrophysiological experiments in the fly visual system suggest that here direction selectivity is acquired in such a two-stage process. Images PMID:2251278
Directed Hidden-Code Extractor for Environment-Sensitive Malwares
NASA Astrophysics Data System (ADS)
Jia, Chunfu; Wang, Zhi; Lu, Kai; Liu, Xinhai; Liu, Xin
Malware writers often use packing technique to hide malicious payload. A number of dynamic unpacking tools are.designed in order to identify and extract the hidden code in the packed malware. However, such unpacking methods.are all based on a highly controlled environment that is vulnerable to various anti-unpacking techniques. If execution.environment is suspicious, malwares may stay inactive for a long time or stop execution immediately to evade.detection. In this paper, we proposed a novel approach that automatically reasons about the environment requirements.imposed by malware, then directs a unpacking tool to change the controlled environment to extract the hide code at.the new environment. The experimental results show that our approach significantly increases the resilience of the.traditional unpacking tools to environment-sensitive malware.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean
2017-07-01
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.
Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad
2015-01-01
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3 ± 56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip
Tehrani, Farshad; Reiner, Lisa; Bavarian, Behzad
2015-01-01
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry. PMID:26678700
Screening for cocaine on Euro banknotes by a highly sensitive enzyme immunoassay.
Abdelshafi, Nahla A; Panne, Ulrich; Schneider, Rudolf J
2017-04-01
This study focused on quantitative detection of cocaine on Euro banknotes in Germany. A sensitive direct competitive immunoassay was developed and optimized with a limit of detection (LOD) of 5.6ng/L. Exhaustive cocaine extraction by solvent was tested using different methanol concentrations and buffered solutions. Cross-reactivity studies were performed to determine the degree of interference of cocaine metabolites with the immunoassay. Sixty-five Euro banknotes obtained from different districts in Berlin were evaluated. A 100% contamination frequency with cocaine was detected. A comparison between the amount of cocaine extracted by cotton swabbing of one square centimeter of the banknote showed a good correlation for lower contamination levels. This assay showed high sensitivity of detecting pg of cocaine per 1cm 2 of one banknote by swabbing 1cm 2 : 0, 14, and 21pg/cm 2 . Moreover, three notes of different denominations revealed high cocaine concentration; 1.1mg/note, and twice 55µg/note. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie
2016-09-21
Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.
Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi
2012-12-04
Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.
Saleh, Mona; El-Matbouli, Mansour
2015-06-01
Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.
Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi
2014-01-01
Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021
Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3
Liu, Beiying; Qin, Feng
2017-01-01
Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143
High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging
NASA Technical Reports Server (NTRS)
2004-01-01
Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.
High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging
NASA Technical Reports Server (NTRS)
Rahman, Atiar
2006-01-01
Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.
Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu
2008-01-01
The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors, together with the increased microwave power and magnet intensity will allow for a detection of high-frequency gravitational waves (HFGWs) exhibiting amplitudes, A, of the time-varying spacetime strains on the order of 10-30 to 10-34.
Zhang, Hua; Bibi, Aisha; Lu, Haiyan; Han, Jing; Chen, Huanwen
2017-08-01
It is of sustainable interest to improve the sensitivity and selectivity of the ionization process, especially for direct analysis of complex samples without matrix separation. Herein, four ambient ionization methods including desorption atmospheric pressure chemical ionization (DAPCI), heat-assisted desorption atmospheric pressure chemical ionization (heat-assisted DAPCI), microwave plasma torch (MPT) and internal extractive electrospray ionization (iEESI) were employed for comparative analysis of the navel orange tissue samples by mass spectrometry. The volatile organic compounds (e.g. ethanol, vanillin, leaf alcohol and jasmine lactone) were successfully detected by non-heat-assisted DAPCI-MS, while semi-volatile organic compounds (e.g. 1-nonanol and ethyl nonanoate) together with low abundance of non-volatile organic compounds (e.g. sinensetin and nobiletin) were obtained by heat-assisted DAPCI-MS. Typical nonvolatile organic compounds [e.g. 5-(hydroxymethyl)furfural and glucosan] were sensitively detected with MPT-MS. Compounds of high polarity (e.g. amino acids, alkaloids and sugars) were easily profiled with iEESI-MS. Our data showed that more analytes could be detected when more energy was delivered for the desorption ionization purpose; however, heat-sensitive analytes would not be detected once the energy input exceeded the dissociation barriers of the analytes. For the later cases, soft ionization methods such as iEESI were recommended to sensitively profile the bioanalytes of high polarity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle
2016-01-01
Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested-MSP, pyrosequencing, and MS-HRM varied, the prognostic effect seemed similar (HR 1.74, 95 % CI 0.97-3.15; HR 1.85, 95 % CI 0.93-3.86; HR 1.83, 95 % CI 0.92-3.65, respectively). Our results show that upon optimizing and aligning four RET methylation assays with regard to primer location and sensitivity, differences in methylation frequencies and clinical sensitivities are observed; however, the effect on the marker's prognostic outcome is minimal.
NASA Technical Reports Server (NTRS)
Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.
1999-01-01
Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Bao, Zengtao; Sun, Jialin; Zhao, Xiaoqian; Li, Zengyao; Cui, Songkui; Meng, Qingyang; Zhang, Ye; Wang, Tong; Jiang, Yanfeng
2017-01-01
Sensitive and quantitative detection of tumor markers is highly required in the clinic for cancer diagnosis and consequent treatment. A field-effect transistor-based (FET-based) nanobiosensor emerges with characteristics of being label-free, real-time, having high sensitivity, and providing direct electrical readout for detection of biomarkers. In this paper, a top-down approach is proposed and implemented to fulfill a novel silicon nano-ribbon FET, which acts as biomarker sensor for future clinical application. Compared with the bottom-up approach, a top-down fabrication approach can confine width and length of the silicon FET precisely to control its electrical properties. The silicon nanoribbon (Si-NR) transistor is fabricated on a Silicon-on-Insulator (SOI) substrate by a top-down approach with complementary metal oxide semiconductor (CMOS)-compatible technology. After the preparation, the surface of Si-NR is functionalized with 3-aminopropyltriethoxysilane (APTES). Glutaraldehyde is utilized to bind the amino terminals of APTES and antibody on the surface. Finally, a microfluidic channel is integrated on the top of the device, acting as a flowing channel for the carcinoembryonic antigen (CEA) solution. The Si-NR FET is 120 nm in width and 25 nm in height, with ambipolar electrical characteristics. A logarithmic relationship between the changing ratio of the current and the CEA concentration is measured in the range of 0.1-100 ng/mL. The sensitivity of detection is measured as 10 pg/mL. The top-down fabricated biochip shows feasibility in direct detecting of CEA with the benefits of real-time, low cost, and high sensitivity as a promising biosensor for tumor early diagnosis.
Formichella, Luca; Romberg, Laura; Bolz, Christian; Vieth, Michael; Geppert, Michael; Göttner, Gereon; Nölting, Christina; Walter, Dirk; Schepp, Wolfgang; Schneider, Arne; Ulm, Kurt; Wolf, Petra; Busch, Dirk H; Soutschek, Erwin; Gerhard, Markus
2013-11-01
Helicobacter pylori colonizes half of the world's population, and infection can lead to ulcers, gastric cancer, and mucosa-associated lymphoid tissue (MALT) lymphoma. Serology is the only test applicable for large-scale, population-based screening, but current tests are hampered by a lack of sensitivity and/or specificity. Also, no serologic test allows the differentiation of type I and type II strains, which is important for predicting the clinical outcome. H. pylori virulence factors have been associated with disease, but direct assessment of virulence factors requires invasive methods to obtain gastric biopsy specimens. Our work aimed at the development of a highly sensitive and specific, noninvasive serologic test to detect immune responses to important H. pylori virulence factors. This line immunoassay system (recomLine) is based on recombinant proteins. For this assay, six highly immunogenic virulence factors (CagA, VacA, GroEL, gGT, HcpC, and UreA) were expressed in Escherichia coli, purified, and immobilized to nitrocellulose membranes to detect serological immune responses in patient's sera. For the validation of the line assay, a cohort of 500 patients was screened, of which 290 (58.0%) were H. pylori negative and 210 (42.0%) were positive by histology. The assay showed sensitivity and specificity of 97.6% and 96.2%, respectively, compared to histology. In direct comparison to lysate blotting and enzyme-linked immunosorbent assay (ELISA), the recomLine assay had increased discriminatory power. For the assessment of individual risk for gastrointestinal disease, the test must be validated in a larger and defined patient cohort. Taking the data together, the recomLine assay provides a valuable tool for the diagnosis of H. pylori infection.
Duvivier, Wilco F; van Beek, Teris A; Nielen, Michel W F
2016-11-15
Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyzers have been evaluated regarding their selectivity and sensitivity for the detection of Δ9-tetrahydrocannabinol (THC) from intact hair samples using direct analysis in real time (DART) ionization. Four different mass analyzers, namely (1) an orbitrap, (2) a quadrupole orbitrap, (3) a triple quadrupole, and (4) a quadrupole time-of-flight (QTOF), were evaluated. Selectivity and sensitivity were assessed by analyzing secondary THC standard dilutions on stainless steel mesh screens and blank hair samples, and by the analysis of authentic cannabis user hair samples. Additionally, separation of isobaric ions by use of travelling wave ion mobility (TWIM) was investigated. The use of a triple quadrupole instrument resulted in the highest sensitivity; however, transitions used for multiple reaction monitoring were only found to be specific when using high mass resolution product ion measurements. A mass resolution of at least 30,000 FWHM at m/z 315 was necessary to avoid overlap of THC with isobaric ions originating from the hair matrix. Even though selectivity was enhanced by use of TWIM, the QTOF instrument in resolution mode could not indisputably differentiate THC from endogenous isobaric ions in drug user hair samples. Only the high resolution of the (quadrupole) orbitrap instruments and the QTOF instrument in high-resolution mode distinguished THC in hair samples from endogenous isobaric interferences. As expected, enhanced selectivity compromises sensitivity and THC was only detectable in hair from heavy users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Leerkes, Esther M.; Su, Jinni; Calkins, Susan D.; O’Brien, Marion; Supple, Andrew J.
2017-01-01
The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and AAI attachment coherence were assessed prenatally. Mothers’ physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old and mothers reported on infants’ behavior problems when infants were 27 months old. Over and above covariates, mothers’ arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. Results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology. PMID:26902983
Ackerman, L K; Noonan, G O; Begley, T H
2009-12-01
The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.
Leerkes, Esther M; Su, Jinni; Calkins, Susan D; O'Brien, Marion; Supple, Andrew J
2017-02-01
The extent to which indices of maternal physiological arousal (skin conductance augmentation) and regulation (vagal withdrawal) while parenting predict infant attachment disorganization and behavior problems directly or indirectly via maternal sensitivity was examined in a sample of 259 mothers and their infants. Two covariates, maternal self-reported emotional risk and Adult Attachment Interview attachment coherence were assessed prenatally. Mothers' physiological arousal and regulation were measured during parenting tasks when infants were 6 months old. Maternal sensitivity was observed during distress-eliciting tasks when infants were 6 and 14 months old, and an average sensitivity score was calculated. Attachment disorganization was observed during the Strange Situation when infants were 14 months old, and mothers reported on infants' behavior problems when infants were 27 months old. Over and above covariates, mothers' arousal and regulation while parenting interacted to predict infant attachment disorganization and behavior problems such that maternal arousal was associated with higher attachment disorganization and behavior problems when maternal regulation was low but not when maternal regulation was high. This effect was direct and not explained by maternal sensitivity. The results suggest that maternal physiological dysregulation while parenting places infants at risk for psychopathology.
Tsao, Chia-Wen; Yang, Zhi-Jie
2015-10-14
Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.
Pérez-Parada, Andrés; Gómez-Ramos, María del Mar; Martínez Bueno, María Jesús; Uclés, Samanta; Uclés, Ana; Fernández-Alba, Amadeo R
2012-02-01
Instrumental capabilities and software tools of modern hybrid mass spectrometry (MS) instruments such as high-resolution mass spectrometry (HRMS), quadrupole time-of-flight (QTOF), and quadrupole linear ion trap (QLIT) were experimentally investigated for the study of emerging contaminants in Henares River water samples. Automated screening and confirmatory capabilities of QTOF working in full-scan MS and tandem MS (MS/MS) were explored when dealing with real samples. Investigations on the effect of sensitivity and resolution power influence on mass accuracy were studied for the correct assignment of the amoxicillin transformation product 5(R) amoxicillin-diketopiperazine-2',5' as an example of a nontarget compound. On the other hand, a comparison of quantitative and qualitative strategies based on direct injection analysis and off-line solid-phase extraction sample treatment were assayed using two different QLIT instruments for a selected group of emerging contaminants when operating in selected reaction monitoring (SRM) and information-dependent acquisition (IDA) modes. Software-aided screening usually needs a further confirmatory step. Resolving power and MS/MS feature of QTOF showed to confirm/reject most findings in river water, although sensitivity-related limitations are usually found. Superior sensitivity of modern QLIT-MS/MS offered the possibility of direct injection analysis for proper quantitative study of a variety of contaminants, while it simultaneously reduced the matrix effect and increased the reliability of the results. Confirmation of ethylamphetamine, which lacks on a second SRM transition, was accomplished by using the IDA feature. Hybrid MS instruments equipped with high resolution and high sensitivity contributes to enlarge the scope of targeted analytes in river waters. However, in the tested instruments, there is a margin of improvement principally in required sensitivity and data treatment software tools devoted to reliable confirmation and improved automated data processing.
Coherent nonlinear optical imaging: beyond fluorescence microscopy.
Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney
2011-01-01
The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.
Interferometric fibre-optic curvature sensing for structural, directional vibration measurements
NASA Astrophysics Data System (ADS)
Kissinger, Thomas; Chehura, Edmon; James, Stephen W.; Tatam, Ralph P.
2017-06-01
Dynamic fibre-optic curvature sensing using fibre segment interferometry is demonstrated using a cost-effective rangeresolved interferometry interrogation system. Differential strain measurements from four fibre strings, each containing four fibre segments of gauge length 20 cm, allow the inference of lateral vibrations as well as the direction of the vibration of a cantilever test object. Dynamic tip displacement resolutions in the micrometre range over a 21 kHz interferometric bandwidth demonstrate the suitability of this approach for highly sensitive fibre-optic directional vibration measurements, complementing existing laser vibrometry techniques by removing the need for side access to the structure under test.
Pet avoidance in allergy cases: Is it possible to implement it?
Sánchez, Jorge; Díez, Susana; Cardona, Ricardo
2015-01-01
Among allergic patients, pet avoidance is commonly recommended. It is difficult for patients to accomplish this because of their emotional attachment to the pets, and its effectiveness is controversial. To explore the applicability and effectiveness of pet avoidance measures among sensitized patients. We evaluated 288 patients with asthma, rhinitis, conjunctivitis and/or dermatitis using skin prick test to measure their sensitization to cats, dogs and other animals to which they were exposed. Exposure to animals was evaluated in each patient (pets at home, frequent indirect exposure or no exposure). In those patients sensitized to animals some avoidance measures, such as removing pets from home and preventing indirect exposure, were recommended. On the following two appointments, we evaluated patients' fulfillment of these recommendations. Sensitization to cats, dogs and birds was high (9%, 48%, 14%, respectively), as well as direct and indirect exposure (30%, 46%, 24%, respectively). Most patients denied contact with other animals (horses, hamsters, rabbits or cows), and sensitization to them was low. During the follow-up of patients sensitized to their pets at home (n=50), most of them refused to remove them from their house due to emotional attachment, and only two followed this recommendation. High exposure to animals could explain the frequency of sensitization to pets in this population. However, emotional attachment and prevalent indirect exposure to animals among sensitized patients make avoidance recommendations impractical or impossible to achieve.
Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.
2014-01-01
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416
Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L
2014-07-25
The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.
On the intra- and interband plasmon modes in doped armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen
2018-01-01
With the help of the simple tight-binding Hamiltonian and Green's function technique, we study how intraband and interband plasmon modes of both semiconducting and metallic armchair graphene nanoribbons are influenced by the width, chemical doping, and incident momentum direction. In particular, we investigate the behavior of the frequency-dependent susceptibility when the system is exposed to photons or electrons. Injecting electrons by doping creates a new collective mode due to new states between the valence and conduction bands corresponding to intraband transition for which the effect of ribbon width on these transitions in the semiconducting case is much more sensitive than metallic ones. Furthermore, some critical chemical potential and momentum values for both intraband and interband modes lead to different behaviors for resonant peaks. Another remarkable point is the high sensitivity of intraband plasmons to the direction of incident momentum. In particular, the susceptibility of doped nanoribbons vanishes at perpendicular directions, i.e., the intraband plasmons disappear.
Soler, Maria; Estevez, M-Carmen; Alvarez, Mar; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M
2014-01-29
Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.
NASA Astrophysics Data System (ADS)
Qin, Jia; An, Lin; Wang, Ruikang
2011-03-01
Adequate functioning of the peripheral micro vascular in human skin is necessary to maintain optimal tissue perfusion and preserve normal hemodynamic function. There is a growing body of evidence suggests that vascular abnormalities may directly related to several dermatologic diseases, such as psoriasis, port-wine stain, skin cancer, etc. New in vivo imaging modalities to aid volumetric microvascular blood perfusion imaging are there for highly desirable. To address this need, we demonstrate the capability of ultra-high sensitive optical micro angiography to allow blood flow visualization and quantification of vascular densities of lesional psoriasis area in human subject in vivo. The microcirculation networks of lesion and non-lesion skin were obtained after post processing the data sets captured by the system. With our image resolution (~20 μm), we could compare these two types of microcirculation networks both qualitatively and quantitatively. The B-scan (lateral or x direction) cross section images, en-face (x-y plane) images and the volumetric in vivo perfusion map of lesion and non-lesion skin areas were obtained using UHS-OMAG. Characteristic perfusion map features were identified between lesional and non-lesional skin area. A statistically significant difference between vascular densities of lesion and non-lesion skin area was also found using a histogram based analysis. UHS-OMAG has the potential to differentiate the normal skin microcirculation from abnormal human skin microcirculation non-invasively with high speed and sensitivity. The presented data demonstrates the great potential of UHS-OMAG for detecting and diagnosing skin disease such as psoriasis in human subjects.
NASA Astrophysics Data System (ADS)
Li, Xue; Hou, Guangyue; Xing, Junpeng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2014-12-01
In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MSn) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MSn, and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method.
Li, Xue; Hou, Guangyue; Xing, Junpeng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying
2014-12-01
In the present work, direct analysis of real time ionization combined with multi-stage tandem mass spectrometry (DART-MS(n)) was used to investigate the metabolic profile of aconite alkaloids in rat intestinal bacteria. A total of 36 metabolites from three aconite alkaloids were identified by using DART-MS(n), and the feasibility of quantitative analysis of these analytes was examined. Key parameters of the DART ion source, such as helium gas temperature and pressure, the source-to-MS distance, and the speed of the autosampler, were optimized to achieve high sensitivity, enhance reproducibility, and reduce the occurrence of fragmentation. The instrument analysis time for one sample can be less than 10 s for this method. Compared with ESI-MS and UPLC-MS, the DART-MS is more efficient for directly detecting metabolic samples, and has the advantage of being a simple, high-speed, high-throughput method.
A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.
Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan
2009-02-18
A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.
Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy.
Fan, Wenpei; Yung, Bryant C; Chen, Xiaoyuan
2018-03-08
Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imaging alpha particle detector
Anderson, David F.
1985-01-01
A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
High-performance gas sensors with temperature measurement
Zhang, Yong; Li, Shengtao; Zhang, Jingyuan; Pan, Zhigang; Min, Daomin; Li, Xin; Song, Xiaoping; Liu, Junhua
2013-01-01
There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications. PMID:23405281
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
NASA Astrophysics Data System (ADS)
Asano, Atsushi; Maeyoshi, Yuta; Watanabe, Shogo; Saeki, Akinori; Sugimoto, Masaki; Yoshikawa, Masahito; Nanto, Hidehito; Tsukuda, Satoshi; Tanaka, Shun-Ichiro; Seki, Shu
2013-03-01
Cyclodextrins (CDs), hosting selectively a wide range of guest molecules in their hydrophobic cavity, were directly fabricated into 1-dimensional nanostructures with extremely wide surface area by single particle nanofabrication technique in the present paper. The copolymers of acrylamide and mono(6-allyl)-β-CD were synthesized, and the crosslinking reaction of the polymer alloys with poly(4-bromostyrene) (PBrS) in SPNT gave nanowires on the quarts substrate with high number density of 5×109 cm-2. Quartz crystal microbalance (QCM) measurement suggested 320 fold high sensitivity for formic acid vapor adsorption in the nanowire fabricated surfaces compared with that in the thin solid film of PBrS, due to the incorporation of CD units and extremely wide surface area of the nanowires.
NASA Astrophysics Data System (ADS)
Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.
2017-05-01
The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.
Dogs have been studied for many years as a medical diagnostic tool to detect a pre-clinical disease state by sniffing emissions directly from a human or an in vitro biological sample. Some of the studies report high sensitivity and specificity in blinded case-control studies. How...
Improved noise-adding radiometer for microwave receivers
NASA Technical Reports Server (NTRS)
Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.
1973-01-01
Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.
Land application of spent gypsum from ditch filters: phosphorus source or sink?
USDA-ARS?s Scientific Manuscript database
Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...
High-Sensitivity Measurement of Density by Magnetic Levitation.
Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M
2016-03-01
This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10(-4) g/cm(3) for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.
Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.
Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio
2013-11-26
In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.
Walker, David R; Kinney, Allison L; Wright, Thomas W; Banks, Scott A
2016-06-01
Reverse total shoulder arthroplasty commonly treats cuff-deficient or osteoarthritic shoulders not amenable to rotator cuff repair. This study investigates deltoid moment arm sensitivity to variations in the joint center and humeral offset of 3 representative reverse total shoulder arthroplasty subjects. We hypothesized that a superior joint implant placement may exist, indicated by muscle moment arms, compared with the current actual surgical implant configuration. Moment arms for the anterior, lateral, and posterior aspects of the deltoid muscle were determined for 1521 perturbations of the humeral offset location away from the surgical placement in a subject-specific musculoskeletal model with motion defined by subject-specific in vivo abduction kinematics. The humeral offset was varied from its surgical position ±4 mm in the anterior/posterior direction, ±12 mm in the medial/lateral direction, and -10 to 14 mm in the superior/inferior direction. The anterior deltoid moment arm varied in humeral offset and center of rotation up to 20 mm, primarily in the medial/lateral and superior/inferior directions. The lateral deltoid moment arm varied in humeral offset up to 20 mm, primarily in the medial/lateral and anterior/posterior directions. The posterior deltoid moment arm varied up to 15 mm, primarily in early abduction, and was most sensitive to humeral offset changes in the superior/inferior direction. High variations in muscle moment arms were found for all 3 deltoid components, presenting an opportunity to dramatically change the deltoid moment arms through surgical placement of the reverse shoulder components and by varying the overall offset of the humerus. Basic Science Study; Computer Modeling. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun
2018-06-01
We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).
Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique
NASA Astrophysics Data System (ADS)
Wu, Zongfang; Płucienik, Agata; Feiten, Felix E.; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim
2017-09-01
Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V2O3(0 0 0 1 ) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.
Vibrational Action Spectroscopy of Solids: New Surface-Sensitive Technique.
Wu, Zongfang; Płucienik, Agata; Feiten, Felix E; Naschitzki, Matthias; Wachsmann, Walter; Gewinner, Sandy; Schöllkopf, Wieland; Staemmler, Volker; Kuhlenbeck, Helmut; Freund, Hans-Joachim
2017-09-29
Vibrational action spectroscopy employing infrared radiation from a free-electron laser has been successfully used for many years to study the vibrational and structural properties of gas phase aggregates. Despite the high sensitivity of this method no relevant studies have yet been conducted for solid sample surfaces. We have set up an experiment for the application of this method to such targets, using infrared light from the free-electron laser of the Fritz Haber Institute. In this Letter, we present first results of this technique with adsorbed argon and neon atoms as messengers. We were able to detect surface-located vibrations of a thin V_{2}O_{3}(0001) film on Au(111) as well as adsorbate vibrations, demonstrating that this method is highly surface sensitive. We consider that the dominant channel for desorption of the messenger atoms is direct inharmonic vibrational coupling, which is essentially insensitive to subsurface or bulk vibrations. Another channel is thermal desorption due to sample heating by absorption of infrared light. The high surface sensitivity of the nonthermal channel and its insensitivity to subsurface modes makes this technique an ideal tool for the study of surface-located vibrations.
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
3D graphene from CO 2 and K as an excellent counter electrode for dye-sensitized solar cells
Wei, Wei; Stacchiola, Dario J.; Hu, Yun Hang
2017-07-19
3D graphene, which was synthesized directly from CO 2 via its exothermic reaction with liquid K, exhibited excellent performance as a counter electrode for a dye-sensitized solar cell (DSSC). The DSSC has achieved a high power conversion efficiency of 8.25%, which is 10 times larger than that (0.74%) of a DSSC with a counter electrode of the regular graphene synthesized via chemical exfoliation of graphite. The efficiency is even higher than that (7.73%) of a dye-sensitized solar cell with an expensive standard Pt counter electrode. This work provides a novel approach to use a greenhouse gas for DSSCs.
All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure
NASA Astrophysics Data System (ADS)
Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz
2017-10-01
Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.
A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples
de Vries, Michel; Deijs, Martin; Canuti, Marta; van Schaik, Barbera D. C.; Faria, Nuno R.; van de Garde, Martijn D. B.; Jachimowski, Loes C. M.; Jebbink, Maarten F.; Jakobs, Marja; Luyf, Angela C. M.; Coenjaerts, Frank E. J.; Claas, Eric C. J.; Molenkamp, Richard; Koekkoek, Sylvie M.; Lammens, Christine; Leus, Frank; Goossens, Herman; Ieven, Margareta; Baas, Frank; van der Hoek, Lia
2011-01-01
In 5–40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors and subsequent amplification by PCR. However, direct discovery of unknown pathogens in nasopharyngeal swabs is difficult due to the high concentration of ribosomal RNA (rRNA) that acts as competitor. In the current study we optimized VIDISCA by adjusting the reverse transcription enzymes and decreasing rRNA amplification in the reverse transcription, using hexamer oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA templates was further reduced with oligonucleotides that anneal to rRNA but can not be extended due to 3′-dideoxy-C6-modification. With these modifications >90% reduction of rRNA amplification was established. Further improvement of the VIDISCA sensitivity was obtained by high throughput sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all containing known respiratory viruses. We could identify the proper virus in the majority of samples tested (11/18). The median load in the VIDISCA-454 positive samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6). Our results show that optimization of VIDISCA and subsequent high-throughput-sequencing enhances sensitivity drastically and provides the opportunity to perform virus discovery directly in patient material. PMID:21283679
Hioki, Yusaku; Tanimura, Ritsuko; Iwamoto, Shinichi; Tanaka, Koichi
2014-03-04
Nanoflow liquid chromatography (nano-LC) is an essential technique for highly sensitive analysis of complex biological samples, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is advantageous for rapid identification of proteins and in-depth analysis of post-translational modifications (PTMs). A combination of nano-LC and MALDI-MS (nano-LC/MALDI-MS) is useful for highly sensitive and detailed analysis in life sciences. However, the existing system does not fully utilize the advantages of each technique, especially in the interface of eluate transfer from nano-LC to a MALDI plate. To effectively combine nano-LC with MALDI-MS, we integrated a nano-LC column and a deposition probe for the first time (column probe) and incorporated it into a nano-LC/MALDI-MS system. Spotting nanoliter eluate droplets directly from the column onto the MALDI plate prevents postcolumn diffusion and preserves the chromatographic resolution. A DHB prespotted plate was prepared to suit the fabricated column probe to concentrate the droplets of nano-LC eluate. The performance of the advanced nano-LC/MALDI-MS system was substantiated by analyzing protein digests. When the system was coupled with multidimensional liquid chromatography (MDLC), trace amounts of glycopeptides that spiked into complex samples were successfully detected. Thus, a nano-LC/MALDI-MS direct-spotting system that eliminates postcolumn diffusion was constructed, and the efficacy of the system was demonstrated through highly sensitive analysis of the protein digests or spiked glycopeptides.
Ozone and haze pollution weakens net primary productivity in China
NASA Astrophysics Data System (ADS)
Yue, Xu; Unger, Nadine; Harper, Kandice; Xia, Xiangao; Liao, Hong; Zhu, Tong; Xiao, Jingfeng; Feng, Zhaozhong; Li, Jing
2017-05-01
Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030, offering protection of this critical ecosystem service and the mitigation of long-term global warming.
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Pape, John; Wadlin, Jill; Nachamkin, Irving
2006-01-01
We evaluated the ability of BBL CHROMagar MRSA medium (Becton Dickinson, Sparks, MD) to identify methicillin-resistant Staphylococcus aureus (MRSA) directly upon subculture from positive blood culture bottles. There were 124 MRSA isolates recovered from blood cultures in the study. BBL CHROMagar MRSA medium was highly sensitive (97.6% [121/124] at 18 to 24 h of incubation and 100% [124/124] at 48 h) and 99.9% specific for identifying MRSA from positive blood cultures. PMID:16825383
Three-axis orthogonal transceiver coil for eddy current sounding
NASA Astrophysics Data System (ADS)
Sukhanov, D.; Zavyalova, K.; Goncharik, M.
2017-08-01
We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.
NASA Astrophysics Data System (ADS)
Hartinger, Klaus; Bartels, Randy A.
2008-01-01
We demonstrate a single-shot measurement of the transient phase modulation due to field free molecular alignment at the revival times of a rotational wave packet. The wave packet is excited by an arbitrarily polarized ultrashort laser pulse in CO2 at room temperature. With this technique the time dependence along the eigenpolarization directions of the linear susceptibility tensor, i.e., the time dependence of its principle components, can be directly observed with high sensitivity.
Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun
2010-06-01
Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)
Fang, Caihong; Zhao, Guili; Xiao, Yanling; Zhao, Jun; Zhang, Zijun; Geng, Baoyou
2016-11-14
Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H 2 PtCl 6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.
A multiplex branched DNA assay for parallel quantitative gene expression profiling.
Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling
2006-05-01
We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.
A MEMS torsion magnetic sensor with reflective blazed grating integration
NASA Astrophysics Data System (ADS)
Long, Liang; Zhong, Shaolong
2016-07-01
A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
NASA Astrophysics Data System (ADS)
Lee, Jaehwan; Kim, Sanghyeok; Lee, Jinjae; Yang, Daejong; Park, Byong Chon; Ryu, Seunghwa; Park, Inkyu
2014-09-01
Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness.Wearable strain sensors for human motion detection are being highlighted in various fields such as medical, entertainment and sports industry. In this paper, we propose a new type of stretchable strain sensor that can detect both tensile and compressive strains and can be fabricated by a very simple process. A silver nanoparticle (Ag NP) thin film patterned on the polydimethylsiloxane (PDMS) stamp by a single-step direct transfer process is used as the strain sensing material. The working principle is the change in the electrical resistance caused by the opening/closure of micro-cracks under mechanical deformation. The fabricated stretchable strain sensor shows highly sensitive and durable sensing performances in various tensile/compressive strains, long-term cyclic loading and relaxation tests. We demonstrate the applications of our stretchable strain sensors such as flexible pressure sensors and wearable human motion detection devices with high sensitivity, response speed and mechanical robustness. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03295k
Flight Performance of the HEROES Solar Aspect System
NASA Astrophysics Data System (ADS)
Shih, Albert Y.; Christe, Steven; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander
2014-06-01
Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Furthermore, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration in the non-flaring corona. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. The HEROES Solar Aspect System (SAS) was developed and built to provide pointing knowledge during solar observations to better than the ~20 arcsec FWHM angular resolution of the HXR instrument. The SAS consists of two separate systems: the Pitch-Yaw aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS compares the position of an optical image of the Sun relative to precise fiducials to determine the pitch and yaw pointing offsets from the desired solar target. The RAS images the Earth's horizon in opposite directions simultaneously to determine the roll of the gondola. HEROES launched in September 2013 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the performance of the SAS for that flight.
Improving Model Representation of Reduced Nitrogen in the Greater Yellowstone Area
NASA Astrophysics Data System (ADS)
Thompson, T. M.
2015-12-01
Human activity, including fossil fuel combustion and agriculture has greatly increased the amount of reactive nitrogen (RN) in the atmosphere and its subsequent deposition to land. Increases in deposition of RN compounds can adversely affect sensitive ecosystems and is a growing problem in many natural areas. The National Park Service in conjunction with Colorado State University researchers and assistance from the Forest Service conducted the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) involving spatially and temporally detailed measurements of RN during spring/summer 2011. In this work it was found that during summer months at the high elevation site Grand Targhee, 62% of the nitrogen deposition was due to reduced nitrogen, about equally split between dry and wet deposition, oxidized nitrogen accounted for 27% of the total, and the remaining was wet deposited organic nitrogen. An important next step to GrandTReNDS is the use of chemical transport models (CTMs) to estimate source contributions to RN in the park. Given the large contribution of reduced nitrogen species to total nitrogen deposition in the park, understanding and properly characterizing ammonia in CTMs is critical to estimating the total nitrogen deposition. A model performance evaluation of the CAMx uni-directional model and CMAQ bi-direction and uni-directional 2011 model simulations versus GrandTReNDS and other datasets was conducted. Preliminary results suggest that, in some areas, model performance of ambient ammonia concentration is more sensitive to the spatial resolution of the model and the accuracy of the spatial representation of emissions than to the incorporation of bi-directional flux. Additional model sensitivity runs, including sensitivity to resolution (with and without bi-directional flux capabilities), changes to model estimated ammonia dry deposition velocities, and improved representation of the spatial distribution of ammonia emissions, are used to identify the best set of options for GrandTReNDS modeling, and to provide a measure of uncertainties. This will help atmospheric scientists identify deficiencies in the models and inform future model development.
Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul
2016-11-01
MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0-35 G in the perpendicular direction. The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity.
Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul
2016-01-01
Purpose: MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. Methods: The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0–35 G in the perpendicular direction. Results: The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. Conclusions: A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity. PMID:27806583
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok
2015-08-04
Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.
NASA Astrophysics Data System (ADS)
Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.
2017-04-01
The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.
High levels of wheel running protect against behavioral sensitization to cocaine.
Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas
2013-01-15
Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.
Searching for the full symphony of black hole binary mergers
NASA Astrophysics Data System (ADS)
Harry, Ian; Bustillo, Juan Calderón; Nitz, Alex
2018-01-01
Current searches for the gravitational-wave signature of compact binary mergers rely on matched-filtering data from interferometric observatories with sets of modeled gravitational waveforms. These searches currently use model waveforms that do not include the higher-order mode content of the gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from omitting higher-order modes. We present a new method for searching for compact binary mergers using waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when including the fact that signal-consistency tests can reject some signals that include higher-order mode content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-mass systems. For systems with equal mass, or with total mass ˜50 M⊙, we see more modest sensitivity increases, <10 %, which indicates that the existing search is already performing well. Our new search method is also directly applicable in searches for generic compact binaries.
NASA Astrophysics Data System (ADS)
Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.
2016-03-01
Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.
NASA Technical Reports Server (NTRS)
Holland, A. C.; Thomas, R. W. L.; Pearce, W. A.
1978-01-01
The paper presents the results of a Monte Carlo simulation study of the brightness and polarization at right angles to the solar direction both for ground-based observations (looking up) and for satellite-based systems (looking down). Calculations have been made for a solar zenith angle whose cosine was 0.6 and wavelengths ranging from 3500 A to 9500 A. A sensitivity of signatures to total aerosol loading, aerosol particle size distribution and refractive index, and the surface reflectance albedo has been demonstrated. For Lambertian-type surface reflection the albedo effects enter solely through the intensity sensitivity, and very high correlations have been found between the polarization term signatures for the ground-based and satellite-based systems. Potential applications of these results for local albedo predictions and satellite imaging systems recalibrations are discussed.
Duplex scanning diagnosis of internal carotid artery dissections. A case control study.
Alecu, C; Fortrat, J O; Ducrocq, X; Vespignani, H; de Bray, J M
2007-01-01
The reliability of duplex scanning (DS) for the diagnosis of internal carotid artery dissections (ICAD) is not clear. Nine DS signs known to be suggestive for the diagnosis of ICAD were compared between 70 patients with ICAD and 70 matched patients without dissection. Visible internal tapering occlusion, regular eccentric narrowing channel, ectasia beyond the carotid bulb, resistive index asymmetry, blood flow slowdown, ophthalmic artery blood flow inversion, and biphasic flow are more frequent in cases than in controls (p < 0.001). Atheroma plaques were absent in 80% of ICAD. When DS direct signs and hemodynamic signs were studied, sensitivity was 90% and specificity 60%. Diagnosis of ICAD by DS could be improved if direct signs were combined with hemodynamic signs, giving a high sensitivity and a rather good specificity. Copyright 2007 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou
2017-01-01
A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.
Statistical learning and language acquisition
Romberg, Alexa R.; Saffran, Jenny R.
2011-01-01
Human learners, including infants, are highly sensitive to structure in their environment. Statistical learning refers to the process of extracting this structure. A major question in language acquisition in the past few decades has been the extent to which infants use statistical learning mechanisms to acquire their native language. There have been many demonstrations showing infants’ ability to extract structures in linguistic input, such as the transitional probability between adjacent elements. This paper reviews current research on how statistical learning contributes to language acquisition. Current research is extending the initial findings of infants’ sensitivity to basic statistical information in many different directions, including investigating how infants represent regularities, learn about different levels of language, and integrate information across situations. These current directions emphasize studying statistical language learning in context: within language, within the infant learner, and within the environment as a whole. PMID:21666883
Vawter, MP; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, DM; Burmeister, M; Speed, T; Myers, R; Jones, EG; Watson, SJ; Akil, H; Bunney, WE
2010-01-01
Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
Direct patterning of gold nanoparticles using flexographic printing for biosensing applications
NASA Astrophysics Data System (ADS)
Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng
2015-03-01
In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.
Tehrani, Farshad; Bavarian, Behzad
2016-01-01
A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706
NASA Astrophysics Data System (ADS)
Tehrani, Farshad; Bavarian, Behzad
2016-06-01
A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.
Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.
Fay, R R
1995-01-01
Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.
Aguilar-Raab, Corina; Grevenstein, Dennis; Gotthardt, Linda; Jarczok, Marc N; Hunger, Christina; Ditzen, Beate; Schweitzer, Jochen
2018-06-01
We examine the sensitivity to change in the Evaluation of Social Systems (EVOS) scale, which assesses relationship quality and collective efficacy. In Study 1 we conducted a waitlist-control, short-term couple therapy RCT study (N = 43 couples) with five systemic therapy sessions treating communication and partnership problems; our intent was to provide high external validity. Construct validity of EVOS was assessed by comparison with additionally applied scales (Family Scales; Outcome Questionnaire, OQ-45.2). In Study 2, N = 332 individuals completed an experiment with high internal validity in order to verify sensitivity to change in three different social contexts. Results from Study 1 revealed a significant increase in relationship quality in the treatment group directly after treatment, as compared to the control group. Sensitivity to change was slightly better for EVOS than for other measures. While this positive change could not be fully sustained between posttreatment and a 4-week follow-up, EVOS score did not fall below baseline and pretreatment levels, supporting moderate-to-large sensitivity to change. Study 2 supported high sensitivity to change in EVOS for couple relations, family relations, and work-team relationships. Therefore, EVOS can be used as an outcome measure to monitor the process of systemic interventions focusing on relationship quality and collective efficacy. Due to its sensitivity to change, EVOS can provide evidence for treatment success with regard to relationship aspects. © 2017 Family Process Institute.
A model to estimate insulin sensitivity in dairy cows.
Holtenius, Paul; Holtenius, Kjell
2007-10-11
Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.
Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.
Allard, Rémy; Arleo, Angelo
2017-01-01
The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.
Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.
Reinl, Maren; Bartels, Andreas
2014-11-15
Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Development of a HIV-1 Virus Detection System Based on Nanotechnology.
Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo
2015-04-27
Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn
Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less
Directed evolution of PDZ variants to generate high-affinity detection reagents.
Ferrer, Marc; Maiolo, Jim; Kratz, Patricia; Jackowski, Jessica L; Murphy, Dennis J; Delagrave, Simon; Inglese, James
2005-04-01
High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.
Katherine M. O' Donnell; Frank R. Thompson; Raymond D. Semlitsch
2015-01-01
Prescribed fire and timber harvest are anthropogenic disturbances that modify resource availability and ecosystem structure, and can affect wildlife both directly and indirectly. Terrestrial salamanders are effective indicators of forest health due to their high abundance and sensitivity to microclimatic conditions. Given their ecological importance, it is critical to...
Population. Global Issues Education Packet.
ERIC Educational Resources Information Center
Holm, Amy E.
One of the most critical issues that faces humanity is the world population boom. The high rate of population growth can directly affect sensitive issues such as the state of the environment, economic development, health, resource uses, and consumption. Though we have achieved the capability to override many of nature's limitations, we live in a…
Surface shear inviscidity of soluble surfactants
Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.
2014-01-01
Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383
Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.
2014-01-01
Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bi-directionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i. PMID:25135336
The first high resolution image of coronal gas in a starbursting cool core cluster
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.
A closed-loop phase-locked interferometer for wide bandwidth position sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Andrew J., E-mail: Andrew.Fleming@Newcastle.edu.au; Routley, Ben S., E-mail: Ben.Routley@Newcastle.edu.au
This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interferogram. In this configuration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization ormore » modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instrument is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, ultrasonic devices, and sensors such as surface acoustic wave detectors.« less
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates
Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900
Malá, Zdena; Gebauer, Petr
2017-10-06
Capillary isotachophoresis (ITP) is an electrophoretic technique offering high sensitivity due to permanent stacking of the migrating analytes. Its combination with electrospray-ionization mass-spectrometric (ESI-MS) detection is limited by the narrow spectrum of ESI-compatible components but can be compensated by experienced system architecture. This work describes a methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides, based on implementation of the concepts of moving-boundary isotachophoresis and of H + as essential terminating component into cationic ITP with ESI-MS detection. Theoretical description of such kind of system is given and equations for zone-related boundary mobilities are derived, resulting in a much more general definition of the effective mobility of the terminating H + zone than used so far. Explicit equations allowing direct calculation for selected simple systems are derived. The presented theory allows prediction of stacking properties of particular systems and easy selection of suitable electrolyte setups. A simple ESI-compatible system composed of acetic acid and ammonium with H + and ammonium as a mixed terminator was selected for the analysis of 2-hydroxyatrazine and 2-hydroxyterbutylazine, degradation products of s-triazine herbicides. The proposed method was tested with direct injection without any sample pretreatment and provided excellent linearity and high sensitivity with limits of detection below 100ng/L (0.5nM). Example analyses of unspiked and spiked drinking and river water are shown. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensitization to sunflower pollen and lung functions in sunflower processing workers.
Atis, S; Tutluoglu, B; Sahin, K; Yaman, M; Küçükusta, A R; Oktay, I
2002-01-01
This study aimed to investigate whether exposure to sunflower pollen (Helianthus annuus) increases both sensitization and respiratory symptoms, and whether or not it affects lung functions in sunflower processing workers. The largest sunflower processing factories in the Thrace region of Turkey participated in this study. Workers from the units directly exposed to sunflower seed enrolled as the study group (n = 102) and workers who were not directly exposed to Helianthus annuus pollen (n = 102) were the control group. Detailed questionnaires covering respiratory and allergic symptoms were completed, and skin prick tests and lung function tests were performed. We found a very high rate (23.5%) of sensitization to Helianthus annuus in the study group compared to the controls (P<0.001). Logistic regression analysis showed that the risk of sensitization to H. annuus was increased 4.7-fold (odds ratio = 4.17, 95%) confidence interval = 1.3-16.7) if subjects were exposed to sunflower pollen in the workplace. While asthmatic symptoms and allergic skin diseases were not different between the two groups, workers in the study group had a higher rate of allergic rhinitis and conjunctivitis (P<0.05). We found that pulmonary function was significantly impaired in the study group (P<0.01). Using a multivariate analysis model, inclusion in the study group was found to be a predictive factor for impairment of lung function (P=0.002). We conclude that sunflower pollen has high allergenic potential, especially when there is close contact, and exposure to sunflower pollen in the workplace can result in impairment in lung function.
Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.
Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz
2008-04-15
An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications.
NASA Astrophysics Data System (ADS)
Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao
2016-02-01
Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.
Obradović, Jelena; Bush, Nicole R.; Stamperdahl, Juliet; Adler, Nancy E.; Boyce, W. Thomas
2009-01-01
This study examined the direct and interactive effects of stress reactivity and family adversity on socio-emotional and cognitive development in 338 five-to-six-year-old children. Neurobiological stress reactivity was measured as respiratory sinus arrhythmia and salivary cortisol responses to social, cognitive, sensory, and emotional challenges. Adaptation was assessed using child, parent, and teacher reports of externalizing symptoms, prosocial behaviors, school engagement, and academic competence. Results revealed significant interactions between reactivity and adversity. High stress reactivity was associated with more maladaptive outcomes in the context of high adversity but with better adaption in the context of low adversity. The findings corroborate a reconceptualization of stress reactivity as biological sensitivity to context by showing that high reactivity can both hinder and promote adaptive functioning. PMID:20331667
NASA Astrophysics Data System (ADS)
Balaji, P. A.
1999-07-01
A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.
The research of PSD location method in micro laser welding fields
NASA Astrophysics Data System (ADS)
Zhang, Qiue; Zhang, Rong; Dong, Hua
2010-11-01
In the field of micro laser welding, besides the special requirement in the parameter of lasers, the locating in welding points accurately is very important. The article adopt position sensitive detector (PSD) as hard core, combine optic system, electric circuits and PC and software processing, confirm the location of welding points. The signal detection circuits adopt the special integrate circuit H-2476 to process weak signal. It is an integrated circuit for high-speed, high-sensitivity optical range finding, which has stronger noiseproof feature, combine digital filter arithmetic, carry out repair the any non-ideal factors, increasing the measure precision. The amplifier adopt programmable amplifier LTC6915. The system adapt two dimension stepping motor drive the workbench, computer and corresponding software processing, make sure the location of spot weld. According to different workpieces to design the clamps. The system on-line detect PSD 's output signal in the moving processing. At the workbench moves in the X direction, the filaments offset is detected dynamic. Analyze the X axes moving sampling signal direction could be estimate the Y axes moving direction, and regulate the Y axes moving values. The workbench driver adopt A3979, it is a stepping motor driver with insert transducer and operate easily. It adapts the requirement of location in micro laser welding fields, real-time control to adjust by computer. It can be content up 20 μm's laser micro welding requirement on the whole. Using laser powder cladding technology achieve inter-penetration welding of high quality and reliability.
GEM-based TPC with CCD imaging for directional dark matter detection
NASA Astrophysics Data System (ADS)
Phan, N. S.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.
2016-11-01
The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 μm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.
NASA Astrophysics Data System (ADS)
Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin
2013-04-01
Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.
Improved sensitivity of vaginal self-collection and high-risk human papillomavirus testing.
Belinson, Jerome L; Du, Hui; Yang, Bin; Wu, Ruifang; Belinson, Suzanne E; Qu, Xinfeng; Pretorius, Robert G; Yi, Xin; Castle, Philip E
2012-04-15
Self-collected vaginal specimens tested for high-risk human papillomavirus (HR-HPV) have been shown to be less sensitive for the detection of cervical intraepithelial neoplasia or cancer (≥CIN 3) than physician-collected endocervical specimens. To increase the sensitivity of self-collected specimens, we studied a self-sampling device designed to obtain a larger specimen from the upper vagina (POI/NIH self-sampler) and a more sensitive polymerase chain reaction (PCR)-based HR-HPV assay. Women (10,000) were screened with cervical cytology and HR-HPV testing of vaginal self-collected and endocervical physician-collected specimens. Women were randomly assigned to use either a novel self-collection device (POI/NIH self-sampler) or conical-shaped brush (Qiagen). The self-collected and clinician-collected specimens were assayed by Cervista (Hologic) and the research only PCR-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Women with any abnormal screening test underwent colposcopy and biopsy. Women (8,556), mean age of 38.9, had complete data; 1.6% had ≥ CIN 3. For either HR-HPV assay, the sensitivity was similar for the two self-collection devices. Tested with Cervista, the sensitivity for ≥CIN 3 of self-collected specimens was 70.9% and for endocervical specimens was 95.0% (p = 0.0001). Tested with MALDI-TOF, the sensitivity for ≥CIN 3 of self-collected specimens was 94.3% and for endocervical specimens was also 94.3% (p = 1.0). A self-collected sample using a PCR-based assay with the capability of very high throughput has similar sensitivity as a direct endocervical specimen obtained by a physician. Large population-based screening "events" in low-resource settings could be achieved by promoting self-collection and centralized high-throughput, low-cost testing by PCR-based MALDI-TOF. Copyright © 2011 UICC.
Khatua, Snehadrinarayan; Choi, Shin Hei; Lee, Junseong; Huh, Jung Oh; Do, Youngkyu; Churchill, David G
2009-03-02
Fluorescent dinuclear chiral zinc complexes were synthesized in a "one-pot" method in which the lysine-based Schiff base ligand was generated in situ. This complex acts as a highly sensitive and selective fluorescent ON-OFF probe for Cu(2+) in water at physiological pH. Other metal ions such as Hg(2+), Cd(2+), and Pb(2+) gave little fluorescence change.
Picosecond Laser Pulse Interactions with Metallic and Semiconductor Surfaces.
1984-11-01
thermometric determination of plasma relaxation is by far more sensitive than direct optical measurements. The solid line in Fig. 4 shows the calculated...passively mode-locked Nd:yttrium aluminum garnet in Si, several researchers have used high picosecond or fem- laser was used to produce single 30-ps, 1.06...these targets to an aluminum backing plate with a silver-epoxy conducting glue (Ablestik). The conductivity of the targets was high enough to make
Partial discharge testing under direct voltage conditions
NASA Technical Reports Server (NTRS)
Bever, R. S.; Westrom, J. L.
1982-01-01
DC partial discharge (PD) (corona) testing is performed using a multichannel analyzer for pulse storing, and data is collected during increase of voltage and at quiescent voltage levels. Thus high voltage ceramic disk capacitors were evaluated by obtaining PD data interspersed during an accelerated life test. Increased PD activity was found early in samples that later failed catastrophically. By this technique, trends of insulation behavior are revealed sensitively and nondestructively in high voltage dc components.
Evaluation of ultra-low background materials for uranium and thorium using ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.
2013-08-08
An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less
Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.
2013-08-08
An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less
Dielectric haloscopes: sensitivity to the axion dark matter velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millar, Alexander J.; Redondo, Javier; Steffen, Frank D., E-mail: millar@mpp.mpg.de, E-mail: jredondo@unizar.es, E-mail: steffen@mpp.mpg.de
We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40–400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would bemore » directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.« less
Uljarević, Mirko; Carrington, Sarah; Leekam, Susan
2016-01-01
This study examined the relations between anxiety and individual characteristics of sensory sensitivity (SS) and intolerance of uncertainty (IU) in mothers of children with ASD. The mothers of 50 children completed the Hospital Anxiety and Depression Scale, the Highly Sensitive Person Scale and the IU Scale. Anxiety was associated with both SS and IU and IU was also associated with SS. Mediation analyses showed direct effects between anxiety and both IU and SS but a significant indirect effect was found only in the model in which IU mediated between SS. This is the first study to characterize the nature of the IU and SS interrelation in predicting levels of anxiety.
Dielectric haloscopes: sensitivity to the axion dark matter velocity
NASA Astrophysics Data System (ADS)
Millar, Alexander J.; Redondo, Javier; Steffen, Frank D.
2017-10-01
We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40-400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.
Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification
NASA Astrophysics Data System (ADS)
Agarwal, Anjali; Dailey, James M.; Toliver, Paul; Peters, Nicholas A.
2014-10-01
We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA). We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.
Search for ultra high energy astrophysical neutrinos with the ANITA experiment
NASA Astrophysics Data System (ADS)
Romero-Wolf, Andrew
2010-12-01
This work describes a search for cosmogenic neutrinos at energies above 1018 eV with the Antarctic Impulsive Transient Antenna (ANITA). ANITA is a balloon-borne radio interferometer designed to measure radio impulsive emission from particle showers produced in the Antarctic ice-sheet by ultra-high energy neutrinos (UHEnu). Flying at 37 km altitude the ANITA detector is sensitive to 1M km3 of ice and is expected to produce the highest exposure to ultra high energy neutrinos to date. The design, flight performance, and analysis of the first flight of ANITA in 2006 are the subject of this dissertation. Due to sparse anthropogenic backgrounds throughout the Antarctic continent, the ANITA analysis depends on high resolution directional reconstruction. An interferometric method was developed that not only provides high resolution but is also sensitive to very weak radio emissions. The results of ANITA provide the strongest constraints on current ultra-high energy neutrino models. In addition there was a serendipitous observation of ultra-high energy cosmic ray geosynchrotron emissions that are of distinct character from the expected neutrino signal. This thesis includes a study of the radio Cherenkov emission from ultra-high energy electromagnetic showers in ice in the time-domain. All previous simulations computed the radio pulse frequency spectrum. I developed a purely time-domain algorithm for computing radiation using the vector potentials of charged particle tracks. The results are fully consistent with previous frequency domain calculations and shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cherenkov direction. This information can be of great practical importance for interpreting actual data.
Ravaja, Niklas
2004-01-01
We examined the moderating influence of dispositional behavioral inhibition system and behavioral activation system (BAS) sensitivities, Negative Affect, and Positive Affect on the relationship between a small moving vs. static facial image and autonomic responses when viewing/listening to news messages read by a newscaster among 36 young adults. Autonomic parameters measured were respiratory sinus arrhythmia (RSA), low-frequency (LF) component of heart rate variability (HRV), electrodermal activity, and pulse transit time (PTT). The results showed that dispositional BAS sensitivity, particularly BAS Fun Seeking, and Negative Affect interacted with facial image motion in predicting autonomic nervous system activity. A moving facial image was related to lower RSA and LF component of HRV and shorter PTTs as compared to a static facial image among high BAS individuals. Even a small talking facial image may contribute to sustained attentional engagement among high BAS individuals, given that the BAS directs attention toward the positive cue and a moving social stimulus may act as a positive incentive for high BAS individuals.
NASA Astrophysics Data System (ADS)
Han, Jin-Hee
2018-03-01
Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.
Cost-effectiveness of additional catheter-directed thrombolysis for deep vein thrombosis.
Enden, T; Resch, S; White, C; Wik, H S; Kløw, N E; Sandset, P M
2013-06-01
Additional treatment with catheter-directed thrombolysis (CDT) has recently been shown to reduce post-thrombotic syndrome (PTS). To estimate the cost effectiveness of additional CDT compared with standard treatment alone. Using a Markov decision model, we compared the two treatment strategies in patients with a high proximal deep vein thrombosis (DVT) and a low risk of bleeding. The model captured the development of PTS, recurrent venous thromboembolism and treatment-related adverse events within a lifetime horizon and the perspective of a third-party payer. Uncertainty was assessed with one-way and probabilistic sensitivity analyzes. Model inputs from the CaVenT study included PTS development, major bleeding from CDT and utilities for post DVT states including PTS. The remaining clinical inputs were obtained from the literature. Costs obtained from the CaVenT study, hospital accounts and the literature are expressed in US dollars ($); effects in quality adjusted life years (QALY). In base case analyzes, additional CDT accumulated 32.31 QALYs compared with 31.68 QALYs after standard treatment alone. Direct medical costs were $64,709 for additional CDT and $51,866 for standard treatment. The incremental cost-effectiveness ratio (ICER) was $20,429/QALY gained. One-way sensitivity analysis showed model sensitivity to the clinical efficacy of both strategies, but the ICER remained < $55,000/QALY over the full range of all parameters. The probability that CDT is cost effective was 82% at a willingness to pay threshold of $50,000/QALY gained. Additional CDT is likely to be a cost-effective alternative to the standard treatment for patients with a high proximal DVT and a low risk of bleeding. © 2013 International Society on Thrombosis and Haemostasis.
Modeling methane and nitrous oxide emissions from direct-seeded rice systems
NASA Astrophysics Data System (ADS)
Simmonds, Maegen B.; Li, Changsheng; Lee, Juhwan; Six, Johan; van Kessel, Chris; Linquist, Bruce A.
2015-10-01
Process-based modeling of CH4 and N2O emissions from rice fields is a practical tool for conducting greenhouse gas inventories and estimating mitigation potentials of alternative practices at the scale of management and policy making. However, the accuracy of these models in simulating CH4 and N2O emissions in direct-seeded rice systems under various management practices remains a question. We empirically evaluated the denitrification-decomposition model for estimating CH4 and N2O fluxes in California rice systems. Five and nine site-year combinations were used for calibration and validation, respectively. The model was parameterized for two cultivars, M206 and Koshihikari, and able to simulate 30% and 78% of the variation in measured yields, respectively. Overall, modeled and observed seasonal CH4 emissions were similar (R2 = 0.85), but there was poor correspondence in fallow period CH4 emissions and in seasonal and fallow period N2O emissions. Furthermore, management effects on seasonal CH4 emissions were highly variable and not well represented by the model (0.2-465% absolute relative deviation). Specifically, simulated CH4 emissions were oversensitive to fertilizer N rate but lacked sensitivity to the type of seeding system (dry seeding versus water seeding) and prior fallow period straw management. Additionally, N2O emissions were oversensitive to fertilizer N rate and field drainage. Sensitivity analysis showed that CH4 emissions were highly sensitive to changes in the root to total plant biomass ratio, suggesting that it is a significant source of model uncertainty. These findings have implications for model-directed field research that could improve model representation of paddy soils for application at larger spatial scales.
Cost-effectiveness of additional catheter-directed thrombolysis for deep vein thrombosis
ENDEN, T.; RESCH, S.; WHITE, C.; WIK, H. S.; KLØW, N. E.; SANDSET, P. M.
2013-01-01
Summary Background Additional treatment with catheter-directed thrombolysis (CDT) has recently been shown to reduce post-thrombotic syndrome (PTS). Objectives To estimate the cost effectiveness of additional CDT compared with standard treatment alone. Methods Using a Markov decision model, we compared the two treatment strategies in patients with a high proximal deep vein thrombosis (DVT) and a low risk of bleeding. The model captured the development of PTS, recurrent venous thromboembolism and treatment-related adverse events within a lifetime horizon and the perspective of a third-party payer. Uncertainty was assessed with one-way and probabilistic sensitivity analyzes. Model inputs from the CaVenT study included PTS development, major bleeding from CDT and utilities for post DVT states including PTS. The remaining clinical inputs were obtained from the literature. Costs obtained from the CaVenT study, hospital accounts and the literature are expressed in US dollars ($); effects in quality adjusted life years (QALY). Results In base case analyzes, additional CDT accumulated 32.31 QALYs compared with 31.68 QALYs after standard treatment alone. Direct medical costs were $64 709 for additional CDT and $51 866 for standard treatment. The incremental cost-effectiveness ratio (ICER) was $20 429/QALY gained. One-way sensitivity analysis showed model sensitivity to the clinical efficacy of both strategies, but the ICER remained < $55 000/QALY over the full range of all parameters. The probability that CDT is cost effective was 82% at a willingness to pay threshold of $50 000/QALY gained. Conclusions Additional CDT is likely to be a cost-effective alternative to the standard treatment for patients with a high proximal DVT and a low risk of bleeding. PMID:23452204
Investigation of Preferential Flow in Low Impact Development Practice
NASA Astrophysics Data System (ADS)
Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.
2016-12-01
The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path
Park, Yong-Bum; Mo, Eun-Kyung; Lee, Jae-Young; Kim, Joo-Hee; Kim, Cheol-Hong; Hyun, In-Gyu; Choi, Jeong-Hee
2013-09-01
As pet ownership increases, sensitization to animal allergens due to domestic exposure is a concern. Sensitization to animal allergens may occur from indirect exposure, as well as direct ownership of animals. However, there have been conflicting results regarding the association between pet ownership and sensitization to animal allergens in adults. In total, 401 patients with various allergic diseases were enrolled in this study. We performed skin prick tests with 55 common inhalant and food allergens, including dog, cat, and rabbit allergens. A mean wheal diameter of 3 mm or greater was considered a positive reaction. The exposure modality to each animal allergen was investigated using a questionnaire and included present ownership, past ownership, occupational exposure, occasional exposure, contact with pet owner, and no contact. Present ownership, past ownership, occupational, and occasional exposure were regarded as direct exposure. The sensitization rate for animal allergens was 20.4% for dog, 15.0% for cat, and 9.0% for rabbit. Direct exposure to dogs (72.0%) was significantly higher than that of other animals (18.4% for cats and 16.7% for rabbits), whereas 'no contact' with cats (78.3%) and rabbits (83.3%) was significantly higher than with dogs (26.8%; P<0.0001). Independent risk factors for sensitization to animal allergens were sensitization to Dermatophagoides pteronyssinus (OR=2.4, P=0.052), Dermatophagoides farinae (OR=5.1, P<0.001), cat (OR=4.4, P<0.0001), and direct exposure to dogs (OR=1.5, P=0.029) for dog, and sensitization to dog (OR=4.4, P<0.0001) and rabbit (OR=2.6, P=0.036) for cats. Finally, for rabbits, the independent risk factor was sensitization to Alternaria (OR=6.0, P<0.002). These results suggest that direct exposure to dogs contributes to the sensitization to dog allergens in patients with allergic diseases, whereas indirect exposure to cats and rabbits may induce sensitization to each animal's allergen.
Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki
2015-02-21
The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.
Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad
2018-04-18
Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (<3.0 eV), high absorption coefficient, and tunable internal ferroelectric (FE) polarization. A high-speed switchable photodiode based on multiferroic Bi 2 FeCrO 6 (BFCO)/SrRuO 3 (SRO)-layered heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.
Vagal innervation of the aldosterone-sensitive HSD2 neurons in the NTS
Shin, Jung-Won; Geerling, Joel C.; Loewy, Arthur D.
2009-01-01
The nucleus of the solitary tract (NTS) contains a unique subpopulation of aldosterone-sensitive neurons. These neurons express the enzyme 11-β-hydroxysteroid dehydrogenase type 2 (HSD2) and are activated by sodium deprivation. They are located in the caudal NTS, a region which is densely innervated by the vagus nerve, suggesting that they could receive direct viscerosensory input from the periphery. To test this possibility, we injected the highly sensitive axonal tracer biotinylated dextran amine (BDA) into the left nodose ganglion in rats. Using confocal microscopy, we observed a sparse input from the vagus to most HSD2 neurons. Roughly 80% of the ipsilateral HSD2 neurons exhibited at least one close contact with a BDA-labeled vagal bouton, although most of these cells received only a few total contacts. Most of these contacts were axo-dendritic (~80%), while ~20% were axo-somatic. In contrast, the synaptic vesicular transporters VGLUT2 or GAD7 labeled much larger populations of boutons contacting HSD2-labeled dendrites and somata, suggesting that direct input from the vagus may only account for a minority of the information integrated by these neurons. In summary, the aldosterone-sensitive HSD2 neurons in the NTS appear to receive a small amount of direct viscerosensory input from the vagus nerve. The peripheral sites of origin and functional significance of this projection remain unknown. Combined with previously-identified central sources of input to these cells, the present finding indicates that the HSD2 neurons integrate humoral information with input from a variety of neural afferents. PMID:19010311
Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.
Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T
2016-01-01
The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.
Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus
Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T.
2016-01-01
The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70–150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance. PMID:27148011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Narendra; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016; Kumar, Jitendra
The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity withmore » the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.« less
Gold nanospikes based microsensor as a highly accurate mercury emission monitoring system
NASA Astrophysics Data System (ADS)
Sabri, Ylias M.; Ippolito, Samuel J.; Tardio, James; Bansal, Vipul; O'Mullane, Anthony P.; Bhargava, Suresh K.
2014-10-01
Anthropogenic elemental mercury (Hg0) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg0 removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg0 vapor sensor. The data from a 127 day continuous test performed in the presence of volatile organic compounds and high humidity levels, showed that the sensor with an electrodeposted sensitive layer had 260% higher response magnitude, 3.4 times lower detection limit (~22 μg/m3 or ~2.46 ppbv) and higher accuracy (98% Vs 35%) over a Au control based QCM (unmodified) when exposed to a Hg0 vapor concentration of 10.55 mg/m3 at 101°C. Statistical analysis of the long term data showed that the nano-engineered Hg0 sorption sites on the developed Au nanospikes sensitive layer play a critical role in the enhanced sensitivity and selectivity of the developed sensor towards Hg0 vapor.
NASA Astrophysics Data System (ADS)
Parisi, P.; Mani, A.; Perry-Sullivan, C.; Kopp, J.; Simpson, G.; Renis, M.; Padovani, M.; Severgnini, C.; Piacentini, P.; Piazza, P.; Beccalli, A.
2009-12-01
After-develop inspection (ADI) and photo-cell monitoring (PM) are part of a comprehensive lithography process monitoring strategy. Capturing defects of interest (DOI) in the lithography cell rather than at later process steps shortens the cycle time and allows for wafer re-work, reducing overall cost and improving yield. Low contrast DOI and multiple noise sources make litho inspection challenging. Broadband brightfield inspectors provide the highest sensitivity to litho DOI and are traditionally used for ADI and PM. However, a darkfield imaging inspector has shown sufficient sensitivity to litho DOI, providing a high-throughput option for litho defect monitoring. On the darkfield imaging inspector, a very high sensitivity inspection is used in conjunction with advanced defect binning to detect pattern issues and other DOI and minimize nuisance defects. For ADI, this darkfield inspection methodology enables the separation and tracking of 'color variation' defects that correlate directly to CD variations allowing a high-sampling monitor for focus excursions, thereby reducing scanner re-qualification time. For PM, the darkfield imaging inspector provides sensitivity to critical immersion litho defects at a lower cost-of-ownership. This paper describes litho monitoring methodologies developed and implemented for flash devices for 65nm production and 45nm development using the darkfield imaging inspector.
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Plasmonic fiber-optic vector magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques
2016-03-01
A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.
Iyer, Akila; Jockusch, Steffen; Sivaguru, J
2014-11-13
Nonbiaryl atropisomeric acrylimides underwent facile [2 + 2] photocycloaddition leading to cross-cyclobutane adducts with very high stereospecificity (enantiomeric excess (ee): 99% and diastereomeric excess (de): 99%). The photoreactions proceeded smoothly in isotropic media for both direct and triplet sensitized irradiations. The reactions were also found to be very efficient in the solid state where the same cross-cyclobutane adduct was observed. Photophysical studies enabled us to understand the excited-state photochemistry of acrylimides. The triplet energy was found to be ∼63 kcal/mol. The reactions proceeded predominantly via a singlet excited state upon direct irradiation with very poor intersystem crossing that was ascertained by quantification of the generated singlet oxygen. The reactions progressed smoothly with triplet sensitization with UV or visible-light irradiations. Laser flash photolysis experiments established the triplet transient of atropisomeric acrylimides with a triplet lifetime at room temperature of ∼40 ns.
Method and apparatus for measuring enrichment of UF6
Hill, Thomas Roy [Santa Fe, NM; Ianakiev, Kiril Dimitrov [Los Alamos, NM
2011-06-07
A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.
Is ostension any more than attention?
Szufnarowska, Joanna; Rohlfing, Katharina J; Fawcett, Christine; Gredebäck, Gustaf
2014-06-16
According to natural pedagogy theory, infants are sensitive to particular ostensive cues that communicate to them that they are being addressed and that they can expect to learn referential information. We demonstrate that 6-month-old infants follow others' gaze direction in situations that are highly attention-grabbing. This occurs irrespective of whether these situations include communicative intent and ostensive cues (a model looks directly into the child's eyes prior to shifting gaze to an object) or not (a model shivers while looking down prior to shifting gaze to an object). In contrast, in less attention-grabbing contexts in which the model simply looks down prior to shifting gaze to an object, no effect is found. These findings demonstrate that one of the central pillars of natural pedagogy is false. Sensitivity to gaze following in infancy is not restricted to contexts in which ostensive cues are conveyed.
NASA Astrophysics Data System (ADS)
Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.
2016-04-01
A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.
Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.
Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi
2009-07-16
The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.
NASA Astrophysics Data System (ADS)
Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken
2007-11-01
Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary,; Bruce, R; Stubben, Christopher J
The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.
The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, Richard W.
2014-01-01
A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.
2016-11-15
A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution datamore » is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.« less
NASA Astrophysics Data System (ADS)
Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben
2007-05-01
X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.
Experimental test of the polarization direction correlation method (PDCO)
NASA Astrophysics Data System (ADS)
Starosta, K.; Morek, T.; Droste, Ch.; Rohoziński, S. G.; Srebrny, J.; Wierzchucka, A.; Bergström, M.; Herskind, B.; Melby, E.; Czosnyka, T.; Napiorkowski, P. J.
1999-02-01
The study of the polarization direction correlation method (PDCO) for γ quanta emitted from the nuclear states oriented in fusion-evaporation reactions is discussed with emphasis on making unique multipolarity assignments. The method is applied to the data coming from a typical experiment performed with the EUROGAM II array, where polarization-sensitive CLOVER detectors were used. The accuracy obtained in the experiment for the studied transitions was high enough to exclude, using the PDCO method, most of the ambiguities which occur if the assignments are made on the basis of angular correlation measurements alone.
Lechpammer, S; Asea, A; Mallick, R; Zhong, R; Sherman, M Y; Calderwood, S K
2002-01-01
It is now possible to search for new drugs using high-throughput screening of chemical libraries accumulated over the past few years. To detect potential new hyperthermia sensitizers, we are screening for chemical inhibitors of thermotolerance. For the screening of a large chemical library, a rapid and simple assay based on the XTT-tetrazolium salt with the addition of intermediate electron acceptor, phenazine methosulphate (PMS) as a promoter, was developed. It was found that the sensitivity of the XTT/PMS assay is sufficient for assessing thermal cell killing and thermotolerance, although it was highly dependent on cell number and type. When the formazan assay system was challenged with the bioflavonoid drug quercetin (up to 25mm) and validated against the clonogenic cell survival assay, significant decreases in thermotolerant cell viability were observed, directly reflecting inhibition of thermotolerance. Although short-term assays can, in some instances, underestimate overall cell killing, the dose dependency of inhibition of thermotolerance by quercetin recorded in this study by clonogenic and XTT/PMS assays was similar. Application of the XTT/PMS assay in chemical library screening was highly effective in differentiating potential thermotolerance inhibitors from both chemicals with lack of efficacy and from toxic compounds. Taken together, these results show that the XTT/PMS assay, when carried out under careful conditions, is well suited for primary high-flux screen of many thousands of compounds, thus opening up new areas for discovery of hyperthermia sensitizers.
Vlieger, A M; van den Berg, M M; Menko-Frankenhuis, C; Bongers, M E J; Tromp, E; Benninga, M A
2010-01-01
Gut-directed hypnotherapy (HT) has recently been shown to be highly effective in treating children with functional abdominal pain (FAP) and irritable bowel syndrome (IBS). This study was conducted to determine the extent to which this treatment success is because of an improvement in rectal sensitivity. A total of 46 patients (aged 8-18 years) with FAP (n=28) or IBS (n=18) were randomized to either 12 weeks of standard medical therapy (SMT) or HT. To assess rectal sensitivity, a pressure-controlled intermittent distension protocol (barostat) was performed before and after the therapy. Rectal sensitivity scores changed in SMT patients from 15.1+/-7.3 mm Hg at baseline to 18.6+/-8.5 mm Hg after 12 weeks of treatment (P=0.09) and in HT patients from 17.0+/-9.2 mm Hg to 22.5+/-10.1 mm Hg (P=0.09). The number of patients with rectal hypersensitivity decreased from 6 of 18 to 0 of 18 in the HT group (P=0.04) vs. 6 of 20 to 4 of 20 in the SMT group (P=0.67). No relationship was established between treatment success and rectal pain thresholds. Rectal sensitivity scores at baseline were not correlated with intensity, frequency, or duration of abdominal pain. Clinical success achieved with HT cannot be explained by improvement in rectal sensitivity. Furthermore, no association could be found between rectal barostat findings and clinical symptoms in children with FAP or IBS. Further studies are necessary to shed more light on both the role of rectal sensitivity in pediatric FAP and IBS and the mechanisms by which hypnotherapy results in improvement of clinical symptoms.
Sensitivity of Lumped Constraints Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.
1999-01-01
Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Soler, Maria; Estevez, M.-Carmen; Alvarez, Mar; Otte, Marinus A.; Sepulveda, Borja; Lechuga, Laura M.
2014-01-01
Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis. PMID:24481229
Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.
Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K
2015-10-01
Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Holocaust exposure and subsequent suicide risk: a population-based study.
Bursztein Lipsicas, Cendrine; Levav, Itzhak; Levine, Stephen Z
2017-03-01
To examine the association between the extent of genocide exposure and subsequent suicide risk among Holocaust survivors. Persons born in Holocaust-exposed European countries during the years 1922-1945 that immigrated to Israel by 1965 were identified in the Population Registry (N = 209,429), and followed up for suicide (1950-2014). They were divided into three groups based on likely exposure to Nazi persecution: those who immigrated before (indirect; n = 20,229; 10%), during (partial direct; n = 17,189; 8%), and after (full direct; n = 172,061; 82%) World War II. Groups were contrasted for suicide risk, accounting for the extent of genocide in their respective countries of origin, high (>70%) or lower levels (<50%). Cox model survival analyses were computed examining calendar year at suicide. Sensitivity analyses were recomputed for two additional suicide-associated variables (age and years since immigration) for each exposure group. All analyses were adjusted for confounders. Survival analysis showed that compared to the indirect exposure group, the partial direct exposure group from countries with high genocide level had a statistically significant (P < .05) increased suicide risk for the main outcome (calendar year: HR 1.78, 95% CI 1.09, 2.90). This effect significantly (P < .05) replicated in two sensitivity analyses for countries with higher relative levels of genocide (age: HR 1.77, 95% CI 1.09, 2.89; years since immigration: HR 1.85, 95% CI 1.14, 3.02). The full direct exposure group was not at significant suicide risk compared to the indirect exposure group. Suicide associations for groups from countries with relative lower level of genocide were not statistically significant. This study partly converges with findings identifying Holocaust survivors (full direct exposure) as a resilient group. A tentative mechanism for higher vulnerability to suicide risk of the partial direct exposure group from countries with higher genocide exposure includes protracted guilt feelings, having directly witnessed atrocities and escaped death.
Porte, Lorena; Varela, Carmen; Haecker, Thomas; Morales, Sara; Weitzel, Thomas
2016-05-13
Campylobacter is a leading cause of bacterial gastroenteritis, but sensitive diagnostic methods such as culture are expensive and often not available in resource limited settings. Therefore, direct staining techniques have been developed as a practical and economical alternative. We analyzed the impact of replacing Campylobacter staining with culture for routine stool examinations in a private hospital in Chile. From January to April 2014, a total of 750 consecutive stool samples were examined in parallel by Hucker stain and Campylobacter culture. Isolation rates of Campylobacter were determined and the performance of staining was evaluated against culture as the gold standard. Besides, isolation rates of Campylobacter and other enteric pathogens were compared to those of past years. Campylobacter was isolated by culture in 46 of 750 (6.1 %) stool samples. Direct staining only identified three samples as Campylobacter positive and reached sensitivity and specificity values of 6.5 and 100 %, respectively. In comparison to staining-based detection rates of previous years, we observed a significant increase of Campylobacter cases in our patients. Direct staining technique for Campylobacter had a very low sensitivity compared to culture. Staining methods might lead to a high rate of false negative results and an underestimation of the importance of campylobacteriosis. With the inclusion of Campylobacter culture, this pathogen became a leading cause of intestinal infection in our patient population.
The Sensitivity of the ACT to Instruction. Issues in College Readiness
ERIC Educational Resources Information Center
ACT, Inc., 2005
2005-01-01
The ACT is an educational achievement test that measures the typical content and skills learned from college preparatory curricula. Consequently, the ACT can be used not only to predict college success, but also to provide direct feedback to high school teachers about the effectiveness of their teaching. ACT results also assist teachers in…
Arrows of Time in Infancy: The Representation of Temporal-Causal Invariances
ERIC Educational Resources Information Center
Friedman, William J.
2002-01-01
Many transformations that take place over time can only occur in one temporal direction, and adults are highly sensitive to the differences between forward and backward presentations of such events. In seven experiments using two selective-looking paradigms, 4- and 8-month-olds were shown forward and backward videotapes of events involving the…
Adolescent Women's Sports Involvement and Sexual Behavior/Health: A Process-Level Investigation.
ERIC Educational Resources Information Center
Lehman, Stephanie Jacobs; Koerner, Susan Silverberg
2004-01-01
This multimethod study explored the promising link between organized sports involvement during the high school years and sexual behavior/health among 176 adolescent women. Using more sensitive and appropriate measures than those in existing studies and directed, in part, by cultural resource theory, this study helped to fill a gap in the…
NASA Astrophysics Data System (ADS)
Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon
2016-03-01
Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.
Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho
2018-01-01
Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Yan; Gillis, Kevin D
2004-12-01
We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).
Sensitizing and Eliciting Capacity of Egg White Proteins in BALB/c Mice As Affected by Processing.
Pablos-Tanarro, Alba; Lozano-Ojalvo, Daniel; Martínez-Blanco, Mónica; López-Fandiño, Rosina; Molina, Elena
2017-06-07
This study assesses to what extent technological processes that lead to different degrees of denaturation of egg white proteins affect their allergenicity. We focused on heat (80 °C, 10 min) and high-pressure (400 MPa and 37 °C, 10 min) treatments and used a BALB/c mouse model of food allergy. Oral sensitization to egg white using cholera toxin as adjuvant induced the production of IgE and IgG1 isotypes and led to severe clinical signs following challenge with the allergen. Extensive protein denaturation caused by heat treatment increased its ability to induce Th1 responses and reduced both its sensitizing and eliciting capacity. Heated egg white stimulated the production of IgE over IgG1 antibodies directed, at least in part, toward new epitopes exposed as a result of heat treatment. Conversely, partial denaturation caused by high-pressure treatment increased the ability of egg white to stimulate Th2 responses and its allergenic potential.
High speed parallel spectral-domain OCT using spectrally encoded line-field illumination
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo
2018-01-01
We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.
Wang, Li; Xu, Huiren; Song, Yilin; Luo, Jinping; Wei, Wenjing; Xu, Shengwei; Cai, Xinxia
2015-04-15
For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitive glow discharge ion source for aerosol and gas analysis
Reilly, Peter T. A. [Knoxville, TN
2007-08-14
A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.
Rapid, Sensitive Detection of Botulinum Toxin on a Flexible Microfluidics Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Marvin G.; Dockendorff, Brian P.; Feldhaus, Michael J.
2004-10-30
In this paper we will describe how high affinity reagents and a sensor configuration enabling rapid mass transport can be combined for rapid, sensitive biodetection. The system that we have developed includes a renewable surface immunoassay, which involves on-column detection of a fluorescently labeled secondary antibody in a sandwich immunoassay. Yeast display and directed molecular evolution were used to create high affinity antibodies to the botulinum toxin heavy chain receptor binding domain, AR1 and 3D12. A rotating rod renewable surface microcolumn was used to form a microliter-sized column containing beads functionalized with the capture antibody (AR1). The column was perfusedmore » with sample, wash solutions, and a fluorescently labeled secondary antibody (3D12) while the on-column fluorescence was monitored. Detection was accomplished in less than 5 minutes, with a total processing time of about 10 minutes. On-column detection of botulinum toxin was more sensitive and much faster than flow cytometry analysis on microbeads using the same reagents.« less
González, Maraelys M; Morales, Dasha F; Cabrales, Luis E B; Pérez, Daniel J; Montijano, Juan I; Castañeda, Antonio R S; González, Victoriano G S; Posada, Oscar O; Martínez, Janet A; Delgado, Arlem G; Martínez, Karina G; Mon, Mayrel L; Monzón, Kalet L; Ciria, Héctor M C; Beatón, Emilia O; Brooks, Soraida C A; González, Tamara R; Jarque, Manuel V; Mateus, Miguel A Ó; Rodríguez, Jorge L G; Calzado, Enaide M
2018-06-05
Electrochemical treatment has been suggested as an effective alternative to local cancer therapy. Nevertheless, its effectiveness decreases when highly aggressive primary tumors are treated. The aim of this research was to understand the growth kinetics of the highly aggressive and metastatic primary F3II tumor growing in male and female BALB/c/Cenp mice under electrochemical treatment. Different amounts of electric charge (6, 9, and 18 C) were used. Two electrodes were inserted into the base, perpendicular to the tumor's long axis, keeping about 1 cm distance between them. Results have shown that the F3II tumor is highly sensitive to direct current. The overall effectiveness (complete response + partial response) of this physical agent was ≥75.0% and observed in 59.3% (16/27) of treated F3II tumors. Complete remission of treated tumors was observed in 22.2% (6/27). An unexpected result was the death of 11 direct current-treated animals (eight females and three males). It is concluded that direct current may be addressed to significantly affect highly aggressive and metastatic primary tumor growth kinetics, including the tumor complete response. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Simple device for the direct visualization of oral-cavity tissue fluorescence
NASA Astrophysics Data System (ADS)
Lane, Pierre M.; Gilhuly, Terence; Whitehead, Peter D.; Zeng, Haishan; Poh, Catherine; Ng, Samson; Williams, Michelle; Zhang, Lewei; Rosin, Miriam; MacAulay, Calum E.
2006-03-01
Early identification of high-risk disease could greatly reduce both mortality and morbidity due to oral cancer. We describe a simple handheld device that facilitates the direct visualization of oral-cavity fluorescence for the detection of high-risk precancerous and early cancerous lesions. Blue excitation light (400 to 460 nm) is employed to excite green-red fluorescence from fluorophores in the oral tissues. Tissue fluorescence is viewed directly along an optical axis collinear with the axis of excitation to reduce inter- and intraoperator variability. This robust, field-of-view device enables the direct visualization of fluorescence in the context of surrounding normal tissue. Results from a pilot study of 44 patients are presented. Using histology as the gold standard, the device achieves a sensitivity of 98% and specificity of 100% when discriminating normal mucosa from severe dysplasia/carcinoma in situ (CIS) or invasive carcinoma. We envisage this device as a suitable adjunct for oral cancer screening, biopsy guidance, and margin delineation.
Two-dimensional array of cold-electron bolometers for high-sensitivity polarization measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.
2012-01-01
A new concept of a two-dimensional array of cold-electron bolometers with distributed dipole antennas in the focal plane for high-sensitivity polarization measurements is proposed. The concept gives a unique combination of high polarization resolution due to a large uniforms array of cold-electron bolometers and optimal matching with junction field effect transistor (JFET) amplifiers because of flexibility in direct-current connections. The noise characteristics are improved due to arriving-signal power distribution among numerous cold-electron bolometers and an increase in their response. This should lead to a significant increase in the sensitivity and dynamic range compared with competing alternative bolometer technologies. The reliability of the twodimensional array significantly increases due to a series-parallel connection of a large number of cold-electron bolometers. High polarization resolution should be ensured due to uniform covering of a substrate by a two-dimensional array over a large area and the absence of the beam compression to small lumped elements. The fundamental sensitivity limit of the cold-electron bolometer array is smaller than photon noise which is considered to be the ultimate level restricted by the background radiation. Estimates of noise of bolometers with the JFET reading system show the possibility of realizing the ultimate sensitivity below the photon-noise level 5 ・10-17 W/Hz1/2 at a frequency of 350 GHz for an optical load with a power of 5 pW. These parameters correspond to the requirements to the receiving system of a BOOMERanG balloon telescope.
Assessing alternatives for directional detection of a halo of weakly interacting massive particles
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Krauss, Lawrence M.; Simmons-Duffin, David; Stroiney, Steven R.
2007-01-01
The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can explore a large range of WIMP parameter space using well-tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.
Desholm, Mark
2009-06-01
Wind power generation is likely to constitute one of the most extensive human physical exploitation activities of European marine areas in the near future. The many millions of migrating birds that pass these man-made obstacles are protected by international obligations and the subject of public concerns. Yet some bird species are more sensitive to bird-wind turbine mortality than others. This study developed a simple and logical framework for ranking bird species with regard to their relative sensitivity to bird-wind turbine-collisions, and applied it to a data set comprising 38 avian migrant species at the Nysted offshore wind farm in Denmark. Two indicators were selected to characterize the sensitivity of each individual species: 1) relative abundance and 2) demographic sensitivity (elasticity of population growth rate to changes in adult survival). In the case-study from the Nysted offshore wind farm, birds of prey and waterbirds dominated the group of high priority species and only passerines showed a low risk of being impacted by the wind farm. Even where passerines might be present in very high numbers, they often represent insignificant segments of huge reference populations that, from a demographic point of view, are relatively insensitive to wind farm-related adult mortality. It will always be important to focus attention and direct the resources towards the most sensitive species to ensure cost-effective environmental assessments in the future, and in general, this novel index seems capable of identifying the species that are at high risk of being adversely affected by wind farms.
Analysis of the sensitivity of soils to the leaching of agricultural pesticides in Ohio
Schalk, C.W.
1998-01-01
Pesticides have not been found frequently in the ground waters of Ohio even though large amounts of agricultural pesticides are applied to fields in Ohio every year. State regulators, including representatives from Ohio Environmental Protection Agency and Departments of Agriculture, Health, and Natural Resources, are striving to limit the presence of pesticides in ground water at a minimum. A proposed pesticide management plan for the State aims at protecting Ohio's ground water by assessing pesticide-leaching potential using geographic information system (GIS) technology and invoking a monitoring plan that targets aquifers deemed most likely to be vulnerable to pesticide leaching. The U.S. Geological Survey, in cooperation with Ohio Department of Agriculture, assessed the sensitivity of mapped soil units in Ohio to pesticide leaching. A soils data base (STATSGO) compiled by U.S. Department of Agriculture was used iteratively to estimate soil units as being of high to low sensitivity on the basis of soil permeability, clay content, and organic-matter content. Although this analysis did not target aquifers directly, the results can be used as a first estimate of areas most likely to be subject to pesticide contamination from normal agricultural practices. High-sensitivity soil units were found in lakefront areas and former lakefront beach ridges, buried valleys in several river basins, and parts of central and south- central Ohio. Medium-high-sensitivity soil units were found in other river basins, along Lake Erie in north-central Ohio, and in many of the upland areas of the Muskingum River Basin. Low-sensitivity map units dominated the northwestern quadrant of Ohio.
Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok
2016-06-21
In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.
2018-01-01
Effect-directed analysis (EDA) is a commonly used approach for effect-based identification of endocrine disruptive chemicals in complex (environmental) mixtures. However, for routine toxicity assessment of, for example, water samples, current EDA approaches are considered time-consuming and laborious. We achieved faster EDA and identification by downscaling of sensitive cell-based hormone reporter gene assays and increasing fractionation resolution to allow testing of smaller fractions with reduced complexity. The high-resolution EDA approach is demonstrated by analysis of four environmental passive sampler extracts. Downscaling of the assays to a 384-well format allowed analysis of 64 fractions in triplicate (or 192 fractions without technical replicates) without affecting sensitivity compared to the standard 96-well format. Through a parallel exposure method, agonistic and antagonistic androgen and estrogen receptor activity could be measured in a single experiment following a single fractionation. From 16 selected candidate compounds, identified through nontargeted analysis, 13 could be confirmed chemically and 10 were found to be biologically active, of which the most potent nonsteroidal estrogens were identified as oxybenzone and piperine. The increased fractionation resolution and the higher throughput that downscaling provides allow for future application in routine high-resolution screening of large numbers of samples in order to accelerate identification of (emerging) endocrine disruptors. PMID:29547277
Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.
Farahmand, Mahin; Nahrevanian, Hossein
2016-07-01
Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.
Determining the direction of tooth grinding: an in vitro study.
ten Berge, F; te Poel, J; Ranjitkar, S; Kaidonis, J A; Lobbezoo, F; Hughes, T E; Townsend, G C
2012-08-01
The analysis of microwear patterns, including scratch types and widths, has enabled reconstruction of the dietary habits and lifestyles of prehistoric and modern humans. The aim of this in vitro study was to determine whether an assessment of microwear features of experimental scratches placed on enamel, perpendicularly to the direction of grinding, could predict the grinding direction. Experimental scratches were placed using a scalpel blade on standardised wear facets that had been prepared by wearing opposing enamel surfaces in an electromechanical tooth wear machine. These control 'baseline' facets (with unworn experimental scratches) were subjected to 50 wear cycles, so that differential microwear could be observed on the leading and trailing edges of the 'final' facets. In Group 1 (n=28), the 'footprint' microwear patterns corresponding to the known grinding direction of specimens in the tooth wear machine were identified. Then, they were used to predict the direction of tooth grinding blindly in the same sample after a 2-week intermission period. To avoid overfitting the predictive model, its sensitivity was also cross-validated in a new sample (Group 2, n=14). A crescent-shaped characteristic observed in most experimental scratches matched the grinding direction on all occasions. The best predictor of the direction of grinding was a combined assessment of the leading edge microwear pattern and the crescent characteristic (82.1% in Group 1 and 92.9% in Group 2). In conclusion, a simple scratch test can determine the direction of tooth grinding with high reliability, although further improvement in sensitivity is desirable. © 2012 Blackwell Publishing Ltd.
Alway, Yvette; Ponsford, Jennie; McKay, Adam
2016-12-30
Family expressed emotion (EE) is a strong predictor of outcome in a range of psychiatric and medical conditions. This study aimed to examine the relationship between family EE-criticism, patient perceived criticism and criticism sensitivity and psychiatric disorders following moderate to severe traumatic brain injury (TBI). Participants were 60 patients with TBI and their family members. Patients were assessed for psychiatric disorders using the Structured Clinical Interview for DSM-IV (SCID-I) and completed the Perceived Criticism Measure (PCM) to determine levels of perceived criticism and criticism sensitivity. Family members completed the Family Questionnaire (FQ) to assess patient directed EE-criticism. Patients were reassessed approximately 12-months post-baseline. After controlling for diagnostic status at baseline, high criticism sensitivity at baseline was associated with greater probability of psychiatric diagnosis at follow-up (odds ratio=3.99, 95% CI=1.15-13.71). Family EE-criticism and perceived criticism were not predictive of patient diagnostic status at follow-up, but patients with high EE-family members were more likely to have a concurrent psychiatric diagnosis at baseline. Findings suggest that sensitivity to interpersonal criticism may have a role in the development and course of psychiatric disorders following TBI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Internal coordination between hydraulics and stomatal control in leaves.
Brodribb, Tim J; Jordan, Gregory J
2008-11-01
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.
A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing
Huang, Yi-Ren; Kuo, Sheng-An; Stach, Michal; Liu, Chia-Hsing; Liao, Kuan-Hsun; Lo, Cheng-Yao
2012-01-01
A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS) sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 × 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 × 20 mm2 dimensions. A complete finite element method (FEM) model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD) inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors. PMID:22666025
MiX: a position sensitive dual-phase liquid xenon detector
NASA Astrophysics Data System (ADS)
Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.
2015-10-01
The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.
NASA Astrophysics Data System (ADS)
Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming
2017-10-01
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.
Lu, Chi-Yu; Wu, Hsin-Lung; Chen, Su-Hwei; Kou, Hwang-Shang; Wu, Shou-Mei
2002-01-02
A highly sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of some important saturated and unsaturated fatty acids in milk, including lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), palmitoleic (hexadecenoic), oleic (octadecenoic), and linoleic acids (octadecadienoic acids). The fatty acids were fluorogenically derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) as their naphthoxyethyl derivatives. The resulting derivatives were separated by isocratic HPLC and monitored with a fluorometric detector (lambdaex = 235 nm, lambdaem = 350 nm). The fatty acids in milk were extracted with toluene, and the extract with the fatty acids was directly derivatized with NOEPES without solvent replacement. Determination of long-chain free fatty acids in milk is feasible by a standard addition method. A small amount of milk product, 10 microL, is sufficient for the analysis.
Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L
2010-02-15
Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.
Rapid mapping of polarization switching through complete information acquisition
NASA Astrophysics Data System (ADS)
Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen
2016-12-01
Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz-1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Woo, Kevin L; Rieucau, Guillaume; Burke, Darren
2017-02-01
Identifying perceptual thresholds is critical for understanding the mechanisms that underlie signal evolution. Using computer-animated stimuli, we examined visual speed sensitivity in the Jacky dragon Amphibolurus muricatus , a species that makes extensive use of rapid motor patterns in social communication. First, focal lizards were tested in discrimination trials using random-dot kinematograms displaying combinations of speed, coherence, and direction. Second, we measured subject lizards' ability to predict the appearance of a secondary reinforcer (1 of 3 different computer-generated animations of invertebrates: cricket, spider, and mite) based on the direction of movement of a field of drifting dots by following a set of behavioural responses (e.g., orienting response, latency to respond) to our virtual stimuli. We found an effect of both speed and coherence, as well as an interaction between these 2 factors on the perception of moving stimuli. Overall, our results showed that Jacky dragons have acute sensitivity to high speeds. We then employed an optic flow analysis to match the performance to ecologically relevant motion. Our results suggest that the Jacky dragon visual system may have been shaped to detect fast motion. This pre-existing sensitivity may have constrained the evolution of conspecific displays. In contrast, Jacky dragons may have difficulty in detecting the movement of ambush predators, such as snakes and of some invertebrate prey. Our study also demonstrates the potential of the computer-animated stimuli technique for conducting nonintrusive tests to explore motion range and sensitivity in a visually mediated species.
Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S
2012-08-01
Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.
Luo, Xialin; Li, Gongke; Hu, Yufei
2017-04-01
In this work, a novel NH 2 -MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH 2 -MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime. The extraction conditions including extraction solvent, pH of sample solution, flow rate of extraction and desorption, and desorption volume were investigated. Under the optimum conditions, the enrichment factors were 180-304 and saturated amounts of extraction were 2326-21393 pmol for estriol, 17β-estradiol, estrone, ethinyl estradiol and progesterone, respectively. The adsorption mechanism was also explored which contributed to its strong extraction to target compounds. The proposed method had low limit of detection (2.0-40ng/L) and good linearity (with R 2 between 0.9908 and 0.9978). Four endogenous estrogens were detected in urine samples and the recoveries of all five analytes were ranged from 75.1-120% with relative standard deviations (RSDs) less than 8.7%. The results showed that the proposed online SPME-HPLC method based on NH 2 -MIL-53(Al)-polymer monolithic column was highly sensitive for directly monitoring trace amount of estrogens in human urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Bai, Lijuan; Yan, Bin; Chai, Yaqin; Yuan, Ruo; Yuan, Yali; Xie, Shunbi; Jiang, Liping; He, Ying
2013-11-07
In this work, we reported a new label-free electrochemical aptasensor for highly sensitive detection of thrombin using direct electron transfer of glucose oxidase (GOD) as a redox probe and a gold nanoparticle-polyaniline-graphene (Au-PANI-Gra) hybrid for amplification. The Au-PANI-Gra hybrid with large surface area provided a biocompatible sensing platform for the immobilization of GOD. GOD was encapsulated into the three-dimensional netlike (3-mercaptopropyl)trimethoxysilane (MPTS) to form the MPTS-GOD biocomposite, which not only retained the native functions and properties, but also exhibited tunable porosity, high thermal stability, and chemical inertness. With abundant thiol tail groups on MPTS, MPTS-GOD was able to chemisorb onto the surface of the Au-PANI-Gra modified electrode through the strong affinity of the Au-S bond. The electrochemical signal originated from GOD, avoiding the addition or labeling of other redox mediators. After immobilizing the thiolated thrombin binding aptamer through gold nanoparticles (AuNPs), GOD as a blocking reagent was employed to block the remaining active sites of the AuNPs and avoid the nonspecific adsorption. The proposed method avoided the labeling process of redox probes and increased the amount of electroactive GOD. The concentration of thrombin was monitored based on the decrease of current response through cyclic voltammetry (CV) in 0.1 M PBS (pH 7.4). With the excellent direct electron transfer of double layer GOD membranes, the resulting aptasensor exhibited high sensitivity for detection of thrombin with a wide linear range from 1.0 × 10(-12) to 3.0 × 10(-8) M. The proposed aptasensor also showed good stability, satisfactory reproducibility and high specificity, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules.
Psilocybin impairs high-level but not low-level motion perception.
Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X
2004-08-26
The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.
Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae
2013-11-13
A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.
Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard
2005-01-01
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166
Hopkins, Joyce; Gouze, Karen R; Lavigne, John V
2013-01-01
The aim of this study was to develop a multiple-level-of-analysis model of preschool attachment security and to determine the processes (direct and indirect) whereby factors from different domains (e.g., stress and parenting) are related to attachment during this period. This study examined the direct and indirect effects of stress, family conflict, caregiver depression symptoms, and parenting on attachment security in a large (N = 796) and diverse sample of 4-year-olds. This study used the 3-Boxes Task to assess aspects of parenting critical to sensitivity in the preschool period, labeling this construct sensitivity/scaffolding. Parent-report questionnaires were used to assess stress, conflict, caregiver depressive symptoms, parent support/engagement, and parent hostility/coercion. Direct observation (3-Boxes Task) was used to assess sensitivity/scaffolding and attachment (Attachment Q-Sort) based on a 2½-3 hour home visit. Results of structural equation modeling indicated a good overall fit for the model. Among the parenting variables, sensitivity/scaffolding had the strongest effect on attachment. Depressive symptoms had both direct and indirect effects (mediated by parenting). The effects of stress and family conflict were mediated by caregiver depression symptoms and parenting. These data show that a developmentally appropriate measure of sensitivity plays a significant role in attachment security in preschoolers. Thus, strategies designed to enhance sensitivity/scaffolding may increase child resilience by enhancing attachment security.
Tools for groundwater protection planning: An example from McHenry County, Illinois, USA
Berg, R.C.; Curry, B. Brandon; Olshansky, R.
1999-01-01
This paper presents an approach for producing aquifer sensitivity maps from three-dimensional geologic maps, called stack-unit maps. Stack-unit maps depict the succession of geologic materials to a given depth, and aquifer sensitivity maps interpret the successions according to their ability to transmit potential contaminants. Using McHenry County, Illinois, as a case study, stack-unit maps and an aquifer sensitivity assessment were made to help land-use planners, public health officials, consultants, developers, and the public make informed decisions regarding land use. A map of aquifer sensitivity is important for planning because the county is one of the fastest growing counties in the nation, and highly vulnerable sand and gravel aquifers occur within 6 m of ground surface over 75% of its area. The aquifer sensitivity map can provide guidance to regulators seeking optimal protection of groundwater resources where these resources are particularly vulnerable. In addition, the map can be used to help officials direct waste-disposal and industrial facilities and other sensitive land-use practices to areas where the least damage is likely to occur, thereby reducing potential future liabilities.
Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors
Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing
2014-01-01
Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122
Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.
Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing
2014-08-28
Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.
Gonzales, J L; Loza, A; Chacon, E
2006-03-15
There are several T. vivax specific primers developed for PCR diagnosis. Most of these primers were validated under different DNA extraction methods and study designs leading to heterogeneity of results. The objective of the present study was to validate PCR as a diagnostic test for T. vivax trypanosomosis by means of determining the test sensitivity of different published specific primers with different sample preparations. Four different DNA extraction methods were used to test the sensitivity of PCR with four different primer sets. DNA was extracted directly from whole blood samples, blood dried on filter papers or blood dried on FTA cards. The results showed that the sensitivity of PCR with each primer set was highly dependant of the sample preparation and DNA extraction method. The highest sensitivities for all the primers tested were determined using DNA extracted from whole blood samples, while the lowest sensitivities were obtained when DNA was extracted from filter paper preparations. To conclude, the obtained results are discussed and a protocol for diagnosis and surveillance for T. vivax trypanosomosis is recommended.
Lifrani, Awatif; Dos Santos, Jacinthe; Dubarry, Michel; Rautureau, Michelle; Blachier, Francois; Tome, Daniel
2009-01-28
Food allergy can cause food-related anaphylaxis. Food allergen labeling is the principal means of protecting sensitized individuals. This motivated European Directive 2003/89 on the labeling of ingredients or additives that could trigger adverse reactions, which has been in effect since 2005. During this study, we developed animal models with allergy to ovalbumin, caseinate, and isinglass in order to be able to detect fining agent residues that could induce anaphylactic reactions in sensitized mice. The second aim of the study was to design sandwich ELISA tests specific to each fining agent in order to detect their residue antigenicity, both during wine processing and in commercially available bottled wines. Sensitized mice and sandwich ELISA methods were established to test a vast panel of wines. The results showed that although they were positive to our highly sensitive sandwich-ELISA tests, some commercially available wines are not allergenic in sensitized mice. Commercially available bottled wines made using standardized processes, fining, maturation, and filtration, do not therefore represent any risk of anaphylactic reactions in sensitized mice.
High temperature corrosion of austenitic stainless steel coils in a direct reduction plant in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez-Islas, J.A.; Campillo, B.; Chaudhary, N.
1996-08-01
The subject of this study is related to the performance of austenitic steels coils and tubes, in a range of temperatures between 425 to 870 C for the transport of reducing gases, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils, and metal dusting occurred in tubes of HK-40, a high resistance alloy.more » The role of a continuous injection of H{sub 2}S to the process is suggested to avoid the high temperature metal dusting corrosion mechanism found in these kind of installations.« less
Choi, William; Tong, Xiuli; Singh, Leher
2017-01-01
This study investigated how Cantonese lexical tone sensitivity contributed to English lexical stress sensitivity among Cantonese children who learned English as a second language (ESL). Five-hundred-and-sixteen second-to-third grade Cantonese ESL children were tested on their Cantonese lexical tone sensitivity, English lexical stress sensitivity, general auditory sensitivity, and working memory. Structural equation modeling revealed that Cantonese lexical tone sensitivity contributed to English lexical stress sensitivity both directly, and indirectly through the mediation of general auditory sensitivity, in which the direct pathway had a larger relative contribution to English lexical stress sensitivity than the indirect pathway. These results suggest that the tone-stress association might be accounted for by joint phonological and acoustic processes that underlie lexical tone and lexical stress perception. PMID:28408898
Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI
NASA Astrophysics Data System (ADS)
Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki
2016-06-01
The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were utilized for visualizing small vessels. Appropriately combining MA coils and TONE pulses could help advance micro-vessel visualization.
Sensitivity of high-frequency Rayleigh-wave data revisited
Xia, J.; Miller, R.D.; Ivanov, J.
2007-01-01
Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.
Banada, Padmapriya P; Deshpande, Srinidhi; Chakravorty, Soumitesh; Russo, Riccardo; Occi, James; Meister, Gabriel; Jones, Kelly J; Gelhaus, Carl H; Valderas, Michelle W; Jones, Martin; Connell, Nancy; Alland, David
2017-01-01
Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection. Copyright © 2016 American Society for Microbiology.
Light-Trap: a SiPM upgrade for VHE astronomy and beyond
NASA Astrophysics Data System (ADS)
Ward, J. E.; Cortina, J.; Guberman, D.
2016-11-01
Ground-based gamma-ray astronomy in the Very High Energy (VHE, E > 100 GeV) regime has fast become one of the most interesting and productive sub-fields of astrophysics today. Utilizing the Imaging Atmospheric Cherenkov Technique (IACT) to reconstruct the energy and direction of incoming gamma-ray photons from the universe, several source-classes have been revealed by previous and current generations of IACT telescopes (e.g. Whipple, MAGIC, HESS and VERITAS). The next generation pointing IACT experiment, the Cherenkov Telescope Array (CTA), will provide increased sensitivity across a wider energy range and with better angular resolution. With the development of CTA, the future of IACT pointing arrays is being directed towards having more and more telescopes (and hence cameras), and therefore the need to develop low-cost pixels with acceptable light-collection efficiency is clear. One of the primary paths to the above goal is to replace Photomultiplier Tubes (PMTs) with Silicon-PMs (SiPMs) as the pixels in IACT telescope cameras. However SiPMs are not yet mature enough to replace PMTs for several reasons: sensitivity to unwanted longer wavelengths while lacking sensitivity at short wavelengths, small physical area, high cost, optical cross-talk and dark rates. Here we propose a novel method to build relatively low-cost SiPM-based pixels utilising a disk of wavelength-shifting material, which overcomes some of these drawbacks by collecting light over a larger area than standard SiPMs and improving sensitivity to shorter wavelengths while reducing background. We aim to optimise the design of such pixels, integrating them into an actual 7-pixel cluster which will be inserted into a MAGIC camera and tested during real observations. Results of simulations, laboratory measurements and the current status of the cluster design and development will be presented.
Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E
2016-11-01
Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Metasurface quantum-cascade laser with electrically switchable polarization
Xu, Luyao; Chen, Daguan; Curwen, Christopher A.; ...
2017-04-20
Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less
Metasurface quantum-cascade laser with electrically switchable polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Luyao; Chen, Daguan; Curwen, Christopher A.
Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less
Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J
2003-04-01
Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.
NASA Astrophysics Data System (ADS)
Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.
2015-06-01
We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.
Sensitive detection of narrowband pulses.
Cullers, D K
1986-01-01
Highly monochromatic signals, such as TV carriers, can be detected sensitively by using a narrow filter (b < or = 1 Hz) and performing power accumulation on its output. If instead a low-duty-cycle pulsed signal of the same total energy is present, the sensitivity of a square law device, followed by a thresholding operation (to eliminate most samples containing only noise), followed by the algorithm to be described, is greater by about 7 dB in typical cases. This is particularly interesting to SETI because such a pulsed signal is exactly what is sent by a rotating beacon with a directional antenna. Such a pulsed signal is, therefore, a good candidate for an extraterrestrial beacon. Software for detecting this signal type is now ready for field testing with the NASA Multichannel Spectrum Analyzer (MCSA).
Complementary mechanisms create direction selectivity in the fly
Haag, Juergen; Arenz, Alexander; Serbe, Etienne; Gabbiani, Fabrizio; Borst, Alexander
2016-01-01
How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. DOI: http://dx.doi.org/10.7554/eLife.17421.001 PMID:27502554
Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.
Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio
2013-07-21
Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).
Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI
NASA Astrophysics Data System (ADS)
Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio
2013-07-01
Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0.078) ps).
Hofmann-Thiel, Sabine; Molodtsov, Nikolay; Antonenka, Uladzimir; Hoffmann, Harald
2016-12-01
The Abbott RealTime MTB (RT MTB) assay is a new automated nucleic acid amplification test for the detection of Mycobacterium tuberculosis complex (MTBC) in clinical specimens. In combination with the RealTime MTB INH/RIF (RT MTB INH/RIF) resistance assay, which can be applied to RT MTB-positive specimens as an add-on assay, the tests also indicate the genetic markers of resistance to isoniazid (INH) and rifampin (RIF). We aimed to evaluate the diagnostic sensitivity and specificity of RT MTB using different types of respiratory and extrapulmonary specimens and to compare performance characteristics directly with those of the FluoroType MTB assay. The resistance results obtained by RT MTB INH/RIF were compared to those from the GenoType MTBDRplus and from phenotypic drug susceptibility testing. A total of 715 clinical specimens were analyzed. Compared to culture, the overall sensitivity of RT MTB was 92.1%; the sensitivity rates for smear-positive and smear-negative samples were 100% and 76.2%, respectively. The sensitivities of smear-negative specimens were almost identical for respiratory (76.3%) and extrapulmonary (76%) specimens. Specificity rates were 100% and 95.8% for culture-negative specimens and those that grew nontuberculous mycobacteria, respectively. RT MTB INH/RIF was applied to 233 RT MTB-positive samples and identified resistance markers in 7.7% of samples. Agreement with phenotypic and genotypic drug susceptibility testing was 99.5%. In conclusion, RT MTB and RT MTB INH/RIF allow for the rapid and accurate diagnosis of tuberculosis (TB) in different types of specimens and reliably indicate resistance markers. The strengths of this system are the comparably high sensitivity with paucibacillary specimens, its ability to detect INH and RIF resistance, and its high-throughput capacities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation
NASA Technical Reports Server (NTRS)
Wu, S. T.
1984-01-01
An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).
NASA Astrophysics Data System (ADS)
Carles, Guillem; Muyo, Gonzalo; van Hemert, Jano; Harvey, Andrew R.
2017-11-01
We demonstrate a multimode detection system in a scanning laser ophthalmoscope (SLO) that enables simultaneous operation in confocal, indirect, and direct modes to permit an agile trade between image contrast and optical sensitivity across the retinal field of view to optimize the overall imaging performance, enabling increased contrast in very wide-field operation. We demonstrate the method on a wide-field SLO employing a hybrid pinhole at its image plane, to yield a twofold increase in vasculature contrast in the central retina compared to its conventional direct mode while retaining high-quality imaging across a wide field of the retina, of up to 200 deg and 20 μm on-axis resolution.
Light-Flash Wind-Direction Indicator
NASA Technical Reports Server (NTRS)
Zysko, Jan A.
1993-01-01
Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.
Weekes, Anthony J; Thacker, Gregory; Troha, Daniel; Johnson, Angela K; Chanler-Berat, Jordan; Norton, H James; Runyon, Michael
2016-09-01
We determine the diagnostic accuracy of goal-directed echocardiography, cardiac biomarkers, and computed tomography (CT) in early identification of severe right ventricular dysfunction in normotensive emergency department patients with pulmonary embolism compared with comprehensive echocardiography. This was a prospective observational study of consecutive normotensive patients with confirmed pulmonary embolism. Investigators, blinded to clot burden and biomarkers, performed qualitative goal-directed echocardiography for right ventricular dysfunction: right ventricular enlargement (diameter greater than or equal to that of the left ventricle), severe right ventricular systolic dysfunction, and septal bowing. Brain natriuretic peptide and troponin cutoffs of greater than or equal to 90 pg/mL and greater than or equal to 0.07 ng/mL and CT right ventricular:left ventricular diameter ratio greater than or equal to 1.0 were also compared with comprehensive echocardiography. One hundred sixteen normotensive pulmonary embolism patients (111 confirmed by CT, 5 by ventilation-perfusion scan) were enrolled. Twenty-six of 116 patients (22%) had right ventricular dysfunction on comprehensive echocardiography. Goal-directed echocardiography had a sensitivity of 100% (95% confidence interval [CI] 87% to 100%), specificity of 99% (95% CI 94% to 100%), positive likelihood ratio (+LR) of 90.0 (95% CI 16.3 to 499.8), and negative likelihood ratio (-LR) of 0 (95% CI 0 to 0.13). Brain natriuretic peptide had a sensitivity of 88% (95% CI 70% to 98%), specificity of 68% (95% CI 57% to 78%), +LR of 2.8 (95% CI 2.0 to 3.9), and -LR of 0.17 (95% CI 0.06 to 0.43). Troponin had a sensitivity of 62% (95% CI 41% to 80%), specificity of 93% (95% CI 86% to 98%), +LR of 9.2 (95% CI 4.1 to 20.9), and -LR of 0.41 (95% CI 0.24 to 0.62). CT had a sensitivity of 91% (95% CI 72% to 99%), specificity of 79% (95% CI 69% to 87%), +LR of 4.3 (95% CI 2.8 to 6.7), and -LR of 0.11 (95% CI 0.03 to 0.34). Goal-directed echocardiography was highly accurate for early severe right ventricular dysfunction identification and pulmonary embolism risk-stratification. Brain natriuretic peptide was sensitive but less specific, whereas troponin had lower sensitivity but higher specificity. CT had good sensitivity and moderate specificity. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yu; Milbourn, David
Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.
Technology of High-speed Direct Laser Deposition from Ni-based Superalloys
NASA Astrophysics Data System (ADS)
Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey
Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.
Methods for Probing New Physics at High Energies
NASA Astrophysics Data System (ADS)
Denton, Peter B.
This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and Octavian Micu in Romania on the detectability of quantum black holes in extensive air showers. The next was with Luis Anchordoqui, Haim Goldberg, Thomas Paul, Luiz da Silva, Brian Vlcek, and Tom Weiler on placing limits on Weinberg's Higgs portal, originally written to explain anomalous Neff values, from direct detection and collider experiments which was published in Physical Review D. The final was completed at Fermilab with Stephen Parke and Hisakazu Minakata on a perturbative description of neutrino oscillations in matter which was published in the Journal of High Energy Physics, and the code behind this paper is publicly available.
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
NASA Technical Reports Server (NTRS)
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
Cassar, G E; Knowles, S; Youssef, G J; Moulding, R; Uiterwijk, D; Waters, L; Austin, D W
2018-06-08
The aim of the current study was to use Structural Equation Modelling (SEM) to examine whether psychological flexibility (i.e. mindfulness, acceptance, valued-living) mediates the relationship between distress, irritable bowel syndrome (IBS) symptom frequency, and quality of life (QoL). Ninety-two individuals participated in the study (12 male, 80 female, M age = 36.24) by completing an online survey including measures of visceral sensitivity, distress, IBS-related QoL, mindfulness, bowel symptoms, pain catastrophizing, acceptance, and valued-living. A final model with excellent fit was identified. Psychological distress significantly and directly predicted pain catastrophizing, valued-living, and IBS symptom frequency. Pain catastrophizing directly predicted visceral sensitivity and acceptance, while visceral sensitivity significantly and directly predicted IBS symptom frequency and QoL. Symptom frequency also had a direct and significant relationship with QoL. The current findings suggest that interventions designed to address unhelpful cognitive processes related to visceral sensitivity, pain catastrophizing, and psychological distress may be of most benefit to IBS-related QoL.
Brain imaging of pain sensitization in patients with knee osteoarthritis.
Pujol, Jesus; Martínez-Vilavella, Gerard; Llorente-Onaindia, Jone; Harrison, Ben J; López-Solà, Marina; López-Ruiz, Marina; Blanco-Hinojo, Laura; Benito, Pere; Deus, Joan; Monfort, Jordi
2017-09-01
A relevant aspect in osteoarthritic pain is neural sensitization. This phenomenon involves augmented responsiveness to painful stimulation and may entail a clinically worse prognosis. We used functional magnetic resonance imaging (fMRI) to study pain sensitization in patients with knee osteoarthritis. Sixty patients were recruited and pain sensitization was clinically defined on the basis of regional spreading of pain (spreading sensitization) and increased pain response to repeated stimulation (temporal summation). Functional magnetic resonance imaging testing involved assessing brain responses to both pressure and heat stimulation. Thirty-three patients (55%) showed regional pain spreading (simple sensitization) and 19 patients (32%) showed both regional spreading and temporal summation. Sensitized patients were more commonly women. Direct painful pressure stimulation of the joint (articular interline) robustly activated all of the neural elements typically involved in pain perception, but did not differentiate sensitized and nonsensitized patients. Painful pressure stimulation on the anterior tibial surface (sensitized site) evoked greater activation in sensitized patients in regions typically involved in pain and also beyond these regions, extending to the auditory, visual, and ventral sensorimotor cortices. Painful heat stimulation of the volar forearm did not discriminate the sensitization phenomenon. Results confirm the high prevalence of pain sensitization secondary to knee osteoarthritis. Relevantly, the sensitization phenomenon was associated with neural changes extending beyond strict pain-processing regions with enhancement of activity in general sensory, nonnociceptive brain areas. This effect is in contrast to the changes previously identified in primary pain sensitization in fibromyalgia patients presenting with a weakening of the general sensory integration.
Li, Lingxiao; Hu, Tao; Sun, Hanxue; Zhang, Junping; Wang, Aiqin
2017-05-31
Multifunctional carbon aerogels that are both highly compressible and conductive have broad potential applications in the range of sound insulator, sensor, oil absorption, and electronics. However, the preparation of such carbon aerogels has been proven to be very challenging. Here, we report fabrication of pressure-sensitive and conductive (PSC) carbon aerogels by pyrolysis of cellulose aerogels composed of poplars catkin (PC) microfibers with a tubular structure. The wet PC gels can be dried directly in an oven without any deformation, in marked contrast to the brittle nature of traditional carbon aerogels. The resultant PSC aerogels exhibit ultralow density (4.3 mg cm -3 ), high compressibility (80%), high electrical conductivity (0.47 S cm -1 ), and high absorbency (80-161 g g -1 ) for oils and organic liquids. The PSC aerogels have potential applications in various fields such as elastomeric conductors, absorption of oils from water and oil/water separation, as the PSC aerogels feature simple preparation process with low-cost biomass as the precursor.
A high resolution PVDF (peizoelectric) film respiration sensor
NASA Astrophysics Data System (ADS)
Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Johnston, Robert; Misaki, Yukinori
2017-07-01
Sensors used today for contact measurement of a subject's breathing work by measuring the inductance change in some film, piezoelectric or pyro-electric, used in the sensor. However, their use can increase stress and burden for patients because of the close proximity to the body that the sensors must be to operate. They must be applied directly to the patient's body by tape or adhesive paste. To address this problem and reduce subject stress and burden, it was decided to research development of a high resolution breathing sensor that could still function even while placed over the patient's clothes. This was achieved by developing a new PVDF piezoelectric film based sensor with an innovative configuration. Through the use of some simple amplification circuitry and processing the output signal, the high sensitivity breathing sensor developed was determined to be able to accurately measure a person's breathing. Also, due to the high sensitivity of the sensor, heart rate was also detectable revealing the possibility for simultaneous measurement of both breathing and heart rate.
High-resolution mapping of transcription factor binding sites on native chromatin
Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven
2014-01-01
Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359
Comparative Sensitivity Analysis of Muscle Activation Dynamics
Günther, Michael; Götz, Thomas
2015-01-01
We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379
2014-06-01
to better represent the interactions at high compression . Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied...was observed that for the sensitive orientation only elastic compression occurred, leading to the propagation of a single wave through the material...whereas for the insensitive direction elastic compression at and immediately behind the shock front was followed by inelastic deformation, leading to
Pixelated coatings and advanced IR coatings
NASA Astrophysics Data System (ADS)
Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé
2017-09-01
Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
Does the Direction in Which a Figure Is Looking Influence Whether It Is Visible?
ERIC Educational Resources Information Center
McGuigan, Nicola
2009-01-01
Previous studies have shown that young preschool children are highly sensitive to mutual engagement and struggle to diagnose the visibility of a figure when their facial area is occluded. The present study aimed to explore the specificity of engagement by varying (a) the orientation of a figure relative to an observer and (b) the visible area of…
Integration of a High Sensitivity MEMS Directional Sound Sensor With Readout Electronics
2012-12-01
Readout Electronics 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943–5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) Space and Naval Warfare...1 1. The Anatomy of the Ormia Ochracea Hearing Organ