Sample records for highly sensitive frequency

  1. Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study

    PubMed Central

    Wang, Le; Devore, Sasha; Delgutte, Bertrand

    2013-01-01

    Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maximally at the same delay across frequencies, or trough-type sensitivity, discharging minimally at the same delay across frequencies, consistent with responses observed at the primary site of binaural interaction in the medial and lateral superior olives (MSO and LSO), respectively. However, some high-frequency IC neurons exhibit dual types of envelope-ITD sensitivity in their responses to SAM tones, that is, they exhibit peak-type sensitivity at some modulation frequencies and trough-type sensitivity at other frequencies. Here we show that high-frequency IC neurons in the unanesthetized rabbit can also exhibit dual types of envelope-ITD sensitivity in their responses to SAM noise. Such complex responses to SAM stimuli could be achieved by convergent inputs from MSO and LSO onto single IC neurons. We test this hypothesis by implementing a physiologically explicit, computational model of the binaural pathway. Specifically, we examined envelope-ITD sensitivity of a simple model IC neuron that receives convergent inputs from MSO and LSO model neurons. We show that dual envelope-ITD sensitivity emerges in the IC when convergent MSO and LSO inputs are differentially tuned for modulation frequency. PMID:24155013

  2. The Sensitivity of Adolescent Hearing Screens Significantly Improves by Adding High Frequencies.

    PubMed

    Sekhar, Deepa L; Zalewski, Thomas R; Beiler, Jessica S; Czarnecki, Beth; Barr, Ashley L; King, Tonya S; Paul, Ian M

    2016-09-01

    One in 6 US adolescents has high-frequency hearing loss, often related to hazardous noise. Yet, the American Academy of Pediatrics (AAP) hearing screen (500, 1,000, 2,000, 4,000 Hertz) primarily includes low frequencies (<3,000 Hertz). Study objectives were to determine (1) sensitivity and specificity of the AAP hearing screen for adolescent hearing loss and (2) if adding high frequencies increases sensitivity, while repeat screening of initial referrals reduces false positive results (maintaining acceptable specificity). Eleventh graders (n = 134) participated in hearing screening (2013-2014) including "gold-standard" sound-treated booth testing to calculate sensitivity and specificity. Of the 43 referrals, 27 (63%) had high-frequency hearing loss. AAP screen sensitivity and specificity were 58.1% (95% confidence interval 42.1%-73.0%) and 91.2% (95% confidence interval 83.4-96.1), respectively. Adding high frequencies (6,000, 8,000 Hertz) significantly increased sensitivity to 79.1% (64.0%-90.0%; p = .003). Specificity with repeat screening was 81.3% (71.8%-88.7%; p = .003). Adolescent hearing screen sensitivity improves with high frequencies. Repeat testing maintains acceptable specificity. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  3. Predictive genetic testing for the identification of high-risk groups: a simulation study on the impact of predictive ability

    PubMed Central

    2011-01-01

    Background Genetic risk models could potentially be useful in identifying high-risk groups for the prevention of complex diseases. We investigated the performance of this risk stratification strategy by examining epidemiological parameters that impact the predictive ability of risk models. Methods We assessed sensitivity, specificity, and positive and negative predictive value for all possible risk thresholds that can define high-risk groups and investigated how these measures depend on the frequency of disease in the population, the frequency of the high-risk group, and the discriminative accuracy of the risk model, as assessed by the area under the receiver-operating characteristic curve (AUC). In a simulation study, we modeled genetic risk scores of 50 genes with equal odds ratios and genotype frequencies, and varied the odds ratios and the disease frequency across scenarios. We also performed a simulation of age-related macular degeneration risk prediction based on published odds ratios and frequencies for six genetic risk variants. Results We show that when the frequency of the high-risk group was lower than the disease frequency, positive predictive value increased with the AUC but sensitivity remained low. When the frequency of the high-risk group was higher than the disease frequency, sensitivity was high but positive predictive value remained low. When both frequencies were equal, both positive predictive value and sensitivity increased with increasing AUC, but higher AUC was needed to maximize both measures. Conclusions The performance of risk stratification is strongly determined by the frequency of the high-risk group relative to the frequency of disease in the population. The identification of high-risk groups with appreciable combinations of sensitivity and positive predictive value requires higher AUC. PMID:21797996

  4. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  5. Correlated evolution between hearing sensitivity and social calls in bats

    PubMed Central

    Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S

    2006-01-01

    Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288

  6. Sensitive high frequency hearing in earless and partially eared harlequin frogs (Atelopus).

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Hoke, Kim L

    2018-04-19

    Harlequin frogs, genus Atelopus , communicate at high frequencies despite most species lacking a complete tympanic middle ear that facilitates high frequency hearing in most anurans and other tetrapods. Here we test whether Atelopus are better at sensing high frequency acoustic sound compared to other eared and earless species in the Bufonidae family, determine whether middle ear variation within Atelopus affects hearing sensitivity, and test potential hearing mechanisms in Atelopus We determine that at high frequencies (2000-4000 Hz) Atelopus are 10-34 dB more sensitive than other earless bufonids but are relatively insensitive to mid-range frequencies (900-1500 Hz) compared to eared bufonids. Hearing among Atelopus species is fairly consistent, evidence that the partial middle ears present in a subset of Atelopus species do not convey a substantial hearing advantage. We further demonstrate that Atelopus hearing is not likely facilitated by vibration of the skin overlying the normal tympanic membrane region or the body lung wall, leaving the extratympanic hearing pathways in Atelopus enigmatic. Together these results show Atelopus have sensitive high frequency hearing without the aid of a tympanic middle ear and prompt further study of extratympanic hearing mechanisms in anurans. © 2018. Published by The Company of Biologists Ltd.

  7. Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.

    PubMed

    Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R

    2017-07-01

    Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  9. The Sensitivity of Adolescent School-Based Hearing Screens Is Significantly Improved by Adding High Frequencies

    ERIC Educational Resources Information Center

    Sekhar, Deepa L.; Zalewski, Thomas R.; Beiler, Jessica S.; Czarnecki, Beth; Barr, Ashley L.; King, Tonya S.; Paul, Ian M.

    2016-01-01

    High frequency hearing loss (HFHL), often related to hazardous noise, affects one in six U.S. adolescents. Yet, only 20 states include school-based hearing screens for adolescents. Only six states test multiple high frequencies. Study objectives were to (1) compare the sensitivity of state school-based hearing screens for adolescents to gold…

  10. Modelling the dependence of contrast sensitivity on grating area and spatial frequency.

    PubMed

    Rovamo, J; Luntinen, O; Näsänen, R

    1993-12-01

    We modelled the human foveal visual system in a detection task as a simple image processor comprising (i) low-pass filtering due to the optical transfer function of the eye, (ii) high-pass filtering of neural origin, (iii) addition of internal neural noise, and (iv) detection by a local matched filter. Its detection efficiency for gratings was constant up to a critical area but then decreased with increasing area. To test the model we measured Michelson contrast sensitivity as a function of grating area at spatial frequencies of 0.125-32 c/deg for simple vertical and circular cosine gratings. In circular gratings luminance was sinusoidally modulated as a function of the radius of the grating field. In agreement with the model, contrast sensitivity at all spatial frequencies increased in proportion to the square-root of grating area at small areas. When grating area exceeded critical area, the increase saturated and contrast sensitivity became independent of area at large grating areas. Spatial integration thus obeyed Piper's law at small grating areas. The critical area of spatial integration, marking the cessation of Piper's law, was constant in solid degrees at low spatial frequencies but inversely proportional to spatial frequency squared at medium and high spatial frequencies. At low spatial frequencies the maximum contrast sensitivity obtainable by spatial integration increased in proportion to spatial frequency but at high spatial frequencies it decreased in proportion to the cube of the increasing spatial frequency. The increase was due to high-pass filtering of neural origin (lateral inhibition) and the decrease was mainly due to the optical transfer function of the eye. Our model explained 95% of the total variance of the contrast sensitivity data.

  11. Dual-sensitivity profilometry with defocused projection of binary fringes.

    PubMed

    Garnica, G; Padilla, M; Servin, M

    2017-10-01

    A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.

  12. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  13. High-field/high-pressure ESR

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Okubo, S.; Ohta, H.

    2017-07-01

    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.

  14. Earless toads sense low frequencies but miss the high notes.

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Chaparro, Juan C; Hoke, Kim L

    2017-10-11

    Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey. © 2017 The Author(s).

  15. Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification.

    PubMed

    Du, Jiangbing; He, Zuyuan

    2013-11-04

    In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).

  16. Molecular oxygen detection using frequency modulation diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    A high-sensitivity spectroscopic measurement of O2 using two-tone frequency modulation spectroscopy with a GaAlAs diode laser is presented. An oxygen sensor based on this technique would be non-intrusive, compact and possess high sensitivity and fast time response.

  17. Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Glenar, David A.; Jennings, Donald E.; Nadler, Shacher

    1990-01-01

    A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

  18. Heart rate and blood pressure variabilities in salt-sensitive hypertension.

    PubMed

    Piccirillo, G; Bucca, C; Durante, M; Santagada, E; Munizzi, M R; Cacciafesta, M; Marigliano, V

    1996-12-01

    In salt-sensitive hypertension, a high sodium intake causes plasma catecholamines to rise and pulmonary baroreceptor plasticity to fall. In salt-sensitive and salt-resistant hypertensive subjects during low and high sodium intakes, we studied autonomic nervous system activity by power spectral analysis of heart rate and arterial pressure variabilities and baroreceptor sensitivity. In all subjects, high sodium intake significantly enhanced the low-frequency power of heart rate and arterial pressures at rest and after sympathetic stress. It also increased heart rate and arterial pressure variabilities. During high sodium intake, salt-sensitive hypertensive subjects had significantly higher low-frequency powers of systolic arterial pressure (7.5 mm Hg2, P < .05) and of heart rate at rest (59.2 +/- 2.4 normalized units [NU], P < .001) than salt-resistant subjects (6.6 +/- 0.3 mm Hg2, 55.0 +/- 3.2 NU) and normotensive control subjects (5.1 +/- 0.5 mm Hg2, 41.6 +/- 2.9 NU). In salt-sensitive subjects, low sodium intake significantly reduced low-frequency normalized units (P < .001) and the ratio of low- to high-power frequency (P < .001). High-sodium intake significantly increased baroreflex sensitivity in control subjects (from 10.0 +/- 0.7 to 17.5 +/- 0.7 ms/mm Hg, P < .001) and salt-resistant subjects (from 6.9 +/- 0.7 to 13.9 +/- 0.9, P < .05) but not in salt-sensitive subjects (7.4 +/- 0.3 to 7.9 +/- 0.4). In conclusion, a high sodium intake markedly enhances cardiac sympathetic activity in salt-sensitive and salt-resistant hypertension. In contrast, although reduced sodium intake lowers arterial pressure and sympathetic activity, it does so only in salt-sensitive subjects. Hence, in salt-resistant subjects, neither arterial pressure nor sympathetic activity depends on salt intake. During a high sodium intake in normotensive subjects and salt-resistant hypertensive subjects, increased sympathetic activity is probably compensated by enhanced baroreflex sensitivity.

  19. Absolute auditory thresholds in three Old World monkey species (Cercopithecus aethiops, C. neglectus, Macaca fuscata) and humans (Homo sapiens).

    PubMed

    Owren, M J; Hopp, S L; Sinnott, J M; Petersen, M R

    1988-06-01

    We investigated the absolute auditory sensitivities of three monkey species (Cercopithecus aethiops, C. neglectus, and Macaca fuscata) and humans (Homo sapiens). Results indicated that species-typical variation exists in these primates. Vervets, which have the smallest interaural distance of the species that we tested, exhibited the greatest high-frequency sensitivity. This result is consistent with Masterton, Heffner, and Ravizza's (1969) observations that head size and high-frequency acuity are inversely correlated in mammals. Vervets were also the most sensitive in the middle frequency range. Furthermore, we found that de Brazza's monkeys, though they produce a specialized, low-pitched boom call, did not show the enhanced low-frequency sensitivity that Brown and Waser (1984) showed for blue monkeys (C. mitis), a species with a similar sound. This discrepancy may be related to differences in the acoustics of the respective habitats of these animals or in the way their boom calls are used. The acuity of Japanese monkeys was found to closely resemble that of rhesus macaques (M. mulatta) that were tested in previous studies. Finally, humans tested in the same apparatus exhibited normative sensitivities. These subjects responded more readily to low frequencies than did the monkeys but rapidly became less sensitive in the high ranges.

  20. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    PubMed

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  1. Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.

    PubMed

    Allard, Rémy; Arleo, Angelo

    2017-01-01

    The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.

  2. Detection of NMR signals with a radio-frequency atomic magnetometer.

    PubMed

    Savukov, I M; Seltzer, S J; Romalis, M V

    2007-04-01

    We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.

  3. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Zheng, C.; Pong, Philip W. T.

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model.more » The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.« less

  4. Interaural Phase and Level Difference Sensitivity in Low-Frequency Neurons in the Lateral Superior Olive

    PubMed Central

    Tollin, Daniel J.; Yin, Tom C. T.

    2006-01-01

    The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded. However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition. Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we re-examined binaural interaction in low-frequency (less than ~3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities < 1.2 kHz was enhanced relative to the auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were suppressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts. PMID:16291937

  5. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti.

    PubMed

    Ekdale, Eric G; Racicot, Rachel A

    2015-01-01

    The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon. © 2014 Anatomical Society.

  6. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti

    PubMed Central

    Ekdale, Eric G; Racicot, Rachel A

    2015-01-01

    The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon. PMID:25400023

  7. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  8. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    DOE PAGES

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; ...

    2016-09-09

    Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 10 8 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10 -20m/ √Hz sensitivity to stationary signals. For signal bandwidthsmore » Δf > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD δh < t p where t p = 5.39 × 10 -44/ Hz is the Planck time.« less

  9. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children’s Sensitivity to Punishment

    PubMed Central

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children’s main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children’s avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children’s preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control. PMID:26218584

  10. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers.

    PubMed

    Chou, Aaron S; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-09

    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×10^{8} independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×10^{-20}m/sqrt[Hz] sensitivity to stationary signals. For signal bandwidths Δf>11  kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD_{δh}

  11. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children's Sensitivity to Punishment.

    PubMed

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children's main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children's avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children's preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control.

  12. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  13. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  14. 170-MHz electrodeless quartz crystal microbalance biosensor: capability and limitation of higher frequency measurement.

    PubMed

    Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi

    2009-10-01

    We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.

  15. High-sensitivity operation of single-beam optically pumped magnetometer in a kHz frequency range

    DOE PAGES

    Savukov, Igor Mykhaylovich; Kim, Y. J.; Shah, V.; ...

    2017-02-02

    Here, optically pumped magnetometers (OPM) can be used in various applications, from magnetoencephalography to magnetic resonance imaging and nuclear quadrupole resonance (NQR). OPMs provide high sensitivity and have the significant advantage of non-cryogenic operation. To date, many magnetometers have been demonstrated with sensitivity close to 1 fT, but most devices are not commercialized. Most recently, QuSpin developed a model of OPM that is low cost, high sensitivity, and convenient for users, which operates in a single-beam configuration. Here we developed a theory of single-beam (or parallel two-beam) magnetometers and showed that it is possible to achieve good sensitivity beyond theirmore » usual frequency range by tuning the magnetic field. Experimentally we have tested and optimized a QuSpin OPM for operation in the frequency range from DC to 1.7 kHz, and found that the performance was only slightly inferior despite the expected decrease due to deviation from the spin-exchange relaxation-free regime.« less

  16. High-sensitivity operation of single-beam optically pumped magnetometer in a kHz frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savukov, Igor Mykhaylovich; Kim, Y. J.; Shah, V.

    Here, optically pumped magnetometers (OPM) can be used in various applications, from magnetoencephalography to magnetic resonance imaging and nuclear quadrupole resonance (NQR). OPMs provide high sensitivity and have the significant advantage of non-cryogenic operation. To date, many magnetometers have been demonstrated with sensitivity close to 1 fT, but most devices are not commercialized. Most recently, QuSpin developed a model of OPM that is low cost, high sensitivity, and convenient for users, which operates in a single-beam configuration. Here we developed a theory of single-beam (or parallel two-beam) magnetometers and showed that it is possible to achieve good sensitivity beyond theirmore » usual frequency range by tuning the magnetic field. Experimentally we have tested and optimized a QuSpin OPM for operation in the frequency range from DC to 1.7 kHz, and found that the performance was only slightly inferior despite the expected decrease due to deviation from the spin-exchange relaxation-free regime.« less

  17. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors.

    PubMed

    March, Carmen; García, José V; Sánchez, Ángel; Arnau, Antonio; Jiménez, Yolanda; García, Pablo; Manclús, Juan J; Montoya, Ángel

    2015-03-15

    In spite of being widely used for in liquid biosensing applications, sensitivity improvement of conventional (5-20MHz) quartz crystal microbalance (QCM) sensors remains an unsolved challenging task. With the help of a new electronic characterization approach based on phase change measurements at a constant fixed frequency, a highly sensitive and versatile high fundamental frequency (HFF) QCM immunosensor has successfully been developed and tested for its use in pesticide (carbaryl and thiabendazole) analysis. The analytical performance of several immunosensors was compared in competitive immunoassays taking carbaryl insecticide as the model analyte. The highest sensitivity was exhibited by the 100MHz HFF-QCM carbaryl immunosensor. When results were compared with those reported for 9MHz QCM, analytical parameters clearly showed an improvement of one order of magnitude for sensitivity (estimated as the I50 value) and two orders of magnitude for the limit of detection (LOD): 30μgl(-1) vs 0.66μgL(-1)I50 value and 11μgL(-1) vs 0.14μgL(-1) LOD, for 9 and 100MHz, respectively. For the fungicide thiabendazole, I50 value was roughly the same as that previously reported for SPR under the same biochemical conditions, whereas LOD improved by a factor of 2. The analytical performance achieved by high frequency QCM immunosensors surpassed those of conventional QCM and SPR, closely approaching the most sensitive ELISAs. The developed 100MHz QCM immunosensor strongly improves sensitivity in biosensing, and therefore can be considered as a very promising new analytical tool for in liquid applications where highly sensitive detection is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-06-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.

  19. Interaural time sensitivity of high-frequency neurons in the inferior colliculus.

    PubMed

    Yin, T C; Kuwada, S; Sujaku, Y

    1984-11-01

    Recent psychoacoustic experiments have shown that interaural time differences provide adequate cues for lateralizing high-frequency sounds, provided the stimuli are complex and not pure tones. We present here physiological evidence in support of these findings. Neurons of high best frequency in the cat inferior colliculus respond to interaural phase differences of amplitude modulated waveforms, and this response depends upon preservation of phase information of the modulating signal. Interaural phase differences were introduced in two ways: by interaural delays of the entire waveform and by binaural beats in which there was an interaural frequency difference in the modulating waveform. Results obtained with these two methods are similar. Our results show that high-frequency cells can respond to interaural time differences of amplitude modulated signals and that they do so by a sensitivity to interaural phase differences of the modulating waveform.

  20. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in some of the cases higher stress-sensitivity of elastic properties can be seen in the direction parallel to the bedding plane.

  1. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun

    2016-12-01

    We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.

  2. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review.

    PubMed

    Antonioli, Cleonice Aparecida Silva; Momensohn-Santos, Teresa Maria; Benaglia, Tatiana Aparecida Silva

    2016-07-01

    The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: "Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?" The search was based on PubMed data, Base, Web of Science (Capes), Biblioteca Virtual em Saúde (BVS), and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA) frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33)), as well as the 4 KHz frequency (CA), this one being a little less expressive (MD = 5.72). Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace.

  4. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  5. Palatable food consumption in children: interplay between (food) reward motivation and the home food environment.

    PubMed

    De Decker, Annelies; Verbeken, Sandra; Sioen, Isabelle; Van Lippevelde, Wendy; Braet, Caroline; Eiben, Gabriele; Pala, Valeria; Reisch, Lucia A; De Henauw, Stefaan

    2017-04-01

    To understand the importance of the home food environment on unhealthy food consumption in children high in reward sensitivity, this study tested the hypothesis that the home availability of unhealthy food moderates the effect of reward sensitivity on children's fast-food consumption frequency, exerted via food cue responsiveness. Children between 7.5 and 14 years (n = 174, 50.6% boys) reported on reward sensitivity and food cue responsiveness (by means of the subscale 'external eating'). Their height and weight were measured. Parents reported on their children's fast-food consumption frequency, food cue responsiveness (by means of the subscale 'food responsiveness'), and on the home availability of unhealthy foods. Two moderated mediation models were conducted, one with the parent- and one with the child-reported food cue responsiveness as mediator. Findings suggested that with a high home availability of unhealthy foods, (a) a higher fast-food consumption frequency was found in children high in reward sensitivity and (b) the relation between reward sensitivity and the fast-food consumption frequency was mediated by external eating. The findings point at the importance of the home food environment in children high in reward sensitivity. They suggest to limit the home availability of unhealthy foods. What is Known: • Reward sensitivity (RS) is positively associated with children's palatable food consumption • In adolescents, this effect is mediated by food cue responsiveness, which determines the strength of an individual's motivation to obtain food when perceiving food cues What is New: • Children high in RS may be more vulnerable to palatable food cues in their everyday food environment because of a higher food cue responsiveness • The home food environment may be an important determining factor of the palatable food consumption of these children.

  6. Comb-referenced ultra-high sensitivity spectroscopic molecular detection by compact non-linear sources

    NASA Astrophysics Data System (ADS)

    Cancio, P.; Gagliardi, G.; Galli, I.; Giusfredi, G.; Maddaloni, P.; Malara, P.; Mazzotti, D.; De Natale, P.

    2017-11-01

    We present a new generation of compact and rugged mid-infrared (MIR) difference-frequency coherent radiation sources referenced to fiber-based optical frequency comb synthesizers (OFCSs). By coupling the MIR radiation to high-finesse optical cavities, high-resolution and high-sensitivity spectroscopy is demonstrated for CH4 and CO2 around 3.3 and 4.5 μm respectively. Finally, the most effective detection schemes for space-craft trace-gas monitoring applications are singled out.

  7. Sensitivity to envelope-based interaural delays at high frequencies: center frequency affects the envelope rate-limitation.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2014-02-01

    Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.

  8. Extremely high frequency sensitivity in a 'simple' ear.

    PubMed

    Moir, Hannah M; Jackson, Joseph C; Windmill, James F C

    2013-08-23

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.

  9. Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2012-01-01

    The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879

  10. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.; Johnson, B. R.; Abitbol, M. H.

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  11. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE PAGES

    Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...

    2017-05-29

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  12. Interplay between morphology and frequency in lexical access: The case of the base frequency effect

    PubMed Central

    Vannest, Jennifer; Newport, Elissa L.; Newman, Aaron J.; Bavelier, Daphne

    2011-01-01

    A major issue in lexical processing concerns storage and access of lexical items. Here we make use of the base frequency effect to examine this. Specifically, reaction time to morphologically complex words (words made up of base and suffix, e.g., agree+able) typically reflects frequency of the base element (i.e., total frequency of all words in which agree appears) rather than surface word frequency (i.e., frequency of agreeable itself). We term these complex words decomposable. However, a class of words termed whole-word do not show such sensitivity to base frequency (e.g., serenity). Using an event-related MRI design, we exploited the fact that processing low-frequency words increases BOLD activity relative to high frequency ones, and examined effects of base frequency on brain activity for decomposable and whole-word items. Morphologically complex words, half high and half low base frequency, were compared to matched high and low frequency simple monomorphemic words using a lexical decision task. Morphologically complex words increased activation in left inferior frontal and left superior temporal cortices versus simple words. The only area to mirror the behavioral distinction between decomposable and whole-word types was the thalamus. Surprisingly, most frequency-sensitive areas failed to show base frequency effects. This variety of responses to frequency and word type across brain areas supports an integrative view of multiple variables during lexical access, rather than a dichotomy between memory-based access and on-line computation. Lexical access appears best captured as interplay of several neural processes with different sensitivities to various linguistic factors including frequency and morphological complexity. PMID:21167136

  13. Spatial contrast sensitivity - Effects of age, test-retest, and psychophysical method

    NASA Technical Reports Server (NTRS)

    Higgins, Kent E.; Jaffe, Myles J.; Caruso, Rafael C.; Demonasterio, Francisco M.

    1988-01-01

    Two different psychophysical methods were used to test the spatial contrast sensitivity in normal subjects from five age groups. The method of adjustment showed a decline in sensitivity with increasing age at all spatial frequencies, while the forced-choice procedure showed an age-related decline predominantly at high spatial frequencies. It is suggested that a neural component is responsible for this decline.

  14. High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors

    NASA Astrophysics Data System (ADS)

    Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.

    2018-03-01

    This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.

  15. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors, together with the increased microwave power and magnet intensity will allow for a detection of high-frequency gravitational waves (HFGWs) exhibiting amplitudes, A, of the time-varying spacetime strains on the order of 10-30 to 10-34.

  16. [Relation between frequency modulation direction selectivity and forward masking of inferior collicular neurons: a study on in vivo intracellular recording in mice].

    PubMed

    Fu, Zi-Ying; Zeng, Hong; Tang, Jia; Li, Jie; Li, Juan; Chen, Qi-Cai

    2013-06-25

    It has been reported that the frequency modulation (FM) or FM direction sensitivity and forward masking of central auditory neurons are related with the neural inhibition, but there are some arguments, because no direct evidence of inhibitory synaptic input was obtained in previous studies using extracellular recording. In the present study, we studied the relation between FM direction sensitivity and forward masking of the inferior collicular (IC) neurons using in vivo intracellular recordings in 20 Mus musculus Km mice. Thirty seven with complete data among 93 neurons were analyzed and discussed. There was an inhibitory area which consisted of inhibitory postsynaptic potentials (IPSP) at high frequency side of frequency tuning of up-sweep FM (FMU) sensitive neurons (n = 12) and at low frequency side of frequency tuning of down-sweep FM (FMD) selective neurons (n = 8), while there was no any inhibitory area at both sides of frequency tuning of non-FM sweep direction (FMN) sensitive neurons (n = 17). Therefore, these results show that the inhibitory area at low or high frequency side of frequency tuning is one of the mechanisms for forming FM sweep direction sensitivity of IC neurons. By comparison of forward masking produced by FMU and FMD sound stimuli in FMU, FMD and FMN neurons, the selective FM sounds could produce stronger forward masking than the non-selective in FMU and FMD neurons, while there was no forward masking difference between FMU and FMD stimuli in the FMN neurons. We suggest that the post-action potential IPSP is a potential mechanism for producing stronger forward masking in FMU and FMD neurons.

  17. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review

    PubMed Central

    Antonioli, Cleonice Aparecida Silva; Momensohn-Santos, Teresa Maria; Benaglia, Tatiana Aparecida Silva

    2015-01-01

    Introduction  The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. Objective  This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. Data Synthesis  This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: “Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?” The search was based on PubMed data, Base, Web of Science (Capes), Biblioteca Virtual em Saúde (BVS), and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. Conclusion  The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA) frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33)), as well as the 4 KHz frequency (CA), this one being a little less expressive (MD = 5.72). Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace. PMID:27413413

  18. Extremely high frequency sensitivity in a ‘simple’ ear

    PubMed Central

    Moir, Hannah M.; Jackson, Joseph C.; Windmill, James F. C.

    2013-01-01

    An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat–moth evolutionary war. PMID:23658005

  19. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    PubMed

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  20. Peripheral resolution and contrast sensitivity: Effects of stimulus drift.

    PubMed

    Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda

    2017-04-01

    Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Seafloor Pressure Array Studies at Ultra-Low Frequencies

    DTIC Science & Technology

    1991-01-01

    broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high

  2. Local readout enhancement for detuned signal-recycling interferometers

    NASA Astrophysics Data System (ADS)

    Rehbein, Henning; Müller-Ebhardt, Helge; Somiya, Kentaro; Li, Chao; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2007-09-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector’s sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.

  3. The Design and Operation of Ultra-Sensitive and Tunable Radio-Frequency Interferometers.

    PubMed

    Cui, Yan; Wang, Pingshan

    2014-12-01

    Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and operation considerations of radio-frequency (RF) interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs). Such interferometers are proposed to address the sensitivity and frequency tuning challenges of current DS techniques. Verified algorithms together with mathematical models are presented to quantify material properties from scattering parameters for three common transmission line sensing structures, i.e., coplanar waveguides (CPWs), conductor-backed CPWs, and microstrip lines. A high-sensitivity and stable QH-based interferometer is demonstrated by measuring glucose-water solution at a concentration level that is ten times lower than some recent RF sensors while our sample volume is ~1 nL. Composition analysis of ternary mixture solutions are also demonstrated with a PD-based interferometer. Further work is needed to address issues like system automation, model improvement at high frequencies, and interferometer scaling.

  4. Magnetic sensor technology based on giant magneto-impedance effect in amorphous wires

    NASA Astrophysics Data System (ADS)

    Wang, X.; Teng, Y.; Wang, C.; Li, Q.

    2012-12-01

    This project focuses on giant magneto-impedance (GMI) effect that found in the soft magnetic amorphous wires in recent years, when AC current through the amorphous wire, induced voltage in the wires would change sensitively with a small external magnetic field along the wire vertical imposed changes. GMI magnetic sensor could compensate for the shortcomings of the traditional magnetic sensors and detect weak magnetic field, meanwhile the characteristics of high stability, high sensitivity, high resolution, fast response and low power consumption, which makes it becoming the focus of extensive research at home and abroad and being new mode of the next age of the physical geography observation. The emphasis of the project is the research on the high sensitivity amorphous wire detector and the low noise capability circuit design. In this paper, it is analyzed the theory of the Amorphous Wire Giant-Magneto-Impedance (AWGMI) effect and its influence factors in details, and expatiated the sensor principle based on AWGMI. On the basis of AWGMI, the experimental system of the micro-magnetic sensor is designed, which is composed of the detecting signals, processing and collecting data, display and transmitting data circuit and corresponding functional software etc. The properties of this kind of micro-magnetic sensor are studied by experiments, such as its linearity, sensitivity, frequency response, noise, stability and temperature properties and so on, especially analyzed the relation of the drive signals with all kinds of characteristics. The results show that there is no direct relationship between the frequency of the drive signals and linear property of the sensor. But with the increase of its frequency, some fluctuation appears on the characteristic curves; the direct relation is found between the frequency of the drive signal and sensitivity, with the increase of the frequency, AWGMI effect increases monotonously. It leads to the amplitude of the output voltage increase with the change of the outer magnetic field and results in the increase of the sensor sensitivity; it can be enhanced the corresponding rate of the sensor to the low frequency magnetic field by increasing the drive signal frequency. By experiments, the best sensitivity and noise valves is 0.5225 mV/nT, 1.566nT respectively.

  5. [Clinical auxiliary diagnosis value of high frequency ultrasonographic measurements of the thickness of transverse carpal ligaments in carpal tunnel syndrome patients].

    PubMed

    Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R

    2016-04-18

    To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.

  6. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  7. Sensitivity Enhancement of FBG-Based Strain Sensor.

    PubMed

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  8. Sensitivity Enhancement of FBG-Based Strain Sensor

    PubMed Central

    Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian

    2018-01-01

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826

  9. Automatic seizure detection in SEEG using high frequency activities in wavelet domain.

    PubMed

    Ayoubian, L; Lacoma, H; Gotman, J

    2013-03-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80-500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. Automatic seizure detection in SEEG using high frequency activities in wavelet domain

    PubMed Central

    Ayoubian, L.; Lacoma, H.; Gotman, J.

    2015-01-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80–500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. PMID:22647836

  11. Mechanisms that limit the light stimulus frequency following through the APB sensitive and insensitive rod Off-pathways

    PubMed Central

    Bai, Xia; Zhu, Junling; Yang, Jinnan; Savoie, Brian T.; Wang, Guo-Yong

    2009-01-01

    In the retina, rod signal pathways process scotopic visual information. Light decrements are mediated by two distinct groups of rod pathways in the dark adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist DL-2-amino-4-phosphonobutyric acid (APB). We have found that the APB sensitive and insensitive rod Off-pathways signal different light decrement information: the APB sensitive rod Off-pathway conveys slow and low frequency light signals, whereas the APB insensitive rod Off-pathways mediate fast and high frequency light signals (Wang, 2006). However, the mechanisms which limit the frequency following through the APB sensitive and insensitive rod Off-pathways remain unknown. In the current study, whole-cell patch-clamp recordings were made from ganglion cells in dark and light adapted mouse retina to identify the mechanisms that limit the frequency following through the APB sensitive and insensitive rod Off-pathways. The results showed that the sites from AII amacrine cells to Off cone bipolar cells are the major mechanisms that limit the frequency following through the APB sensitive rod Off-pathway. In the APB insensitive rod Off-pathways, rods themselves limited the frequency following through these pathways. Moreover, ganglion cells were able to follow higher frequencies under photopic conditions than under scotopic conditions. The Off responses followed lower frequencies than On responses under photopic conditions. This finding was observed in cells that yielded On or Off responses only as well as in On-Off cells. PMID:19406212

  12. Assessment of the Vibrations Effects Caused by Technical Seismicity Due to the Railway traffic on High-sensitivity Machinery

    NASA Astrophysics Data System (ADS)

    Papán, Daniel; Valašková, Veronika; Demeterová, Katarína

    2016-10-01

    The numerical and experimental approach in structural dynamics problems is more and more current nowadays. This approach is applied and solved in many research and developing institutions of the all the world. Vibrations effect caused by passing trains used in manufacturing facilities can affect the quality of the production activity. This effect is possible to be solved by a numerical or an experimental way. Numerical solution is not so financially and time demanding. The main aim of this article is to focus on just experimental measurement of this problem. In this paper, the case study with measurement due to cramped conditions realized in situ is presented. The case study is located close to railway. The vibration effect caused by passing trains on the high-sensitivity machinery contained in this object were observed. The structure was a high-sensitivity machine that was placed in a construction process. For the measurements, the high-sensitivity standard vibrations equipment was used. The assessments of measurements’ results were performed for the technological conditions and Slovak Standard Criteria. Both of these assessments were divided to amplitude and frequency domain. The amplitude criterion is also divided to peak particle velocity and RMS (Root Mean Square). Frequency domain assessment were realised using the frequency response curves obtained from high-sensitivity machinery manufacturer. The frequency limits are established for each axis of triaxle system. The measurement results can be predicted if the vibration have to be reduced. Measurement implemented in the production hall should obtain materials to determine the seismic loading and response of production machinery caused by technical seismicity.

  13. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less

  14. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.

    PubMed

    Smith, G Troy

    2006-01-01

    The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.

  15. Joint inversion of high-frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.

    2007-01-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.

  16. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Tan, Ren-Bing; Sun, Jian-Dong; Li, Xin-Xing; Zhou, Yu; Lü, Li; Qin, Hua

    2015-10-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage Vg, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. Project supported by the National Natural Science Foundation of China (Grant No. 61107093), the Suzhou Science and Technology Project, China (Grant No. ZXG2012024), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2012243).

  17. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595

  18. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.

  19. Probability of Intercept in Electronic Countermeasures Receivers

    DTIC Science & Technology

    1975-12-01

    modulating signals A and B are input to the 𔃻WT helix caus.ing a single frequency on the helix of TWT #1 to produce phase modu- lation of frequency A...and harmonics of A in TWT #1. A single frequency on the helix of TVT 42 produces phase modulation of frequency B and harmonics of B in TWT #2. The high...with YIG Pres’Žlector 34 9 Superheterodyne Receiver YIG z iter TWT 36 10 Wideband crystal video receiver 38 11 Tangential Sensitivity 40 12 Sensitivity

  20. Design considerations of Miller oscillators for high-sensitivity QCM sensors in damping media.

    PubMed

    Rodriguez-Pardo, Loreto; Fariña, Jose; Gabrielli, Claude; Perrot, Hubert; Brendel, Remi

    2007-10-01

    In this paper, a new contribution to the design of quartz crystal oscillators for high-sensitivity microbalance sensors used in liquid media is presented. The oscillation condition for a Miller configuration was studied to work in a wide dynamic range of the resonator losses. The equations relating the values of the active and passive components with the maximum supported damping and mass were obtained. Also, the conditions to obtain a stable frequency according to the resonator damping (R(Q)), the static capacity (Cp) and the filter frequency (f(F)) were found. Under these conditions, the circuit oscillation frequency will be proportional to the resonant series frequency and does not depend on the previous parameters (R(Q), f(F), and Cp). If these conditions cannot be satisfied, the expression of the oscillation frequency is given and the discrimination of these effects is obtained through resonator frequency measurements.

  1. Internal noise sources limiting contrast sensitivity.

    PubMed

    Silvestre, Daphné; Arleo, Angelo; Allard, Rémy

    2018-02-07

    Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.

  2. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  3. An Investigation of the Dynamic Response of a Seismically Stable Platform

    DTIC Science & Technology

    1982-08-01

    PAD. The controls on the -9system are of two types. A low frequency tilt control, with a 10 arc second sensitivity, 2-axis tiltmeter as sensor ...Inertial Sensors Structural Analysis Holloman AFB, NiM. Support to this effort includes structural analyses toward active servo frequency band. This report...controlled to maintain a null position of a sensitive height sensor . The 6-degree-of- freedom high frequency controls are based on seismometers as sensors

  4. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome*.

    PubMed

    Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H

    2014-05-01

    Children with an immunocompromised condition and requiring invasive mechanical ventilation have high risk of death. Such patients are commonly transitioned to rescue modes of nonconventional ventilation, including airway pressure release ventilation and high-frequency oscillatory ventilation, for acute respiratory distress syndrome refractory to conventional ventilation. Our aim was to describe our experience with airway pressure release ventilation and high-frequency oscillatory ventilation in children with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation and to identify factors associated with survival. Retrospective cohort study. Tertiary care, university-affiliated PICU. Sixty pediatric patients with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation. None. Demographic data, ventilator settings, arterial blood gases, oxygenation index, and PaO(2)/FIO(2) were recorded before transition to either mode of nonconventional ventilation and at predetermined intervals after transition for up to 5 days. Mortality in the entire cohort was 63% and did not differ between patients transitioned to airway pressure release ventilation and high-frequency oscillatory ventilation. For both airway pressure release ventilation and high-frequency oscillatory ventilation, improvements in oxygenation index and PaO(2)/FIO(2) at 24 hours expressed as a fraction of pretransition values (oxygenation index(24)/oxygenation index(pre) and PaO(2)/FIO(224)/PaO(2)/FIO(2pre)) reliably discriminated nonsurvivors from survivors, with receiver operating characteristic areas under the curves between 0.89 and 0.95 (p for all curves < 0.001). Sensitivity-specificity analysis suggested that less than 15% reduction in oxygenation index (90% sensitive, 75% specific) or less than 90% increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.

  5. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  6. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.

  7. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria.

    PubMed

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-10-01

    We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from 42 dB at 100 Hz to 25 dB at 400 Hz. Since sound thresholds decrease from 72 dB SPL at 100 Hz to 50 dB SPL at 400 Hz the decrease in relative vibration sensitivity reflects an increase in sound sensitivity with frequency, probably due to enhanced tympanic sensitivity at higher frequencies. In contrast, absolute vibration sensitivity is constant in most of the frequency range studied. Only small effects result from the cancellation of sound-induced vibrations. The reason for this probably is that the maximal induced vibrations in the present setup are 6-10 dB below the fibers' vibration threshold at the threshold for sound. However, these results are only valid for the present physical configuration of the setup and the high vibration-sensitivities of the fibers warrant caution whenever the auditory fibers are stimulated with free-field sound. Thus, the experiments suggest that the low-frequency sound sensitivity is not caused by sound-induced vertical vibrations. Instead, the low-frequency sound sensitivity is either tympanic or mediated through bone conduction or sound-induced pulsations of the lungs.

  8. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  9. Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM spectroscopy.

    PubMed

    Mahnke, Peter

    2018-01-01

    A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/Hz. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm -1 absorption line of carbon monoxide.

  10. Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahnke, Peter

    2018-01-01

    A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/√{Hz }. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm-1 absorption line of carbon monoxide.

  11. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  12. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  13. Spatial frequency discrimination learning in normal and developmentally impaired human vision

    PubMed Central

    Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.

    2010-01-01

    Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416

  14. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials

    PubMed Central

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin

    2017-01-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits “0” and “1” to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency‐spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments. PMID:28932671

  15. Favorable effects of carotid endarterectomy on baroreflex sensitivity and cardiovascular neural modulation: a 4-month follow-up.

    PubMed

    Dalla Vecchia, Laura; Barbic, Franca; Galli, Andrea; Pisacreta, Massimo; Gornati, Rosella; Porretta, Tiziano; Porta, Alberto; Furlan, Raffaello

    2013-06-15

    Carotid surgery variably modifies carotid afferent innervation, thus affecting arterial baroreceptor sensitivity. Low arterial baroreflex sensitivity is a well-known independent risk factor for cardiovascular diseases. The aim of this study was to assess the 4-mo effects of carotid endarterectomy (CEA) on arterial baroreceptor sensitivity and cardiovascular autonomic profile in patients with unilateral carotid stenosis. We enrolled 20 patients (72 ± 8 yr) with unilateral >70% carotid stenosis. ECG, beat-by-beat blood pressure, and respiration were continuously recorded before and 126 ± 9 days after CEA, at rest and during a 75° head-up tilt. Both pharmacological (modified Oxford technique, BRS) and spontaneous (index α, spectral analysis) arterial baroreflex sensitivity were assessed. Cardiovascular autonomic profile was evaluated by plasma catecholamines and spectral indexes of cardiac sympathovagal modulation [low-frequency R-R interval (LFRR), low frequency-to high frequency ratio (LF/HF), high-frequency R-R interval (HFRR)] and sympathetic vasomotor control [low-frequency systolic arterial pressure (LFSAP)] obtained from heart rate and SAP variability. After CEA, both the index α and BRS were higher (P < 0.02) at rest. SAP variance decreased both at rest and during tilt (P < 0.02). Before surgery, tilt did not modify the autonomic profile compared with baseline. After CEA, tilt increased LF/HF and LFSAP and reduced HFRR compared with rest (P < 0.02). Four months after CEA was performed, arterial baroreflex sensitivity was enhanced. Accordingly, the patients' autonomic profile had shifted toward reduced cardiac and vascular sympathetic activation and enhanced cardiac vagal activity. The capability to increase cardiovascular sympathetic activation in response to orthostasis was restored. Baroreceptor sensitivity improvement might play an additional role in the more favorable outcome observed in patients after carotid surgery.

  16. Sigh rate during emotional transitions: More evidence for a sigh of relief.

    PubMed

    Vlemincx, Elke; Meulders, Michel; Abelson, James L

    2017-04-01

    Evidence suggests that sighs regulate stress and emotions, e.g. by facilitating relief. This study aimed to investigate sigh rates during relief. In addition, links between sighs, anxiety sensitivity and HPA-axis activity were explored. Healthy volunteers (N=29) were presented cues predicting the valence of subsequent stimuli. By sequencing cues that predicted pleasant or unpleasant stimuli with or without certainty, transitions to certain pleasantness (relief) or to certain unpleasantness (control) were created and compared to no transitions. Salivary cortisol, anxiety sensitivity and respiration were measured. Sigh frequency was significantly higher during relief than during control transitions and no transition states, and higher during control transitions than during no transition states. Sigh frequency increased with steeper cortisol declines for high anxiety sensitive persons. Results confirm a relationship between sighs and relief. In addition, results suggest that sigh frequency is importantly related to HPA-axis activity, particularly in high anxiety sensitive persons. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  18. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  19. [Comparative assessment of MR-semiotics of acutest intracerebral hematomas in low- and extra high-field frequency magnetic resonance tomography].

    PubMed

    Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A

    2009-01-01

    An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.

  20. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.

    PubMed

    Cannata, Jonathan M; Ritter, Timothy A; Chen, Wo-Hsing; Silverman, Ronald H; Shung, K Kirk

    2003-11-01

    This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO3) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or press-focusing the piezoelectric into a spherical curvature. For designs that required electrical impedance matching, a low impedance transmission line coaxial cable was used. All transducers were tested in a pulse-echo arrangement, whereby the center frequency, bandwidth, insertion loss, and focal depth were measured. Several transducers were fabricated with center frequencies in the 20-80 MHz range with the measured -6 dB bandwidths and two-way insertion loss values ranging from 57 to 74% and 9.6 to 21.3 dB, respectively. Both transducer focusing techniques proved successful in producing highly sensitive, high-frequency, single-element, ultrasonic-imaging transducers. In vivo and in vitro ultrasonic backscatter microscope (UBM) images of human eyes were obtained with the 50 MHz transducers. The high sensitivity of these devices could possibly allow for an increase in depth of penetration, higher image signal-to-noise ratio (SNR), and improved image contrast at high frequencies when compared to previously reported results.

  1. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    PubMed

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  2. Hearing diversity in moths confronting a neotropical bat assemblage.

    PubMed

    Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C

    2017-09-01

    The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.

  3. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  4. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  5. Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD

    PubMed Central

    Oken, Barry S.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990

  6. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  7. Performance of terahertz metamaterials as high-sensitivity sensor

    NASA Astrophysics Data System (ADS)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  8. Is Comparison the Thief of Joy? Sexual Narcissism and Social Comparisons in the Domain of Sexuality.

    PubMed

    Day, Lisa C; Muise, Amy; Impett, Emily A

    2017-02-01

    Are people who are high in sexual narcissism more sensitive to information comparing their sex lives with the sex lives of others? Does this sensitivity explain narcissists' lower sexual and relationship satisfaction? We conducted three studies to address this question. Participants completed the Sexual Narcissism Scale (Widman & McNulty, 2010), and then either recalled (Study 1), imagined (Study 2), or actually made (Study 3) a sexual comparison. We found that people high in sexual narcissism (compared with those lower in sexual narcissism) were more bothered when comparing themselves with someone with a higher sexual frequency and felt better about a comparison with someone with a lower sexual frequency. In turn, narcissists' greater sensitivity to upward social comparisons predicted lower sexual and relationship satisfaction. These results suggest that those high in sexual narcissism may use downward sexual comparisons to maintain their grandiose self-views and be particularly sensitive to upward sexual comparisons.

  9. High-frequency heterodyne lock-in thermography (HeLIT): A highly sensitive method to detect early caries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang

    2016-10-01

    In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.

  10. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.

    PubMed

    Posada-Quintero, Hugo F; Florian, John P; Orjuela-Cañón, Álvaro D; Chon, Ki H

    2016-09-01

    Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability. Copyright © 2016 the American Physiological Society.

  11. EFFECTIVE INDICES FOR MONITORING MENTAL WORKLOAD WHILE PERFORMING MULTIPLE TASKS.

    PubMed

    Hsu, Bin-Wei; Wang, Mao-Jiun J; Chen, Chi-Yuan; Chen, Fang

    2015-08-01

    This study identified several physiological indices that can accurately monitor mental workload while participants performed multiple tasks with the strategy of maintaining stable performance and maximizing accuracy. Thirty male participants completed three 10-min. simulated multitasks: MATB (Multi-Attribute Task Battery) with three workload levels. Twenty-five commonly used mental workload measures were collected, including heart rate, 12 HRV (heart rate variability), 10 EEG (electroencephalography) indices (α, β, θ, α/θ, θ/β from O1-O2 and F4-C4), and two subjective measures. Analyses of index sensitivity showed that two EEG indices, θ and α/θ (F4-C4), one time-domain HRV-SDNN (standard deviation of inter-beat intervals), and four frequency-domain HRV: VLF (very low frequency), LF (low frequency), %HF (percentage of high frequency), and LF/HF were sensitive to differentiate high workload. EEG α/θ (F4-C4) and LF/HF were most effective for monitoring high mental workload. LF/HF showed the highest correlations with other physiological indices. EEG α/θ (F4-C4) showed strong correlations with subjective measures across different mental workload levels. Operation strategy would affect the sensitivity of EEG α (F4-C4) and HF.

  12. Dew Point Calibration System Using a Quartz Crystal Sensor with a Differential Frequency Method.

    PubMed

    Lin, Ningning; Meng, Xiaofeng; Nie, Jing

    2016-11-18

    In this paper, the influence of temperature on quartz crystal microbalance (QCM) sensor response during dew point calibration is investigated. The aim is to present a compensation method to eliminate temperature impact on frequency acquisition. A new sensitive structure is proposed with double QCMs. One is kept in contact with the environment, whereas the other is not exposed to the atmosphere. There is a thermal conductivity silicone pad between each crystal and a refrigeration device to keep a uniform temperature condition. A differential frequency method is described in detail and is applied to calibrate the frequency characteristics of QCM at the dew point of -3.75 °C. It is worth noting that frequency changes of two QCMs were approximately opposite when temperature conditions were changed simultaneously. The results from continuous experiments show that the frequencies of two QCMs as the dew point moment was reached have strong consistency and high repeatability, leading to the conclusion that the sensitive structure can calibrate dew points with high reliability.

  13. Suprathreshold Contrast Sensitivity Vision Test Chart

    DTIC Science & Technology

    1991-07-14

    with data collected on patients having amblyopia , glaucoma and macular degeneration showed that the SCTS may be effectively used as an initial...dramatically in certain cases of abnormal vision, such as amblyopia (Ginsburg, 1978, 1981; Hess, Bradley and Piotrowski, 1983; Loshin and Levi, 1983). The...combination of frequencies. Amblyopia results in marked losses of contrast sensitivity particularly at high spatial frequencies, but may also result in

  14. Polarization mode beating techniques for high-sensitivity intracavity sensing

    NASA Astrophysics Data System (ADS)

    Rosales-Garcia, Andrea

    Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the high finesse and resolution of the system. Experimental changes in the refractive index of air as a function of pressure are in good agreement with theoretical predictions. An alternative fiber laser configuration, which incorporates non-reciprocal elements, allows measuring the optical activity of enantiomeric mixtures using PMB techniques. The sensitivity attained through PMB techniques demonstrates a potential method for ultra-sensitive biochemical sensing and explosive detection.

  15. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  16. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  17. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    DOEpatents

    Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.

  18. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge

    PubMed Central

    Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng

    2016-01-01

    In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620

  19. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  20. A comprehensive prediction and evaluation method of pilot workload

    PubMed Central

    Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu

    2018-01-01

    BACKGROUND: The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. OBJECTIVE: A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. METHODS: The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. RESULTS: Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. CONCLUSION: A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%. PMID:29710742

  1. A comprehensive prediction and evaluation method of pilot workload.

    PubMed

    Feng, Chuanyan; Wanyan, Xiaoru; Yang, Kun; Zhuang, Damin; Wu, Xu

    2018-01-01

    The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit. A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot workload prediction and improve the evaluation method. The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensitive physiological data and the predicted value. Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency, mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio between low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean phasic) were all sensitive to typical workloads of subjects. A multinominal logistic regression model based on combination of physiological indices (fixation frequency, mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%.

  2. Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection

    NASA Astrophysics Data System (ADS)

    Khodabakhsh, Amir; Johansson, Alexandra C.; Foltynowicz, Aleksandra

    2015-04-01

    Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS) and validate the model by comparing it to experimental CO2 spectra around 1,575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long-term stability of the system, allowing averaging times on the order of minutes. Using a cavity with a finesse of ~9,000, we obtain absorption sensitivity of 6.4 × 10-11 cm-1 Hz-1/2 per spectral element and concentration detection limit for CO2 of 450 ppb Hz-1/2, determined by multiline fitting.

  3. Computer-Aided Design/Manufacturing (CAD/M) for High-Speed Interconnect.

    DTIC Science & Technology

    1981-10-01

    are frequency sensitive and hence lend themselves to frequency domain ananlysis . Most of the classical microwave analysis is handled in the frequency ...capability integrated into a time-domain analysis program. This approach allows determination of frequency -dependent transmission line (interconnect...the items to consider in any interconnect study is that of the frequency range of interest. This determines whether the interconnections must be treated

  4. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.

  5. A high-sensitivity tunable two-beam fiber-coupled high-density magnetometer with laser heating

    DOE PAGES

    Savukov, Igor Mykhaylovich; Boshier, Malcolm Geoffrey

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz 1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. Here, this magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the applicationmore » of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz 1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.« less

  6. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    PubMed Central

    Savukov, Igor; Boshier, Malcolm G.

    2016-01-01

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications. PMID:27754358

  7. Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices

    PubMed Central

    Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.

    2015-01-01

    The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451

  8. Frequency behavior of the residual current devices

    NASA Astrophysics Data System (ADS)

    Erdei, Z.; Horgos, M.; Lung, C.; Pop-Vadean, A.; Muresan, R.

    2017-01-01

    This paper presents an experimental investigation into the operating characteristic of residual current devices when in presence of a residual current at a frequency of 60Hz. In order to protect persons and equipment effectively the residual current devices are made to be very sensitive to the ground fault current or the touch current. Because of their high sensitivity the residual current circuit breakers are prone to tripping under no-fault conditions.

  9. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  10. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.

    PubMed

    Wang, Xin; Jen, Philip H-S; Wu, Fei-Jian; Chen, Qi-Cai

    2007-09-05

    In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm. For most IC neurons, probe-elicited response was decreased by a weak white noise that was presented at a specific gap (i.e. time window). When presented within this time window, weak noise masking sharpened the frequency tuning curve and increased the minimum threshold of IC neurons. The degree of weak noise masking of these two measurements increased with noise duration. Sharpening of the frequency tuning curve and increasing of the minimum threshold of IC neurons during weak noise masking were mostly mediated through GABAergic inhibition. In addition, sharpening of frequency tuning curve by the weak noise masker was more effective at the high than at low frequency limb. These data indicate that in the real world the ambient noise may improve frequency sensitivity of IC neurons through GABAergic inhibition while inevitably decrease the frequency response range and sensitivity of IC neurons.

  11. The role of low-spatial frequencies in lexical decision and masked priming.

    PubMed

    Boden, C; Giaschi, D

    2009-04-01

    Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch filtered letter strings. In the unprimed experiments, a filtered target was presented for 105 or 400 ms followed by a pattern mask. Sensitivity (d') was lowest for the low-pass filtered targets at both durations with a bias towards a 'non-word' response. Sensitivity was higher in the high-pass and notch filter conditions. In the priming experiments, a forward mask was followed by a filtered prime then an unfiltered target. Primed words, but not non-words, were identified faster than unprimed words in both the low-pass and high-pass filtered conditions. These results do not support a unique role for low-spatial frequency information in either facilitating or making rapid lexical decisions.

  12. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  13. A high sensitivity ultralow temperature RF conductance and noise measurement setup.

    PubMed

    Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G

    2011-01-01

    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.

  14. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less

  15. Design and fabrication of metal-insulator-metal diode for high frequency applications

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  16. Using individual differences to test the role of temporal and place cues in coding frequency modulation

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2015-01-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783

  17. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    PubMed

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  18. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  19. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  20. Complementary spectroscopic studies of materials of security interest

    NASA Astrophysics Data System (ADS)

    Burnett, Andrew; Fan, Wenhui; Upadhya, Prashanth; Cunningham, John; Edwards, Howell; Munshi, Tasnim; Hargreaves, Michael; Linfield, Edmund; Davies, Giles

    2006-09-01

    We demonstrate that, through coherent measurement of the transmitted terahertz frequency electric fields, broadband (0.3 - 8 THz) time-domain spectroscopy can be used to measure far-infrared vibrational modes of a range of drugs-of-abuse and high explosives that are of interest to the forensic and security services. Our results indicate that absorption features in these materials are highly sensitive to the structural and spatial arrangement of the molecules. Terahertz frequency spectra are also compared with high-resolution low-frequency Raman spectra to assist in understanding the low-frequency inter- and intra-molecular vibrational modes of the molecules.

  1. Emotion improves and impairs early vision.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2009-06-01

    Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.

  2. Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers

    NASA Astrophysics Data System (ADS)

    Khudorozhkov, A. A.; Skirdkov, P. N.; Zvezdin, K. A.; Vetoshko, P. M.; Popkov, A. F.

    2017-12-01

    A spin-torque diode, which is a magnetic tunnel junction with magnetic layers softly pinned at some tilt to each other, is proposed. The resonance operating frequency of such a dual exchange-pinned spin-torque diode can be significantly higher (up to 9.5 GHz) than that of a traditional free layer spin-torque diode, and, at the same time, the sensitivity remains rather high. Using micromagnetic modeling we show that the maximum microwave sensitivity of the considered diode is reached at the bias current densities slightly below the self-sustained oscillations initiating. The dependence of the resonance frequency and the sensitivity on the angle between pinning exchange fields is presented. Thus, a way of designing spin-torque diode with a given resonance response frequency in the microwave region in the absence of an external magnetic field is proposed.

  3. Underwater audiogram of the California sea lion by the conditioned vocalization technique1

    PubMed Central

    Schusterman, Ronald J.; Balliet, Richard F.; Nixon, James

    1972-01-01

    Conditioning techniques were developed demonstrating that pure tone frequencies under water can exert nearly perfect control over the underwater click vocalizations of the California sea lion (Zalophus californianus). Conditioned vocalizations proved to be a reliable way of obtaining underwater sound detection thresholds in Zalophus at 13 different frequencies, covering a frequency range of 250 to 64,000 Hz. The audiogram generated by these threshold measurements suggests that under water, the range of maximal sensitivity for Zalophus lies between one and 28 kHz with best sensitivity at 16 kHz. Between 28 and 36 kHz there is a loss in sensitivity of 60 dB/octave. However, with relatively intense acoustic signals (> 38 dB re 1 μb underwater), Zalophus will respond to frequencies at least as high as 192 kHz. These results are compared with the underwater hearing of other marine mammals. ImagesFig. 1. PMID:5033891

  4. Reducing microwave absorption with fast frequency modulation.

    PubMed

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  5. High sensitive vectorial B-probe for low frequency plasma waves.

    PubMed

    Ullrich, Stefan; Grulke, Olaf; Klinger, Thomas; Rahbarnia, Kian

    2013-11-01

    A miniaturized multidimensional magnetic probe is developed for application in a low-temperature plasma environment. A very high sensitivity for low-frequency magnetic field fluctuations with constant phase run, a very good signal-to-noise ratio combined with an efficient electrostatic pickup rejection, renders the probe superior compared with any commercial solution. A two-step calibration allows for absolute measurement of amplitude and direction of magnetic field fluctuations. The excellent probe performance is demonstrated by measurements of the parallel current pattern of coherent electrostatic drift wave modes in the VINETA (versatile instrument for studies on nonlinearity, electromagnetism, turbulence, and applications) experiment.

  6. Effective properties of a poroelastic medium containing a distribution of aligned cracks

    NASA Astrophysics Data System (ADS)

    Galvin, R. J.; Gurevich, B.

    2009-07-01

    We simulate the effect of fractures by considering them to be thin circular cracks in a poroelastic background. Using the solution of the scattering problem for a single-crack and multiple-scattering theory, we estimate the attenuation and dispersion of elastic waves in a porous medium containing a sparse distribution of cracks. When comparing with a similar model, in which multiple-scattering effects are neglected, we find that there is agreement at high frequencies and discrepancies at low frequencies. We conclude that the interaction between cracks should not be neglected at low frequencies, even in the limit of weak crack density. Since the models only agree with each other at high frequencies, when the time available for fluid diffusion is small, we conclude that the interaction between cracks, which is a result of fluid diffusion, is negligible at high frequencies. We also compare our results with a model for spherical inclusions and find that the attenuation for spherical inclusions has exactly the same dependence upon frequency but a difference in magnitude, which depends upon frequency. Since the attenuation curves are very close at low frequencies, we conclude that the effective medium properties are not sensitive to the shape of an inclusion at wavelengths that are large compared with the inclusion size. However, at frequencies such that the wavelength is comparable to or smaller than the inclusion size, the effective properties are sensitive to the greater compliance of the flat cracks, and more attenuation occurs at a given frequency as a result.

  7. Effects of broad frequency vibration on cultured osteoblasts

    NASA Technical Reports Server (NTRS)

    Tanaka, Shigeo M.; Li, Jiliang; Duncan, Randall L.; Yokota, Hiroki; Burr, David B.; Turner, Charles H.

    2003-01-01

    Bone is subjected in vivo to both high amplitude, low frequency strain, incurred by locomotion, and to low amplitude, broad frequency strain. The biological effects of low amplitude, broad frequency strain are poorly understood. To evaluate the effects of low amplitude strains ranging in frequency from 0 to 50 Hz on osteoblastic function, we seeded MC3T3-E1 cells into collagen gels and applied the following loading protocols for 3 min per day for either 3 or 7 days: (1) sinusoidal strain at 3 Hz, with 0-3000 microstrain peak-to-peak followed by 0.33 s resting time, (2) "broad frequency vibration" of low amplitude strain (standard deviation of 300 microstrain) including frequency components from 0 to 50 Hz, and (3) sinusoidal strain combined with broad frequency vibration (S + V). The cells were harvested on day 4 or 8. We found that the S + V stimulation significantly repressed cell proliferation by day 8. Osteocalcin mRNA was up-regulated 2.6-fold after 7 days of S + V stimulation, and MMP-9 mRNA was elevated 1.3-fold after 3 days of vibration alone. Sinusoidal stimulation alone did not affect the cell responses. No differences due to loading were observed in alkaline phosphatase activity and in mRNA levels of type I collagen, osteopontin, connexin 43, MMPs-1A, -3, -13. These results suggest that osteoblasts are more sensitive to low amplitude, broad frequency strain, and this kind of strain could sensitize osteoblasts to high amplitude, low frequency strain. This suggestion implies a potential contribution of stochastic resonance to the mechanical sensitivity of osteoblasts. Copyright 2002 Elsevier Science Ltd.

  8. Heart rate variability and pain: associations of two interrelated homeostatic processes.

    PubMed

    Appelhans, Bradley M; Luecken, Linda J

    2008-02-01

    Between-person variability in pain sensitivity remains poorly understood. Given a conceptualization of pain as a homeostatic emotion, we hypothesized inverse associations between measures of resting heart rate variability (HRV), an index of autonomic regulation of heart rate that has been linked to emotionality, and sensitivity to subsequently administered thermal pain. Resting electrocardiography was collected, and frequency-domain measures of HRV were derived through spectral analysis. Fifty-nine right-handed participants provided ratings of pain intensity and unpleasantness following exposure to 4 degrees C thermal pain stimulation, and indicated their thresholds for barely noticeable and moderate pain during three exposures to decreasing temperature. Greater low-frequency HRV was associated with lower ratings of 4 degrees C pain unpleasantness and higher thresholds for barely noticeable and moderate pain. High-frequency HRV was unrelated to measures of pain sensitivity. Findings suggest pain sensitivity is influenced by characteristics of a central homeostatic system also involved in emotion.

  9. Laser interrogation techniques for high-sensitivity strain sensing by fiber-Bragg-grating structures

    NASA Astrophysics Data System (ADS)

    Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.

    2017-11-01

    Novel interrogation methods for static and dynamic measurements of mechanical deformations by fiber Bragg-gratings (FBGs) structures are presented. The sensor-reflected radiation gives information on suffered strain, with a sensitivity dependent on the interrogation setup. Different approaches have been carried out, based on laser-frequency modulation techniques and near-IR lasers, to measure strain in single-FBG and in resonant high-reflectivity FBG arrays. In particular, for the fiber resonator, the laser frequency is actively locked to the cavity resonances by the Pound-Drever-Hall technique, thus tracking any frequency change due to deformations. The loop error and correction signals fed back to the laser are used as strain monitor. Sensitivity limits vary between 200 nɛ/√Hz in the quasi-static domain (0.5÷2 Hz), and between 1 and 4 nɛ/√Hz in the 0.4-1 kHz range for the single-FBG scheme, while strain down to 50 pɛ can be detected by using the laser-cavity-locked method.

  10. Exogenous attention enhances 2nd-order contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  11. Dew Point Calibration System Using a Quartz Crystal Sensor with a Differential Frequency Method

    PubMed Central

    Lin, Ningning; Meng, Xiaofeng; Nie, Jing

    2016-01-01

    In this paper, the influence of temperature on quartz crystal microbalance (QCM) sensor response during dew point calibration is investigated. The aim is to present a compensation method to eliminate temperature impact on frequency acquisition. A new sensitive structure is proposed with double QCMs. One is kept in contact with the environment, whereas the other is not exposed to the atmosphere. There is a thermal conductivity silicone pad between each crystal and a refrigeration device to keep a uniform temperature condition. A differential frequency method is described in detail and is applied to calibrate the frequency characteristics of QCM at the dew point of −3.75 °C. It is worth noting that frequency changes of two QCMs were approximately opposite when temperature conditions were changed simultaneously. The results from continuous experiments show that the frequencies of two QCMs as the dew point moment was reached have strong consistency and high repeatability, leading to the conclusion that the sensitive structure can calibrate dew points with high reliability. PMID:27869746

  12. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    USGS Publications Warehouse

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  13. Comparison of transducers with different frequencies in breast contrast-enhanced ultrasound (CEUS) using SonoVue as contrast agent.

    PubMed

    Wang, Yong-Mei; Fan, Wei; Zhang, Kai; Zhang, Li; Tan, Zhen; Ma, Rong

    2016-07-01

    To explore the effectiveness of different transducers in breast contrast-enhanced ultrasound (CEUS) using SonoVue(®) (Bracco, Plan-Les-Ouates, Switzerland) as the contrast agent. Breast CEUS was performed in 51 patients with 51 breast lesions using a low-frequency transducer (probe C5-1) and a high-frequency transducer (probe L12-5) separately. All image processes were reviewed for the presence of local blood perfusion defects and surrounding vessels. McNemar's test was conducted to compare the detection effectiveness between these two transducers. Pathological results revealed 38 malignant and 13 benign lesions. The two transducers showed no difference in detecting benign lesions. Among malignant lesions, CEUS conducted by probe C5-1 (frequency range from 1 to 5 MHz) presented 23 (60.5%) lesions with local blood perfusion defects and 26 (68.4%) lesions with surrounding vessels. Meanwhile, probe L12-5 (frequency range from 5 to 12 MHz) showed only 12 (31.6%) lesions with local blood perfusion defects and 12 (31.6%) lesions with surrounding vessel. Probe C5-1 was more sensitive than probe L12-5 in detecting malignant CEUS characteristics (p-value < 0.05). The low-frequency transducer was more sensitive than the high-frequency transducer in breast CEUS using SonoVue as the contrast agent. A new contrast agent with a higher resonance frequency, specially designed for high-frequency transducers, may be helpful in improving the clinical value of breast CEUS. The first study comparing different frequency transducers in breast CEUS of the same patient lesions. We brought out the requirement for CEUS contrast agents which are more suitable for high-frequency examinations.

  14. High sensitivity plasmonic sensor using hybrid structure of graphene stripe combined with gold gap-ring

    NASA Astrophysics Data System (ADS)

    Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian

    2017-10-01

    Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.

  15. Distinct spatial frequency sensitivities for processing faces and emotional expressions.

    PubMed

    Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J

    2003-06-01

    High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.

  16. Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning

    2017-04-01

    Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (<25 mm) due to the insufficient receiving sensitivity for highfrequency harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.

  17. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    NASA Astrophysics Data System (ADS)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts inherent to the contrast sensitivity test (which for simplicity could be termed "visionmetry") and to pure tone audiometry (also termed auditory sensitivity test) are analyzed with the purpose of contributing to divulge their ability to supply early information associated to pathologies not solely related to the visual and auditory systems respectively.

  18. Design and optimization of stress centralized MEMS vector hydrophone with high sensitivity at low frequency

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2018-05-01

    A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.

  19. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  20. A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging

    PubMed Central

    Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

    2010-01-01

    The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897

  1. High-sensitivity acoustic sensors from nanofibre webs.

    PubMed

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-23

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  2. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  3. Ultrasensitive sensing with three-dimensional terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Tan, Siyu; Yan, Fengping; Wang, Wei; Zhou, Hong; Hou, Yafei

    2018-05-01

    Planar metasurfaces and metamaterial absorbers have shown great promise for label-free sensing applications at microwaves, optical and terahertz frequencies. The realization of high-quality-factor resonance in these structures is of significant interest to enhance the sensing sensitivities to detect minute frequency shifts. We propose and demonstrate in this manuscript an ultrasensitive terahertz metamaterial absorber sensor based on a three-dimensional split ring resonator absorber with a high quality factor of 60.09. The sensing performance of the proposed absorber sensor was systematically investigated through detailed numerical calculations and a maximum refractive index sensitivity of 34.40% RIU‑1 was obtained. Furthermore, the absorber sensor can maintain a high sensitivity for a wide range of incidence angles up to 60° under TM polarization incidence. These findings would improve the design flexibility of the absorber sensors and further open up new avenues to achieve ultrasensitive sensing in the terahertz regime.

  4. Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization

    PubMed Central

    Keating, Peter; Nodal, Fernando R; King, Andrew J

    2014-01-01

    For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for the localization of tones by humans, some species show very different behaviour. Ferrets are widely used for studying both clinical and fundamental aspects of spatial hearing, but it is not known whether the duplex theory applies to this species or, if so, to what extent the frequency range over which each binaural cue is used depends on acoustical or neurophysiological factors. To address these issues, we trained ferrets to lateralize tones presented over earphones and found that the frequency dependence of ITD and ILD sensitivity broadly paralleled that observed in humans. Compared with humans, however, the transition between ITD and ILD sensitivity was shifted toward higher frequencies. We found that the frequency dependence of ITD sensitivity in ferrets can partially be accounted for by acoustical factors, although neurophysiological mechanisms are also likely to be involved. Moreover, we show that binaural cue sensitivity can be shaped by experience, as training ferrets on a 1-kHz ILD task resulted in significant improvements in thresholds that were specific to the trained cue and frequency. Our results provide new insights into the factors limiting the use of different sound localization cues and highlight the importance of sensory experience in shaping the underlying neural mechanisms. PMID:24256073

  5. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  6. Quantum sensing with arbitrary frequency resolution

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Cujia, K. S.; Zopes, J.; Degen, C. L.

    2017-05-01

    Quantum sensing takes advantage of well-controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen-vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 microhertz over a megahertz bandwidth. The continuous sampling further guarantees an enhanced sensitivity, reaching a signal-to-noise ratio in excess of 104 for a 170-nanotesla test signal measured during a 1-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.

  7. A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a qCSF Approach.

    PubMed

    Kim, Yeon Jin; Reynaud, Alexandre; Hess, Robert F; Mullen, Kathy T

    2017-07-01

    The measurement of achromatic sensitivity has been an important tool for monitoring subtle changes in vision as the result of disease or response to therapy. In this study, we aimed to provide a normative data set for achromatic and chromatic contrast sensitivity functions within a common cone contrast space using an abbreviated measurement approach suitable for clinical practice. In addition, we aimed to provide comparisons of achromatic and chromatic binocular summation across spatial frequency. We estimated monocular cone contrast sensitivity functions (CCSFs) using a quick Contrast Sensitivity Function (qCSF) approach for achromatic as well as isoluminant, L/M cone opponent, and S cone opponent stimuli in a healthy population of 51 subjects. We determined the binocular CCSFs for achromatic and chromatic vision to evaluate the degree of binocular summation across spatial frequency for these three different mechanisms in a subset of 20 subjects. Each data set shows consistent contrast sensitivity across the population. They highlight the extremely high cone contrast sensitivity of L/M cone opponency compared with the S-cone and achromatic responses. We also find that the two chromatic sensitivities are correlated across the healthy population. In addition, binocular summation for all mechanisms depends strongly on stimulus spatial frequency. This study, using an approach well suited to the clinic, is the first to provide a comparative normative data set for the chromatic and achromatic contrast sensitivity functions, yielding quantitative comparisons of achromatic, L/M cone opponent, and S cone opponent chromatic sensitivities as a function of spatial frequency.

  8. Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat.

    PubMed

    Wenstrup, J J

    1999-11-01

    The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.

  9. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  10. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.

  11. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  12. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  13. A high-sensitivity search for extraterrestrial intelligence at lambda 18 cm

    NASA Technical Reports Server (NTRS)

    Tarter, J.; Cuzzi, J.; Black, D.; Clark, T.

    1980-01-01

    A targeted high-sensitivity search for narrow-band signals near a wavelength of 18 cm has been conducted using the 91-m radiotelescope of the National Radio Astronomy Observatory. The search included 201 nearby solar-type stars and achieved a frequency resolution of 5.5 Hz over a 1.4-MHz bandwidth. This high spectral resolution was obtained through a non-real-time reduction procedure using a Mark I VLBI recording terminal in conjunction with the CDC 7600 computational facility at the NASA-Ames Research Center. This is the first high-resolution search for narrow-band signals in this wavelength regime. To date it is the most sensitive search per unit observing time of any search strategy which does not postulate a unique magic frequency. Data show no evidence for narrow-band signals due to extraterrestrial intelligence at a 12-standard-deviation upper limit on signal strength of 1.1 x 10 to the -23rd W/sq m.

  14. An international prospective cohort study of mobile phone users and health (COSMOS): Factors affecting validity of self-reported mobile phone use.

    PubMed

    Toledano, Mireille B; Auvinen, Anssi; Tettamanti, Giorgio; Cao, Yang; Feychting, Maria; Ahlbom, Anders; Fremling, Karin; Heinävaara, Sirpa; Kojo, Katja; Knowles, Gemma; Smith, Rachel B; Schüz, Joachim; Johansen, Christoffer; Poulsen, Aslak Harbo; Deltour, Isabelle; Vermeulen, Roel; Kromhout, Hans; Elliott, Paul; Hillert, Lena

    2018-01-01

    This study investigates validity of self-reported mobile phone use in a subset of 75 993 adults from the COSMOS cohort study. Agreement between self-reported and operator-derived mobile call frequency and duration for a 3-month period was assessed using Cohen's weighted Kappa (κ). Sensitivity and specificity of both self-reported high (≥10 calls/day or ≥4h/week) and low (≤6 calls/week or <30min/week) mobile phone use were calculated, as compared to operator data. For users of one mobile phone, agreement was fair for call frequency (κ=0.35, 95% CI: 0.35, 0.36) and moderate for call duration (κ=0.50, 95% CI: 0.49, 0.50). Self-reported low call frequency and duration demonstrated high sensitivity (87% and 76% respectively), but for high call frequency and duration sensitivity was lower (38% and 56% respectively), reflecting a tendency for greater underestimation than overestimation. Validity of self-reported mobile phone use was lower in women, younger age groups and those reporting symptoms during/shortly after using a mobile phone. This study highlights the ongoing value of using self-report data to measure mobile phone use. Furthermore, compared to continuous scale estimates used by previous studies, categorical response options used in COSMOS appear to improve validity considerably, most likely by preventing unrealistically high estimates from being reported. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Frequency-Shift Hearing Aid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1994-01-01

    Proposed hearing aid maps spectrum of speech into band of lower frequencies at which ear remains sensitive. By redirecting normal speech frequencies into frequency band from 100 to 1,500 Hz, hearing aid allows people to understand normal conversation, including telephone calls. Principle operation of hearing aid adapted to other uses such as, clearing up noisy telephone or radio communication. In addition, loud-speakers more easily understood in presence of high background noise.

  16. Level of Automation and Failure Frequency Effects on Simulated Lunar Lander Performance

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ramirez, Margarita

    2014-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames Research Center Vertical Motion Simulator, where instrument-rated pilots completed a simulated terminal descent phase of a lunar landing. Ten pilots participated in a 2 x 2 mixed design experiment, with level of automation as the within-subjects factor and failure frequency as the between subjects factor. The two evaluated levels of automation were high (fully automated landing) and low (manual controlled landing). During test trials, participants were exposed to either a high number of failures (75% failure frequency) or low number of failures (25% failure frequency). In order to investigate the pilots' sensitivity to changes in levels of automation and failure frequency, the dependent measure selected for this experiment was accuracy of failure diagnosis, from which D Prime and Decision Criterion were derived. For each of the dependent measures, no significant difference was found for level of automation and no significant interaction was detected between level of automation and failure frequency. A significant effect was identified for failure frequency suggesting failure frequency has a significant effect on pilots' sensitivity to failure detection and diagnosis. Participants were more likely to correctly identify and diagnose failures if they experienced the higher levels of failures, regardless of level of automation

  17. Landscape sensitivity in a dynamic environment

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan; Jen, Chia-Horn

    2010-05-01

    Landscape sensitivity at different scales and topics is presented in this study. Methodological approach composed most of this paper. According to the environmental records in the south eastern Asia, the environment change is highly related with five factors, such as scale of influence area, background of environment characters, magnitude and frequency of events, thresholds of occurring hazards and influence by time factor. This paper tries to demonstrate above five points from historical and present data. It is found that landscape sensitivity is highly related to the degree of vulnerability of the land and the processes which put on the ground including human activities. The scale of sensitivity and evaluation of sensitivities is demonstrated in this paper by the data around east Asia. The methods of classification are mainly from the analysis of environmental data and the records of hazards. From the trend of rainfall records, rainfall intensity and change of temperature, the magnitude and frequency of earthquake, dust storm, days of draught, number of hazards, there are many coincidence on these factors with landscape sensitivities. In conclusion, the landscape sensitivities could be classified as four groups: physical stable, physical unstable, unstable, extremely unstable. This paper explain the difference.

  18. Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD

    NASA Astrophysics Data System (ADS)

    Hasebe, T.; Kashima, S.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, H.-M.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, A.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1-3.2% at 101-448 GHz.

  19. Wideband profiles of stimulus-frequency otoacoustic emissions in humans

    NASA Astrophysics Data System (ADS)

    Dewey, James B.; Dhar, Sumitrajit

    2015-12-01

    Behavioral pure-tone hearing thresholds and stimulus-frequency otoacoustic emissions (SFOAEs) were measured with a high frequency resolution from 0.5-20 kHz in 15 female participants. Stimuli were calibrated in terms of forward pressure level (FPL). SFOAE responses to 36 dB FPL probes were largest near 1 kHz and declined above 8-10 kHz, though were still measurable at frequencies approaching 16 kHz in some ears. SFOAEs typically dropped in amplitude at a frequency that was roughly one octave below the "corner" frequency of the audiogram, and one-third to one-half of an octave below the frequency where thresholds departed from highly sensitive hearing. High-frequency SFOAE responses are likely limited by a reduction in the efficiency of the underlying generation mechanism and/or a diminished region of generation as the stimulus-driven excitation approaches the basal-most portion of the cochlea.

  20. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    PubMed

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  1. Miniature piezoresistive solid state integrated pressure sensors

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.

    1980-01-01

    The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.

  2. Pricing index-based catastrophe bonds: Part 2: Object-oriented design issues and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Unger, André J. A.

    2010-02-01

    This work is the second installment in a two-part series, and focuses on object-oriented programming methods to implement an augmented-state variable approach to aggregate the PCS index and introduce the Bermudan-style call feature into the proposed CAT bond model. The PCS index is aggregated quarterly using a discrete Asian running-sum formulation. The resulting aggregate PCS index augmented-state variable is used to specify the payoff (principle) on the CAT bond based on reinsurance layers. The purpose of the Bermudan-style call option is to allow the reinsurer to minimize their interest rate risk exposure on making fixed coupon payments under prevailing interest rates. A sensitivity analysis is performed to determine the impact of uncertainty in the frequency and magnitude of hurricanes on the price of the CAT bond. Results indicate that while the CAT bond is highly sensitive to the natural variability in the frequency of landfalling hurricanes between El Ninõ and non-El Ninõ years, it remains relatively insensitive to uncertainty in the magnitude of damages. In addition, results indicate that the maximum price of the CAT bond is insensitive to whether it is engineered to cover low frequency high magnitude events in a 'high' reinsurance layer relative to high frequency low magnitude events in a 'low' reinsurance layer. Also, while it is possible for the reinsurer to minimize their interest rate risk exposure on the fixed coupon payments, the impact of this risk on the price of the CAT bond appears small relative to the natural variability in the CAT bond price, and consequently catastrophic risk, due to uncertainty in the frequency and magnitude of landfalling hurricanes.

  3. Medium-high frequency FBG accelerometer with integrative matrix structure.

    PubMed

    Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna

    2015-04-10

    To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200  pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.

  4. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  5. Amplitude-frequency effect of Y-cut langanite and langatate.

    PubMed

    Kim, Yoonkee

    2003-12-01

    Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.

  6. Coal/rock interface detection by sensitized pick, part A

    NASA Technical Reports Server (NTRS)

    Wu, P. T. K.; Erkes, J. W.

    1981-01-01

    In order to increase the operating margins of the detector for safe, reliable operation under difficult in-mine conditions the transmitted signal strength was increased to provide additional signal margin for in-mine conditions and the transmitter section was redesigned to reduce frequency pulling of the transmitter frequency with variations in antenna load. The linearity of the pick load SCO signal with true pick load was increased, and hysteresis effects were minimized. The sensitized pick hardware was ruggedized for rough inmine use. The sensitized pick and telemetry system provided excellent, high quality signals proportional to cutting load under all conditions experienced during testing.

  7. High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer

    PubMed Central

    Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson

    2006-01-01

    Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314

  8. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson

    2007-04-01

    Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.

  9. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  10. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  12. Exact Tuning of High-Q Optical Microresonators by Use of UV

    NASA Technical Reports Server (NTRS)

    Savchankov, Anaotliy; Maleki, Lute; Iltchenko, Vladimir; Handley, Timothy

    2006-01-01

    In one of several alternative approaches to the design and fabrication of a "whispering-gallery" optical microresonator of high resonance quality (high Q), the index of refraction of the resonator material and, hence, the resonance frequencies. In this approach, a microresonator structure is prepared by forming it from an ultraviolet-sensitive material. Then the structure is subjected to controlled exposure to UV light while its resonance frequencies are monitored.

  13. Maternal self-efficacy and experimentally manipulated infant difficulty effects on maternal sensory sensitivity: a signal detection analysis.

    PubMed

    Donovan, Wilberta; Leavitt, Lewis; Taylor, Nicole

    2005-09-01

    The impact of differences in maternal self-efficacy and infant difficulty on mothers' sensitivity to small changes in the fundamental frequency of an audiotaped infant's cry was explored in 2 experiments. The experiments share in common experimental manipulations of infant difficulty, a laboratory derived measure of maternal efficacy (low, moderate, and high illusory control), and the use of signal detection methodology to measure maternal sensory sensitivity. In Experiment 1 (N = 72), easy and difficult infant temperament was manipulated by varying the amount of crying (i.e., frequency of cry termination) in a simulated child-care task. In Experiment 2 (N = 51), easy and difficult infant temperament was manipulated via exposure to the solvable or unsolvable pretreatment of a learned helplessness task to mirror mothers' ability to soothe a crying infant. In both experiments, only mothers with high illusory control showed reduced sensory sensitivity under the difficult infant condition compared with the easy infant condition. Copyright 2005 APA, all rights reserved.

  14. Analysis of drugs-of-abuse and explosives using terahertz time-domain and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Burnett, Andrew; Fan, Wenhui; Upadhya, Prashanth; Cunningham, John; Linfield, Edmund; Davies, Giles; Edwards, Howell; Munshi, Tasnim; O'Neil, Andrew

    2006-02-01

    We demonstrate that, through coherent measurement of the transmitted terahertz electric fields, broadband (0.3-8THz) time-domain spectroscopy can be used to measure far-infrared vibrational modes of a range of illegal drugs and high explosives that are of interest to the forensic and security services. Our results show that these absorption features are highly sensitive to the structural and spatial arrangement of the molecules. Terahertz frequency spectra are also compared with high-resolution low-frequency Raman spectra to assist in understanding the low frequency inter- and intra-molecular vibrational modes of the molecules.

  15. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  16. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    PubMed

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  17. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population.

    PubMed

    Tegeler, Charles H; Shaltout, Hossam A; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W

    2015-06-01

    Explore potential use of a temporal lobe electrical asymmetry score to discriminate between sympathetic and parasympathetic tendencies in autonomic cardiovascular regulation. 131 individuals (82 women, mean age 43.1, range 13-83) with diverse clinical conditions completed inventories for depressive (CES-D or BDI-II) and insomnia-related (ISI) symptomatology, and underwent five-minute recordings of heart rate and blood pressure, allowing calculation of heart rate variability and baroreflex sensitivity (BRS), followed by one-minute, two-channel, eyes-closed scalp recordings of brain electrical activity. A temporal lobe high-frequency (23-36 Hz) electrical asymmetry score was calculated for each subject by subtracting the average amplitude in the left temporal region from amplitude in the right temporal region, and dividing by the lesser of the two. Depressive and insomnia-related symptomatology exceeding clinical threshold levels were reported by 48% and 50% of subjects, respectively. Using a cutoff value of 5% or greater to define temporal high-frequency asymmetry, subjects with leftward compared to rightward asymmetry were more likely to report use of a sedative-hypnotic medication (42% vs. 22%, P = 0.02). Among subjects with asymmetry of 5% or greater to 30% or greater, those with rightward compared to leftward temporal high-frequency asymmetry had higher resting heart rate (≥5% asymmetry, 72.3 vs. 63.8, P = 0.004; ≥10%, 71.5 vs. 63.0, P = 0.01; ≥20%, 72.2 vs. 64.2, P = 0.05; ≥30%, 71.4 vs. 64.6, P = 0.05). Subjects with larger degrees of rightward compared to leftward temporal high-frequency asymmetry had lower baroreflex sensitivity (≥40% asymmetry, 10.6 vs. 16.4, P = 0.03; ≥50% asymmetry, 10.4 vs. 16.7, P = 0.05). In a heterogeneous population, individuals with rightward compared to leftward temporal high-frequency electrical asymmetry had higher resting heart rate and lower BRS. Two-channel recording of brain electrical activity from bilateral temporal regions appears to hold promise for further investigation as a means to assess cortical activity associated with autonomic cardiovascular regulation.

  18. Sensitive skin is highly frequent in extrinsic atopic dermatitis and correlates with disease severity markers but not necessarily with skin barrier impairment.

    PubMed

    Yatagai, Tsuyoshi; Shimauchi, Takatoshi; Yamaguchi, Hayato; Sakabe, Jun-Ichi; Aoshima, Masahiro; Ikeya, Shigeki; Tatsuno, Kazuki; Fujiyama, Toshiharu; Ito, Taisuke; Ojima, Toshiyuki; Tokura, Yoshiki

    2018-01-01

    Sensitive skin is a condition of cutaneous hypersensitivity to environmental factors. Lactic acid stinging test (LAST) is commonly used to assess sensitive skin and composed of four distinct sensations (pain, burning sensation, itch, and crawly feeling). A link between sensitive skin and barrier dysfunction has been proposed in atopic dermatitis (AD) patients. However, clinical and laboratory factors that are associated with sensitive skin remain unelucidated. To investigate relationship between sensitive skin and AD-associated markers. Forty-two Japanese AD patients and 10 healthy subjects (HS) were enrolled. AD patients were divided into extrinsic (EAD; high IgE levels) and intrinsic (IAD; normal IgE levels) types. We conducted 1% LAST by assessing the four distinct sensations and calculated the frequencies of sensitive skin in EAD, IAD, and HS. We also performed clinical AD-related tests, including transepidermal water loss (TEWL), visual analogue scale (VAS) of pruritus, and quality of life, and measured laboratory markers, including blood levels of IgE, CCL17/TARC, lactate dehydrogenase (LDH) and eosinophil counts, and concentration levels of serum Th1/Th2 cytokines. Filaggrin (FLG) mutations were examined in 21 patients. These values were subjected to correlation analyses with each of the four sensation elements. According to the standard criteria for LAST positivity, the frequencies of LAST-positive subjects were 54.8% and 10.0% in AD and HS, respectively (P=0.014). EAD patients showed a significantly (P=0.026) higher frequency of positive LAST (65.6%) than did IAD patients (20.0%). Among the four LAST sensation elements, the crawly feeling and pain scores positively correlated with VAS of pruritus, total serum IgE, mite-specific IgE, CCL17/TARC, and/or LDH. There was no association of the LAST scores with serum Th1/Th2 cytokine levels. Notably, neither TEWL nor FLG mutations correlated with LAST positivity or any sensation scores. The frequency of sensitive skin is higher in EAD than in IAD. Sensitive skin is associated with AD severity, but not necessarily with barrier condition. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  20. Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice.

    PubMed

    Felix, Richard A; Portfors, Christine V

    2007-06-01

    Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.

  1. Characterization of children's decision making: sensitivity to punishment frequency, not task complexity.

    PubMed

    Crone, Eveline A; Bunge, Silvia A; Latenstein, Heleen; van der Molen, Maurits W

    2005-06-01

    On a gambling task that models real-life decision making, children between ages 7 and 12 perform like patients with bilateral lesions of the ventromedial prefrontal cortex (VMPFC), opting for choices that yield high immediate gains in spite of higher future losses (Crone & Van der Molen, 2004). The current study set out to characterize developmental changes in decision making by varying task complexity and punishment frequency. Three age groups (7-9 years, 10-12 years, 13-15 years) performed two versions of a computerized variant of the original Iowa gambling task. Task complexity was manipulated by varying the number of choices participants could make. Punishment frequency was manipulated by varying the frequency of delayed punishment. Results showed a developmental increase in the sensitivity to future consequences, which was present only when the punishment was presented infrequently. These results could not be explained by differential sensitivity to task complexity, hypersensitivity to reward, or failure to switch response set after receiving punishment. There was a general pattern of boys outperforming girls by making more advantageous choices over the course of the task. In conclusion, 7-12-year-old children--like VMPFC patients--appear myopic about the future except when the potential for future punishment is high.

  2. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  3. The Phosphorylation State of the Drosophila TRP Channel Modulates the Frequency Response to Oscillating Light In Vivo

    PubMed Central

    Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin

    2017-01-01

    Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815

  4. Frozen Gaussian approximation for 3D seismic tomography

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  5. High frequency generation in the corona: Resonant cavities

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Van Doorsselaere, T.

    2018-03-01

    Aims: Null points are prominent magnetic field singularities in which the magnetic field strength strongly decreases in very small spatial scales. Around null points, predicted to be ubiquitous in the solar chromosphere and corona, the wave behavior changes considerably. Null points are also responsible for driving very energetic phenomena, and for contributing to chromospheric and coronal heating. In previous works we demonstrated that slow magneto-acoustic shock waves were generated in the chromosphere propagate through the null point, thereby producing a train of secondary shocks escaping along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 MHz. The present work aims to investigate this high frequency region around a coronal null point to give a plausible explanation to its generation at that particular frequency. Methods: We carried out a set of two-dimensional numerical simulations of wave propagation in the neighborhood of a null point located in the corona. We varied both the amplitude of the driver and the atmospheric properties to investigate the sensitivity of the high frequency waves to these parameters. Results: We demonstrate that the wave frequency is sensitive to the atmospheric parameters in the corona, but it is independent of the strength of the driver. Thus, the null point behaves as a resonant cavity generating waves at specific frequencies that depend on the background equilibrium model. Moreover, we conclude that the high frequency wave train generated at the null point is not necessarily a result of the interaction between the null point and a shock wave. This wave train can be also developed by the interaction between the null point and fast acoustic-like magneto-acoustic waves, that is, this interaction within the linear regime.

  6. Intravesical PAC1 Receptor Antagonist, PACAP(6–38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice

    PubMed Central

    Girard, Beatrice M.; Malley, Susan E.; Mathews, Morgan M.; May, Victor

    2017-01-01

    Chronic NGF overexpression (OE) in the urothelium, achieved through the use of a highly urothelium-specific uroplakin II promoter, stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency and non-voiding contractions, and referred somatic sensitivity. Additional NGF-mediated pleiotropic changes might contribute to increased voiding frequency and pelvic hypersensitivity in NGF-OE mice such as neuropeptide/receptor systems including PACAP(Adcyap1) and PAC1 receptor (Adcyap1r1). Given the presence of PAC1-immunoreactive fibers and the expression of PAC1 receptor expression in bladder tissues, and PACAP-facilitated detrusor contraction, whether PACAP/receptor signaling contributes to increased voiding frequency and somatic sensitivity was evaluated in NGF-OE mice. Intravesical administration of the PAC1 receptor antagonist, PACAP(6–38) (300 nM), significantly (p ≤ 0.01) increased intercontraction interval (2.0-fold) and void volume (2.5-fold) in NGF-OE mice. Intravesical instillation of PACAP(6–38) also decreased baseline bladder pressure in NGF-OE mice. PACAP(6–38) had no effects on bladder function in WT mice. Intravesical administration of PACAP(6–38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in WT mice. PACAP/receptor signaling contributes to the increased voiding frequency and pelvic sensitivity observed in NGF-OE mice. PMID:27146136

  7. The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion

    PubMed Central

    Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.

    2012-01-01

    Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113

  8. Distortion products in auditory fMRI research: Measurements and solutions.

    PubMed

    Norman-Haignere, Sam; McDermott, Josh H

    2016-04-01

    Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone's transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI researchers in avoiding distortion confounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Distortion Products in Auditory fMRI Research: Measurements and Solutions

    PubMed Central

    Norman-Haignere, Sam; McDermott, Josh H.

    2016-01-01

    Nonlinearities in the cochlea can introduce audio frequencies that are not present in the sound signal entering the ear. Known as distortion products (DPs), these added frequencies complicate the interpretation of auditory experiments. Sound production systems also introduce distortion via nonlinearities, a particular concern for fMRI research because the Sensimetrics earphones widely used for sound presentation are less linear than most high-end audio devices (due to design constraints). Here we describe the acoustic and neural effects of cochlear and earphone distortion in the context of fMRI studies of pitch perception, and discuss how their effects can be minimized with appropriate stimuli and masking noise. The amplitude of cochlear and Sensimetrics earphone DPs were measured for a large collection of harmonic stimuli to assess effects of level, frequency, and waveform amplitude. Cochlear DP amplitudes were highly sensitive to the absolute frequency of the DP, and were most prominent at frequencies below 300 Hz. Cochlear DPs could thus be effectively masked by low-frequency noise, as expected. Earphone DP amplitudes, in contrast, were highly sensitive to both stimulus and DP frequency (due to prominent resonances in the earphone’s transfer function), and their levels grew more rapidly with increasing stimulus level than did cochlear DP amplitudes. As a result, earphone DP amplitudes often exceeded those of cochlear DPs. Using fMRI, we found that earphone DPs had a substantial effect on the response of pitch-sensitive cortical regions. In contrast, cochlear DPs had a small effect on cortical fMRI responses that did not reach statistical significance, consistent with their lower amplitudes. Based on these findings, we designed a set of pitch stimuli optimized for identifying pitch-responsive brain regions using fMRI. These stimuli robustly drive pitch-responsive brain regions while producing minimal cochlear and earphone distortion, and will hopefully aid fMRI researchers in avoiding distortion confounds. PMID:26827809

  10. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  11. [A cross-racial analysis on the susceptible gene polymorphisms of salt-sensitive hypertension].

    PubMed

    Lu, Jia-peng; Zhang, Ling; Wang, Wei

    2010-10-01

    To compare the genetic distributions of salt-sensitivity of four ethnic populations in Hapmap database. The frequencies data (395 subjects) of salt-sensitivity polymorphisms (AGT/M235T, ACE/ID, CYP11B2/C-344T, ADDI/Gly460Trp, GNB3/C825 and CYP3A5/A6986G)of Utah residents with ancestry from northern and western Europe (CEU), Han Chinese in Beijing (CHB), Japanese in Tokyo (JPT) and Yoruba mother-father-child trios in Ibadan, Nigeria (YRI) were obtained from International HapMap Project. The good-fit χ(2) test was performed to test whether the frequencies of each genotype reached Hardy-Weinberg equilibrium. The differences of the genotype and allele distribution and trend analysis were detected via χ(2) test. Furthermore, multiple comparisons between two populations were analyzed by Lancaster's partition of chi-squares. There were significant differences of each genotype distribution among four ethnic populations (P < 0.05). The distribution of genotype frequencies and susceptible allele frequencies of salt sensitive candidate genes were similar between CHB and JPT. Excepted for GNB3/825T allele (38.8% vs.34.4%, P = 0.521), susceptible allele frequencies in AGT/235T (79.2% vs. 41.2%, P < 0.001), ACE/I (56.5% vs. 43.5%, P < 0.001), CYP11B2/-344T (74.1% vs. 56.7%, P = 0.001), ADDI/460Trp (51.8% vs. 20.4%, P < 0.001) and CYP3A5/A6986 (30.1% vs. 3.6%, P < 0.001) were significantly higher in CHB than in CEU. There distribution of ADDI/460Trp allele was significant lower in YRI (4%) than in CHB (51.8%, P < 0.001). However frequencies of AGT/235T, CYP11B2/-334T, GNB3/825T and CYP3A5/6986A in CHB were significantly lower than those in YRI (P < 0.05). Trend analyses showed significantly increased trend in AGT/235T (41.2% < 79.2% < 92.0%, P < 0.001), CYP11B2/-334T (56.7% < 74.1% < 84.8%, P < 0.001) and CYP3A5/6986A (3.6% < 30.1% < 84.5%, P < 0.001) in CEU, CHB and YRI. There are significant discrepancy of salt-sensitivity variant distributions among four ethnic populations in Hapmap database. The frequencies of the susceptible polymorphisms related to salt-sensitivity in Beijing Han population was similar with JPT, higher than in CEU but lower than in YRI, suggesting high salt-sensitive and risk for hypertension in Beijing Han population. Prevention and individual therapy for high-risk population will help to reduce the prevalence of salt-sensitive hypertension and cardiovascular diseases.

  12. Electrically detected magnetic resonance in a W-band microwave cavity

    NASA Astrophysics Data System (ADS)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-03-01

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  13. Evidence of auditory insensitivity to vocalization frequencies in two frogs.

    PubMed

    Goutte, Sandra; Mason, Matthew J; Christensen-Dalsgaard, Jakob; Montealegre-Z, Fernando; Chivers, Benedict D; Sarria-S, Fabio A; Antoniazzi, Marta M; Jared, Carlos; Almeida Sato, Luciana; Felipe Toledo, Luís

    2017-09-21

    The emergence and maintenance of animal communication systems requires the co-evolution of signal and receiver. Frogs and toads rely heavily on acoustic communication for coordinating reproduction and typically have ears tuned to the dominant frequency of their vocalizations, allowing discrimination from background noise and heterospecific calls. However, we present here evidence that two anurans, Brachycephalus ephippium and B. pitanga, are insensitive to the sound of their own calls. Both species produce advertisement calls outside their hearing sensitivity range and their inner ears are partly undeveloped, which accounts for their lack of high-frequency sensitivity. If unheard by the intended receivers, calls are not beneficial to the emitter and should be selected against because of the costs associated with signal production. We suggest that protection against predators conferred by their high toxicity might help to explain why calling has not yet disappeared, and that visual communication may have replaced auditory in these colourful, diurnal frogs.

  14. Optomechanical terahertz detection with single meta-atom resonator.

    PubMed

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  15. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  17. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  18. The Importance of High Frequency Observations for the SKA

    NASA Astrophysics Data System (ADS)

    Welch, William J.

    2007-12-01

    The plan for the Square Kilometer Array (SKA) is one or more very large arrays operating in two or more contiguous frequency bands: roughly 15 - 90 MHz, 120 - 500 MHz, and 500 MHz - 25 GHz. The last band may be further divided into roughly 500 MHz - 1.5 GHz and 1.5 - 25 GHz. Construction costs may delay or forgo one or more of these bands. We argue that the entire high frequency band is of special importance for astronomy both in the local universe and at great distances and early times. One of the Key Science Projects, the Cradle of Life, requires high sensitivity and resolution at frequencies up to 20 GHz for the study of forming disks around new stars with disk opacities too great for millimeter wave observations. The larger issue of star formation, a poorly understood area, will also benefit from high sensitivity observations at short cm wavelengths. Magnetic field measurements through the Zeeman effect in the densest star forming gas are best done using tracers such as CCS at frequencies of 11 and 22 GHz. The wide frequency range of the SKA permits the observation of multiple rotational transitions of long chain molecules, providing accurate measures of both gas densities and temperatures. The wide field of view will permit large scale surveys of entire star forming clouds revealing, at high resolution, the formation of clusters of pre-protostellar stars and class 0-2 protostars in line radiation. The continuum cm wave radiation will reveal the growth of grains in disks. On the larger scale, observations of CO at high redshifts will trace the evolution of star formation and the formation of metals back to the Epic of Reionization.

  19. Strain-Dependent Effects of Acute Alcohol on Synaptic Vesicle Recycling and Post-Tetanic Potentiation in Medial Glutamate Inputs to the Mouse Basolateral Amygdala.

    PubMed

    Gioia, Dominic A; McCool, Brian

    2017-04-01

    Inbred mouse strains are differentially sensitive to the acute effects of ethanol (EtOH) and are useful tools for examining how unique genomes differentially affect alcohol-related behaviors and physiology. DBA/2J mice have been shown to be sensitive to the acute anxiolytic effects of alcohol as well as the anxiogenic effects of withdrawal from chronic alcohol exposure, while B6 mice are resistant to both. Considering that the basolateral amygdala (BLA) is an important brain region for the acute and chronic effects of EtOH on fear and anxiety related behaviors, we hypothesized that there would be strain-dependent differences in the acute effects of EtOH in BLA slices. We utilized patch clamp electrophysiology in BLA coronal slices from 4 inbred mouse strains (A/J, BALBcJ, C57BL/6J, and DBA/2J) to examine how genetic background influences acute EtOH effects on synaptic vesicle recycling and post-tetanic potentiation (PTP) in response to low (2 Hz)- and high (40 Hz)-frequency stimulation. We found that EtOH inhibited synaptic vesicle recycling in a strain- and stimulation frequency-dependent manner. Vesicle recycling in DBA/2J and BALBcJ cells was inhibited by acute EtOH during both low- and high-frequency stimulation, while recycling measured from A/J cells was sensitive only during high-frequency stimulation. Recycling at C57BL/6J synapses was insensitive to EtOH regardless of stimulation frequency. We additionally found that cells from DBA/2J and BALBcJ mice were sensitive to EtOH-mediated inhibition of PTP. Acute EtOH application inhibited vesicle recycling and PTP at glutamatergic synapses in both a strain- and frequency-dependent fashion. Several presynaptic proteins that contribute to synaptic vesicle priming in addition to PTP have been implicated in alcohol-related behaviors, including Munc13, Munc18, and RIM proteins, making them potential candidates for the molecular mechanism controlling these effects. Copyright © 2017 by the Research Society on Alcoholism.

  20. A novel fiber optic geophone with high sensitivity for geo-acoustic detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing

    2014-12-01

    A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.

  1. Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas

    2017-05-01

    We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.

  2. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  3. Development of high sensitivity eight-element multiplexed fiber laser acoustic pressure hydrophone array and interrogation system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sun, Zhihui; Zhang, Xiaolei; Li, Shujuan; Song, Zhiqiang; Wang, Meng; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding; Xu, Xiangang

    2017-09-01

    Fiber laser hydrophones have got widespread concerns due to the unique advantages and broad application prospects. In this paper, the research results of the eight-element multiplexed fiber laser acoustic pressure array and the interrogation system are introduced, containing low-noise distributed feedback fiber laser (DFB-FL) fabrication, sensitivity enhancement packaging, and interferometric signal demodulation. The frequency response range of the system is 10Hz-10kHz, the laser frequency acoustic pressure sensitivity reaches 115 dB re Hz/Pa, and the equivalent noise acoustic pressure is less than 60μPa/Hz1/2. The dynamic range of the system is greater than 120 dB.

  4. Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency

    NASA Astrophysics Data System (ADS)

    Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin

    2017-07-01

    This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p  +  -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.

  5. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute

    1990-01-01

    As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.

  6. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions.

    PubMed

    Zhu, Jian; Katine, J A; Rowlands, Graham E; Chen, Yu-Jin; Duan, Zheng; Alzate, Juan G; Upadhyaya, Pramey; Langer, Juergen; Amiri, Pedram Khalili; Wang, Kang L; Krivorotov, Ilya N

    2012-05-11

    We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.

  8. Associations of reward sensitivity with food consumption, activity pattern, and BMI in children.

    PubMed

    De Decker, Annelies; Sioen, Isabelle; Verbeken, Sandra; Braet, Caroline; Michels, Nathalie; De Henauw, Stefaan

    2016-05-01

    In the current study, the associations of reward sensitivity with weight related behaviors and body mass index were investigated in a general population sample of 443 Flemish children (50.3% boys) aged 5.5-12 years. Cross-sectional data on palatable food consumption frequency, screen time, physical activity, parental education level and measured length and weight were collected. The Drive subscale of the 'Behavioral Inhibition Scale/Behavioral Activation Scale' was used as a short method to measure reward sensitivity. A significant positive association of reward sensitivity with the fast food and sweet drink consumption frequency was found. Furthermore, a significant positive association of reward sensitivity with the z-score of body mass index was demonstrated, which explained additional variance to the variance explained by palatable food consumption frequency, screen time, physical activity and parental education level. Hence, the assessment of reward sensitivity may have an added value to the assessment of weight-related behavior indicators when evaluating the determinants of overweight in a child. In sum, children high in reward sensitivity might be more attracted to fast food and sweet drinks, and hence, might be more vulnerable to develop unfavorable food habits and overweight. These findings suggest that considering inter-individual differences in reward sensitivity is of importance in future childhood obesity prevention campaigns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun

    2010-06-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)

  10. A high sensitivity heterodyne interferometer as a possible optical readout for the LISA gravitational reference sensor and its application to technology verification

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Cordero, Jorge; Peters, Achim; Johann, Ulrich; Braxmaier, Claus

    2017-11-01

    The gravitational wave detector LISA utilizes as current baseline a high sensitivity Optical Readout (ORO) for measuring the relative position and tilt of a free flying proof mass with respect to the satellite housing. The required sensitivities in the frequency band from 30 μHz to 1Hz are ˜ pm/ √ Hz for the translation√ and nrad/√ Hz for the tilt measurement. EADS Astrium, in collaboration with the Humboldt University Berlin and the University of Applied Sciences Konstanz, has realized a prototype ORO over the past years. The interferometer is based on a highly symmetric design where both, measurement and reference beam have a similar optical pathlength, and the same frequency and polarization. The technique of differential wavefront sensing (DWS) for tilt measurement is implemented. With our setup noise levels below 5pm/ √Hz for translation and below 10nrad/ √Hz for tilt measurements - both for frequencies above 10mHz - were demonstrated. We give an overview over the experimental setup, its current performance and the planned improvements. We also discuss the application to first verification of critical LISA aspects. As example we present measurements of the coefficient of thermal expansion (CTE) of various carbon fiber reinforced plastic (CFRP) including a "near-zero-CTE" tube.

  11. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P less than 0.00l). Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  12. High frequency QRS ECG predicts ischemic defects during myocardial perfusion imaging

    NASA Technical Reports Server (NTRS)

    Rahman, Atiar

    2006-01-01

    Background: Changes in high frequency QRS components of the electrocardiogram (HF QRS ECG) (150-250 Hz) are more sensitive than changes in conventional ST segments for detecting myocardial ischemia. We investigated the accuracy of 12-lead HF QRS ECG in detecting ischemia during adenosine tetrofosmin myocardial perfusion imaging (MPI). Methods and Results: 12-lead HF QRS ECG recordings were obtained from 45 patients before and during adenosine technetium-99 tetrofosmin MPI tests. Before the adenosine infusions, recordings of HF QRS were analyzed according to a morphological score that incorporated the number, type and location of reduced amplitude zones (RAZs) present in the 12 leads. During the adenosine infusions, recordings of HF QRS were analyzed according to the maximum percentage changes (in both the positive and negative directions) that occurred in root mean square (RMS) voltage amplitudes within the 12 leads. The best set of prospective HF QRS criteria had a sensitivity of 94% and a specificity of 83% for correctly identifying the MPI result. The sensitivity of simultaneous ST segment changes (18%) was significantly lower than that of any individual HF QRS criterion (P<0.001). Conclusions: Analysis of 12-lead HF QRS ECG is highly sensitive and specific for detecting ischemic perfusion defects during adenosine MPI stress tests and significantly more sensitive than analysis of conventional ST segments.

  13. The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression.

    PubMed

    Holmes, Amanda; Winston, Joel S; Eimer, Martin

    2005-10-01

    To investigate the impact of spatial frequency on emotional facial expression analysis, ERPs were recorded in response to low spatial frequency (LSF), high spatial frequency (HSF), and unfiltered broad spatial frequency (BSF) faces with fearful or neutral expressions, houses, and chairs. In line with previous findings, BSF fearful facial expressions elicited a greater frontal positivity than BSF neutral facial expressions, starting at about 150 ms after stimulus onset. In contrast, this emotional expression effect was absent for HSF and LSF faces. Given that some brain regions involved in emotion processing, such as amygdala and connected structures, are selectively tuned to LSF visual inputs, these data suggest that ERP effects of emotional facial expression do not directly reflect activity in these regions. It is argued that higher order neocortical brain systems are involved in the generation of emotion-specific waveform modulations. The face-sensitive N170 component was neither affected by emotional facial expression nor by spatial frequency information.

  14. Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard X-rays

    NASA Technical Reports Server (NTRS)

    Zodivaz, A. M.; Kaufmann, P.; Correia, E.; Costa, J. E. R.; Takakura, T.; Cliver, E. W.; Tapping, K. F.

    1986-01-01

    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard X-rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard X-ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy X-rays. The hardest X-ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at X-rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz.

  15. 47 CFR 80.913 - Radiotelephone receivers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pursuant to § 80.909 of this part. (c) If a very high frequency radiotelephone installation is provided... radiotelephone installation must have a sensitivity of at least 50 microvolts in the case of MF equipment, and 1... be capable of efficient operation when energized by the reserve source of energy. (g) The sensitivity...

  16. 47 CFR 80.913 - Radiotelephone receivers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pursuant to § 80.909 of this part. (c) If a very high frequency radiotelephone installation is provided... radiotelephone installation must have a sensitivity of at least 50 microvolts in the case of MF equipment, and 1... be capable of efficient operation when energized by the reserve source of energy. (g) The sensitivity...

  17. 47 CFR 80.913 - Radiotelephone receivers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pursuant to § 80.909 of this part. (c) If a very high frequency radiotelephone installation is provided... radiotelephone installation must have a sensitivity of at least 50 microvolts in the case of MF equipment, and 1... be capable of efficient operation when energized by the reserve source of energy. (g) The sensitivity...

  18. 47 CFR 80.913 - Radiotelephone receivers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pursuant to § 80.909 of this part. (c) If a very high frequency radiotelephone installation is provided... radiotelephone installation must have a sensitivity of at least 50 microvolts in the case of MF equipment, and 1... be capable of efficient operation when energized by the reserve source of energy. (g) The sensitivity...

  19. 47 CFR 80.913 - Radiotelephone receivers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pursuant to § 80.909 of this part. (c) If a very high frequency radiotelephone installation is provided... radiotelephone installation must have a sensitivity of at least 50 microvolts in the case of MF equipment, and 1... be capable of efficient operation when energized by the reserve source of energy. (g) The sensitivity...

  20. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    PubMed

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  1. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2

    DOE PAGES

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...

    2016-02-21

    A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less

  2. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  3. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2018-05-01

    We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

  4. Complex-valued time-series correlation increases sensitivity in FMRI analysis.

    PubMed

    Kociuba, Mary C; Rowe, Daniel B

    2016-07-01

    To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  6. Finite-frequency sensitivity kernels for head waves

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Shen, Yang; Zhao, Li

    2007-11-01

    Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.

  7. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of selected IMF, we discern planet bearing fault reasons according to the present peaks. The proposed spectral negentropy infogram based spectrum and demodulation analysis method is illustrated via a numerical simulated signal analysis. Considering the unique load bearing feature of planet bearings, experimental validations under both no-load and loading conditions are done to verify the derived fault symptoms and the proposed method. The localized faults on outer race, rolling element and inner race are successfully diagnosed.

  8. The resonant body transistor.

    PubMed

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  9. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arash, Behrouz; Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de; Jiang, Jin-Wu

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atomsmore » and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.« less

  10. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  11. Thermal effects on nonlinear vibration of a carbon nanotube-based mass sensor using finite element analysis

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik

    2017-01-01

    In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.

  12. A closed-loop phase-locked interferometer for wide bandwidth position sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Andrew J., E-mail: Andrew.Fleming@Newcastle.edu.au; Routley, Ben S., E-mail: Ben.Routley@Newcastle.edu.au

    This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interferogram. In this configuration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization ormore » modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instrument is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, ultrasonic devices, and sensors such as surface acoustic wave detectors.« less

  13. Flow sensing by pinniped whiskers

    PubMed Central

    Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F. D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G.

    2011-01-01

    Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair. PMID:21969689

  14. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  15. Enhanced inductance in laminated multilayer magnetic planar inductor for sensitive magnetic field detection

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Wen, Yumei; Song, Fapeng; Li, Ping; Yu, Shumin

    2018-04-01

    The authors reported laminated multilayer magnetic planar inductors for sensitive magnetic field detection, which consist of two serially connected sandwich planar inductors (i.e., FeCuNbSiB/micro planar coil/FeCuNbSiB/micro planar coil/FeCuNbSiB). When ac current is applied to coils, the greatly increased inductance by the incorporated high permeability magnetic material and enlarged mutual-inductance among coils significantly improve the sensor sensitivity to the dc magnetic field. The demagnetizing field is also found to affect the performance severely when the shape and the number of magnetic layers vary. The investigation indicates that the proposed laminate can provide an inductance ratio of 665% at the frequency of 1 kHz. By connecting the sensor with a capacitor, the sensor output with varying dc magnetic fields is obtained by tuning the resonant frequency shift. The study indicates that the proposed sensor can provide a sensitivity of about 3.57 kHz/Oe with a resolution of 28 nT between 2 Oe and 60 Oe, which outperforms most of the magnetic sensors with frequency shifting output.

  16. Probing dynamics of micro-magnets with multi-mode superconducting resonator

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Shchetinin, I. V.; Dzhumaev, P. S.; Averkin, A. S.; Kozlov, S. N.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.

    2018-05-01

    In this work, we propose and explore a sensitive technique for investigation of ferromagnetic resonance and corresponding magnetic properties of individual micro-scaled and/or weak ferromagnetic samples. The technique is based on coupling the investigated sample to a high-Q transmission line superconducting resonator, where the response of the sample is studied at eigen frequencies of the resonator. The high quality factor of the resonator enables sensitive detection of weak absorption losses at multiple frequencies of the ferromagnetic resonance. Studying the microwave response of individual micro-scaled permalloy rectangles, we have confirmed the superiority of fluxometric demagnetizing factor over the commonly accepted magnetometric one and have depicted the demagnetization of the sample, as well as magnetostatic standing wave resonance.

  17. Highly sensitive antenna using inkjet overprinting with particle-free conductive inks.

    PubMed

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Otsuka, Kanji

    2012-11-01

    Printed antennas with low signal losses and fast response in high-frequency bands have been required. Here we reported on highly sensitive antennas using additive patterning of particle-free metallo-organic decomposition silver inks. Inkjet overprinting of metallo-organic decomposition inks onto copper foil and silver nanowire line produced antenna with mirror surfaces. As a result, the overprinted antennas decreased their return losses at 0.5-4.0 GHz and increased the speed of data communication in WiFi network.

  18. Broadband External-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2005-01-01

    A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.

  19. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  20. Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms.

    PubMed

    Szymanski, M D; Bain, D E; Kiehl, K; Pennington, S; Wong, S; Henry, K R

    1999-08-01

    Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  2. Preformed Frequencies of Cytomegalovirus (CMV)–Specific Memory T and B Cells Identify Protected CMV-Sensitized Individuals Among Seronegative Kidney Transplant Recipients

    PubMed Central

    Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol

    2014-01-01

    Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845

  3. High speed strain measurement of active mode locking FBG laser sensor using chirped FBG cavity

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Kim, Joon Young; Park, Chang Hyun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo

    2017-04-01

    We propose a high speed strain measurement method using an active mode locking (AML) fiber Bragg grating (FBG) laser sensor with a chirped FBG cavity. The mode-locked frequency of the AML laser depends on both the position and Bragg wavelength of the FBG. Thus, the mode-locked frequency of cascaded FBGs can be detected independently along the cavity length of cascaded FBGs. The strain across FBGs can be interrogated dynamically by monitoring the change in mode-locked frequency. In this respect, the chirped FBG critically improves the frequency sensitivity to Bragg wavelength shift as a function of increasing dispersion in the AML cavity. The strain measurement of the FBG sensor shows a highly linear response, with an R-squared value of 0.9997.

  4. The Case for Frequency Sensitivity in Orthographic Learning

    ERIC Educational Resources Information Center

    McMurray, Sharon; McVeigh, Claire

    2016-01-01

    This paper positions the importance of frequency sensitivity in the development of orthographic knowledge throughout childhood and promotes learning to spell as a vehicle which may be used effectively to develop this sensitivity. It is suggested that orthographic knowledge is advanced via a process of "frequency sensitivity" to…

  5. A spectral power analysis of driving behavior changes during the transition from nondistraction to distraction.

    PubMed

    Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R

    2017-11-17

    This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing driving performance compared to time domain analyses.

  6. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.

    PubMed

    Watanabe, Daiki; Kanzaki, Keita; Kuratani, Mai; Matsunaga, Satoshi; Yanaka, Noriyuki; Wada, Masanobu

    2015-06-01

    The aim of this study was to examine whether prolonged low-frequency force depression (PLFFD) that occurs in situ is the result of decreased myofibrillar Ca(2+) sensitivity and/or reduced sarcoplasmic reticulum (SR) Ca(2+) release. Intact rat gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected 30 min following the cessation of stimulation. Skinned fibre and whole muscle analyses were performed in the superficial region composed exclusively of type IIB fibres. Fatiguing stimulation significantly reduced the ratio of force at low frequency to that at high frequency to 65% in skinned fibres (1 vs. 50 Hz) and 73% in whole muscles (20 vs. 100 Hz). In order to evaluate changes in myofibrillar Ca(2+) sensitivity and ryanodine receptor caffeine sensitivity, skinned fibres were activated in Ca(2+)- and caffeine-containing solutions, respectively. Skinned fibres from fatigued muscles displayed decreased caffeine sensitivity together with increased myofibrillar Ca(2+) sensitivity. Treatment with 2,2'-dithiodipyridine and reduced glutathione induced a smaller increase in myofibrillar Ca(2+)sensitivity in fatigued than in rested fibres. In fatigued muscles, S-glutathionylation of troponin I was increased and submaximal SR Ca(2+) release, induced by 4-chloro-m-cresol, was decreased. These findings suggest that in the early stage of PLFFD that occurs in fast-twitch muscles of exercising animals and humans, S-glutathionylation of troponin I may attenuate PLFFD by increasing myofibrillar Ca(2+) sensitivity and that under such a circumstance, PLFFD may be ascribable to failure of SR Ca(2+) release.

  7. SENSITIVITY OF CONDITIONAL-DISCRIMINATION PERFORMANCE TO WITHIN-SESSION VARIATION OF REINFORCER FREQUENCY

    PubMed Central

    Ward, Ryan D; Odum, Amy L

    2008-01-01

    The present experiment developed a methodology for assessing sensitivity of conditional-discrimination performance to within-session variation of reinforcer frequency. Four pigeons responded under a multiple schedule of matching-to-sample components in which the ratio of reinforcers for correct S1 and S2 responses was varied across components within session. Initially, five components, each arranging a different reinforcer-frequency ratio (from 1∶9 to 9∶1), were presented randomly within a session. Under this condition, sensitivity to reinforcer frequency was low. Sensitivity failed to improve after extended exposure to this condition, and under a condition in which only three reinforcer-frequency ratios were varied within session. In a later condition, three reinforcer-frequency ratios were varied within session, but the reinforcer-frequency ratio in effect was differentially signaled within each component. Under this condition, values of sensitivity were similar to those traditionally obtained when reinforcer-frequency ratios for correct responses are varied across conditions. The effects of signaled vs. unsignaled reinforcer-frequency ratios were replicated in two subsequent conditions. The present procedure could provide a practical alternative to parametric variation of reinforcer frequency across conditions and may be useful in characterizing the effects of a variety of manipulations on steady-state sensitivity to reinforcer frequency. PMID:19070338

  8. Singular value decomposition based impulsive noise reduction in multi-frequency phase-sensitive demodulation of electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Cui, Ziqiang; Yue, Shihong; Wang, Huaxiang

    2018-06-01

    As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.

  9. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics

    PubMed Central

    Barboni, M.T.S.; Gomes, B.D.; Souza, G.S.; Rodrigues, A.R.; Ventura, D.F.; Silveira, L.C.L.

    2013-01-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus. PMID:23369980

  10. Toxic shock syndrome: characterization of human immune responses to TSST-1 and evidence for sensitivity thresholds.

    PubMed

    Kimber, Ian; Nookala, Suba; Davis, Catherine C; Gerberick, G Frank; Tucker, Heidi; Foertsch, Leslie M; Dearman, Rebecca J; Parsonnet, Jeffrey; Goering, Richard V; Modern, Paul; Donnellen, Meghan; Morel, Jorge; Kotb, Malak

    2013-07-01

    Noninvasive vaginal infections by Staphylococcus aureus strains producing the superantigen TSST-1 can cause menstrual toxic shock syndrome (mTSS). With the objective of exploring the basis for differential susceptibility to mTSS, the relative responsiveness to TSST-1 of healthy women has been investigated. Peripheral blood mononuclear cells from healthy donors were incubated with purified TSST-1 or with the T-cell mitogen phytohemmaglutinin (PHA), and proliferation was measured. The concentrations of TSST-1 and PHA required to elicit a response equivalent to 15% of the maximal achievable response (EC15) were determined. Although with PHA, EC15 values were comparable between donors, subjects could be classified as being of high, medium, or low sensitivity based on responsiveness to TSST-1. Sensitivity to TSST-1-induced proliferation was associated with increased production of the cytokines interleukin-2 and interferon-γ. When the entire T lymphocyte population was considered, there were no differences between sensitivity groups with respect to the frequency of cells known to be responsive to TSST-1 (those bearing CD3(+) Vβ2(+)). However, there was an association between sensitivity to TSST-1 and certain HLA-class II haplotypes. Thus, the frequencies of DR7DQ2, DR14DQ5, DR4DQ8, and DR8DQ4 haplotypes were greater among those with high sensitivity, a finding confirmed by analysis of responses to immortalized homozygous B cell lines. Collectively, the results reveal that factors other than neutralizing antibody and the frequency of Vβ2(+) T lymphocytes determine immunological responsiveness to TSST-1. Differential responsiveness of lymphocytes to TSST-1 may form the basis of interindividual variations in susceptibility to mTSS.

  11. Low-field MRI can be more sensitive than high-field MRI

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  12. Spectrotemporal modulation sensitivity for hearing-impaired listeners: Dependence on carrier center frequency and the relationship to speech intelligibility

    PubMed Central

    Mehraei, Golbarg; Gallun, Frederick J.; Leek, Marjorie R.; Bernstein, Joshua G. W.

    2014-01-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4–32 Hz), spectral ripple density [0.5–4 cycles/octave (c/o)] and carrier center frequency (500–4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4–12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements. PMID:24993215

  13. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    NASA Astrophysics Data System (ADS)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  14. Monitor Tone Generates Stress in Computer and VDT Operators: A Preliminary Study.

    ERIC Educational Resources Information Center

    Dow, Caroline; Covert, Douglas C.

    A near-ultrasonic pure tone of 15,570 Herz generated by flyback transformers in computer and video display terminal (VDT) monitors may cause severe non-specific irritation or stress disease in operators. Women hear higher frequency sounds than men and are twice as sensitive to "too loud" noise. Pure tones at high frequencies are more…

  15. High sensitivity field asymmetric ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  16. The dependence of binocular contrast sensitivities on binocular single vision in normal and amblyopic human subjects

    PubMed Central

    Hood, A S; Morrison, J D

    2002-01-01

    We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347

  17. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes.

    PubMed

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-09-01

    Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.

  18. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes

    PubMed Central

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-01-01

    Purpose Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Methods Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Results Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change −0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>−0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Conclusions Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work. PMID:26393671

  19. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  20. The Cosmology Large Angular Scale Surveyor

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  1. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  2. USING LEAKED POWER TO MEASURE INTRINSIC AGN POWER SPECTRA OF RED-NOISE TIME SERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, S. F.; Xue, Y. Q., E-mail: zshifu@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn

    Fluxes emitted at different wavebands from active galactic nuclei (AGNs) fluctuate at both long and short timescales. The variation can typically be characterized by a broadband power spectrum, which exhibits a red-noise process at high frequencies. The standard method of estimating the power spectral density (PSD) of AGN variability is easily affected by systematic biases such as red-noise leakage and aliasing, in particular when the observation spans a relatively short period and is gapped. Focusing on the high-frequency PSD that is strongly distorted due to red-noise leakage and usually not significantly affected by aliasing, we develop a novel and observablemore » normalized leakage spectrum (NLS), which sensitively describes the effects of leaked red-noise power on the PSD at different temporal frequencies. Using Monte Carlo simulations, we demonstrate how an AGN underlying PSD sensitively determines the NLS when there is severe red-noise leakage, and thereby how the NLS can be used to effectively constrain the underlying PSD.« less

  3. One-year audiologic monitoring of individuals exposed to the 1995 Oklahoma City bombing.

    PubMed

    Van Campen, L E; Dennis, J M; Hanlin, R C; King, S B; Velderman, A M

    1999-05-01

    This longitudinal study evaluated subjective, behavioral, and objective auditory function in 83 explosion survivors. Subjects were evaluated quarterly for 1 year with conventional pure-tone and extended high-frequencies audiometry, otoscopic inspections, immittance and speech audiometry, and questionnaires. There was no obvious relationship between subject location and symptoms or test results. Tinnitus, distorted hearing, loudness sensitivity, and otalgia were common symptoms. On average, 76 percent of subjects had predominantly sensorineural hearing loss at one or more frequencies. Twenty-four percent of subjects required amplification. Extended high frequencies showed evidence of acoustic trauma even when conventional frequencies fell within the normal range. Males had significantly poorer responses than females across frequencies. Auditory status of the group was significantly compromised and unchanged at the end of 1-year postblast.

  4. Hearing at low and infrasonic frequencies.

    PubMed

    Møller, H; Pedersen, C S

    2004-01-01

    The human perception of sound at frequencies below 200 Hz is reviewed. Knowledge about our perception of this frequency range is important, since much of the sound we are exposed to in our everyday environment contains significant energy in this range. Sound at 20-200 Hz is called low-frequency sound, while for sound below 20 Hz the term infrasound is used. The hearing becomes gradually less sensitive for decreasing frequency, but despite the general understanding that infrasound is inaudible, humans can perceive infrasound, if the level is sufficiently high. The ear is the primary organ for sensing infrasound, but at levels somewhat above the hearing threshold it is possible to feel vibrations in various parts of the body. The threshold of hearing is standardized for frequencies down to 20 Hz, but there is a reasonably good agreement between investigations below this frequency. It is not only the sensitivity but also the perceived character of a sound that changes with decreasing frequency. Pure tones become gradually less continuous, the tonal sensation ceases around 20 Hz, and below 10 Hz it is possible to perceive the single cycles of the sound. A sensation of pressure at the eardrums also occurs. The dynamic range of the auditory system decreases with decreasing frequency. This compression can be seen in the equal-loudness-level contours, and it implies that a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds, it may have the effect that a sound, which is inaudible to some people, may be loud to others. Some investigations give evidence of persons with an extraordinary sensitivity in the low and infrasonic frequency range, but further research is needed in order to confirm and explain this phenomenon.

  5. Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats

    PubMed Central

    Hua, Tianmiao; Bao, Pinglei; Huang, Chang-Bing; Wang, Zhenhua; Xu, Jinwang

    2010-01-01

    Summary Background Perceptual learning has been documented in adult humans over a wide range of tasks. Although the often observed specificity of learning is generally interpreted as evidence for training-induced plasticity in early cortical areas, physiological evidence for training-induced changes in early visual cortical areas is modest, despite reports of learning-induced changes of cortical activities in fMRI studies. To reveal the physiological bases of perceptual learning, we combined psychophysical measurements with extracellular single-unit recording under anesthetized preparations, and examined the effects of training in grating orientation identification on both perceptual and neuronal contrast sensitivity functions of cats. Results We have found that training significantly improved perceptual contrast sensitivity of the cats to gratings with the spatial frequencies near the ‘trained’ spatial frequency, with stronger effects in the trained eye. Consistent with behavioral assessments, the mean contrast sensitivity of neurons recorded from V1 of the trained cats was significantly higher than that of neurons recorded from the untrained cats. Furthermore, in the trained cats, the contrast sensitivity of V1 neurons responding preferentially to stimuli presented via the trained eyes was significantly greater than that of neurons responding preferentially to stimuli presented via the ‘untrained’ eyes. The effect was confined to the trained spatial frequencies. In both trained and untrained cats, the neuronal contrast sensitivity functions derived from the contrast sensitivity of the individual neurons were highly correlated with behaviorally determined perceptual contrast sensitivity functions. Conclusions We suggest that training-induced neuronal contrast-gain in area V1 underlies behaviorally determined perceptual contrast sensitivity improvements. PMID:20451388

  6. Phase correlation of laser waves with arbitrary frequency spacing.

    PubMed

    Huss, A F; Lammegger, R; Neureiter, C; Korsunsky, E A; Windholz, L

    2004-11-26

    The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show that the mechanism of correlation in a Lambda scheme is restricted to high-frequency noise components, whereas in a double-Lambda scheme, due to the laser phase locking in a closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate electromagnetic fields with carrier frequency differences beyond the GHz regime.

  7. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.

    PubMed

    Li, Jielin; Hassebrook, Laurence G; Guan, Chun

    2003-01-01

    Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.

  8. Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales.

    PubMed

    Mourlam, Mickaël J; Orliac, Maeva J

    2017-06-19

    Mysticeti (baleen whales) and Odontoceti (toothed whales) today greatly differ in their hearing abilities: Mysticeti are presumed to be sensitive to infrasonic noises [1-3], whereas Odontoceti are sensitive to ultrasonic sounds [4-6]. Two competing hypotheses exist regarding the attainment of hearing abilities in modern whales: ancestral low-frequency sensitivity [7-13] or ancestral high-frequency sensitivity [14, 15]. The significance of these evolutionary scenarios is limited by the undersampling of both early-diverging cetaceans (archaeocetes) and terrestrial hoofed relatives of cetaceans (non-cetacean artiodactyls). Here, we document for the first time the bony labyrinth, the hollow cavity housing the hearing organ, of two species of protocetid whales from Lutetian deposits (ca. 46-43 Ma) of Kpogamé, Togo. These archaeocete cetaceans, which are transitional between terrestrial and aquatic forms, prove to be a key for determining the hearing abilities of early whales. We propose a new evolutionary picture for the early stages of this history, based on qualitative and quantitative studies of the cochlear morphology of an unparalleled sample of extant and extinct land artiodactyls and cetaceans. Contrary to the hypothesis that archaeocetes have been more sensitive to high-frequency sounds than their terrestrial ancestors [15], we demonstrate that early cetaceans presented a cochlear functional pattern close to that of their terrestrial relatives, and that specialization for infrasonic or ultrasonic hearing in Mysticeti or Odontoceti, respectively, instead only occurred in fully aquatic whales, after the emergence of Neoceti (Mysticeti+Odontoceti). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phase-locked and non-phase-locked EEG responses to pinprick stimulation before and after experimentally-induced secondary hyperalgesia.

    PubMed

    van den Broeke, Emanuel N; de Vries, Bart; Lambert, Julien; Torta, Diana M; Mouraux, André

    2017-08-01

    Pinprick-evoked brain potentials (PEPs) have been proposed as a technique to investigate secondary hyperalgesia and central sensitization in humans. However, the signal-to-noise (SNR) of PEPs is low. Here, using time-frequency analysis, we characterize the phase-locked and non-phase-locked EEG responses to pinprick stimulation, before and after secondary hyperalgesia. Secondary hyperalgesia was induced using high-frequency electrical stimulation (HFS) of the left/right forearm skin in 16 volunteers. EEG responses to 64 and 96mN pinprick stimuli were elicited from both arms, before and 20min after HFS. Pinprick stimulation applied to normal skin elicited a phase-locked low-frequency (<5Hz) response followed by a reduction of alpha-band oscillations (7-10Hz). The low-frequency response was significantly increased when pinprick stimuli were delivered to the area of secondary hyperalgesia. There was no change in the reduction of alpha-band oscillations. Whereas the low-frequency response was enhanced for both 64 and 96mN intensities, PEPs analyzed in the time domain were only significantly enhanced for the 64mN intensity. Time-frequency analysis may be more sensitive than conventional time-domain analysis in revealing EEG changes associated to secondary hyperalgesia. Time-frequency analysis of PEPs can be used to investigate central sensitization in humans. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  11. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, G.; Giordano, O.; Scandurra, G.

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less

  12. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  13. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  14. Improving the sensitivity of a torsion pendulum by using an optical spring method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qinglan; Yeh Hsienchi; Zhou Zebing

    We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulummore » are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.« less

  15. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    PubMed

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

  16. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-07-01

    We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.

  17. How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli

    PubMed Central

    Bernstein, Leslie R.; Trahiotis, Constantine

    2009-01-01

    This study addressed how manipulating certain aspects of the envelopes of high-frequency stimuli affects sensitivity to envelope-based interaural temporal disparities (ITDs). Listener’s threshold ITDs were measured using an adaptive two-alternative paradigm employing “raised-sine” stimuli [John, M. S., et al. (2002). Ear Hear. 23, 106–117] which permit independent variation in their modulation frequency, modulation depth, and modulation exponent. Threshold ITDs were measured while manipulating modulation exponent for stimuli having modulation frequencies between 32 and 256 Hz. The results indicated that graded increases in the exponent led to graded decreases in envelope-based threshold ITDs. Threshold ITDs were also measured while parametrically varying modulation exponent and modulation depth. Overall, threshold ITDs decreased with increases in the modulation depth. Unexpectedly, increases in the exponent of the raised-sine led to especially large decreases in threshold ITD when the modulation depth was low. An interaural correlation-based model was generally able to capture changes in threshold ITD stemming from changes in the exponent, depth of modulation, and frequency of modulation of the raised-sine stimuli. The model (and several variations of it), however, could not account for the unexpected interaction between the value of raised-sine exponent and its modulation depth. PMID:19425666

  18. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by super-massive black-hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-05-01

    We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.

  19. Seismic waveform sensitivity to global boundary topography

    NASA Astrophysics Data System (ADS)

    Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico

    2012-09-01

    We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.

  20. Is stress a trigger factor for migraine?

    PubMed

    Schoonman, G G; Evers, D J; Ballieux, B E; de Geus, E J; de Kloet, E R; Terwindt, G M; van Dijk, J G; Ferrari, M D

    2007-06-01

    Although mental stress is commonly considered to be an important trigger factor for migraine, experimental evidence for this belief is yet lacking. To study the temporal relationship between changes in stress-related parameters (both subjective and objective) and the onset of a migraine attack. This was a prospective, ambulatory study in 17 migraine patients. We assessed changes in perceived stress and objective biological measures for stress (saliva cortisol, heart rate average [HRA], and heart rate variability [low-frequency power and high-frequency power]) over 4 days prior to the onset of spontaneous migraine attacks. Analyses were repeated for subgroups of patients according to whether or not they felt their migraine to be triggered by stress. There were no significant temporal changes over time for the whole group in perceived stress (p=0.50), morning cortisol (p=0.73), evening cortisol (p=0.55), HRA (p=0.83), low-frequency power (p=0.99) and high-frequency power (p=0.97) prior to or during an attack. Post hoc analysis of the subgroup of nine stress-sensitive patients who felt that >2/3 of their migraine attacks were triggered by psychosocial stress, revealed an increase for perceived stress (p=0.04) but no changes in objective stress response measures. At baseline, this group also showed higher scores on the Penn State Worry Questionnaire (p=0.003) and the Cohen Perceived Stress Scale (p=0.001) compared to non-stress-sensitive patients. Although stress-sensitive patients, in contrast to non-stress-sensitive patients, may perceive more stress in the days before an impending migraine attack, we failed to detect any objective evidence for a biological stress response before or during migraine attacks.

  1. Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films

    NASA Astrophysics Data System (ADS)

    Wang, Li-Peng

    2001-12-01

    In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.

  2. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    PubMed

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  3. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  4. Noise in the passenger cars of high-speed trains.

    PubMed

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  5. Peak alpha frequency is a neural marker of cognitive function across the autism spectrum.

    PubMed

    Dickinson, Abigail; DiStefano, Charlotte; Senturk, Damla; Jeste, Shafali Spurling

    2018-03-01

    Cognitive function varies substantially and serves as a key predictor of outcome and response to intervention in autism spectrum disorder (ASD), yet we know little about the neurobiological mechanisms that underlie cognitive function in children with ASD. The dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition in typical development. Peak alpha frequency is also highly sensitive to developmental changes in neural networks, which underlie cognitive function, and therefore, it holds promise as a developmentally sensitive neural marker of cognitive function in ASD. Here, we measured peak alpha band frequency under a task-free condition in a heterogeneous sample of children with ASD (N = 59) and age-matched typically developing (TD) children (N = 38). At a group level, peak alpha frequency was decreased in ASD compared to TD children. Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal cognition. As peak alpha frequency reflects the integrity of neural networks, our results suggest that deviations in network development may underlie cognitive function in individuals with ASD. By shedding light on the neurobiological correlates of cognitive function in ASD, our findings lay the groundwork for considering peak alpha frequency as a useful biomarker of cognitive function within this population which, in turn, will facilitate investigations of early markers of cognitive impairment and predictors of outcome in high risk infants. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  7. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  8. Mechanics of the Mammalian Cochlea

    PubMed Central

    Robles, Luis; Ruggero, Mario A.

    2013-01-01

    In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697

  9. Finite-frequency structural sensitivities of short-period compressional body waves

    NASA Astrophysics Data System (ADS)

    Fuji, Nobuaki; Chevrot, Sébastien; Zhao, Li; Geller, Robert J.; Kawai, Kenji

    2012-07-01

    We present an extension of the method recently introduced by Zhao & Chevrot for calculating Fréchet kernels from a precomputed database of strain Green's tensors by normal mode summation. The extension involves two aspects: (1) we compute the strain Green's tensors using the Direct Solution Method, which allows us to go up to frequencies as high as 1 Hz; and (2) we develop a spatial interpolation scheme so that the Green's tensors can be computed with a relatively coarse grid, thus improving the efficiency in the computation of the sensitivity kernels. The only requirement is that the Green's tensors be computed with a fine enough spatial sampling rate to avoid spatial aliasing. The Green's tensors can then be interpolated to any location inside the Earth, avoiding the need to store and retrieve strain Green's tensors for a fine sampling grid. The interpolation scheme not only significantly reduces the CPU time required to calculate the Green's tensor database and the disk space to store it, but also enhances the efficiency in computing the kernels by reducing the number of I/O operations needed to retrieve the Green's tensors. Our new implementation allows us to calculate sensitivity kernels for high-frequency teleseismic body waves with very modest computational resources such as a laptop. We illustrate the potential of our approach for seismic tomography by computing traveltime and amplitude sensitivity kernels for high frequency P, PKP and Pdiff phases. A comparison of our PKP kernels with those computed by asymptotic ray theory clearly shows the limits of the latter. With ray theory, it is not possible to model waves diffracted by internal discontinuities such as the core-mantle boundary, and it is also difficult to compute amplitudes for paths close to the B-caustic of the PKP phase. We also compute waveform partial derivatives for different parts of the seismic wavefield, a key ingredient for high resolution imaging by waveform inversion. Our computations of partial derivatives in the time window where PcP precursors are commonly observed show that the distribution of sensitivity is complex and counter-intuitive, with a large contribution from the mid-mantle region. This clearly emphasizes the need to use accurate and complete partial derivatives in waveform inversion.

  10. Novel parametric reduced order model for aeroengine blade dynamics

    NASA Astrophysics Data System (ADS)

    Yuan, Jie; Allegri, Giuliano; Scarpa, Fabrizio; Rajasekaran, Ramesh; Patsias, Sophoclis

    2015-10-01

    The work introduces a novel reduced order model (ROM) technique to describe the dynamic behavior of turbofan aeroengine blades. We introduce an equivalent 3D frame model to describe the coupled flexural/torsional mode shapes, with their relevant natural frequencies and associated modal masses. The frame configurations are identified through a structural identification approach based on a simulated annealing algorithm with stochastic tunneling. The cost functions are constituted by linear combinations of relative errors associated to the resonance frequencies, the individual modal assurance criteria (MAC), and on either overall static or modal masses. When static masses are considered the optimized 3D frame can represent the blade dynamic behavior with an 8% error on the MAC, a 1% error on the associated modal frequencies and a 1% error on the overall static mass. When using modal masses in the cost function the performance of the ROM is similar, but the overall error increases to 7%. The approach proposed in this paper is considerably more accurate than state-of-the-art blade ROMs based on traditional Timoshenko beams, and provides excellent accuracy at reduced computational time when compared against high fidelity FE models. A sensitivity analysis shows that the proposed model can adequately predict the global trends of the variations of the natural frequencies when lumped masses are used for mistuning analysis. The proposed ROM also follows extremely closely the sensitivity of the high fidelity finite element models when the material parameters are used in the sensitivity.

  11. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    PubMed

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  12. Compact laser interferometer for translation and tilt measurement as optical readout for the LISA inertial sensor

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2007-10-01

    The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an ƒ -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an ƒ -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.

  13. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.

    2017-03-01

    An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.

  14. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.

  15. Effect of CoFeB electrode compositions on low frequency magnetic noise in tunneling magnetoresistance sensors

    NASA Astrophysics Data System (ADS)

    Wisniowski, P.; Dabek, M.; Wrona, J.; Cardoso, S.; Freitas, P. P.

    2017-12-01

    We study the effect of CoFeB electrode compositions on frequency dependent magnetic noise in tunneling magnetoresistance sensors with variable field sensitivity. We use the relationship between the normalized 1/f noise parameter (αt) and the magnetoresistance sensitivity product (MSP) to compare the magnetic noise of sensors with Co40Fe40B20, Co60Fe20B20, and Co20Fe60B20 electrodes. We observed the lowest slope of the αt vs. MSP curve of 9.1 × 10-13 μm3 T and a 1/f noise corner as low as 300 Hz for the sensors with Co60Fe20B20 electrodes. Furthermore, all sensors at a specific value of the magnetoresistance sensitivity product showed a deviation from the linear relationship between αt and MSP. The results show that in the design of high sensitivity CoFeB-MgO-CoFeB based tunneling magnetoresistance sensors for low field detection, selection of CoFeB electrodes is important and can be used to significantly improve the low frequency field detection limit.

  16. Ontogenetic Development of Weberian Ossicles and Hearing Abilities in the African Bullhead Catfish

    PubMed Central

    Lechner, Walter; Heiss, Egon; Schwaha, Thomas; Glösmann, Martin; Ladich, Friedrich

    2011-01-01

    Background The Weberian apparatus of otophysine fishes facilitates sound transmission from the swimbladder to the inner ear to increase hearing sensitivity. It has been of great interest to biologists since the 19th century. No studies, however, are available on the development of the Weberian ossicles and its effect on the development of hearing in catfishes. Methodology/Principal Findings We investigated the development of the Weberian apparatus and auditory sensitivity in the catfish Lophiobagrus cyclurus. Specimens from 11.3 mm to 85.5 mm in standard length were studied. Morphology was assessed using sectioning, histology, and X-ray computed tomography, along with 3D reconstruction. Hearing thresholds were measured utilizing the auditory evoked potentials recording technique. Weberian ossicles and interossicular ligaments were fully developed in all stages investigated except in the smallest size group. In the smallest catfish, the intercalarium and the interossicular ligaments were still missing and the tripus was not yet fully developed. Smallest juveniles revealed lowest auditory sensitivity and were unable to detect frequencies higher than 2 or 3 kHz; sensitivity increased in larger specimens by up to 40 dB, and frequency detection up to 6 kHz. In the size groups capable of perceiving frequencies up to 6 kHz, larger individuals had better hearing abilities at low frequencies (0.05–2 kHz), whereas smaller individuals showed better hearing at the highest frequencies (4–6 kHz). Conclusions/Significance Our data indicate that the ability of otophysine fish to detect sounds at low levels and high frequencies largely depends on the development of the Weberian apparatus. A significant increase in auditory sensitivity was observed as soon as all Weberian ossicles and interossicular ligaments are present and the chain for transmitting sounds from the swimbladder to the inner ear is complete. This contrasts with findings in another otophysine, the zebrafish, where no threshold changes have been observed. PMID:21533262

  17. Comprehensive benchmarking of SNV callers for highly admixed tumor data

    PubMed Central

    Bohnert, Regina; Vivas, Sonia

    2017-01-01

    Precision medicine attempts to individualize cancer therapy by matching tumor-specific genetic changes with effective targeted therapies. A crucial first step in this process is the reliable identification of cancer-relevant variants, which is considerably complicated by the impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of 19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel data and up to 13 distinct parameter configurations for each tool. We found vast differences among callers. Based on our comprehensive analyses we recommend joint tumor-normal calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and HaplotypeCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a single tumor sample, LoFreqStar performed best. We further found that tumor impurity and admixture had a negative impact on precision, and in particular, sensitivity in whole exome experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies, sensitivity dropped significantly, even when variants were originally present in the tumor at 100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel data, but whole exome data allowed more efficient identification of germline variants. Effective somatic variant calling requires high-quality pathological samples with minimal admixture, a consciously selected sequencing strategy, and the appropriate variant calling tool with settings optimized for the chosen type of data. PMID:29020110

  18. Frequency Drives Lexical Access in Reading but not in Speaking: The Frequency-Lag Hypothesis

    PubMed Central

    Gollan, Tamar H.; Slattery, Timothy J.; Goldenberg, Diane; van Assche, Eva; Duyck, Wouter; Rayner, Keith

    2010-01-01

    To contrast mechanisms of lexical access in production versus comprehension we compared the effects of word-frequency (high, low), context (none, low-constraining, high-constraining), and level of English proficiency (monolinguals, Spanish-English bilinguals, Dutch-English bilinguals), on picture naming, lexical decision, and eye fixation times. Semantic constraint effects were larger in production than in reading. Frequency effects were larger in production than in reading without constraining context, but larger in reading than in production with constraining context. Bilingual disadvantages were modulated by frequency in production but not in eye fixation times, were not smaller in low-constraining context, and were reduced by high-constraining context only in production and only at the lowest level of English proficiency. These results challenge existing accounts of bilingual disadvantages, and reveal fundamentally different processes during lexical access across modalities, entailing a primarily semantically driven search in production, but a frequency driven search in comprehension. The apparently more interactive process in production than comprehension could simply reflect a greater number of frequency-sensitive processing stages in production. PMID:21219080

  19. DWT-Based High Capacity Audio Watermarking

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This letter suggests a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition, for which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and then, for embedding, the wavelet samples are changed based on the average of the relevant frame. The experimental results show that the method has very high capacity (about 5.5kbps), without significant perceptual distortion (ODG in [-1, 0] and SNR about 33dB) and provides robustness against common audio signal processing such as added noise, filtering, echo and MPEG compression (MP3).

  20. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; hide

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  1. Advanced LIGO status

    NASA Astrophysics Data System (ADS)

    Dwyer, S.; LIGO Scientific Collaboration

    2015-05-01

    Advanced LIGO is currently in the final stages of installation and early commissioning. In the design of Advanced LIGO a key goal was the ability to detect gravitational waves from compact object binary inspirals, as these are thought to be the most likely candidates for early detections with ground based interferometers. Special emphasis has been placed on improving the low frequency sensitivity relative to the first generations of LIGO, in addition to improving the high frequency sensitivity by increasing the laser power. The interferometer in Livingston Louisiana has been locked (continuously held within the linear operating range) and noise investigations have begun, and the major installation activities for the interferometer at Hanford, Washington are completed.

  2. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  3. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  4. The Impact of Attention on Judgments of Frequency and Duration

    PubMed Central

    Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter

    2015-01-01

    Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested. PMID:26000712

  5. The impact of attention on judgments of frequency and duration.

    PubMed

    Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter

    2015-01-01

    Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.

  6. High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury.

    PubMed

    Lin, Heng-Teng; Chiu, Chong-Chi; Wang, Jhi-Joung; Hung, Ching-Hsia; Chen, Yu-Wen

    2015-03-04

    The impact of coadministration of transcutaneous electrical nerve stimulation (TENS) and diphenidol is not well established. Here we estimated the effects of diphenidol in combination with TENS on mechanical allodynia and tumor necrosis factor-α (TNF-α) expression. Using an animal chronic constriction injury (CCI) model, the rat was estimated for evidence of mechanical sensitivity via von Frey hair stimulation and TNF-α expression in the sciatic nerve using the ELISA assay. High frequency (100Hz) TENS or intraperitoneal injection of diphenidol (2.0μmol/kg) was applied daily, starting on postoperative day 1 (POD1) and lasting for the next 13 days. We demonstrated that both high frequency TENS and diphenidol groups had an increase in mechanical withdrawal thresholds of 60%. Coadministration of high frequency TENS and diphenidol gives better results of paw withdrawal thresholds in comparison with high frequency TENS alone or diphenidol alone. Both diphenidol and coadministration of high frequency TENS with diphenidol groups showed a significant reduction of the TNF-α level compared with the CCI or HFS group (P<0.05) in the sciatic nerve on POD7, whereas the CCI or high frequency TENS group exhibited a higher TNF-α level than the sham group (P<0.05). Our resulting data revealed that diphenidol alone, high frequency TENS alone, and the combination produced a reduction of neuropathic allodynia. Both diphenidol and the combination of diphenidol with high frequency TENS inhibited TNF-α expression. A moderately effective dose of diphenidol appeared to have an additive effect with high frequency TENS. Therefore, multidisciplinary treatments could be considered for this kind of mechanical allodynia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  8. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  9. Parent and Child Reporting of Corporal Punishment: New Evidence from the Fragile Families and Child Wellbeing Study.

    PubMed

    Schneider, William; MacKenzie, Michael; Waldfogel, Jane; Brooks-Gunn, Jeanne

    2015-06-01

    This paper provides new evidence on parent and child reporting of corporal punishment, drawing on data from the Fragile Families and Child Wellbeing Study, a birth cohort study of families in 20 medium to large US cities. In separate interviews, 9 year olds and their mothers (N=1,180 families) were asked about the frequency of corporal punishment in the past year. Mothers and children were asked questions with slightly different response categorize which are harmonized in our analysis. Overall, children reported more high frequency corporal punishment (spanking or other physical punishment more than 10 times per year) than their mothers did; this discrepancy was seen in both African-American and Hispanic families (but not White families), and was evident for both boys and girls. These results suggest that reporting of frequency of corporal punishment is sensitive to the identity of the reporter and that in particular child reports may reveal more high frequency punishment than maternal reports do. However, predictors of high frequency punishment were similar regardless of reporter identity; in both cases, risk of high frequency punishment was higher when the child was African-American or had high previous levels of behavior problems.

  10. Parent and Child Reporting of Corporal Punishment: New Evidence from the Fragile Families and Child Wellbeing Study

    PubMed Central

    Schneider, William; MacKenzie, Michael; Waldfogel, Jane; Brooks-Gunn, Jeanne

    2017-01-01

    This paper provides new evidence on parent and child reporting of corporal punishment, drawing on data from the Fragile Families and Child Wellbeing Study, a birth cohort study of families in 20 medium to large US cities. In separate interviews, 9 year olds and their mothers (N=1,180 families) were asked about the frequency of corporal punishment in the past year. Mothers and children were asked questions with slightly different response categorize which are harmonized in our analysis. Overall, children reported more high frequency corporal punishment (spanking or other physical punishment more than 10 times per year) than their mothers did; this discrepancy was seen in both African-American and Hispanic families (but not White families), and was evident for both boys and girls. These results suggest that reporting of frequency of corporal punishment is sensitive to the identity of the reporter and that in particular child reports may reveal more high frequency punishment than maternal reports do. However, predictors of high frequency punishment were similar regardless of reporter identity; in both cases, risk of high frequency punishment was higher when the child was African-American or had high previous levels of behavior problems. PMID:28386302

  11. Sensitivity of BRCA1/2 testing in high-risk breast/ovarian/male breast cancer families: little contribution of comprehensive RNA/NGS panel testing.

    PubMed

    Byers, Helen; Wallis, Yvonne; van Veen, Elke M; Lalloo, Fiona; Reay, Kim; Smith, Philip; Wallace, Andrew J; Bowers, Naomi; Newman, William G; Evans, D Gareth

    2016-11-01

    The sensitivity of testing BRCA1 and BRCA2 remains unresolved as the frequency of deep intronic splicing variants has not been defined in high-risk familial breast/ovarian cancer families. This variant category is reported at significant frequency in other tumour predisposition genes, including NF1 and MSH2. We carried out comprehensive whole gene RNA analysis on 45 high-risk breast/ovary and male breast cancer families with no identified pathogenic variant on exonic sequencing and copy number analysis of BRCA1/2. In addition, we undertook variant screening of a 10-gene high/moderate risk breast/ovarian cancer panel by next-generation sequencing. DNA testing identified the causative variant in 50/56 (89%) breast/ovarian/male breast cancer families with Manchester scores of ≥50 with two variants being confirmed to affect splicing on RNA analysis. RNA sequencing of BRCA1/BRCA2 on 45 individuals from high-risk families identified no deep intronic variants and did not suggest loss of RNA expression as a cause of lost sensitivity. Panel testing in 42 samples identified a known RAD51D variant, a high-risk ATM variant in another breast ovary family and a truncating CHEK2 mutation. Current exonic sequencing and copy number analysis variant detection methods of BRCA1/2 have high sensitivity in high-risk breast/ovarian cancer families. Sequence analysis of RNA does not identify any variants undetected by current analysis of BRCA1/2. However, RNA analysis clarified the pathogenicity of variants of unknown significance detected by current methods. The low diagnostic uplift achieved through sequence analysis of the other known breast/ovarian cancer susceptibility genes indicates that further high-risk genes remain to be identified.

  12. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  13. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  14. Superconducting Oxide Films for Multispectral Infrared Sensors

    DTIC Science & Technology

    1989-02-07

    films of both low - and high-temperature supercon- resistances below our measurement sensitivity of 4x 10-10 ductors, including BaPb,-Bi2 O.,’ NbN /BN, 2...Simon, " NbN /BN Granular Films - A states, such as normal metal barriers, will improve the noise Sensitive, High-Speed Detector For Pulsed Far- Infrared ...A. W. Kleinsasser, and R. L Sandstrom, "Electron Trap States and Low Frequency Noise in Tunnel Summary and Conclusions Junctions", IREE Trans. nMa n

  15. Frequency and antimicrobial susceptibility of aerobic bacterial vaginal isolates.

    PubMed

    Tariq, Nabia; Jaffery, Tara; Ayub, Rukhsana; Alam, Ali Yawar; Javid, Mahmud Haider; Shafique, Shamsa

    2006-03-01

    To determine the frequency and antimicrobial susceptibility of aerobic bacterial isolates from high vaginal swab cultures. Cross-sectional survey. Shifa International Hospital, Islamabad, from January 2003 to February 2004. The subjects included 136 symptomatic women attending Obstetrics and Gynecology Out-Patient Department. A proforma was filled to document the demographic details, presenting complaint and examination findings. High vaginal swabs were taken for gram staining, culture and antimicrobial sensitivity testing using standard microbiologic techniques. Normal flora was isolated in 30% of the cases, followed by Candida spp. (21.3%), Enterococcus spp. (14.7%), E.coli (10.2%), Beta hemolytic Streptococcus spp. (7.3%), Staphylococcus spp. (4.4%), Enterobacter spp. (4.4%), while Streptococcus pyogenes, Staphylococcus epidermidis and Klebsiella spp. were isolated 1.5% each. Enterococcus, Staphylococcus and Streptococcus were mostly sensitive to penicillin and amoxicillin while E.coli and Klebsiella were sensitive to (piperacillin-Tazobactum, Imipenem and vancomycin. Enterococci species showed significant resistance to aminoglycoside antibiotics (68.8% to 81.3%) resistance to vancomycin was 5%. Thirty percent of symptomatic patients had normal flora on culture. Candida spp was the most frequent pathogen isolated. Co-amoxiclav should be used as empiric therapy until culture-sensitivity report is available.

  16. Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain?

    PubMed

    Sleight, P; La Rovere, M T; Mortara, A; Pinna, G; Maestri, R; Leuzzi, S; Bianchini, B; Tavazzi, L; Bernardi, L

    1995-01-01

    1. It is often assumed that the power in the low- (around 0.10 Hz) and high-frequency (around 0.25 Hz) bands obtained by power spectral analysis of cardiovascular variables reflects sympathetic and vagal tone [corrected] respectively. An alternative model attributes the low-frequency band to a resonance in the control system that is produced by the inefficiently slow time constant of the reflex response to beat-to-beat changes in blood pressure effected by the sympathetic (with or without the parasympathetic) arm(s) of the baroreflex (De Boer model). 2. We have applied the De Boer model of circulatory variability to patients with varying baroreflex sensitivity to patients with varying baroreflex sensitivity and one normal subject, and have shown that the main differences in spectral power (for both low and high frequency) between and within subjects are caused by changes in the arterial baroreflex gain, particularly for vagal control of heart rate (R-R interval) and left ventricular stroke output. We have computed the power spectrum at rest and during neck suction (to stimulate carotid baroreceptors). We stimulated the baroreceptors at two frequencies (0.1 and 0.2 Hz), which were both distinct from the controlled respiration rate (0.25 Hz), in both normal subjects and heart failure patients with either sensitive or poor baroreflex control. 3. The data broadly confirm the De Boer model. The low-frequency (0.1 Hz) peak in either R-R or blood pressure variability) was spontaneously generated only if the baroreflex control of the autonomic outflow was relatively intact.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    NASA Astrophysics Data System (ADS)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  18. Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus.

    PubMed

    Woodhead, Zoe Victoria Joan; Wise, Richard James Surtees; Sereno, Marty; Leech, Robert

    2011-10-01

    Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties.

  19. [Changes in ion transport through membranes, ATPase activity and antibiotics effects in Enterococcus hirae after low intensity electromagnetic irradiation of 51,8 and 53,0 GHz frequencies].

    PubMed

    Torgomian, É; Oganian, V; Blbulian, C; Trchunian, A

    2013-01-01

    It was ascertained that one-hour exposure of Enterococcus hirae ATCC9790 bacteria grown under anaerobe condition during sugar (glucose) fermentation to coherent electromagnetic irradiation (EMI) of 51,8 and 53,0 GHz frequencies or millimeter waves (5,79 and 5,66 mm wavelengths) of low-intensity (flux capacity of 0,06 mW/sm2) caused a significant decrease in energy-dependent H+ and K+ transports across the membranes of whole cells. Therewith, K+ influx into cells was appreciably less at the frequency of 53,0 GHz. Likewise, a significant decrease of total and N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity of the membrane vesicles occurred after EMI of 51,8 and 53,0 GHz. These results indicated the input of membranous changes in bacterial action of low intensity extremely high frequency EMI, when the F0F1-ATPase was probably playing a key role. Additionally, the enhancement of the effects of antibiotics--ceftriaxone, kanamycin and ampicillin at their minimal inhibitory concentrations (100, 200 and 1,4 microM, correspondingly) on the bacterial growth by these irradiations was shown. Also, combined action of EMI and antibiotics depressed strongly H+ and K+ fluxes across membrane. Especially, H+ flux was more sensitive to the action of ceftriaxone, but K+ flux was sensitive to kanamycin. All these made the assumption that EMI of 51,8 and 53,0 GHz frequencies, especially 53,0 GHz, was followed by change in bacterial sensitivity toward antibiotics that was more obvious with ceftriaxone and ampicillin.

  20. Effect of match-run frequencies on the number of transplants and waiting times in kidney exchange.

    PubMed

    Ashlagi, Itai; Bingaman, Adam; Burq, Maximilien; Manshadi, Vahideh; Gamarnik, David; Murphey, Cathi; Roth, Alvin E; Melcher, Marc L; Rees, Michael A

    2018-05-01

    Numerous kidney exchange (kidney paired donation [KPD]) registries in the United States have gradually shifted to high-frequency match-runs, raising the question of whether this harms the number of transplants. We conducted simulations using clinical data from 2 KPD registries-the Alliance for Paired Donation, which runs multihospital exchanges, and Methodist San Antonio, which runs single-center exchanges-to study how the frequency of match-runs impacts the number of transplants and the average waiting times. We simulate the options facing each of the 2 registries by repeated resampling from their historical pools of patient-donor pairs and nondirected donors, with arrival and departure rates corresponding to the historical data. We find that longer intervals between match-runs do not increase the total number of transplants, and that prioritizing highly sensitized patients is more effective than waiting longer between match-runs for transplanting highly sensitized patients. While we do not find that frequent match-runs result in fewer transplanted pairs, we do find that increasing arrival rates of new pairs improves both the fraction of transplanted pairs and waiting times. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Using magnetic resonance elastography to assess the dynamic mechanical properties of cartilage

    NASA Astrophysics Data System (ADS)

    Lopez, Orlando; Amrami, Kimberly; Rossman, Phillip; Ehman, Richard L.

    2004-04-01

    This work explored the feasibility of using Magnetic Resonance Elastography (MRE) technology to enable in vitro quantification of dynamic mechanical behavior of cartilage through its thickness. A customized system for MRE of cartilage was designed to include components for adequate generation and detection of high frequency mechanical shear waves within small and stiff materials. The system included components for mechanical excitation, motion encoding, and imaging of small samples. Limitations in sensitivity to motion encoding of high frequency propagating mechanical waves using a whole body coil (i.e. Gmax = 2.2 G/cm) required the design of a local gradient coil system to achieve a gain in gradient strength of at least 5 times. The performance of the new system was tested using various cartilage-mimicking phantom materials. MRE of a stiff 5% agar gelatin phantom demonstrated gains in sensitivity to motion encoding of high frequency mechanical waves in cartilage like materials. MRE of fetal bovine cartilage samples yielded a distribution of shear stiffness within the thickness of the cartilage similar to values found in the literature, hence, suggesting the feasibility of using MRE to non-invasively and directly assess the dynamic mechanical properties of cartilage.

  2. Sensitization to 26 fragrances to be labelled according to current European regulation. Results of the IVDK and review of the literature.

    PubMed

    Schnuch, Axel; Uter, Wolfgang; Geier, Johannes; Lessmann, Holger; Frosch, Peter J

    2007-07-01

    To study the frequency of sensitization to 26 fragrances to be labelled according to current European regulation. During 4 periods of 6 months, from 1 January 2003 to 31 December 2004, 26 fragrances were patch tested additionally to the standard series in a total of 21 325 patients; the number of patients tested with each of the fragrances ranged from 1658 to 4238. Hydroxymethylpentylcyclohexene carboxaldehyde (HMPCC) was tested throughout all periods. The following frequencies of sensitization (rates in %, standardized for sex and age) were observed: tree moss (2.4%), HMPCC (2.3), oak moss (2.0), hydroxycitronellal (1.3), isoeugenol (1.1), cinnamic aldehyde (1.0), farnesol (0.9), cinnamic alcohol (0.6), citral (0.6), citronellol (0.5), geraniol (0.4), eugenol (0.4), coumarin (0.4), lilial (0.3), amyl-cinnamic alcohol (0.3), benzyl cinnamate (0.3), benzyl alcohol (0.3), linalool (0.2), methylheptin carbonate (0.2), amyl-cinnamic aldehyde (0.1), hexyl-cinnamic aldehyde (0.1), limonene (0.1), benzyl salicylate (0.1), gamma-methylionon (0.1), benzyl benzoate (0.0), anisyl alcohol (0.0). 1) Substances with higher sensitization frequencies were characterized by a considerable number of '++/+++' reactions. 2) Substances with low sensitization frequencies were characterized by a high number of doubtful/irritant and a low number of stronger (++/+++) reactions. 3) There are obviously fragrances among the 26 which are, with regard to contact allergy, of great, others of minor, and some of no importance at all.

  3. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  4. Mass sensor based on split-nanobeam optomechanical oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeping; Ai, Jie; Xiang, Yanjun; He, Qinghua; Li, Tao; Ma, Jingfang

    2016-03-01

    Mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. The optomechanical crystal cavity has strong interaction between optical mode and mechanical mode. Radiation pressure driven optomechanical crystal cavity are excellent candidates for mass detection due to their simplicity, sensitivity and all optical operation. In an optomechanical crystal cavity, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring the mechanical frequency change of the cavity structure. Here, a split-nanobeam optomechanical crystal cavity is proposed, the sensing resolution as small as 0.33ag (1ag=10-21kg) and the frequency shift is more than 30MHz. This is important and promising for achieve ultimate-precision mass sensing including proteins and other molecules.

  5. The wavefield of acoustic logging in a cased hole with a single casing—Part II: a dipole tool

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Fehler, Michael

    2018-02-01

    The acoustic method, being the most effective method for cement bond evaluation, has been used by industry for more than a half century. However, the methods currently used are almost always focused on the first arrival (especially for sonic logging), which has limitations. We use a 3-D finite-difference method to numerically simulate the wavefields from a dipole source in a single-cased hole with different cement conditions. By using wavefield snapshots and dispersion curves, we interpret the characteristics of the modes in the models. We investigate the effect of source frequency, the thickness and location of fluid columns on different modes. The dipole wavefield in a single-cased hole consists of a leaky P (for frequency >10 kHz) from formation, formation flexural, and also some casing modes. Depending on the mode, their behaviour is sometimes sensitive to the existence of fluid between the cement and formation and sometimes sensitive to the existence of fluid between the casing and cement. The formation S velocity can be obtained from the formation flexural mode at low frequency. However, interference from high-order casing modes makes the leaky P invisible and P velocity determination difficult when the casing is not well cemented. The dispersion curve of the formation flexural mode is sensitive to the fluid thickness when fluid exists only at the interface between casing and cement. The fundamental casing dipole mode is only sensitive to the total fluid thickness in the annulus between casing and formation. Either the arrival time or amplitude of the high-order casing dipole mode is sensitive to the fluid column when the fluid column is next to the casing. We provide a table that summarizes the ability of different modes to detect fluid columns between various layers of casing, cement and formation. Based on the results, we suggest a data processing flow for field application, which will highly improve cement evaluation.

  6. A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers

    NASA Technical Reports Server (NTRS)

    Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.

    1993-01-01

    This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Frequency modulation upon nonstationary heating of the p - n junction in high-sensitive diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Andreev, Sergei N.; Nikolaev, I. V.; Ochkin, Vladimir N.; Savinov, Sergei Yu; Spiridonov, Maksim V.; Tskhai, Sergei N.

    2007-04-01

    A special type of modulation of the injection current of a diode laser is proposed at which the frequency modulation of radiation is not accompanied by the residual amplitude modulation. This method considerably reduces the influence of the diode laser radiation instability on the recorded absorption spectra. This allows a prolonged monitoring of small amounts of impurities in gas analysis by retaining a high sensitivity. Prolonged measurements of absorption spectra are performed at a relative absorption of 8×10-7. By using a 50-cm multipass cell with the optical length of 90 m, the absorption coefficient of 1.2×10-10 cm-1 was detected. As an example, the day evolution of the background concentrations of NO2 molecules was measured in the atmosphere.

  8. Estimation of the center frequency of the highest modulation filter.

    PubMed

    Moore, Brian C J; Füllgrabe, Christian; Sek, Aleksander

    2009-02-01

    For high-frequency sinusoidal carriers, the threshold for detecting sinusoidal amplitude modulation increases when the signal modulation frequency increases above about 120 Hz. Using the concept of a modulation filter bank, this effect might be explained by (1) a decreasing sensitivity or greater internal noise for modulation filters with center frequencies above 120 Hz; and (2) a limited span of center frequencies of the modulation filters, the top filter being tuned to about 120 Hz. The second possibility was tested by measuring modulation masking in forward masking using an 8 kHz sinusoidal carrier. The signal modulation frequency was 80, 120, or 180 Hz and the masker modulation frequencies covered a range above and below each signal frequency. Four highly trained listeners were tested. For the 80-Hz signal, the signal threshold was usually maximal when the masker frequency equaled the signal frequency. For the 180-Hz signal, the signal threshold was maximal when the masker frequency was below the signal frequency. For the 120-Hz signal, two listeners showed the former pattern, and two showed the latter pattern. The results support the idea that the highest modulation filter has a center frequency in the range 100-120 Hz.

  9. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  10. Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM

    NASA Astrophysics Data System (ADS)

    Can, Nursel; Aǧar, Meltem; Altındal, Ahmet

    2016-03-01

    Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.

  11. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  12. Spectrotemporal Modulation Sensitivity as a Predictor of Speech Intelligibility for Hearing-Impaired Listeners

    PubMed Central

    Bernstein, Joshua G.W.; Mehraei, Golbarg; Shamma, Shihab; Gallun, Frederick J.; Theodoroff, Sarah M.; Leek, Marjorie R.

    2014-01-01

    Background A model that can accurately predict speech intelligibility for a given hearing-impaired (HI) listener would be an important tool for hearing-aid fitting or hearing-aid algorithm development. Existing speech-intelligibility models do not incorporate variability in suprathreshold deficits that are not well predicted by classical audiometric measures. One possible approach to the incorporation of such deficits is to base intelligibility predictions on sensitivity to simultaneously spectrally and temporally modulated signals. Purpose The likelihood of success of this approach was evaluated by comparing estimates of spectrotemporal modulation (STM) sensitivity to speech intelligibility and to psychoacoustic estimates of frequency selectivity and temporal fine-structure (TFS) sensitivity across a group of HI listeners. Research Design The minimum modulation depth required to detect STM applied to an 86 dB SPL four-octave noise carrier was measured for combinations of temporal modulation rate (4, 12, or 32 Hz) and spectral modulation density (0.5, 1, 2, or 4 cycles/octave). STM sensitivity estimates for individual HI listeners were compared to estimates of frequency selectivity (measured using the notched-noise method at 500, 1000measured using the notched-noise method at 500, 2000, and 4000 Hz), TFS processing ability (2 Hz frequency-modulation detection thresholds for 500, 10002 Hz frequency-modulation detection thresholds for 500, 2000, and 4000 Hz carriers) and sentence intelligibility in noise (at a 0 dB signal-to-noise ratio) that were measured for the same listeners in a separate study. Study Sample Eight normal-hearing (NH) listeners and 12 listeners with a diagnosis of bilateral sensorineural hearing loss participated. Data Collection and Analysis STM sensitivity was compared between NH and HI listener groups using a repeated-measures analysis of variance. A stepwise regression analysis compared STM sensitivity for individual HI listeners to audiometric thresholds, age, and measures of frequency selectivity and TFS processing ability. A second stepwise regression analysis compared speech intelligibility to STM sensitivity and the audiogram-based Speech Intelligibility Index. Results STM detection thresholds were elevated for the HI listeners, but only for low rates and high densities. STM sensitivity for individual HI listeners was well predicted by a combination of estimates of frequency selectivity at 4000 Hz and TFS sensitivity at 500 Hz but was unrelated to audiometric thresholds. STM sensitivity accounted for an additional 40% of the variance in speech intelligibility beyond the 40% accounted for by the audibility-based Speech Intelligibility Index. Conclusions Impaired STM sensitivity likely results from a combination of a reduced ability to resolve spectral peaks and a reduced ability to use TFS information to follow spectral-peak movements. Combining STM sensitivity estimates with audiometric threshold measures for individual HI listeners provided a more accurate prediction of speech intelligibility than audiometric measures alone. These results suggest a significant likelihood of success for an STM-based model of speech intelligibility for HI listeners. PMID:23636210

  13. Projected Changes in Hydrological Extremes in a Cold Region Watershed: Sensitivity of Results to Statistical Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Dibike, Y. B.; Eum, H. I.; Prowse, T. D.

    2017-12-01

    Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.

  14. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; McMahon, Jeff; Miller, Nathan T.; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián.; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  15. Science highlights from high-sensitivity pulsar observations with the MWA

    NASA Astrophysics Data System (ADS)

    McSweeney, Samuel; Bhat, Ramesh; Tremblay, Steven; Ord, Stephen

    2016-01-01

    Pulsars are exquisite probes of the turbulent interstellar medium (ISM), capable of resolving structures down to tens of thousands of kilometres. Understanding the ISM is important for many areas of astrophysics, such as galactic dynamics, the chemical evolution of the galaxy, and the identification of timing noise in the search for gravitational waves using pulsar timing arrays. Low frequency observations of pulsars are key, because the strength of propagation effects scales strongly with frequency.We present the Murchison Widefield Array (MWA) as a key science tool for making high quality observations of pulsars at low frequencies (~80-300 MHz). Recently commissioned software for making tied-array beams and the MWA's high time resolution voltage capture system (VCS) allow an order of magnitude increase in sensitivity, vital for pulsar and other time-domain science. A pipeline has now been developed for observing the scintillation patterns of important pulsars at low frequencies, including a new computational technique for measuring the curvature of parabolic arcs in noisy secondary spectra. A program of MWA observations is being undertaken to sample a large number of millisecond pulsars. We present recent highlights including PSR J0437-4715, which yielded a new measurement of scattering screen distance of ~120 pc from Earth, consistent with a Parkes observation at ~730 MHz, and matching the predicted perimeter of the Local Bubble.

  16. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  17. Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.

    PubMed

    Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming

    2014-11-10

    A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11  cm-1  Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12  cm-1 has been obtained by averaging about 100 spectra recorded in 2  h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.

  18. Detection and evaluation of embedded mild steel can material into 18 Cr-oxide dispersion strengthened steel tubes by magnetic Barkhausen emission

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Rajkumar, K. V.; Purnachandra Rao, B.; Pramanik, Debabrata; Kapoor, Komal; Jha, Sanjay Kumar

    2017-12-01

    The paper presents a new methodology for detection and evaluation of mild steel (MS) can material embedded into oxide dispersion strengthened (ODS) steel tubes by magnetic Barkhausen emission (MBE) technique. The high frequency MBE measurements (125 Hz sweep frequency and 70-200 kHz analyzing frequency) are found to be very sensitive for detection of presence of MS on the surface of the ODS steel tube. However, due to a shallow depth of information from the high frequency MBE measurements, it cannot be used for evaluation of the thickness of the embedded MS. The low frequency MBE measurements (0.5 Hz sweep frequency and 2-20 kHz analyzing frequency) indicate presence of two MBE RMS voltage peaks corresponding to the MS and the ODS steel. The ratio of the two peaks changes with the thickness of the MS and hence, can be used for measurement of the thickness of the MS layer.

  19. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NASA Astrophysics Data System (ADS)

    Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.

    2005-07-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.

  20. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  1. Vapor concentration monitor

    DOEpatents

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  2. Development of an ultrasensitive interferometry system as a key to precision metrology applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2009-06-01

    We present a symmetric heterodyne interferometer as a prototype of a highly sensitive translation and tilt measurement system. This compact optical metrology system was developed over the past several years by EADS Astrium (Friedrichshafen) in cooperation with the Humboldt-University (Berlin) and the university of applied science Konstanz (HTWG-Konstanz). The noise performance was tested at frequencies between 10-4 and 3 Hz, the noise levels are below 1 nm/Hz 1/2 for translation and below 1 μrad/Hz1/2, for tilt measurements. For frequencies higher than 10 mHz noise levels below 5pm/Hz1/2 and 4 nrad/Hz1/2 respectively, were demonstrated. Based on this highly sensitive metrology system we also developed a dilatometer for the characterization of the CTE (coefficient of thermal expansion) of various materials, i.e. CFRP (carbon fiber reinforced plastic) or Zerodur. The currently achieved sensitivity of these measurements is better than 10-7 K-1. Future planned applications of the interferometer include ultra-high-precision surface profiling and characterization of actuator noise in low-noise opto-mechanics setups. We will give an overview of the current experimental setup and the latest measurement results.

  3. Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin Lee

    This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.

  4. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    PubMed

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  5. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  6. Light weight polarized polypropylene foam for noise shielding

    NASA Astrophysics Data System (ADS)

    Zelfer, Travis J.; Warne, Derik S.; Korde, Umesh A.

    2009-03-01

    The high levels of noise generated during launch can destroy sensitive equipment on space craft. Passive damping systems, like acoustic blankets, work to reduce the high frequency noise but do little to the low frequency noise (<400 Hz). While wall mounted transducers can reduce the low frequency noise during a launch, they also can create areas of higher increased sound pressure in the payload fairings. Ferroelectret cellular polymer foams with high piezoelectric coupling constants are being used as new types of actuators and sensors. Further impedance control through the inverse piezoelectric effect will lead to a new "semi-active" approach that will reduce low frequency noise levels. Combining layers of conventional nonpiezoelectric foam and ferroelectret materials with a multiple loop feedback system will give a total damping effect that is adaptable over a wide band of low frequencies. This paper covers the manufacturing methods that were used to make polarized polypropylene foam, to test the foam for its polarized response and its noise shielding ability.

  7. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  8. [The etiology of urinary tract infections].

    PubMed

    Avio, C M; Ceccherini, M; Pierotti, R; Falcone, G

    1977-01-01

    The Authors have planned a program in order to file and elaborate with a computer the results of urine cultures. From 8.600 specimens, about 86% were negative or doubtful. The data obtained from 1201 positive cultures were processed in order to state the absolute and relative frequency of the bacterial species isolated and their distribution according to their genera, antibiotic resistence, month and sex. Among the most representative species the pattern of antibiotic resistence was surveyed. E. coli shows very high frequency (38%). The frequency of Pseudomonas increases while staphylococci frequency decreases as compared with the previous statements of various Authors. The analysis of the antibiotic sensitivity spectrum of 534 specimens shows that about 50% of E. coli strains are sensitive to 10, 11 and 12 antibiotics and their pattern of resistence involves no more than 9 antibiotics; on the contrary more than 60% of Pseudomonas and Proteus rettgeri are resistant to 10, 11 or 12 antibiotics and at any rate to no less than seven. Enterobacter and Proteus mirabilis present an intermediate pattern of resistence.

  9. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  10. Topology optimization of two-dimensional elastic wave barriers

    NASA Astrophysics Data System (ADS)

    Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.

    2016-08-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.

  11. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    PubMed Central

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  12. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics.

    PubMed

    Sabesan, Ramkumar; Barbot, Antoine; Yoon, Geunyoung

    2017-03-01

    Highly aberrated keratoconic (KC) eyes do not elicit the expected visual advantage from customized optical corrections. This is attributed to the neural insensitivity arising from chronic visual experience with poor retinal image quality, dominated by low spatial frequencies. The goal of this study was to investigate if targeted perceptual learning with adaptive optics (AO) can stimulate neural plasticity in these highly aberrated eyes. The worse eye of 2 KC subjects was trained in a contrast threshold test under AO correction. Prior to training, tumbling 'E' visual acuity and contrast sensitivity at 4, 8, 12, 16, 20, 24 and 28 c/deg were measured in both the trained and untrained eyes of each subject with their routine prescription and with AO correction for a 6mm pupil. The high spatial frequency requiring 50% contrast for detection with AO correction was picked as the training frequency. Subjects were required to train on a contrast detection test with AO correction for 1h for 5 consecutive days. During each training session, threshold contrast measurement at the training frequency with AO was conducted. Pre-training measures were repeated after the 5 training sessions in both eyes (i.e., post-training). After training, contrast sensitivity under AO correction improved on average across spatial frequency by a factor of 1.91 (range: 1.77-2.04) and 1.75 (1.22-2.34) for the two subjects. This improvement in contrast sensitivity transferred to visual acuity with the two subjects improving by 1.5 and 1.3 lines respectively with AO following training. One of the two subjects denoted an interocular transfer of training and an improvement in performance with their routine prescription post-training. This training-induced visual benefit demonstrates the potential of AO as a tool for neural rehabilitation in patients with abnormal corneas. Moreover, it reveals a sufficient degree of neural plasticity in normally developed adults who have a long history of abnormal visual experience due to optical imperfections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  14. Mode perturbation method for optimal guided wave mode and frequency selection.

    PubMed

    Philtron, J H; Rose, J L

    2014-09-01

    With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects

    PubMed Central

    Chama, Abdoulkadri; Subramanian, Anuradha; Viljoen, Hendrik J.

    2017-01-01

    This study presents two novel theoretical models to elucidate frequency sensitive nuclear mechanisms in low-intensity ultrasound enhanced bioeffects. In contrast to the typical 1.5 MHz pulsed ultrasound regime, our group previously experimentally confirmed that ultrasound stimulation of anchored chondrocytes at resonant frequency maximized gene expression of load inducible genes which are regulatory markers for cellular response to external stimuli. However, ERK phosphorylation displayed no frequency dependency, suggesting that the biochemical mechanisms involved in enhanced gene expression is downstream of ERK phosphorylation. To elucidate such underlying mechanisms, this study presents a theoretical model of an anchored cell, representing an in vitro chondrocyte, in an ultrasound field. The model results showed that the mechanical energy storage is maximized at the chondrocyte’s resonant frequency and the energy density in the nucleus is almost twice as high as in the cytoplasm. Next, a mechanochemical model was developed to link the mechanical stimulation of ultrasound and the increased mechanical energy density in the nucleus to the downstream targets of the ERK pathway. This study showed for the first time that ultrasound stimulation induces frequency dependent gene expression as a result of altered rates of transcription factors binding to chromatin. PMID:28763448

  16. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  17. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  18. Image enhancement filters significantly improve reading performance for low vision observers

    NASA Technical Reports Server (NTRS)

    Lawton, T. B.

    1992-01-01

    As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.

  19. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  20. Arcobacter Isolation from Minced Beef Samples in Costa Rica.

    PubMed

    Córdoba-Calderón, Oscar; Redondo-Solano, Mauricio; Castro-Arias, Eduardo; Arias-EchandI, María Laura

    2017-04-03

    The presence of Arcobacter spp. in minced meat (including beef) samples has been well documented in different countries, with varying frequencies. Nevertheless, the only Latin American country reporting this bacterium in minced beef samples is Mexico, with a 28.8% frequency in 2003. Previous studies in Costa Rica have demonstrated the presence of Arcobacter species in samples taken from the poultry production chain, but still there are no studies performed in bovine meat. The aim of this study was to determine the frequency of this bacterium in 120 samples of minced beef acquired from the Central Valley region of Costa Rica and to describe the antibiotic sensitivity pattern of the isolates obtained. A total of 75 different Arcobacter strains were isolated from minced beef samples, for a final frequency of 48.3%. After species PCR identification, the strains were classified as A. butzleri (37.3%), A. cibarius (14.7%), A. thereius (12%), and Arcobacter spp. (36%). All samples were sensitive to gentamicin but were resistant to ampicillin, levofloxacin, nalidixic acid, and ciprofloxacin. The results obtained in this study show that the frequency of isolation of Arcobacter in minced beef samples is high and that there is a high resistance rate for antibiotics in common use. This suggests that Arcobacter represents a health risk for Costa Rica and that control measures should be developed to decrease its potential impact.

  1. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz

    PubMed Central

    Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.

    2009-01-01

    The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289

  2. Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis

    PubMed Central

    Ponnath, Abhilash

    2010-01-01

    Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated. PMID:20559640

  3. SQUID magnetometers for low-frequency applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryhaenen, T.; Seppae, H.; Ilmoniemi, R.

    1989-09-01

    The authors present a novel formulation for SQUID operation, which enables them to evaluate and compare the sensitivity and applicability of different devices. SQUID magnetometers for low-frequency applications are analyzed, taking into account the coupling circuits and electronics. They discuss nonhysteretic and hysteretic single-junction rf SQUIDs, but the main emphasis is on the dynamics, sensitivity, and coupling considerations of dc-SQUID magnetometers. A short review of current ideas on thin-film, dc-SQUID design presents the problems in coupling and the basic limits of sensitivity. The fabrication technology of tunnel-junction devices is discussed with emphasis on how it limits critical current densities, specificmore » capacitances of junctions, minimum linewidths, conductor separations, etc. Properties of high-temperature superconductors are evaluated on the basis of recently published results on increased flux creep, low density of current carriers, and problems in fabricating reliable junctions. The optimization of electronics for different types of SQUIDs is presented. Finally, the most important low-frequency applications of SQUIDs in biomagnetism, metrology, geomagnetism, and some physics experiments demonstrate the various possibilities that state-of-the-art SQUIDs can provide.« less

  4. Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal.

    PubMed

    Sheikhaleh, Arash; Abedi, Kambiz; Jafari, Kian; Gholamzadeh, Reza

    2016-11-10

    In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.

  5. Functional morphology of the inner ear and underwater audiograms of Proteus anguinus (Amphibia, Urodela).

    PubMed

    Bulog, B; Schlegel, P

    2000-01-01

    Octavolateral sensory organs (auditory and lateral line organs) of cave salamander Proteus anguinus are highly differentiated. In the saccular macula of the inner ear the complex pattern of hair cell orientation and the large otoconial mass enable particle displacement direction detection. Additionally, the same organ, through air cavities within the body, enables detection of underwater sound pressure changes thus acting as a hearing organ. The cavities in the lungs and mouth of Proteus are a resonators that transmit underwater sound pressure to the inner ear. Behaviourally determined audiograms indicate hearing sensitivity of 60 dB (rel. 1 microPa) at frequencies between 1 and 10 kHz. The hearing frequency range was between 10 Hz and 10 kHz. The hearing sensitivities of depigmented Proteus and black Proteus were compared. The highest sensitivities of the depigmented animals (N=4) were at frequencies 1.3-1.7 kHz and it was 2 kHz in black animals (N=1). Excellent underwater hearing abilities of Proteus are sensory adaptations to cave habitat.

  6. Consonant-recognition patterns and self-assessment of hearing handicap.

    PubMed

    Hustedde, C G; Wiley, T L

    1991-12-01

    Two companion experiments were conducted with normal-hearing subjects and subjects with high-frequency, sensorineural hearing loss. In Experiment 1, the validity of a self-assessment device of hearing handicap was evaluated in two groups of hearing-impaired listeners with significantly different consonant-recognition ability. Data for the Hearing Performance Inventory--Revised (Lamb, Owens, & Schubert, 1983) did not reveal differences in self-perceived handicap for the two groups of hearing-impaired listeners; it was sensitive to perceived differences in hearing abilities for listeners who did and did not have a hearing loss. Experiment 2 was aimed at evaluation of consonant error patterns that accounted for observed group differences in consonant-recognition ability. Error patterns on the Nonsense-Syllable Test (NST) across the two subject groups differed in both degree and type of error. Listeners in the group with poorer NST performance always demonstrated greater difficulty with selected low-frequency and high-frequency syllables than did listeners in the group with better NST performance. Overall, the NST was sensitive to differences in consonant-recognition ability for normal-hearing and hearing-impaired listeners.

  7. Visual Neuroscience: A Retinal Ganglion Cell to Report Image Focus?

    PubMed

    Baden, Tom; Schaeffel, Frank; Berens, Philipp

    2017-02-20

    A recent study describes a mouse neuron projecting from the retina to the brain that exhibits exquisitely high sensitivity to high spatial frequency patterns presented over an unusually large receptive field: could this cell be a (de)focus detector? Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults.

    PubMed

    Tse, Chun-Yu; Gordon, Brian A; Fabiani, Monica; Gratton, Gabriele

    2010-09-01

    Relatively high frequency activity (>4Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not been applied to study high frequency brain oscillations because of its relatively low signal-to-noise ratio. Here we investigate the sensitivity of FOS to relatively high-frequency brain oscillations. We measured the steady-state optical response elicited in medial and lateral occipital cortex by checkerboard reversals occurring at 4, 6, and 8Hz in younger and older adults. Stimulus-dependent oscillations were observed at the predicted stimulation frequency. In addition, in the younger adults the FOS steady-state response was smaller in lateral than medial areas, whereas in the older adults it was reversed in these two cortical regions. This may reflect diminished top-down inhibitory control in the older adults. The results indicate that FOS can be used to study the modulation of relatively high-frequency brain oscillations in adjacent cortical regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Probing Buffer-Gas Cooled Molecules with Direct Frequency Comb Spectroscopy in the Mid-Infrrared

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, Bryan; Bjork, Bryce J.; Heckl, Oliver H.; Patterson, David; Doyle, John M.; Ye, Jun

    2015-06-01

    We present the first demonstration of cavity-enhanced direct frequency comb spectroscopy on buffer-gas cooled molecules.By coupling a mid-infrared frequency comb to a high-finesse cavity surrounding a helium buffer-gas chamber, we can gather rotationally resolved absorption spectra with high sensitivity over a broad wavelength region. The measured ˜10 K rotational and translational temperatures of buffer-gas cooled molecules drastically simplify the observed spectra, compared to those of room temperature molecules, and allow for high spectral resolution limited only by Doppler broadening (10-100 MHz). Our system allows for the extension of high-resolution spectroscopy to larger molecules, enabling detailed analysis of molecular structure and dynamics, while taking full advantage of the powerful optical properties of frequency combs. A. Foltynowicz et al. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Applied Physics B, vol. 110, pp. 163-175, 2013. {D. Patterson and J. M. Doyle. Cooling molecules in a cell for FTMW spectroscopy. Molecular Physics 110, 1757-1766, 2012

  10. A low noise photoelectric signal acquisition system applying in nuclear magnetic resonance gyroscope

    NASA Astrophysics Data System (ADS)

    Lu, Qilin; Zhang, Xian; Zhao, Xinghua; Yang, Dan; Zhou, Binquan; Hu, Zhaohui

    2017-10-01

    The nuclear magnetic resonance gyroscope serves as a new generation of strong support for the development of high-tech weapons, it solves the core problem that limits the development of the long-playing seamless navigation and positioning. In the NMR gyroscope, the output signal with atomic precession frequency is detected by the probe light, the final crucial photoelectric signal of the probe light directly decides the quality of the gyro signal. But the output signal has high sensitivity, resolution and measurement accuracy for the photoelectric detection system. In order to detect the measured signal better, this paper proposed a weak photoelectric signal rapid acquisition system, which has high SNR and the frequency of responded signal is up to 100 KHz to let the weak output signal with high frequency of the NMR gyroscope can be detected better.

  11. Electromagnetic perception and individual features of human beings.

    PubMed

    Lebedeva, N N; Kotrovskaya, T I

    2001-01-01

    An investigation was made of the individual reactions of human subjects exposed to electromagnetic fields. We performed the study on 86 volunteers separated into two groups. The first group was exposed to the electromagnetic field of infralow frequencies, whereas the second group was exposed to the electromagnetic field of extremely high frequencies. We found that the electromagnetic perception of human beings correlated with their individual features, such as EEG parameters, the critical frequency of flash merging, and the electric current sensitivity. Human subjects who had a high-quality perception of electromagnetic waves showed an optimal balance of cerebral processes, an excellent functional state of the central nervous system, and a good decision criterion.

  12. Interferometric sensor based on the polarization-maintaining fibers

    NASA Astrophysics Data System (ADS)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  13. A behavioral audiogram of the red fox (Vulpes vulpes).

    PubMed

    Malkemper, E Pascal; Topinka, Václav; Burda, Hynek

    2015-02-01

    We determined the absolute hearing sensitivity of the red fox (Vulpes vulpes) using an adapted standard psychoacoustic procedure. The animals were tested in a reward-based go/no-go procedure in a semi-anechoic chamber. At 60 dB sound pressure level (SPL) (re 20 μPa) red foxes perceive pure tones between 51 Hz and 48 kHz, spanning 9.84 octaves with a single peak sensitivity of -15 dB at 4 kHz. The red foxes' high-frequency cutoff is comparable to that of the domestic dog while the low-frequency cutoff is comparable to that of the domestic cat and the absolute sensitivity is between both species. The maximal absolute sensitivity of the red fox is among the best found to date in any mammal. The procedure used here allows for assessment of animal auditory thresholds using positive reinforcement outside the laboratory. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Toward transparent and self-activated graphene harmonic transponder sensors

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu Harry; Sakhdari, Maryam; Hajizadegan, Mehdi; Shahini, Ali; Akinwande, Deji; Chen, Pai-Yen

    2016-04-01

    We propose the concept and design of a transparent, flexible, and self-powered wireless sensor comprising a graphene-based sensor/frequency-modulator circuitry and a graphene antenna. In this all-graphene device, the multilayered-graphene antenna receives the fundamental tone at C band and retransmits the frequency-modulated sensed signal (harmonic tone) at X band. The frequency orthogonality between the received/re-transmitted signals may enable high-performance sensing in severe interference/clutter background. Here, a fully passive, quad-ring frequency multiplier is proposed using graphene field-effect transistors, of which the unique ambipolar charge transports render a frequency doubling effect with conversion gain being chemically sensitive to exposed gas/molecular/chemical/infectious agents. This transparent, light-weight, and self-powered system may potentially benefit a number of wireless sensing and diagnosis applications, particularly for smart contact lenses/glasses and microscope slides that require high optical transparency.

  15. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus

    DOE PAGES

    Dong, Shan; Zhang, Anmin; Liu, Kai; ...

    2016-02-26

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of themore » thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. Lastly, these findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.« less

  16. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  17. Force-frequency effect of Y-cut langanite and Y-cut langatate.

    PubMed

    Kim, Yoonkee; Ballato, Arthur

    2003-12-01

    Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.

  18. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of two and three filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric constant lens. The broadband anti-reflection coating has approximately 100% bandwidth and no detectable loss at cryogenic temperature. We will describe a next generation CMB polarimetry experiment, the POLARBEAR-2, in detail. The POLARBEAR-2 would have focal planes with kilo-pixel of these detectors to achieve high sensitivity. We'll also introduce proposed experiments that would use multi-chroic detector array we developed in this work. We'll conclude by listing out suggestions for future multichroic detector development.

  19. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  20. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar

    PubMed Central

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-01-01

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power. PMID:27483261

  1. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar.

    PubMed

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-07-28

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power.

  2. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW's oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  3. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    PubMed

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  4. Highly Sensitive Electro-Optic Modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less

  5. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  6. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  7. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Grassellino, A.

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  8. Frequency dependence of trapped flux sensitivity in SRF cavities

    DOE PAGES

    Checchin, M.; Martinello, M.; Grassellino, A.; ...

    2018-02-13

    In this paper, we present the frequency dependence of the vortex surface resistance of bulk niobium accelerating cavities as a function of different state-of-the-art surface treatments. Higher flux surface resistance per amount of trapped magnetic field - sensitivity - is observed for higher frequencies, in agreement with our theoretical model. Higher sensitivity is observed for N-doped cavities, which possess an intermediate value of electron mean-free-path, compared to 120° C and EP/BCP cavities. Experimental results from our study showed that the sensitivity has a non-monotonic trend as a function of the mean-free-path, including at frequencies other than 1.3 GHz, and thatmore » the vortex response to the rf field can be tuned from the pinning regime to flux-flow regime by manipulating the frequency and/or the mean-free-path of the resonator, as reported in our previous studies. The frequency dependence of the trapped flux sensitivity to the amplitude of the accelerating gradient is also highlighted.« less

  9. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.

  10. Ultra-low-noise preamplifier for condenser microphones.

    PubMed

    Starecki, Tomasz

    2010-12-01

    The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.

  11. Laser heating and detection of bilayer microcantilevers for non-contact thermodynamic measurements

    NASA Astrophysics Data System (ADS)

    Burke, Brian G.; LaVan, David A.

    2013-01-01

    We describe a method for optical detection (frequency and position) and heating of bilayer microcantilevers (BMCs) to high temperatures at fast heating rates (106°C/s to 109°C/s) for non-contact thermodynamic measurements of small quantities of materials in the femtogram range. The current experimental apparatus with a 2 μm × 10 μm BMC achieves a deflection sensitivity of 0.1 Å, heating rate of 3.0 × 106°C/s, and heat sensitivity of 18 pJ in a 3 kHz bandwidth in air. By measuring the resonant frequency shift after sample loading, we achieve a mass resolution of 2.67 fg.

  12. Wide-field motion tuning in nocturnal hawkmoths

    PubMed Central

    Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.

    2010-01-01

    Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663

  13. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    NASA Astrophysics Data System (ADS)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated femtosecond light pulses with almost thermal noise limited precision. The experiments which followed showed that microwave signals of exceptional spectral purity could be generated from the frequency stabilized lasers

  14. "Lollipop-shaped" high-sensitivity Microelectromechanical Systems vector hydrophone based on Parylene encapsulation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun

    2015-07-01

    This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.

  15. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    NASA Astrophysics Data System (ADS)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  16. Terahertz quantum-cascade lasers as high-power and wideband, gapless sources for spectroscopy.

    PubMed

    Röben, Benjamin; Lü, Xiang; Hempel, Martin; Biermann, Klaus; Schrottke, Lutz; Grahn, Holger T

    2017-07-10

    Terahertz (THz) quantum-cascade lasers (QCLs) are powerful radiation sources for high-resolution and high-sensitivity spectroscopy with a discrete spectrum between 2 and 5 THz as well as a continuous coverage of several GHz. However, for many applications, a radiation source with a continuous coverage of a substantially larger frequency range is required. We employed a multi-mode THz QCL operated with a fast ramped injection current, which leads to a collective tuning of equally-spaced Fabry-Pérot laser modes exceeding their separation. A continuous coverage over 72 GHz at about 4.7 THz was achieved. We demonstrate that the QCL is superior to conventional sources used in Fourier transform infrared spectroscopy in terms of the signal-to-noise ratio as well as the dynamic range by one to two orders of magnitude. Our results pave the way for versatile THz spectroscopic systems with unprecedented resolution and sensitivity across a wide frequency range.

  17. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  18. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  19. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  20. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  1. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  2. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  3. Wireless, Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag.

    PubMed

    Jun, Jaemoon; Oh, Jungkyun; Shin, Dong Hoon; Kim, Sung Gun; Lee, Jun Seop; Kim, Wooyoung; Jang, Jyongsik

    2016-12-07

    Due to rapid advances in technology which have contributed to the development of portable equipment, highly sensitive and selective sensor technology is in demand. In particular, many approaches to the modification of wireless sensor systems have been studied. Wireless systems have many advantages, including unobtrusive installation, high nodal densities, low cost, and potential commercial applications. In this study, we fabricated radio frequency identification (RFID)-based wireless sensor systems using carboxyl group functionalized polypyrrole (C-PPy) nanoparticles (NPs). The C-PPy NPs were synthesized via chemical oxidation copolymerization, and then their electrical and chemical properties were characterized by a variety of methods. The sensor system was composed of an RFID reader antenna and a sensor tag made from a commercially available ultrahigh frequency RFID tag coated with C-PPy NPs. The C-PPy NPs were covalently bonded to the tag to form a passive sensor. This type of sensor can be produced at a very low cost and exhibits ultrahigh sensitivity to ammonia, detecting concentrations as low as 0.1 ppm. These sensors operated wirelessly and maintained their sensing performance as they were deformed by bending and twisting. Due to their flexibility, these sensors may be used in wearable technologies for sensing gases.

  4. Learning to spell in a language with transparent orthography: Distributional properties of orthography and whole-word lexical processing.

    PubMed

    Angelelli, Paola; Marinelli, Chiara Valeria; Putzolu, Anna; Notarnicola, Alessandra; Iaia, Marika; Burani, Cristina

    2018-03-01

    We examined how whole-word lexical information and knowledge of distributional properties of orthography interact in children's spelling. High- versus low-frequency words, which included inconsistently spelled segments occurring more or less frequently in the orthography, were used in two experiments: (a) word spelling; (b) lexical priming of pseudoword spelling. Participants were 1st-, 2nd-, and 4th-grade Italian children. Word spelling showed sensitivity to the distributional properties of orthography in all children: accuracy in spelling uncommon transcription segments emerged progressively as a function of word frequency and schooling. Lexical priming effects emerged as a function of age. When related primes contained an uncommon segment, 2nd- and 4th-graders preferred uncommon segments than common ones in spelling target pseudowords, thus inverting the response trend found in the control condition. A smaller but significant effect was present in 1st- graders, who, unlike 2nd- and 4th-graders, still preferred common segments, only slightly increasing the use of uncommon ones. A larger priming effect emerged for high-frequency primes than low-frequency ones. Results indicate that children learning to spell in a transparent orthography are sensitive to the distributional properties of the orthography. However, whole-word lexical representations are also used, with larger effects in more skilled pupils.

  5. Modulation infrared thermometry of caloric effects at up to kHz frequencies

    NASA Astrophysics Data System (ADS)

    Döntgen, Jago; Rudolph, Jörg; Waske, Anja; Hägele, Daniel

    2018-03-01

    We present a novel non-contact method for the direct measurement of caloric effects in low volume samples. The adiabatic temperature change ΔT of a magnetocaloric sample is very sensitively determined from thermal radiation. Rapid modulation of ΔT is induced by an oscillating external magnetic field. Detection of thermal radiation with a mercury-cadmium-telluride detector allows for measurements at field frequencies exceeding 1 kHz. In contrast to thermoacoustic methods, our method can be employed in vacuum which enhances adiabatic conditions especially in the case of small volume samples. Systematic measurements of the magnetocaloric effect as a function of temperature, magnetic field amplitude, and modulation frequency give a detailed picture of the thermal behavior of the sample. Highly sensitive measurements of the magnetocaloric effect are demonstrated on a 2 mm thick sample of gadolinium and a 60 μm thick Fe80B12Nb8 ribbon.

  6. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  7. Motion mechanisms with different spatiotemporal characteristics identified by an MAE technique with superimposed gratings.

    PubMed

    Shioiri, Satoshi; Matsumiya, Kazumichi

    2009-05-29

    We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.

  8. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.

    PubMed

    Yokoyama, Hidekatsu

    2012-01-01

    Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. [Mechanism underlying spatial vision deficit of monocular amblyopia based on the theory of Magnocellular and Parvocellular (M-P) pathways].

    PubMed

    Song, Feng-wei; Sun, Zhao-hui; Yang, Yi; Wang, Li-ping; Tang, Xia-jing; Chen, Bin-bin; Yu, Xiao-ning

    2014-01-01

    To investigate the relationship between the characteristics of spatial vision deficit and the degree of amblyopia in monocular amblyopes, and to analyze its mechanism with the theory of Magnocellular and Parvocellular pathways. One hundred and eleven patients with monocular amblyopes aged 7-34 were included in this study. Distance best corrected visual acuity (BCVA) in logMAR units and contrast sensitivity function test were performed on both eyes in all patients with ETDRS digital visual chart and functional test system OPTECR 6500. The spatial vision of amblyopic and non-amblyopic eyes was evaluated by the AULCSF, Smax, Frmax and cutSF derived from the curve of contrast sensitivity function. The degree of amblyopia was significantly correlated with the difference of AULCSF between the amblyopic and non-amblyopia eyes (r=-0.83, P<0.01). BCVA of amblyopic eyes was significantly correlated with AULCSF, CutSF, Smax, Frmax(r=-0.68, -0.80, -0.73, -0.56, respectively; P<0.01). In amblyopic eyes, significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was seen among different amblyopic groups (P<0.01), which was defined by the degree of amblyopia. In non-amblyopic eyes,no significant difference in BCVA, AULCSF, Smax, Frmax and CutSF was noted among different amblyopic groups (P>0.05). In mild amblyopes, no significant difference in AULCSF and Frmax was found between the amblyopic eyes and non-amblyopic eyes (P>0.05), while Smax and CutSF were significantly different. However, in moderate and severe amblyopes, significant differences in BCVA, AULCSF, Smax, Frmax and CutSF was seen between the amblyopic and non-amblyopic eyes (P<0.01). In amblyopic eyes, significant difference in contrast sensitivity was noted in all kinds of spatial frequencies among different amblyopic groups (P<0.01), and in non-amblyopic eyes, significant differences in contrast sensitivity was not seen in all kinds of spatial frequencies among different amblyopic groups. The AULCSF, CutSF, Smax and Frmax are accorded with visual acuity for evaluation of the spatial vision of amblyopia. As the severity of amblyopia increases, the overall function of spatial vision in amblyopic eyes gradually decreases, the resolution ability of high spatial frequency is gradually weaken, the peak of contrast detection function gradually descends, and the optimal spatial frequency for contrast detection offsets toward low level of spatial frequency. Mild monocular amblyopia produces spatial contrast sensitivity loss in high spatial vision, suggesting there may be decreased sensitivity of the Parvocellular pathway, and no significant anomalous processing of Magnocellular Pathway. Whereas, in moderate and severe amblyopes, a generalized loss of sensitivity is observed at each spatial frequency. This result shows that both Magnocellular and Parvocellular pathways are damaged in different degrees, especially in Parvocellular pathway.

  10. The insulin-sensitivity sulphonylurea receptor variant is associated with thyrotoxic paralysis.

    PubMed

    Rolim, Ana Luiza R; Lindsey, Susan C; Kunii, Ilda S; Crispim, Felipe; Moisés, Regina Célia M S; Maciel, Rui M B; Dias-da-Silva, Magnus R

    2014-10-01

    Thyrotoxicosis is the most common cause of the acquired flaccid muscle paralysis in adults called thyrotoxic periodic paralysis (TPP) and is characterised by transient hypokalaemia and hypophosphataemia under high thyroid hormone levels that is frequently precipitated by carbohydrate load. The sulphonylurea receptor 1 (SUR1 (ABCC8)) is an essential regulatory subunit of the β-cell ATP-sensitive K(+) channel that controls insulin secretion after feeding. Additionally, the SUR1 Ala1369Ser variant appears to be associated with insulin sensitivity. We examined the ABCC8 gene at the single nucleotide level using PCR-restriction fragment length polymorphism (RFLP) analysis to determine its allelic variant frequency and calculated the frequency of the Ala1369Ser C-allele variant in a cohort of 36 Brazilian TPP patients in comparison with 32 controls presenting with thyrotoxicosis without paralysis (TWP). We verified that the frequency of the alanine 1369 C-allele was significantly higher in TPP patients than in TWP patients (61.1 vs 34.4%, odds ratio (OR)=3.42, P=0.039) and was significantly more common than the minor allele frequency observed in the general population from the 1000 Genomes database (61.1 vs 29.0%, OR=4.87, P<0.005). Additionally, the C-allele frequency was similar between TWP patients and the general population (34.4 vs 29%, OR=1.42, P=0.325). We have demonstrated that SUR1 alanine 1369 variant is associated with allelic susceptibility to TPP. We suggest that the hyperinsulinaemia that is observed in TPP may be linked to the ATP-sensitive K(+)/SUR1 alanine variant and, therefore, contribute to the major feedforward precipitating factors in the pathophysiology of TPP. © 2014 Society for Endocrinology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savukov, Igor Mykhaylovich; Boshier, Malcolm Geoffrey

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz 1/2 sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. Here, this magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the applicationmore » of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz 1/2 and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.« less

  12. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  13. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    DOE PAGES

    Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...

    2014-06-26

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less

  14. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqing

    2017-05-01

    A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.

  15. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    PubMed

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  16. Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids

    PubMed Central

    Danielsson, Henrik; Hällgren, Mathias; Stenfelt, Stefan; Rönnberg, Jerker; Lunner, Thomas

    2016-01-01

    The audiogram predicts <30% of the variance in speech-reception thresholds (SRTs) for hearing-impaired (HI) listeners fitted with individualized frequency-dependent gain. The remaining variance could reflect suprathreshold distortion in the auditory pathways or nonauditory factors such as cognitive processing. The relationship between a measure of suprathreshold auditory function—spectrotemporal modulation (STM) sensitivity—and SRTs in noise was examined for 154 HI listeners fitted with individualized frequency-specific gain. SRTs were measured for 65-dB SPL sentences presented in speech-weighted noise or four-talker babble to an individually programmed master hearing aid, with the output of an ear-simulating coupler played through insert earphones. Modulation-depth detection thresholds were measured over headphones for STM (2cycles/octave density, 4-Hz rate) applied to an 85-dB SPL, 2-kHz lowpass-filtered pink-noise carrier. SRTs were correlated with both the high-frequency (2–6 kHz) pure-tone average (HFA; R2 = .31) and STM sensitivity (R2 = .28). Combined with the HFA, STM sensitivity significantly improved the SRT prediction (ΔR2 = .13; total R2 = .44). The remaining unaccounted variance might be attributable to variability in cognitive function and other dimensions of suprathreshold distortion. STM sensitivity was most critical in predicting SRTs for listeners < 65 years old or with HFA <53 dB HL. Results are discussed in the context of previous work suggesting that STM sensitivity for low rates and low-frequency carriers is impaired by a reduced ability to use temporal fine-structure information to detect dynamic spectra. STM detection is a fast test of suprathreshold auditory function for frequencies <2 kHz that complements the HFA to predict variability in hearing-aid outcomes for speech perception in noise. PMID:27815546

  17. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  18. Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas).

    PubMed

    Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Lemazina, Alena A; Supin, Alexander Ya

    2016-08-01

    Using the auditory evoked response technique, sensitivity to local acoustic stimulation of the ventro-lateral head surface was investigated in a beluga whale (Delphinapterus leucas). The stimuli were tone pip trains of carrier frequencies ranging from 16 to 128 kHz with a pip rate of 1 kHz. For higher frequencies (90-128 kHz), the low-threshold point was located next to the medial side of the middle portion of the lower jaw. For middle (32-64 kHz) and lower (16-22.5 kHz) frequencies, the low-threshold point was located at the lateral side of the middle portion of the lower jaw. For lower frequencies, there was an additional low-threshold point next to the bulla-meatus complex. Based on these data, several frequency-specific paths of sound conduction to the auditory bulla are suggested: (i) through an area on the lateral surface of the lower jaw and further through the intra-jaw fat-body channel (for a wide frequency range); (ii) through an area on the ventro-lateral head surface and further through the medial opening of the lower jaw and intra-jaw fat-body channel (for a high-frequency range); and (iii) through an area on the lateral (near meatus) head surface and further through the lateral fat-body channel (for a low-frequency range).

  19. Bulk and integrated acousto-optic spectrometers for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.

  20. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena).

    PubMed

    Hermannsen, Line; Beedholm, Kristian; Tougaard, Jakob; Madsen, Peter T

    2014-10-01

    Growing ship traffic worldwide has led to increased vessel noise with possible negative impacts on marine life. Most research has focused on low frequency components of ship noise, but for high-frequency specialists, such as the harbor porpoise (Phocoena phocoena), medium-to-high frequency noise components are likely more of a concern. To test for biologically relevant levels of medium-to-high frequency vessel noise, different types of Automatic Identification System located vessels were recorded using a broadband recording system in four heavily ship-trafficked marine habitats in Denmark. Vessel noise from a range of different ship types substantially elevated ambient noise levels across the entire recording band from 0.025 to 160 kHz at ranges between 60 and 1000 m. These ship noise levels are estimated to cause hearing range reduction of >20 dB (at 1 and 10 kHz) from ships passing at distances of 1190 m and >30 dB reduction (at 125 kHz) from ships at distances of 490 m or less. It is concluded that a diverse range of vessels produce substantial noise at high frequencies, where toothed whale hearing is most sensitive, and that vessel noise should be considered over a broad frequency range, when assessing noise effects on porpoises and other small toothed whales.

  1. Nothing more than a pair of curvatures: A common mechanism for the detection of both radial and non-radial frequency patterns.

    PubMed

    Schmidtmann, Gunnar; Kingdom, Frederick A A

    2017-05-01

    Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Insulin sensitivity and cardiac autonomic function in young male practitioners of yoga.

    PubMed

    Chaya, M S; Ramakrishnan, G; Shastry, S; Kishore, R P; Nagendra, H; Nagarathna, R; Raj, T; Thomas, T; Vaz, M; Kurpad, A V

    2008-01-01

    While yoga is thought to reduce the risk of chronic non-communicable diseases such as diabetes, there are no studies on insulin sensitivity in long term practitioners of yoga. We assessed insulin sensitivity and cardiac autonomic function in long term practitioners of yoga. Fifteen healthy, young, male practitioners of yoga were compared with 15 young, healthy males who did not practice yoga matched for body-mass index. Fasting insulin sensitivity was measured in the fasting state by the hyperinsulinaemic-euglycaemic clamp. There were no significant differences between the groups in their anthropometry or body composition. However, the fasting plasma insulin was significantly lower in the yoga group. The yoga group was also more insulin sensitive (yoga 7.82 [2.29] v. control 4.86 [11.97] (mg/[kg.min])/(microU/ml), p < 0.001). While the body weight and waist circumference were negatively correlated with glucose disposal rate in the controls, there were no similar correlations in the yoga group. The yoga group had significantly higher low-frequency power and lower normalized high-frequency power. Long term yoga practice (for 1 year or more) is associated with increased insulin sensitivity and attenuates the negative relationship between body weight or waist circumference and insulin sensitivity.

  3. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity.

    PubMed

    Way, Baldwin M; Lieberman, Matthew D

    2010-06-01

    Genes and culture are often thought of as opposite ends of the nature-nurture spectrum, but here we examine possible interactions. Genetic association studies suggest that variation within the genes of central neurotransmitter systems, particularly the serotonin (5-HTTLPR, MAOA-uVNTR) and opioid (OPRM1 A118G), are associated with individual differences in social sensitivity, which reflects the degree of emotional responsivity to social events and experiences. Here, we review recent work that has demonstrated a robust cross-national correlation between the relative frequency of variants in these genes and the relative degree of individualism-collectivism in each population, suggesting that collectivism may have developed and persisted in populations with a high proportion of putative social sensitivity alleles because it was more compatible with such groups. Consistent with this notion, there was a correlation between the relative proportion of these alleles and lifetime prevalence of major depression across nations. The relationship between allele frequency and depression was partially mediated by individualism-collectivism, suggesting that reduced levels of depression in populations with a high proportion of social sensitivity alleles is due to greater collectivism. These results indicate that genetic variation may interact with ecological and social factors to influence psychocultural differences.

  4. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity

    PubMed Central

    Lieberman, Matthew D.

    2010-01-01

    Genes and culture are often thought of as opposite ends of the nature–nurture spectrum, but here we examine possible interactions. Genetic association studies suggest that variation within the genes of central neurotransmitter systems, particularly the serotonin (5-HTTLPR, MAOA-uVNTR) and opioid (OPRM1 A118G), are associated with individual differences in social sensitivity, which reflects the degree of emotional responsivity to social events and experiences. Here, we review recent work that has demonstrated a robust cross-national correlation between the relative frequency of variants in these genes and the relative degree of individualism–collectivism in each population, suggesting that collectivism may have developed and persisted in populations with a high proportion of putative social sensitivity alleles because it was more compatible with such groups. Consistent with this notion, there was a correlation between the relative proportion of these alleles and lifetime prevalence of major depression across nations. The relationship between allele frequency and depression was partially mediated by individualism–collectivism, suggesting that reduced levels of depression in populations with a high proportion of social sensitivity alleles is due to greater collectivism. These results indicate that genetic variation may interact with ecological and social factors to influence psychocultural differences. PMID:20592043

  5. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  6. Frequency of dog erythrocyte antigen 1.1 in 4 breeds native to different areas in Turkey.

    PubMed

    Ergul Ekiz, Elif; Arslan, Murat; Ozcan, Mukaddes; Gultekin, Guldal Inal; Gulay, Ozlem Yildiz; Kirmizibayrak, Turgut; Giger, Urs

    2011-12-01

    Dog erythrocyte antigen (DEA) 1.1 is the most important RBC antigen clinically, as it is highly immunogenic and causes acute hemolytic transfusion reactions (HTR) in sensitized dogs. The aims of this study were to determine the frequency of DEA 1.1 expression in 4 Turkish dog breeds, and to estimate the potential risk of HTR when blood from a DEA 1.1-positive donor is administered to a DEA 1.1-negative recipient following sensitization by a prior mismatched transfusion. EDTA blood samples (n = 178) were typed for DEA 1.1 using a commercial gel-column agglutination test (ID-Gel-Test Canine DEA 1.1). Probabilities of sensitization and risk of an HTR were calculated. The frequency of positivity for DEA 1.1 among Kars (n = 59), Kangal (n = 53), Akbash (n = 50), and Catalburun (n = 16) breeds was 71.2%, 67.9%, 60.0%, and 50.0%, respectively. Potential risk for occurrence of an HTR after administration of blood from a dog of the same breed ranged from 12.5% to 14.8%, whereas HTR induced by blood of a dog from a different breed ranged from 7.2% to 25.3%. The frequency of DEA 1.1-positive dogs among 4 Turkish breeds is high compared with that of most other breeds previously surveyed. The predicted risk of both sensitization and occurrence of DEA 1.1-related HTR following transfusion between dogs of either the same or different Turkish breeds was considerable. Although few dogs are transfused ≥4 days after the first transfusion, we recommend that (1) all donors and recipients be typed for DEA 1.1, (2) DEA 1.1-negative recipients receive only DEA 1.1-negative blood, and (3) blood be cross-matched prior to transfusing any dog ≥4 days after the first transfusion. These guidelines are also applicable to other breeds and countries. © 2011 American Society for Veterinary Clinical Pathology.

  7. Atomic References for Measuring Small Accelerations

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Yu, Nan

    2009-01-01

    Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.

  8. Interactional Effects of Instructional Quality and Teacher Judgement Accuracy on Achievement.

    ERIC Educational Resources Information Center

    Helmke, Andreas; Schrader, Friedrich-Wilhelm

    1987-01-01

    Analysis of predictions of 32 teachers regarding 690 fifth-graders' scores on a mathematics achievement test found that the combination of high judgement accuracy with varied instructional techniques was particularly favorable to students in contrast to a combination of high diagnostic sensitivity with a low frequency of cues or individual…

  9. High-field dynamic nuclear polarization in aqueous solutions.

    PubMed

    Prandolini, M J; Denysenkov, V P; Gafurov, M; Endeward, B; Prisner, T F

    2009-05-06

    Unexpected high DNP enhancements of more than 10 have been achieved in liquid water samples at room temperature and magnetic fields of 9.2 T (corresponding to 400 MHz (1)H NMR frequency and 260 GHz EPR frequency). The liquid samples were polarized in situ using a double-resonance structure, which allows simultaneous excitation of NMR and EPR transitions and achieves significant DNP enhancements at very low incident microwave power of only 45 mW. These results demonstrate the first important step toward the application of DNP to high-resolution NMR, increasing the sensitivity on biomolecules with small sample volumes and at physiologically low concentrations.

  10. High sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures with FeCuNbSiB nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2016-05-01

    In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.

  11. Robust Adaptation? Assessing the sensitivity of safety margins in flood defences to uncertainty in future simulations - a case study from Ireland.

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Bastola, Satish; Sweeney, John

    2013-04-01

    Climate change impact and adaptation assessments have traditionally adopted a 'top-down' scenario based approach, where information from different Global Climate Models (GCMs) and emission scenarios are employed to develop impacts led adaptation strategies. Due to the tradeoffs in the computational cost and need to include a wide range of GCMs for fuller characterization of uncertainties, scenarios are better used for sensitivity testing and adaptation options appraisal. One common approach to adaptation that has been defined as robust is the use of safety margins. In this work the sensitivity of safety margins that have been adopted by the agency responsible for flood risk management in Ireland, to the uncertainty in future projections are examined. The sensitivity of fluvial flood risk to climate change is assessed for four Irish catchments using a large number of GCMs (17) forced with three emissions scenarios (SRES A1B, A2, B1) as input to four hydrological models. Both uncertainty within and between hydrological models is assessed using the GLUE framework. Regionalisation is achieved using a change factor method to infer changes in the parameters of a weather generator using monthly output from the GCMs, while flood frequency analysis is conducted using the method of probability weighted moments to fit the Generalised Extreme Value distribution to ~20,000 annual maxima series. The sensitivity of design margins to the uncertainty space considered is visualised using risk response surfaces. The hydrological sensitivity is measured as the percentage change in flood peak for specified recurrence intervals. Results indicate that there is a considerable residual risk associated with allowances of +20% when uncertainties are accounted for and that the risk of exceedence of design allowances is greatest for more extreme, low frequency events with considerable implication for critical infrastructure, e.g., culverts, bridges, flood defences whose designs are normally associated with such return periods. Sensitivity results show that the impact of climate change is not as great for flood peaks with higher return periods. The average width of the uncertainty range and the size of the range for each catchment reveals that the uncertainties in low frequency events are greater than high frequency events. In addition, the uncertainty interval, estimated as the average width of the uncertainty range of flow for the five return periods, grows wider with a decrease in the runoff coefficient and wetness index of each catchment, both of which tend to increase the nonlinearity in the rainfall response. A key management question that emerges is the acceptability of residual risk where high exposure of vulnerable populations and/or critical infrastructure coincide with high costs of additional capacity in safety margins.

  12. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret.

    PubMed

    Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun

    2017-07-19

    Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.

  13. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  14. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  15. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.

    PubMed

    Van der Borght, Koen; Thys, Kim; Wetzels, Yves; Clement, Lieven; Verbist, Bie; Reumers, Joke; van Vlijmen, Herman; Aerssens, Jeroen

    2015-11-10

    Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNV(D)). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNV(HS)). To also increase specificity, SNVs called were overruled when their frequency was below the 80(th) percentile calculated on the distribution of error frequencies (QQ-SNV(HS-P80)). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNV(D) performed similarly to the existing approaches. QQ-SNV(HS) was more sensitive on all test sets but with more false positives. QQ-SNV(HS-P80) was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5%, QQ-SNV(HS-P80) revealed a sensitivity of 100% (vs. 40-60% for the existing methods) and a specificity of 100% (vs. 98.0-99.7% for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5% were consistently detected by QQ-SNV(HS-P80) from different generations of Illumina sequencers. We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data.

  16. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  17. A novel radar sensor for the non-contact detection of speech signals.

    PubMed

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects.

  18. A Novel Radar Sensor for the Non-Contact Detection of Speech Signals

    PubMed Central

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects. PMID:22399895

  19. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    PubMed

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  20. Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity

    PubMed Central

    Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.

    2016-01-01

    Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835

  1. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  2. The Joint Association of Eating Frequency and Diet Quality With Colorectal Cancer Risk in the Health Professionals Follow-up Study

    PubMed Central

    Mekary, Rania A.; Willett, Walter C.; Chiuve, Stephanie; Wu, Kana; Fuchs, Charles; Fung, Teresa T.; Giovannucci, Edward

    2012-01-01

    The results of most case-control studies have suggested a positive association between eating frequency and colorectal cancer risk. Because no prospective cohort studies have done so to date, the authors prospectively examined this association. In 1992, eating frequency was assessed in a cohort of 34,968 US men in the Health Professionals Follow-up Study. Cox proportional hazards regression models were used to estimate relative risks and 95% confidence intervals for various levels of eating frequency. Effect modifications by overall dietary quality (assessed using the Diet Approaches to Stop Hypertension score) and by factors that influence insulin resistance were further assessed. Between 1992 and 2006, a total of 583 cases of colorectal cancer were diagnosed. When comparing the highest eating frequency category (5–8 times/day) with the reference category (3 times/day), the authors found no evidence of an increased risk of colorectal cancer (multivariate relative risk = 0.88, 95% confidence interval: 0.62, 1.26) or colon cancer (multivariate relative risk = 0.78, 95% confidence interval: 0.49, 1.25). There was an implied inverse association with eating frequency among participants who had healthier diets (high Diet Approaches to Stop Hypertension score; P for interaction = 0.01), especially among men in the high-insulin-sensitivity group (body mass index (weight (kg)/height (m)2) <25, ≥2 cups of coffee/day, and more physical activity; P for interaction < 0.01, P for trend = 0.01). There was an implied protective association between increased eating frequency of healthy meals and colorectal cancer risk and in men with factors associated with higher insulin sensitivity. PMID:22387430

  3. Microstrip Patch Sensor for Salinity Determination.

    PubMed

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  4. Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    High power fiber lasers/amplifiers in the 1550nm spectral region have not scaled as rapidly as Yb-, Tm-, or Ho-doped fibers. This is primarily due to the low gain of the erbium ion. To overcome the low pump absorption, Yb is typically added as a sensitizer. Although this helps the pump absorption, it also creates a problem with parasitic lasing of the Yb ions under strong pumping conditions, which generally limits output power. Other pump schemes have shown high efficiency through resonant pumping of erbium only without the need for Yb as a sensitizer [1-2]. Although this can enable higher power scaling due to a decrease in the thermal loading, resonant pumping methods require long fiber lengths due to pump bleaching, which may limit the power scaling which can be achieved for single frequency output. By using an Er:Yb fiber and pumping in the minima of the Yb pump absorption at 940nm, we have been able to simultaneously generate high power, single frequency output at 1560nm while suppressing the 1-micron ASE and enabling higher efficiency compared to pumping at the absorption peak at 976nm. We have demonstrated single frequency amplification (540Hz linewidth) to 207W average output power with 49.3% optical efficiency (50.5% slope efficiency) in an LMA Er:Yb fiber. We believe this is the highest reported efficiency from a high power 9XXnm pumped Er:Yb-doped fiber amplifier. This is significantly more efficient that the best-reported efficiency for high power Er:Yb doped fibers, which, to-date, has been limited to ~41% slope efficiency [3].

  5. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  6. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  7. An A Priori Multiobjective Optimization Model of a Search and Rescue Network

    DTIC Science & Technology

    1992-03-01

    sequences. Classical sensitivity analysis and tolerance analysis were used to analyze the frequency assignments generated by the different weight...function for excess coverage of a frequency. Sensitivity analysis is used to investigate the robustness of the frequency assignments produced by the...interest. The linear program solution is used to produce classical sensitivity analysis for the weight ranges. 17 III. Model Formulation This chapter

  8. Ultrasensitive detection of atmospheric trace gases using frequency modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Cooper, David E.

    1986-01-01

    Frequency modulation (FM) spectroscopy is a new technique that promises to significantly extend the state-of-the-art in point detection of atmospheric trace gases. FM spectroscopy is essentially a balanced bridge optical heterodyne approach in which a small optical absorption or dispersion from an atomic or molecular species of interest generates an easily detected radio frequency (RF) signal. This signal can be monitored using standard RF signal processing techniques and is, in principle, limited only by the shot noise generated in the photodetector by the laser source employed. The use of very high modulation frequencies which exceed the spectral width of the probed absorption line distinguishes this technique from the well-known derivative spectroscopy which makes use of low (kHz) modulation frequencies. FM spectroscopy was recently extended to the 10 micron infrared (IR) spectral region where numerous polyatomic molecules exhibit characteristic vibrational-rotational bands. In conjunction with tunable semiconductor diode lasers, the quantum-noise-limited sensitivity of the technique should allow for the detection of absorptions as small as .00000001 in the IR spectral region. This sensitivity would allow for the detection of H2O2 at concentrations as low as 1 pptv with an integration time of 10 seconds.

  9. Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates

    NASA Astrophysics Data System (ADS)

    Caliendo, Cinzia

    2006-09-01

    The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic alcohol was tested by means of a high-frequency (670MHz) high-sensitivity Si /AlN resonator sensor.

  10. Development of a compact optical absolute frequency reference for space with 10-15 instability.

    PubMed

    Schuldt, Thilo; Döringshoff, Klaus; Kovalchuk, Evgeny V; Keetman, Anja; Pahl, Julia; Peters, Achim; Braxmaier, Claus

    2017-02-01

    We report on a compact and ruggedized setup for laser frequency stabilization employing Doppler-free spectroscopy of molecular iodine near 532 nm. Using a 30 cm long iodine cell in a triple-pass configuration in combination with noise-canceling detection and residual amplitude modulation control, a frequency instability of 6×10-15 at 1 s integration time and a Flicker noise floor below 3×10-15 for integration times between 100 and 1000 s was found. A specific assembly-integration technology was applied for the realization of the spectroscopy setup, ensuring high beam pointing stability and high thermal and mechanical rigidity. The setup was developed with respect to future applications in space, including high-sensitivity interspacecraft interferometry, tests of fundamental physics, and navigation and ranging.

  11. Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

    PubMed Central

    Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl

    2015-01-01

    Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731

  12. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  13. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.

    PubMed

    Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan

    2011-11-25

    Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.

  14. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the device's Q factor has been realized by shifting the device's working wavelength to near-visible wavelength and further reducing the device's sidewall roughness. A record new high Q-˜x105 has been measured and the device's NEP as low as 21Pa has been measured. Furthermore, a smaller size polymer microring device has been developed and fabricated to realize larger angle beam forming applications.

  15. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  16. Radar sensitivity and antenna scan pattern study for a satellite-based Radar Wind Sounder (RAWS)

    NASA Technical Reports Server (NTRS)

    Stuart, Michael A.

    1992-01-01

    Modeling global atmospheric circulations and forecasting the weather would improve greatly if worldwide information on winds aloft were available. Recognition of this led to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler shifts from aerosols in the planned for Earth Observation System (EOS). However, gaps will exist in LAWS coverage where heavy clouds are present. The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by measuring Doppler shifts from clouds and rain. Previous studies conducted at the University of Kansas show RAWS as a feasible instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit waveform, and limitations to the antenna scan pattern of the RAWS system. A dop-size distribution model is selected and applied to the radar range equation for the sensitivity analysis. Six frequencies are used in computing the SNR for several cloud types to determine the optimal transmit frequency. the results show the use of two frequencies, one higher (94 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) for better penetration in rain, provide ample SNR. The waveform design supports covariance estimation processing. This estimator eliminates the Doppler ambiguities compounded by the selection of such high transmit frequencies, while providing an estimate of the mean frequency. the unambiguous range and velocity computation shows them to be within acceptable limits. The design goal for the RAWS system is to limit the wind-speed error to less than 1 ms(exp -1). Due to linear dependence between vectors for a three-vector scan pattern, a reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls within the wind-error limits for azimuth angles between 16 deg to 70 deg. However, this scan only allows two components of the wind to be determined. As a result, a technique is then shown, based on the Z-R-V relationships, that permit the vertical component (i.e., rain) to be computed. Thus the horizontal wind components may be obtained form the covariance estimator and the vertical component from the reflectivity factor. Finally, a new candidate system is introduced which summarizes the parameters taken from previous RAWS studies, or those modified in this thesis.

  17. Comparison of a triaxial fluxgate magnetometer and Toftness sensometer for body surface EMF measurement.

    PubMed

    Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi

    2004-12-01

    The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 microT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 microT field in the coil and an ammeter was used to measure the current required to develop the 50 microT field. At frequencies other than 60 Hz, the field strength was maintained at 50 microT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 microT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and Sensometer readings were made by 4 Toftness Sensometer operators, having various degrees of experience with this device. Each examiner obtained instrument readings from 5 different volunteers in separate chiropractic adjusting rooms. Additionally, one of the Toftness Sensometers was equipped with an integrated fluxgate magnetometer (FGM2) and this magnetometer was used to obtain a second set of EMF readings in the clinical setting. The triaxial fluxgate magnetometer was determined to be moderately responsive to changes in magnetic field frequency below 10 Hz. At frequencies above 10 Hz the readings corresponded to that of the ambient static geofield. The practitioner operating the Toftness Sensometer was unable to detect magnetic fields at high frequencies (above 10 Hz) even at very high EMFs. The fluxgate magnetometer was shown to be essentially a DC/static magnetic field detector and like all such devices it has a limited frequency range with some low level of sensitivity at very low field frequencies. The interexaminer reliability of four Toftness practitioners using the Sensometer on 5 patients showed low to moderate correlation. The fluxgate magnetometer although highly sensitive to static (DC) EMFs has only limited sensitivity to EMFs in the range of 1 to 10 Hz and is very insensitive to frequencies above 10 Hz. In laboratory comparisons of the Sensometer and the fluxgate magnetometer there was an occasional correspondence between the two instruments in detecting magnetic fields within the Merritt coil but these occasions were not reproducible. In the clinical studies there was low to moderate agreement between the clinicians using the Sensometer to diagnosing spinal conditions and there was little if any agreement between the Sensometer and the fluxgate magnetometer in detecting EMFs emanating from the volunteers body surface.

  18. Comparison of a triaxial fluxgate magnetometer and Toftness sensometer for body surface EMF measurement

    PubMed Central

    Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi

    2004-01-01

    Introduction The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. Methods A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 μT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 μT field in the coil and an ammeter was used to measure the current required to develop the 50 μT field. At frequencies other than 60 Hz, the field strength was maintained at 50 μT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 μT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and Sensometer readings were made by 4 Toftness Sensometer operators, having various degrees of experience with this device. Each examiner obtained instrument readings from 5 different volunteers in separate chiropractic adjusting rooms. Additionally, one of the Toftness Sensometers was equipped with an integrated fluxgate magnetometer (FGM2) and this magnetometer was used to obtain a second set of EMF readings in the clinical setting. Results The triaxial fluxgate magnetometer was determined to be moderately responsive to changes in magnetic field frequency below 10 Hz. At frequencies above 10 Hz the readings corresponded to that of the ambient static geofield. The practitioner operating the Toftness Sensometer was unable to detect magnetic fields at high frequencies (above 10 Hz) even at very high EMFs. The fluxgate magnetometer was shown to be essentially a DC/static magnetic field detector and like all such devices it has a limited frequency range with some low level of sensitivity at very low field frequencies. The interexaminer reliability of four Toftness practitioners using the Sensometer on 5 patients showed low to moderate correlation. Conclusions The fluxgate magnetometer although highly sensitive to static (DC) EMFs has only limited sensitivity to EMFs in the range of 1 to 10 Hz and is very insensitive to frequencies above 10 Hz. In laboratory comparisons of the Sensometer and the fluxgate magnetometer there was an occasional correspondence between the two instruments in detecting magnetic fields within the Merritt coil but these occasions were not reproducible. In the clinical studies there was low to moderate agreement between the clinicians using the Sensometer to diagnosing spinal conditions and there was little if any agreement between the Sensometer and the fluxgate magnetometer in detecting EMFs emanating from the volunteers body surface. PMID:17549105

  19. Audiogram of a striped dolphin (Stenella coeruleoalba)

    NASA Astrophysics Data System (ADS)

    Kastelein, Ronald A.; Hagedoorn, Monique; Au, Whitlow W. L.; de Haan, Dick

    2003-02-01

    The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 13 oct). Maximum sensitivity (42 dB re 1 μPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.

  20. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  1. Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise

    PubMed Central

    Rakerd, Brad; Hartmann, William M.

    2010-01-01

    Binaural recordings of noise in rooms were used to determine the relationship between binaural coherence and the effectiveness of the interaural time difference (ITD) as a cue for human sound localization. Experiments showed a strong, monotonic relationship between the coherence and a listener’s ability to discriminate values of ITD. The relationship was found to be independent of other, widely varying acoustical properties of the rooms. However, the relationship varied dramatically with noise band center frequency. The ability to discriminate small ITD changes was greatest for a mid-frequency band. To achieve sensitivity comparable to mid-band, the binaural coherence had to be much larger at high frequency, where waveform ITD cues are imperceptible, and also at low frequency, where the binaural coherence in a room is necessarily large. Rivalry experiments with opposing interaural level differences (ILDs) found that the trading ratio between ITD and ILD increasingly favored the ILD as coherence decreased, suggesting that the perceptual weight of the ITD is decreased by increased reflections in rooms. PMID:21110600

  2. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  3. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  4. Sensitivity improvements of a resonance-based tactile sensor.

    PubMed

    Murayama, Yoshinobu; Lindahl, Olof A

    2017-02-01

    Resonance-based contact-impedance measurement refers to the application of resonance sensors based on the measurement of the changes in the resonance curve of an ultrasonic resonator in contact with a surface. The advantage of the resonance sensor is that it is very sensitive to small changes in the contact impedance. A sensitive micro tactile sensor (MTS) was developed, which measured the elasticity of soft living tissues at the single-cell level. In the present paper, we studied the method of improving the touch and stiffness sensitivity of the MTS. First, the dependence of touch sensitivity in relation to the resonator length was studied by calculating the sensitivity coefficient at each length ranging from 9 to 40 mm. The highest touch sensitivity was obtained with a 30-mm-long glass needle driven at a resonance frequency of 100 kHz. Next, the numerical calculation of contact impedance showed that the highest stiffness sensitivity was achieved when the driving frequency was 100 kHz and the contact-tip diameter of the MTS was 10 μm. The theoretical model was then confirmed experimentally using a phase-locked-loop-based digital feedback oscillation circuit. It was found that the developed MTS, whose resonant frequency was 97.030 kHz, performed with the highest sensitivity of 53.2 × 10 6  Hz/N at the driving frequency of 97.986 kHz, i.e. the highest sensitivity was achieved at 956 Hz above the resonant frequency.

  5. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xuenan; Zhang Yundong; Tian He

    We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less

  7. Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.

    PubMed

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2013-05-06

    We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.

  8. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges

    2016-07-18

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  9. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples

    PubMed Central

    Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong

    2016-01-01

    High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116

  10. The Auditory Skills Necessary for Echolocation: A New Explanation.

    ERIC Educational Resources Information Center

    Carlson-Smith, C.; Wiener, W. R.

    1996-01-01

    This study employed an audiometric test battery with nine blindfolded undergraduate students to explore success factors in echolocation. Echolocation performance correlated significantly with several specific auditory measures. No relationship was found between high-frequency sensitivity and echolocation performance. (Author/PB)

  11. Effects of spatial frequency and location of fearful faces on human amygdala activity.

    PubMed

    Morawetz, Carmen; Baudewig, Juergen; Treue, Stefan; Dechent, Peter

    2011-01-31

    Facial emotion perception plays a fundamental role in interpersonal social interactions. Images of faces contain visual information at various spatial frequencies. The amygdala has previously been reported to be preferentially responsive to low-spatial frequency (LSF) rather than to high-spatial frequency (HSF) filtered images of faces presented at the center of the visual field. Furthermore, it has been proposed that the amygdala might be especially sensitive to affective stimuli in the periphery. In the present study we investigated the impact of spatial frequency and stimulus eccentricity on face processing in the human amygdala and fusiform gyrus using functional magnetic resonance imaging (fMRI). The spatial frequencies of pictures of fearful faces were filtered to produce images that retained only LSF or HSF information. Facial images were presented either in the left or right visual field at two different eccentricities. In contrast to previous findings, we found that the amygdala responds to LSF and HSF stimuli in a similar manner regardless of the location of the affective stimuli in the visual field. Furthermore, the fusiform gyrus did not show differential responses to spatial frequency filtered images of faces. Our findings argue against the view that LSF information plays a crucial role in the processing of facial expressions in the amygdala and of a higher sensitivity to affective stimuli in the periphery. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  13. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  14. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging

    PubMed Central

    2017-01-01

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities. PMID:28901137

  15. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    PubMed

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  16. Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.

    PubMed

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2017-11-15

    Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.

  17. Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Li, Jing; Allen, Thomas J.; Colchester, Richard J.; Noimark, Sacha; Ogunlade, Olumide; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.; Zhang, Edward Z.; Beard, Paul C.

    2017-11-01

    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.

  18. Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.

    PubMed

    Sykora, Marek; Czosnyka, Marek; Liu, Xiuyun; Donnelly, Joseph; Nasr, Nathalie; Diedler, Jennifer; Okoroafor, Francois; Hutchinson, Peter; Menon, David; Smielewski, Peter

    2016-06-01

    Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. Retrospective analysis of a prospective database. Neurocritical care unit in a university hospital. Sedated patients with severe traumatic brain injury. Waveforms of intracranial pressure and arterial blood pressure, baseline Glasgow Coma Scale and 6 months Glasgow Outcome Scale were recorded. Baroreflex sensitivity was assessed every 10 seconds using a modified cross-correlational method. Frequency domain analyses of heart rate variability were performed automatically every 10 seconds from a moving 300 seconds of the monitoring time window. Mean values of baroreflex sensitivity, heart rate variability, intracranial pressure, arterial blood pressure, cerebral perfusion pressure, and impaired cerebral autoregulation over the entire monitoring period were calculated for each patient. Two hundred and sixty-two patients with a median age of 36 years entered the analysis. The median admission Glasgow Coma Scale was 6, the median Glasgow Outcome Scale was 3, and the mortality at 6 months was 23%. Baroreflex sensitivity (adjusted odds ratio, 0.9; p = 0.02) and relative power of a high frequency band of heart rate variability (adjusted odds ratio, 1.05; p < 0.001) were individually associated with mortality, independently of age, admission Glasgow Coma Scale, intracranial pressure, pressure reactivity index, or cerebral perfusion pressure. Baroreflex sensitivity showed no correlation with intracranial pressure or cerebral perfusion pressure; the correlation with pressure reactivity index was strong in older patients (age, > 60 yr). The relative power of high frequency correlated significantly with intracranial pressure and cerebral perfusion pressure, but not with pressure reactivity index. The relative power of low frequency correlated significantly with pressure reactivity index. Autonomic impairment, as measured by heart rate variability and baroreflex sensitivity, is significantly associated with increased mortality after traumatic brain injury. These effects, though partially interlinked, seem to be independent of age, trauma severity, intracranial pressure, or autoregulatory status, and thus represent a discrete phenomenon in the pathophysiology of traumatic brain injury. Continuous measurements of heart rate variability and baroreflex sensitivity in the neuromonitoring setting of severe traumatic brain injury may carry novel pathophysiological and predictive information.

  19. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide.

    PubMed

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-02-17

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.

  20. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

Top