Yen, Ju-Yu; Chang, Shun-Jen; Ko, Chih-Hung; Yen, Cheng-Fang; Chen, Cheng-Sheng; Yeh, Yi-Chun; Chen, Cheng-Chung
2010-09-01
This study aimed to: (1) evaluate food craving and high-sweet-fat food craving across the menstrual cycle; (2) compare the craving and explicit/implicit emotional response to different food; and (3) investigate the reward sensitivity among PMDD and control groups. The PMDD group without treatment history and control group were evaluated for food craving, emotional response to food, implicit attitude task to food, and responsiveness to reward both in luteal and follicular phases. A total of 59 women with PMDD and 60 controls had completed the study. The results revealed that both PMDD diagnosis and luteal phase were associated with higher body mass index. The high-sweet-fat food provoked higher craving, positive emotional, and positive implicit response more than other foods. The luteal phase contributed to higher food and high-sweet-fat food cravings. Besides, the PMDD women had higher reward sensitivity, emotional response, positive implicit attitude, and craving response to high-sweet-fat foods. Further, the rewarding sensitivity was associated with emotional response to high-sweet-fat food which was associated with high-sweet-fat food craving. These results would suggest emotional response and implicit attitude might play a role for high-sweet-fat food craving of PMDD. Further, PMDD women with higher reward sensitivity should be a target group of intervention for high-sweet-fat food craving. Copyright 2010 Elsevier Ltd. All rights reserved.
Wang, Le; Devore, Sasha; Delgutte, Bertrand
2013-01-01
Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maximally at the same delay across frequencies, or trough-type sensitivity, discharging minimally at the same delay across frequencies, consistent with responses observed at the primary site of binaural interaction in the medial and lateral superior olives (MSO and LSO), respectively. However, some high-frequency IC neurons exhibit dual types of envelope-ITD sensitivity in their responses to SAM tones, that is, they exhibit peak-type sensitivity at some modulation frequencies and trough-type sensitivity at other frequencies. Here we show that high-frequency IC neurons in the unanesthetized rabbit can also exhibit dual types of envelope-ITD sensitivity in their responses to SAM noise. Such complex responses to SAM stimuli could be achieved by convergent inputs from MSO and LSO onto single IC neurons. We test this hypothesis by implementing a physiologically explicit, computational model of the binaural pathway. Specifically, we examined envelope-ITD sensitivity of a simple model IC neuron that receives convergent inputs from MSO and LSO model neurons. We show that dual envelope-ITD sensitivity emerges in the IC when convergent MSO and LSO inputs are differentially tuned for modulation frequency. PMID:24155013
De Decker, Annelies; Verbeken, Sandra; Sioen, Isabelle; Van Lippevelde, Wendy; Braet, Caroline; Eiben, Gabriele; Pala, Valeria; Reisch, Lucia A; De Henauw, Stefaan
2017-04-01
To understand the importance of the home food environment on unhealthy food consumption in children high in reward sensitivity, this study tested the hypothesis that the home availability of unhealthy food moderates the effect of reward sensitivity on children's fast-food consumption frequency, exerted via food cue responsiveness. Children between 7.5 and 14 years (n = 174, 50.6% boys) reported on reward sensitivity and food cue responsiveness (by means of the subscale 'external eating'). Their height and weight were measured. Parents reported on their children's fast-food consumption frequency, food cue responsiveness (by means of the subscale 'food responsiveness'), and on the home availability of unhealthy foods. Two moderated mediation models were conducted, one with the parent- and one with the child-reported food cue responsiveness as mediator. Findings suggested that with a high home availability of unhealthy foods, (a) a higher fast-food consumption frequency was found in children high in reward sensitivity and (b) the relation between reward sensitivity and the fast-food consumption frequency was mediated by external eating. The findings point at the importance of the home food environment in children high in reward sensitivity. They suggest to limit the home availability of unhealthy foods. What is Known: • Reward sensitivity (RS) is positively associated with children's palatable food consumption • In adolescents, this effect is mediated by food cue responsiveness, which determines the strength of an individual's motivation to obtain food when perceiving food cues What is New: • Children high in RS may be more vulnerable to palatable food cues in their everyday food environment because of a higher food cue responsiveness • The home food environment may be an important determining factor of the palatable food consumption of these children.
NASA Astrophysics Data System (ADS)
di Nisi, J.; Muzet, A.; Weber, L. D.
1987-04-01
Eighty subjects of both sexes were selected according to their self-estimated high or low sensitivity to noise. Noise exposure took place during a mental task ("sound" condition) or during a video film illustrating the noises ("sound and video" condition). The experiments were conducted between 0900 and 1100 hours or between 1500 and 1700 hours. Heart rate response and finger pulse response amplitudes were averaged separately for "sound" and "sound and video" conditions. In the "sound" condition, the average amplitude of the heart rate response differed significantly between noise-sensitivity groups: the low sensitivity group showed a lower average amplitude of heart rate response than the high sensitivity group. A significant interaction between sex and time of the day (morning or afternoon) was observed in both "sound" and "sound and video" conditions. In the "sound" condition, the percentage of noises inducing a finger pulse response appeared higher in female than in male subjects.
Benke, Christoph; Blumenthal, Terry D; Modeß, Christiane; Hamm, Alfons O; Pané-Farré, Christiane A
2015-09-01
The way in which the tendency to fear somatic arousal sensations (anxiety sensitivity), in interaction with the created expectations regarding arousal induction, might affect defensive responding to a symptom provocation challenge is not yet understood. The present study investigated the effect of anxiety sensitivity on autonomic arousal, startle eyeblink responses, and reported arousal and alertness to expected vs. unexpected caffeine consumption. To create a match/mismatch of expected and experienced arousal, high and low anxiety sensitive participants received caffeine vs. no drug either mixed in coffee (expectation of arousal induction) or in bitter lemon soda (no expectation of arousal induction) on four separate occasions. Autonomic arousal (heart rate, skin conductance level), respiration (end-tidal CO2, minute ventilation), defensive reflex responses (startle eyeblink), and reported arousal and alertness were recorded prior to, immediately and 30 min after beverage ingestion. Caffeine increased ventilation, autonomic arousal, and startle response magnitudes. Both groups showed comparable levels of autonomic and respiratory responses. The startle eyeblink responses were decreased when caffeine-induced arousal occurred unexpectedly, e.g., after administering caffeine in bitter lemon. This effect was more accentuated in high anxiety sensitive persons. Moreover, in high anxiety sensitive persons, the expectation of arousal (coffee consumption) led to higher subjective alertness when administering caffeine and increased arousal even if no drug was consumed. Unexpected symptom provocation leads to increased attention allocation toward feared arousal sensations in high anxiety sensitive persons. This finding broadens our understanding of modulatory mechanisms in defensive responding to bodily symptoms.
Anticipation of interoceptive threat in highly anxiety sensitive persons.
Melzig, Christiane A; Michalowski, Jaroslaw M; Holtz, Katharina; Hamm, Alfons O
2008-10-01
Anticipatory anxiety plays a major role in the etiology of panic disorder. Although anticipatory anxiety elicited by expectation of interoceptive cues is specifically relevant for panic patients, it has rarely been studied. Using a population analogue in high fear of such interoceptive arousal sensations (highly anxiety sensitive persons) we evaluated a new experimental paradigm to assess anticipatory anxiety during anticipation of interoceptive (somatic sensations evoked by hyperventilation) and exteroceptive (electric shock) threat. Symptom reports, autonomic arousal, and defensive response mobilization (startle eyeblink response) were monitored during threat and matched safe conditions in 26 highly anxiety sensitive persons and 22 controls. The anticipation of exteroceptive threat led to a defensive and autonomic mobilization as indexed by a potentiation of the startle response and an increase in skin conductance level in both experimental groups. During interoceptive threat, however, only highly anxiety sensitive persons but not the controls exhibited a startle response potentiation as well as autonomic activation. The anticipation of a hyperventilation procedure thus seems a valid paradigm to investigate anticipatory anxiety elicited by interoceptive cues in the clinical context.
Interoceptive threat leads to defensive mobilization in highly anxiety sensitive persons.
Melzig, Christiane A; Holtz, Katharina; Michalowski, Jaroslaw M; Hamm, Alfons O
2011-06-01
To study defensive mobilization elicited by the exposure to interoceptive arousal sensations, we exposed highly anxiety sensitive students to a symptom provocation task. Symptom reports, autonomic arousal, and the startle eyeblink response were monitored during guided hyperventilation and a recovery period in 26 highly anxiety sensitive persons and 22 controls. Normoventilation was used as a non-provocative comparison condition. Hyperventilation led to autonomic arousal and a marked increase in somatic symptoms. While high and low anxiety sensitive persons did not differ in their defensive activation during hyperventilation, group differences were detected during early recovery. Highly anxiety sensitive students exhibited a potentiation of startle response magnitudes and increased autonomic arousal after hyper- as compared to after normoventilation, indicating defensive mobilization evoked by the prolonged presence of feared somatic sensations. Copyright © 2010 Society for Psychophysiological Research.
Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen
2017-01-01
Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.
A 3D Chemically Modified Graphene Hydrogel for Fast, Highly Sensitive, and Selective Gas Sensor.
Wu, Jin; Tao, Kai; Guo, Yuanyuan; Li, Zhong; Wang, Xiaotian; Luo, Zhongzhen; Feng, Shuanglong; Du, Chunlei; Chen, Di; Miao, Jianmin; Norford, Leslie K
2017-03-01
Reduced graphene oxide (RGO) has proved to be a promising candidate in high-performance gas sensing in ambient conditions. However, trace detection of different kinds of gases with simultaneously high sensitivity and selectivity is challenging. Here, a chemiresistor-type sensor based on 3D sulfonated RGO hydrogel (S-RGOH) is reported, which can detect a variety of important gases with high sensitivity, boosted selectivity, fast response, and good reversibility. The NaHSO 3 functionalized RGOH displays remarkable 118.6 and 58.9 times higher responses to NO 2 and NH 3 , respectively, compared with its unmodified RGOH counterpart. In addition, the S-RGOH sensor is highly responsive to volatile organic compounds. More importantly, the characteristic patterns on the linearly fitted response-temperature curves are employed to distinguish various gases for the first time. The temperature of the sensor is elevated rapidly by an imbedded microheater with little power consumption. The 3D S-RGOH is characterized and the sensing mechanisms are proposed. This work gains new insights into boosting the sensitivity of detecting various gases by combining chemical modification and 3D structural engineering of RGO, and improving the selectivity of gas sensing by employing temperature dependent response characteristics of RGO for different gases.
van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk
2017-10-01
Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, Yannick; Kuznetsova, Svetlana; Barajas, E
Purpose: To characterize the energy dependence of high-sensitivity MCP-N TLD and Al{sub 2}O{sub 3}:C OSLD dosimetry systems at low (40–100 kVp) energies for in-vivo dosimetry. Methods: We assessed the variation of response with energy of two detectors in the 40–100 kVp energy range: high-sensitivity MCP-N TLDs (LiF:Mg,Cu,P) and OSLDs (Al{sub 2}O{sub 3}:C). The detectors were irradiated with an XRad 320ix biological irradiator under reference conditions. The delivered dose was 10 cGy for 7 beam qualities ranging from 40–100 kVp, 1.7–4.0 mm Al, and effective energies 26.9–37.9 keV. Both sets of detectors were also irradiated under reference conditions at 6 MVmore » using a Varian Clinac 21Ex to assess the change in response from high-energy beams. Results: The MCP-N high-sensitivity TLDs were relatively insensitive to energies in the kV range, as their response varied by ±5%, i.e. well within the reproducibility limits of these detectors. However, the OSLDs exhibited a linearly-decreasing response with energy with a response 18.7% higher at 40 kVp than at 100 kVp for the same nominal dose. Compared to the 6 MV beams used in conventional radiotherapy, OSLDs responded 3.3–3.9 times higher depending on beam quality while the MCP-N TLD response was unchanged within experimental uncertainty. Conclusions: Unlike the more commonly used TLD-100, the high-sensitivity MCP-N TLDs exhibit little to no energy response. OSLDs are shown to be highly energy-dependent, both from MV to kV and within the kV range.« less
Baladi, Michelle G; France, Charles P
2010-01-01
Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718
Baladi, Michelle G; France, Charles P
2010-10-01
Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.
A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel
NASA Astrophysics Data System (ADS)
Pathak, Akhilesh Kumar; Singh, Vinod Kumar
2017-12-01
In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.
High-sensitivity temperature sensor based on highly-birefringent microfiber
NASA Astrophysics Data System (ADS)
Sun, Li-Peng; Li, Jie; Jin, Long; Gao, Shuai; Tian, Zhuang; Ran, Yang; Guan, Bai-Ou
2013-09-01
We demonstrate an ultrasensitive temperature sensor by sealing a highly-birefringent microfiber into an alcoholinfiltrated copper capillary. With a Sagnac loop configuration, the interferometric spectrum is strongly dependent on the external refractive index (RI) with sensitivity of 36800nm/RIU around RI=1.356. As mainly derived from the ultrahigh RI sensitivity, the temperature response can reach as high as -14.72 nm/°C in the range of 30.9-36.9 °C. The measured response time is ~8s, as determined by the heat-conducting characteristic of the device and the diameter of the copper capillary. Our sensor is featured with low cost, easy fabrication and robustness.
Korošec, Peter; Šilar, Mira; Kopač, Peter; Eržen, Renato; Zidarn, Mihaela; Košnik, Mitja
2016-01-01
We sought to determine whether basophil-allergen sensitivity could be transferred to donor basophils by passive IgE sensitisation in allergic rhinitis and anaphylactic Hymenoptera venom hypersensitivity. We studied 15 wasp venom-, 19 grass pollen- and 2 house dust mite-allergic patients, 2 healthy donors, and 8 wasp venom-allergic donors. In all subjects, we first evaluated the initial basophil response to wasp venom, grass pollen, or house dust mite allergen. Donor basophils were then stripped, sensitised with the different patients' serum IgE, and challenged with the corresponding allergen. The CD63 response of donor basophils was then compared with initial basophil responses. In wasp venom-allergic subjects, the IgE transfer did not reflect the initial basophil-allergen sensitivity, because the venom IgE of subjects with high or low basophil sensitivity induced comparable responsiveness in healthy donor basophils. Furthermore, vice versa, when we sensitised the donor basophils of wasp venom-allergic individuals with different wasp venom or house dust mite IgE, we demonstrated that their response was predictable by their initial basophil allergen sensitivity. In the rhinitis allergy model, the IgE transfer correlated with the patients' initial basophil responsiveness because the grass pollen IgE of the subjects with high basophil allergen sensitivity induced significantly higher responsiveness of donor basophils than the IgE of subjects with initially low basophil allergen sensitivity. Our results suggest that basophil allergen sensitivity evaluated by flow-cytometric CD63 analysis depends on two distinct contribution factors. In anaphylactic Hymenoptera allergy, the major factor was intrinsic cellular sensitivity, whereas in pollen allergy, the major factor was allergen-specific IgE on the cell surface. © 2016 S. Karger AG, Basel.
Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari
2017-08-31
Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.
Carrera, Marinete Pinheiro; Carey, Robert J; Cruz Dias, Flávia Regina; dos Santos Sampaio, Maria de Fátima; de Matos, Liana Wermelinger
2013-01-01
Re-exposure to conditioned drug stimuli triggers re-consolidation processes. In the present study post-trial apomorphine treatments were administered in order to interact with the re-consolidation of an apomorphine conditioned/sensitized locomotor response. A low (0.05 mg/kg) and a high (2.0mg/kg) dose were used to inhibit or to enhance dopamine activity, respectively. Initially, groups received 5 daily apomorphine (2.0mg/kg)/vehicle treatments either paired or unpaired to open-field placement. The paired treatments generated a progressive locomotor response. Subsequently, all groups received a 5 min non-drug test for conditioning and a conditioned locomotor response was observed in the paired group. The groups received another apomorphine (2.0mg/kg)/vehicle treatment as a re-induction treatment. At this stage the post-trial protocol was initiated. One set of paired, unpaired and vehicle groups were given a low dose of apomorphine (0.05 mg/kg) post-trial; another set received a high dose of apomorphine (2.0mg/kg) post-trial. The remaining group set received vehicle post-trial. The low dose post-trial treatment eliminated the conditioned and sensitized locomotor response and the high dose post-trial treatment enhanced the conditioned and sensitized locomotor response. The efficacy of the post-trial apomorphine treatments to modify the conditioned and the sensitized response after a brief non-drug exposure to test cues supports the proposition that exteroceptive cues control conditioning and sensitization and that the interoceptive drug cues make little or no associational contribution to apomorphine conditioning and sensitization. In addition, the findings point to the importance of dopamine activation in both the acquisition and re-consolidation of conditioning processes. Copyright © 2012 Elsevier B.V. All rights reserved.
High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke
2014-07-21
Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less
Umar, Ahmad; Lee, Jong-Heun; Kumar, Rajesh; Al-Dossary, O
2017-02-01
Herein, the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on CuO nanodisks is reported. The CuO nanodisks were synthesized by facile hydrothermal process and detailed characterization revealed the well-crystallinity, high-purity and high density growth of the prepared material. To fabricate the ethanol gas sensor, the prepared nanodisks were coated on alumina substrate. The fabricated sensor exhibited high-sensitivity and the recorded gas response (resistance-ratio), response time (τ res) and recovery time (τ recov) were 6.2, 119 and 35 s, respectively for 100 ppm of C₂H₅OH at 300 °C. Further, the fabricated sensor shows high selectivity towards ethanol gas compared to H₂ and CO gases.
Li, James J
2018-03-20
Atypical reward processing, including abnormal reward responsivity and sensitivity to punishment, has long been implicated in the etiology of ADHD. However, little is known about how these facets of behavior interact with positive (e.g., warmth, praise) and negative (e.g., hostility, harsh discipline) parenting behavior in the early expression of ADHD symptoms in young children. Understanding the interplay between children's reward processing and parenting may be crucial for identifying specific treatment targets in psychosocial interventions for ADHD, especially given that not all children benefit from contingency-based treatments (e.g., parent management training). The study consisted of a sample of kindergarten children (N = 201, 55% male) and their parents, who completed questionnaires about their parenting practices, their child's behaviors and participated in an observed parent-child play task in the laboratory. Children's reward responsivity and sensitivity to punishment were positively associated with child ADHD symptoms. However, children with high reward responsivity had more symptoms of ADHD but only under conditions of low negative parenting (self-reported and observed) and high self-reported positive parenting, compared to children with low reward responsivity. Children with high sensitivity to punishment had more ADHD symptoms relative to children with low sensitivity to punishment, but only under conditions in which observed praise was infrequent. Results provide evidence that individual differences in sensitivity to reward/punishment may be an important of marker of risk for ADHD, but also highlights how children's responses to positive and negative parenting behavior may vary by children's sensitivities. Clinical and treatment implications are discussed.
Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms
Majid, Dewan S.A.; Prieto, Minolfa C.; Navar, L Gabriel
2015-01-01
Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic link between chronic salt intake and the development of hypertension. PMID:26028244
ERIC Educational Resources Information Center
Khakzad, Mohammad Reza; Javanbakht, Maryam; Shayegan, Mohammad Reza; Kianoush, Sina; Omid, Fatemeh; Hojati, Maryam; Meshkat, Mojtaba
2012-01-01
C-reactive protein (CRP) is a beneficial diagnostic test for the evaluation of inflammatory response. Extremely low levels of CRP can be detected using high-sensitivity CRP (hs-CRP) test. A considerable body of evidence has demonstrated that inflammatory response has an important role in the pathophysiology of autism. In this study, we evaluated…
Responses to auxin signals: an operating principle for dynamical sensitivity yet high resilience
Bravi, B.; Martin, O. C.
2018-01-01
Plants depend on the signalling of the phytohormone auxin for their development and for responding to environmental perturbations. The associated biomolecular signalling network involves a negative feedback on Aux/IAA proteins which mediate the influence of auxin (the signal) on the auxin response factor (ARF) transcription factors (the drivers of the response). To probe the role of this feedback, we consider alternative in silico signalling networks implementing different operating principles. By a comparative analysis, we find that the presence of a negative feedback allows the system to have a far larger sensitivity in its dynamical response to auxin and that this sensitivity does not prevent the system from being highly resilient. Given this insight, we build a new biomolecular signalling model for quantitatively describing such Aux/IAA and ARF responses. PMID:29410878
Liu, Lijie; Wang, Xiang; Wang, Nan; Peng, Tai; Wang, Suning
2017-07-24
A new class of highly efficient and stable, blue-phosphorescent Pt II complexes based on a tetradentate chelating framework has been found to exhibit highly sensitive and reversible responses to multiple external stimuli including temperature, pressure, and UV irradiation with distinct phosphorescent color switching-from blue to red or white. Intermolecular excimer formation is the main origin of this intriguing multi-response phenomenon. Highly efficient singlet-oxygen sensitization by the Pt II compounds yields UV-light-induced phosphorescence enhancement and color switching. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Ying; Li, Jingjing; Tang, Qingbo; Zhang, Xuening; Zhao, Xincheng; Yan, Fengming; van Loon, Joop J. A.
2016-01-01
Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets containing either a high, medium or low concentration of sucrose, a major feeding stimulant. The responsiveness of the sucrose-best neuron in the lateral sensilla styloconica on the galea was quantified. Results showed the response of the sucrose-best neuron exposed to high-sucrose diets decreased gradually over successive generations, resulting in complete desensitization in the 5th and subsequent generations. However, the sensitivity was completely restored in the ninth generation after neonate larvae were exposed to low-sucrose diet. These findings demonstrate phenotypic plasticity and exclude inadvertent artificial selection for low sensitivity to sucrose. No significant changes were found in the sensitivity of caterpillars which experienced low- or medium-sucrose diets over the same generations. Such desensitization versus re-sensitization did not generalise to the phagosimulant myo-inositol-sensitive neuron or the feeding deterrent-sensitive neuron. Our results demonstrate that under conditions of high sucrose availability trans-generational desensitization of a neuron sensitive to this feeding stimulant becomes more pronounced whereas re-sensitization occurs within one generation. PMID:27966640
Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent
2010-06-01
Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.
Microstructured graphene arrays for highly sensitive flexible tactile sensors.
Zhu, Bowen; Niu, Zhiqiang; Wang, Hong; Leow, Wan Ru; Wang, Hua; Li, Yuangang; Zheng, Liyan; Wei, Jun; Huo, Fengwei; Chen, Xiaodong
2014-09-24
A highly sensitive tactile sensor is devised by applying microstructured graphene arrays as sensitive layers. The combination of graphene and anisotropic microstructures endows this sensor with an ultra-high sensitivity of -5.53 kPa(-1) , an ultra-fast response time of only 0.2 ms, as well as good reliability, rendering it promising for the application of tactile sensing in artificial skin and human-machine interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gubner, N R; McKinnon, C S; Reed, C; Phillips, T J
2013-01-01
Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability. Published by Elsevier Ireland Ltd.
Kimber, Ian; Nookala, Suba; Davis, Catherine C; Gerberick, G Frank; Tucker, Heidi; Foertsch, Leslie M; Dearman, Rebecca J; Parsonnet, Jeffrey; Goering, Richard V; Modern, Paul; Donnellen, Meghan; Morel, Jorge; Kotb, Malak
2013-07-01
Noninvasive vaginal infections by Staphylococcus aureus strains producing the superantigen TSST-1 can cause menstrual toxic shock syndrome (mTSS). With the objective of exploring the basis for differential susceptibility to mTSS, the relative responsiveness to TSST-1 of healthy women has been investigated. Peripheral blood mononuclear cells from healthy donors were incubated with purified TSST-1 or with the T-cell mitogen phytohemmaglutinin (PHA), and proliferation was measured. The concentrations of TSST-1 and PHA required to elicit a response equivalent to 15% of the maximal achievable response (EC15) were determined. Although with PHA, EC15 values were comparable between donors, subjects could be classified as being of high, medium, or low sensitivity based on responsiveness to TSST-1. Sensitivity to TSST-1-induced proliferation was associated with increased production of the cytokines interleukin-2 and interferon-γ. When the entire T lymphocyte population was considered, there were no differences between sensitivity groups with respect to the frequency of cells known to be responsive to TSST-1 (those bearing CD3(+) Vβ2(+)). However, there was an association between sensitivity to TSST-1 and certain HLA-class II haplotypes. Thus, the frequencies of DR7DQ2, DR14DQ5, DR4DQ8, and DR8DQ4 haplotypes were greater among those with high sensitivity, a finding confirmed by analysis of responses to immortalized homozygous B cell lines. Collectively, the results reveal that factors other than neutralizing antibody and the frequency of Vβ2(+) T lymphocytes determine immunological responsiveness to TSST-1. Differential responsiveness of lymphocytes to TSST-1 may form the basis of interindividual variations in susceptibility to mTSS.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Ando, Akira; Tanaka, Fumiko; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun
2006-03-01
Yeasts used in bread making are exposed to high concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stress is poorly understood at the gene level. To clarify the genes required for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 273 deletions that yielded high sucrose sensitivity, approximately 20 of which were previously uncharacterized. These 273 deleted genes were classified based on their cellular function and localization of their gene products. Cross-sensitivity of the high-sucrose-sensitive mutants to high concentrations of NaCl and sorbitol was studied. Among the 273 sucrose-sensitive deletion mutants, 269 showed cross-sensitivities to sorbitol or NaCl, and four (i.e. ade5,7, ade6, ade8, and pde2) were specifically sensitive to high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element pathways and the function of the invertase in the ade mutants were similar to those in the wild-type strain. In the presence of high-sucrose stress, intracellular contents of ATP in ade mutants were at least twofold lower than that of the wild-type cells, suggesting that depletion of ATP is a factor in sensitivity to high-sucrose stress. The genes identified in this study might be important for tolerance to high-sucrose stress, and therefore should be target genes in future research into molecular modification for breeding of yeast tolerant to high-sucrose stress.
Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas
2003-03-15
To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.
Majumder, Muntasir Mamun; Silvennoinen, Raija; Anttila, Pekka; Tamborero, David; Eldfors, Samuli; Yadav, Bhagwan; Karjalainen, Riikka; Kuusanmäki, Heikki; Lievonen, Juha; Parsons, Alun; Suvela, Minna; Jantunen, Esa; Porkka, Kimmo; Heckman, Caroline A
2017-08-22
Novel agents have increased survival of multiple myeloma (MM) patients, however high-risk and relapsed/refractory patients remain challenging to treat and their outcome is poor. To identify novel therapies and aid treatment selection for MM, we assessed the ex vivo sensitivity of 50 MM patient samples to 308 approved and investigational drugs. With the results we i) classified patients based on their ex vivo drug response profile; ii) identified and matched potential drug candidates to recurrent cytogenetic alterations; and iii) correlated ex vivo drug sensitivity to patient outcome. Based on their drug sensitivity profiles, MM patients were stratified into four distinct subgroups with varied survival outcomes. Patients with progressive disease and poor survival clustered in a drug response group exhibiting high sensitivity to signal transduction inhibitors. Del(17p) positive samples were resistant to most drugs tested with the exception of histone deacetylase and BCL2 inhibitors. Samples positive for t(4;14) were highly sensitive to immunomodulatory drugs, proteasome inhibitors and several targeted drugs. Three patients treated based on the ex vivo results showed good response to the selected treatments. Our results demonstrate that ex vivo drug testing may potentially be applied to optimize treatment selection and achieve therapeutic benefit for relapsed/refractory MM.
A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System
Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun
2016-01-01
We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900
BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.
Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César
2016-09-01
According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.
Simola, Nicola; Cauli, Omar; Morelli, Micaela
2006-09-15
The present study evaluated the ability of a subchronic intermittent administration of caffeine to induce a sensitized motor response and correlated the individual susceptibility of rats to acute caffeine to the development of sensitization. Moreover, individual susceptibility to caffeine and development of motor behaviour sensitization were correlated to the behavioural response obtained after a challenge with amphetamine. To this end, rats were subdivided in "low" and "high" responders according to their individual susceptibility to acute caffeine established on the basis of the motor activity observed after the first caffeine administration. "Low" and "high" responder rats were then repeatedly and intermittently treated with caffeine (15 mg/kg, i.p.), or vehicle, every other day for fourteen days. Three days after treatment discontinuation, behavioural activation induced by acute amphetamine (0.5 mg/kg, s.c.) was measured in vehicle- and caffeine-pretreated rats. Subchronic caffeine resulted in motor sensitization of a variable degree among rats and no difference were observed between "low" and "high" responders. Moreover, caffeine pretreatment potentiated the behavioural effects of amphetamine according to the degree of caffeine sensitization but not to individual susceptibility to acute caffeine. These results demonstrate that individual susceptibility to acute caffeine does not influence the modifications in caffeine motor effects produced by its subchronic administration and does not affect the enhancement of acute behavioural effects of amphetamine in caffeine-pretreated rats, rather sensitization to subchronic caffeine administration critically influences the behavioural effects of amphetamine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, T.; Jensen, R.; Christensen, M. K.
2012-07-15
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less
NASA Astrophysics Data System (ADS)
Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.
Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).
Joseph, Jane E.; Zhu, Xun; Lynam, Donald; Kelly, Thomas H.
2015-01-01
Adolescence is a particularly vulnerable period for the onset of substance use disorders and other psychopathology. Individual variability in motivational tendencies and temperament and significant changes in functional brain organization during adolescence are important factors to consider in the development of substance use and dependence. Recent conceptualizations suggest that sensitivity to reward is heightened in adolescence and that this motivation tendency may precipitate subsequent substance abuse. The present study examined the role of personality traits in mesolimbic neurobehavioral response on a monetary incentive delay (MID) task in young adolescents (11–14 years) and emerging adults (18–25 years) using functional magnetic resonance imaging. As a group, adolescents were not more sensitive to gains than losses compared to adults during either anticipatory and feedback phases; instead, compared to adults they showed less sensitivity to incentive magnitude in mesolimbic circuitry during anticipation and feedback stages. However, personality modulated this response such that adolescents high in impulsivity or low in avoidance tendencies showed greater gain sensitivity and adolescents high in avoidance showed greater loss sensitivity during cue anticipation. In adults, mesolimbic response was modulated by the impulsivity construct such that high-impulsive adults showed reduced magnitude sensitivity during both anticipation and feedback compared to low impulsive adults. The present findings suggest that impulsive personality significantly modulates mesolimbic reward response during both adolescence and adulthood but avoidance and approach tendencies also modulate this response in adolescents. Moreover, personality modulated incentive valence in adolescents but incentive magnitude in adults. Collectively, these findings suggest that mesolimbic reward circuitry function is modulated by somewhat different parameters in adolescence than in adulthood. PMID:26690806
NASA Astrophysics Data System (ADS)
Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas
2018-03-01
Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E = 200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min = 0.6 Gy min-1 to high \\dot{D} max = 18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.
Differential housing and novelty response: Protection and risk from locomotor sensitization
Garcia, Erik J.; Haddon, Tara N.; Saucier, Donald A.; Cain, Mary E.
2017-01-01
High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30 days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5 mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14 days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3 mg/kg) or saline and then either stayed in or switched housing environments for 30 days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Conclusions Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce drug vulnerability. PMID:28108176
Scibelli, Angela C.; McKinnon, Carrie S.; Reed, Cheryl; Burkhart-Kasch, Sue; Li, Na; Baba, Harue; Wheeler, Jeanna M.
2012-01-01
Rationale Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. Objectives Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. Methods Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. Results Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. Conclusions Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption. PMID:21088960
The trait of sensory processing sensitivity and neural responses to changes in visual scenes
Xu, Xiaomeng; Aron, Arthur; Aron, Elaine; Cao, Guikang; Feng, Tingyong; Weng, Xuchu
2011-01-01
This exploratory study examined the extent to which individual differences in sensory processing sensitivity (SPS), a temperament/personality trait characterized by social, emotional and physical sensitivity, are associated with neural response in visual areas in response to subtle changes in visual scenes. Sixteen participants completed the Highly Sensitive Person questionnaire, a standard measure of SPS. Subsequently, they were tested on a change detection task while undergoing functional magnetic resonance imaging (fMRI). SPS was associated with significantly greater activation in brain areas involved in high-order visual processing (i.e. right claustrum, left occipitotemporal, bilateral temporal and medial and posterior parietal regions) as well as in the right cerebellum, when detecting minor (vs major) changes in stimuli. These findings remained strong and significant after controlling for neuroticism and introversion, traits that are often correlated with SPS. These results provide the first evidence of neural differences associated with SPS, the first direct support for the sensory aspect of this trait that has been studied primarily for its social and affective implications, and preliminary evidence for heightened sensory processing in individuals high in SPS. PMID:20203139
ERIC Educational Resources Information Center
Pluess, Michael; Assary, Elham; Lionetti, Francesca; Lester, Kathryn J.; Krapohl, Eva; Aron, Elaine N.; Aron, Arthur
2018-01-01
A large number of studies document that children differ in the degree they are shaped by their developmental context with some being more sensitive to environmental influences than others. Multiple theories suggest that "Environmental Sensitivity" is a common trait predicting the response to negative as well as positive exposures.…
Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode
Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken
2013-01-01
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932
Fordahl, Steve C.; Locke, Jason L.; Jones, Sara R.
2016-01-01
High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3d/week) or extended (24h 7d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed mice coincided with elevated DAT function and increased AMPH potency; however, the enhanced behavioral response to AMPH after HF exposure was unique in that it coincided with reduced DAT function and diet pattern-specific adaptations. PMID:27267686
Bialosky, Joel E.; Robinson, Michael E.
2014-01-01
Background Cluster analysis can be used to identify individuals similar in profile based on response to multiple pain sensitivity measures. There are limited investigations into how empirically derived pain sensitivity subgroups influence clinical outcomes for individuals with spine pain. Objective The purposes of this study were: (1) to investigate empirically derived subgroups based on pressure and thermal pain sensitivity in individuals with spine pain and (2) to examine subgroup influence on 2-week clinical pain intensity and disability outcomes. Design A secondary analysis of data from 2 randomized trials was conducted. Methods Baseline and 2-week outcome data from 157 participants with low back pain (n=110) and neck pain (n=47) were examined. Participants completed demographic, psychological, and clinical information and were assessed using pain sensitivity protocols, including pressure (suprathreshold pressure pain) and thermal pain sensitivity (thermal heat threshold and tolerance, suprathreshold heat pain, temporal summation). A hierarchical agglomerative cluster analysis was used to create subgroups based on pain sensitivity responses. Differences in data for baseline variables, clinical pain intensity, and disability were examined. Results Three pain sensitivity cluster groups were derived: low pain sensitivity, high thermal static sensitivity, and high pressure and thermal dynamic sensitivity. There were differences in the proportion of individuals meeting a 30% change in pain intensity, where fewer individuals within the high pressure and thermal dynamic sensitivity group (adjusted odds ratio=0.3; 95% confidence interval=0.1, 0.8) achieved successful outcomes. Limitations Only 2-week outcomes are reported. Conclusions Distinct pain sensitivity cluster groups for individuals with spine pain were identified, with the high pressure and thermal dynamic sensitivity group showing worse clinical outcome for pain intensity. Future studies should aim to confirm these findings. PMID:24764070
Molecular oxygen detection using frequency modulation diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Wang, Liang-Guo; Sachse, Glen
1990-01-01
A high-sensitivity spectroscopic measurement of O2 using two-tone frequency modulation spectroscopy with a GaAlAs diode laser is presented. An oxygen sensor based on this technique would be non-intrusive, compact and possess high sensitivity and fast time response.
Davenport, Tracey A; Burns, Jane M; Hickie, Ian B
2017-01-01
Background Web-based self-report surveying has increased in popularity, as it can rapidly yield large samples at a low cost. Despite this increase in popularity, in the area of youth mental health, there is a distinct lack of research comparing the results of Web-based self-report surveys with the more traditional and widely accepted computer-assisted telephone interviewing (CATI). Objective The Second Australian Young and Well National Survey 2014 sought to compare differences in respondent response patterns using matched items on CATI versus a Web-based self-report survey. The aim of this study was to examine whether responses varied as a result of item sensitivity, that is, the item’s susceptibility to exaggeration on underreporting and to assess whether certain subgroups demonstrated this effect to a greater extent. Methods A subsample of young people aged 16 to 25 years (N=101), recruited through the Second Australian Young and Well National Survey 2014, completed the identical items on two occasions: via CATI and via Web-based self-report survey. Respondents also rated perceived item sensitivity. Results When comparing CATI with the Web-based self-report survey, a Wilcoxon signed-rank analysis showed that respondents answered 14 of the 42 matched items in a significantly different way. Significant variation in responses (CATI vs Web-based) was more frequent if the item was also rated by the respondents as highly sensitive in nature. Specifically, 63% (5/8) of the high sensitivity items, 43% (3/7) of the neutral sensitivity items, and 0% (0/4) of the low sensitivity items were answered in a significantly different manner by respondents when comparing their matched CATI and Web-based question responses. The items that were perceived as highly sensitive by respondents and demonstrated response variability included the following: sexting activities, body image concerns, experience of diagnosis, and suicidal ideation. For high sensitivity items, a regression analysis showed respondents who were male (beta=−.19, P=.048) or who were not in employment, education, or training (NEET; beta=−.32, P=.001) were significantly more likely to provide different responses on matched items when responding in the CATI as compared with the Web-based self-report survey. The Web-based self-report survey, however, demonstrated some evidence of avidity and attrition bias. Conclusions Compared with CATI, Web-based self-report surveys are highly cost-effective and had higher rates of self-disclosure on sensitive items, particularly for respondents who identify as male and NEET. A drawback to Web-based surveying methodologies, however, includes the limited control over avidity bias and the greater incidence of attrition bias. These findings have important implications for further development of survey methods in the area of health and well-being, especially when considering research topics (in this case diagnosis, suicidal ideation, sexting, and body image) and groups that are being recruited (young people, males, and NEET). PMID:28951382
Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L
2017-08-01
The hippocampus and amygdala exhibit sensitivity to stimulus novelty that is reduced in participants with inhibited temperament, which is related to trait anxiety. Although the bed nucleus of the stria terminalis (BNST) is highly connected to the amygdala and is implicated in anxiety, whether the BNST responds to novelty remains unstudied, as well as how trait anxiety may modulate this response. Additionally how novelty, stimulus negativity and trait anxiety interact to affect activity in these areas is also unclear. To address these questions, we presented participants with novel and repeated, fearful and neutral faces, while measuring brain activity via fMRI, and also assessed participants' self-reported trait anxiety. As the small size of the BNST makes assessing its activity at typical fMRI resolution difficult, we employed high resolution 7 Tesla scanning. Our results replicate findings of novelty sensitivity that is independent of valence in the hippocampus. Our results also provide novel evidence for a BNST novelty response toward neutral, but not fearful faces. We also found that the novelty response in the hippocampus and BNST was blunted in participants with high trait anxiety. Additionally, we found left amygdala sensitivity to stimulus negativity that was blunted for high trait anxiety participants. These findings extend past research on the response to novel stimuli in the hippocampus and amygdala at high resolution, and are the first to demonstrate trait anxiety modulated novelty sensitivity in the BNST that is dependent on stimulus valence. Copyright © 2017 Elsevier Inc. All rights reserved.
Coastal resource and sensitivity mapping of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odin, L.M.
1997-08-01
This paper describes a project to establish a relationship between environmental sensitivity (primarily to oil pollution) and response planning and prevention priorities for Vietnamese coastal regions. An inventory of coastal environmental sensitivity and the creation of index mapping was performed. Satellite and geographical information system data were integrated and used for database creation. The database was used to create a coastal resource map, coastal sensitivity map, and a field inventory base map. The final coastal environment sensitivity classification showed that almost 40 percent of the 7448 km of mapped shoreline has a high to medium high sensitivity to oil pollution.
Growth and characterization of high-performance photorefractive BaTiO3 crystals
NASA Technical Reports Server (NTRS)
Warde, C.; Garrett, M. H.; Chang, J. Y.; Jenssen, H. P.; Tuller, H. L.
1991-01-01
Barium titanate has been used for many nonlinear optical applications primarily because it has high grain and high self-pumped phase conjugate reflectivities. However, barium titanate has had a relatively slow response time, and thus low sensitivity. Therefore, it has not been suited to real-time operations. In this report we will describe the modifications in crystal growth, doping, reduction, and poling that have produced barium titanate crystals with the fastest photorefractive response time reported to date, approximately 21 microseconds with a beam-coupling gain coefficient of 38.7 cm(exp -1) and the highest sensitivity reported to date of 3.44 cm(exp 3)/kJ. The sensitivity of these barium titanate crystals is comparable to or greater than other photorefractive oxides. We will show, for the first time, beam-coupling in barium titanate at video frame rates. We infer from response time measurements that barium titanate has a phonon limited mobility. Also, photorefractive response time measurements as a function of the crystallographic orientation and grating wave vector for our cobalt-doped oxygen reduced crystals indicate that their faster response time arise because of an increase in the free carrier lifetime.
Pané-Farré, Christiane A; Alius, Manuela G; Modeß, Christiane; Methling, Karen; Blumenthal, Terry; Hamm, Alfons O
2015-06-01
This study aimed to test how expectations and anxiety sensitivity influence respiratory and autonomic responses to caffeine. The current study investigated the effects of expected vs. unexpected caffeine ingestion in a group of persons prone to the anxiety-provoking effect of caffeine (high anxiety sensitive persons, that is, persons scoring at least one SD above the mean on the Anxiety Sensitivity Index (Peterson and Reiss 1992)) as compared to low-anxious controls. Autonomic arousal (heart rate, skin conductance level), respiratory responding (expired CO2, minute ventilation), and subjective report were assessed in high and low anxiety sensitive participants immediately after beverage consumption and at absorption peak (30 min post-consumption) in four separate sessions during which either coffee (expectation of caffeine) or bitter lemon soda (no expectation of caffeine) was crossed with 4 mg/kg caffeine vs. no drug. High and low anxiety sensitive persons showed comparable autonomic arousal and symptom reports to caffeine which was modulated by expectation, i.e., greater for coffee. Respiratory responding (CO2 decrease, minute ventilation increase) was more accentuated when caffeine was both expected and administered in the low anxiety sensitive group but more accentuated when caffeine was unexpectedly administered in the high anxiety sensitive group. Autonomic arousal and respiratory effects were observable within a few minutes after caffeine administration and were most pronounced at maximum absorption. The results highlight the modulating role of expectancies in respiratory responding to caffeine in low vs. high anxiety sensitive persons and might have important implications for the better understanding of unexpected panic attacks.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
NASA Astrophysics Data System (ADS)
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-12-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.
Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors
Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing
2015-01-01
Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113
[Influence of a high-carbohydrate meal on taste perception].
Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara
2011-01-01
Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.
Maternal and child correlates of anxiety in 2½-year-old children.
Mount, Kristin S; Crockenberg, Susan C; Jó, Patricia S Bárrig; Wagar, Jessica-Lyn
2010-12-01
The goal of this study was to predict the development of anxiety in 2½ year olds as a function of maternal anxiety and child inhibited temperament, and to test the mediating, moderating, and curvilinear effects of maternal sensitivity. Participants were 83 mothers and their 2½-year-old children (32 females). Maternal anxiety, child inhibition, and child anxiety were assessed by maternal report. Maternal sensitivity was rated based on the appropriateness and timeliness of mothers' responses to children's fear observed during their exposure to novel events in the laboratory and from mothers' diaries documenting their responses to children's fear in everyday situations. Gender predicted child anxiety, with mothers reporting girls as more anxious, as did child inhibition, with more inhibited children exhibiting more anxiety. Maternal sensitivity predicted child anxiety as a main effect and, in addition, inhibition moderated the curvilinear association of maternal sensitivity and child anxiety. For highly inhibited children, maternal sensitivity predicted anxiety in both a negative linear and a curvilinear fashion; anxiety decreased as maternal sensitivity increased up to a moderately high level, then increased at very high levels of maternal sensitivity. For less inhibited children, maternal sensitivity showed only a significant negative linear association with child anxiety. Copyright © 2010. Published by Elsevier Inc.
Deviance sensitivity in the auditory cortex of freely moving rats
2018-01-01
Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminating the expectations set by the standard ('deviant among many standards'). When the response to a tone when deviant (against a single standard) is larger than the responses to the same tone in the control sequence, it is concluded that true deviance sensitivity occurs. In primary auditory cortex of anesthetized rats, responses to deviants and to the same tones in the control condition are comparable in size. We recorded local field potentials and multiunit activity from the auditory cortex of awake, freely moving rats, implanted with 32-channel drivable microelectrode arrays and using telemetry. We observed highly significant SSA in the awake state. Moreover, the responses to a tone when deviant were significantly larger than the responses to the same tone in the control condition. These results establish the presence of true deviance sensitivity in primary auditory cortex in awake rats. PMID:29874246
Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L
2014-07-01
Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits.
Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L
2014-01-01
Background Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. Methods This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Results Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). Conclusions As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits. PMID:25161824
Gray, Dona L; O'Brien, Kevin D; D'Alessio, David A; Brehm, Bonnie J; Deeg, Mark A
2008-04-01
Although circulating glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a minor high-density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating GPI-PLD levels. The objective of the study was to determine the effect of weight loss and changes in insulin sensitivity on plasma GPI-PLD levels. Forty-two nondiabetic obese women were included in the study, which involved a 3-month dietary intervention randomizing patients to a low-fat or a low-carbohydrate diet. The study's main outcome measures were plasma GPI-PLD levels and insulin sensitivity as estimated by the homeostasis model assessment. The very low carbohydrate diet group lost more weight after 3 months (-7.6 +/- 3.2 vs -4.2 +/- 3.5 kg, P < .01), although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma GPI-PLD levels. However, baseline GPI-PLD levels correlated with the change in insulin sensitivity in response to the low-fat diet, whereas baseline insulin sensitivity correlated with the change in insulin sensitivity in response to the low-carbohydrate diet. Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low-fat diet on insulin sensitivity.
NASA Astrophysics Data System (ADS)
Park, Seon Joo; Song, Hyun Seok; Kwon, Oh Seok; Chung, Ji Hyun; Lee, Seung Hwan; An, Ji Hyun; Ahn, Sae Ryun; Lee, Ji Eun; Yoon, Hyeonseok; Park, Tai Hyun; Jang, Jyongsik
2014-03-01
The development of molecular detection that allows rapid responses with high sensitivity and selectivity remains challenging. Herein, we demonstrate the strategy of novel bio-nanotechnology to successfully fabricate high-performance dopamine (DA) biosensor using DA Receptor-containing uniform-particle-shaped Nanovesicles-immobilized Carboxylated poly(3,4-ethylenedioxythiophene) (CPEDOT) NTs (DRNCNs). DA molecules are commonly associated with serious diseases, such as Parkinson's and Alzheimer's diseases. For the first time, nanovesicles containing a human DA receptor D1 (hDRD1) were successfully constructed from HEK-293 cells, stably expressing hDRD1. The nanovesicles containing hDRD1 as gate-potential modulator on the conducting polymer (CP) nanomaterial transistors provided high-performance responses to DA molecule owing to their uniform, monodispersive morphologies and outstanding discrimination ability. Specifically, the DRNCNs were integrated into a liquid-ion gated field-effect transistor (FET) system via immobilization and attachment processes, leading to high sensitivity and excellent selectivity toward DA in liquid state. Unprecedentedly, the minimum detectable level (MDL) from the field-induced DA responses was as low as 10 pM in real- time, which is 10 times more sensitive than that of previously reported CP based-DA biosensors. Moreover, the FET-type DRNCN biosensor had a rapid response time (<1 s) and showed excellent selectivity in human serum.
Zimmer-Gembeck, Melanie J; Nesdale, Drew
2013-02-01
Rejection sensitivity (RS) is a tendency to expect, perceive, and overreact to rejection. Our objective was to examine whether anxious and angry RS have specific associations with negative social reactions, and whether responses are intensified in situations of high rejection ambiguity. In two studies, youth (N = 464 and N = 371) reported their RS and anticipated responses to social scenarios. In Study 1, all scenarios portrayed overt rejection events. In Study 2, participants were randomly assigned to conditions portraying overt or ambiguous rejection. Greater rejection expectation was associated with more negative reactions to rejection. Moreover, as expected, anxiety about rejection was uniquely associated with withdrawal, and anger about rejection was uniquely associated with retribution (i.e., reactive aggression). In the second study, RS persons responded more negatively than others to both overt and high ambiguous rejections, but retribution was intensified among participants high in rejection expectation when rejection was ambiguous, and withdrawal was intensified among participants high in anxious RS in overt rejection situations. Consistent with the revised RS model, there are different patterns of emotions, cognitions, and behaviors in response to high and low ambiguous rejection events, which are heightened in youth sensitive to rejection. © 2012, Wiley Periodicals, Inc.
Xu, Shijie; Kang, Ung Gu
2017-09-01
Repeated exposure to drugs of abuse can induce a progressive increase in locomotor activity, known as behavioral sensitization. However, little is known about behavioral sensitization to ethanol. We examined whether ethanol could induce behavioral sensitization and investigated several molecular changes accompanying sensitization. We also assessed whether "cross-sensitization" occurred between ethanol and cocaine, another abused drug. Ethanol-induced sensitization was examined in rats after ethanol treatment (0.5 or 2g/kg) for 15days. The biochemical effects of low- or high-dose ethanol were examined in terms of N-methyl-d-aspartate (NMDA) receptor subunit phosphorylation or expression. Neuronal activity after ethanol treatment was assessed by measuring the level of early growth response (Egr-1) expression. Ethanol-induced behavioral sensitization was observed at the low dose (0.5g/kg) but not the high dose (2g/kg). Although acute treatment with the sensitizing dose of ethanol robustly increased Egr-1 protein and mRNA levels, the expression and phosphorylation of NMDA receptor subunits were not affected. The biochemical responses to ethanol seemed to be enhanced in ethanol-sensitized animals. Cross-sensitization between ethanol and cocaine was observed, which supports the hypothesis that there are commonalities among substances in the pathophysiology of substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.
Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B
2014-08-01
The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
We disagree with Mr. Linn’s interpretation of our paper, “High Sensitivity of Children to Swimming-Associated Gastrointestinal Illness”.1 His comments are focused on hypothetical interpretation of our results as related to criteria development rather than the science presented. ...
H.sub.2O doped WO.sub.3, ultra-fast, high-sensitivity hydrogen sensors
Liu, Ping [Denver, CO; Tracy, C Edwin [Golden, CO; Pitts, J Roland [Lakewood, CO; Lee, Se-Hee [Lakewood, CO
2011-03-22
An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO.sub.3 layer coated on the substrate; and a palladium layer coated on the water-doped WO.sub.3 layer.
Inhomogeneous Forcing and Transient Climate Sensitivity
NASA Technical Reports Server (NTRS)
Shindell, Drew T.
2014-01-01
Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.
Micro-machined thermo-conductivity detector
Yu, Conrad
2003-01-01
A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.
Liu, Ming-Qing; Wang, Cong; Kim, Nam-Young
2017-01-01
In this study, a high-sensitivity and low-hysteresis porous metal–insulator–metal-type capacitive humidity sensor is investigated using a functional polymer mixed with TiO2 microparticles. The humidity sensor consists of an optimally designed porous top electrode, a functional polymer humidity sensitive layer, a bottom electrode, and a glass substrate. The porous top electrode is designed to increase the contact area between the sensing layer and water vapor, leading to high sensitivity and quick response time. The functional polymer mixed with TiO2 microparticles shows excellent hysteresis under a wide humidity-sensing range with good long-term stability. The results show that as the relative humidity ranges from 10% RH to 90% RH, the proposed humidity sensor achieves a high sensitivity of 0.85 pF/% RH and a fast response time of less than 35 s. Furthermore, the sensor shows an ultra-low hysteresis of 0.95% RH at 60% RH, a good temperature dependence, and a stable capacitance value with a maximum of 0.17% RH drift during 120 h of continuous test. PMID:28157167
Mehta, Pramod Kumar; Lee, Hyeri; Lee, Keun-Hyeung
2017-05-15
The selective and sensitive detection of heparin, an anticoagulant in clinics as well as its contaminant oversulfated chondroitin sulfate (OSCS) is of great importance. We first reported a ratiometric sensing method for heparin as well as OSCS contaminants in heparin using a fluorescent peptidyl probe (Pep1, pyrene-GSRKR) and heparin-digestive enzyme. Pep1 exhibited a highly sensitive ratiometric response to nanomolar concentration of heparin in aqueous solution over a wide pH range (2~11) and showed highly selective ratiometric response to heparin among biological competitors such as hyaluronic acid and chondroitin sulfate. Pep1 showed a linear ratiometric response to nanomolar concentrations of heparin in aqueous solutions and in human serum samples. The detection limit for heparin was calculated to be 2.46nM (R 2 =0.99) in aqueous solutions, 2.98nM (R 2 =0.98) in 1% serum samples, and 3.43nM (R 2 =0.99) in 5% serum samples. Pep1 was applied to detect the contaminated OSCS in heparin with heparinase I, II, and III, respectively. The ratiometric sensing method using Pep1 and heparinase II was highly sensitive, fast, and efficient for the detection of OSCS contaminant in heparin. Pep1 with heparinase II could detect as low as 0.0001% (w/w) of OSCS in heparin by a ratiometric response. Copyright © 2017 Elsevier B.V. All rights reserved.
Differential housing and novelty response: Protection and risk from locomotor sensitization.
Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E
2017-03-01
High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce drug vulnerability. Copyright © 2017 Elsevier Inc. All rights reserved.
Fayers, Tessa; Fayers, Peter M; Dolman, Peter J
2016-12-01
We tested the sensitivity and responsiveness of the TED-QOL to rehabilitative surgery in thyroid eye disease (TED). The 3-item TED-QOL and 16-item GO-QOL, which assess quality of life (QoL) in TED, were administered to consecutive patients undergoing rehabilitative surgery. The questionnaires were completed pre-and post-operatively to assess sensitivity (ability to discriminate between different surgical groups) and responsiveness (ability to detect within patient changes over time).56 patients underwent 69 procedures for TED (29 orbital decompressions, 15 strabismus operations, 25 eyelid procedures). The differences in scores between the three types of surgery (a measure of sensitivity) were statistically significant at the 5% level pre-operatively and post-operatively for all 3 TED-QOL scales and for both GO-QOL scales, but much more so for the TED-QOL scales in each case. The within-patient changes between the pre- and post-operative scores for the same subjects (a measure of responsiveness) were statistically very highly significant for the TED-QOL overall and appearance scales for each of the surgeries. The pre- and post-operative difference for the TED-QOL functioning scale was highly statistically significant for strabismus surgery but not for decompression or lid surgery. The change between the pre- and post-operative scores for the GO-QOL was significant for the functioning scale with strabismus and lid surgery, and was highly significant for the appearance scale with lid surgery but not for strabismus surgery or decompression. The 3-item TED-QOL is sensitive and responsive to rehabilitative surgery in TED and compares favorably with the lengthier GO-QOL for these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dohoon; Lee, Jinwoo; Kim, Jungbae
2005-12-05
We fabricated a highly sensitive and fast glucose biosensor by simply immobilizing glucose oxidase in mesocellular carbon foam. Due to its unique structure, the MSU-F-C enabled high enzyme loading without serious mass transfer limitation, resulting in high catalytic efficiency. As a result, the glucose biosensor fabricated with MSU-F-C/GOx showed a high sensitivity and fast response. Given these results and the inherent electrical conductivity, we anticipate that MSU-F-C will make a useful matrix for enzyme immobilization in various biocatalytic and electrobiocatalytic applications.
Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.
Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B
2016-11-03
Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.
NASA Astrophysics Data System (ADS)
Safaei, S.; Haghnegahdar, A.; Razavi, S.
2016-12-01
Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.
Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.
Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen
2016-05-06
Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong
2015-01-01
We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892
Ultrasensitive plano-concave optical microresonators for ultrasound sensing
NASA Astrophysics Data System (ADS)
Guggenheim, James A.; Li, Jing; Allen, Thomas J.; Colchester, Richard J.; Noimark, Sacha; Ogunlade, Olumide; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.; Zhang, Edward Z.; Beard, Paul C.
2017-11-01
Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.
Polyaniline-ZnO nanocomposites as ethanol gas sensors
NASA Astrophysics Data System (ADS)
Talegaonkar, Janhavi; Patil, Y. B.; Patil, D. R.
2018-05-01
Polyaniline and it`s nanocomposites with ZnO were successfully synthesized by photo-induced polymerization method with various concentrations of ZnO, followed by characterizations viz. SEM, EDAX, XRD, FTIR and UV-Vis. Thick films of synthesized powders were fabricated by screen printing technique for monitoring various gases at different operating temperatures and at various gas concentrations. CuO activated polyaniline-ZnO nano-composite exhibits maximum response of ethanol gas at room temperature. The sensor exhibits high sensitivity, highest selectivity, quick response, fast recovery, long term stability, etc. An exceptional sensitivity was found to low concentrations of ethanol gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The efforts have been made to develop the ethanol sensor based on PANI and its nanocomposites. The effects of microstructure and surfactant concentration on the ethanol response, selectivity, response and recovery of the sensor in the presence of ethanol gas were studied and discussed.
High blood pressure and visual sensitivity
NASA Astrophysics Data System (ADS)
Eisner, Alvin; Samples, John R.
2003-09-01
The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.
Nishihara, S; Seki, K; Ikigai, H; Masuda, S
1988-01-01
When mouse polymorphonuclear leukocytes (PMNs) sensitized with rabbit antibody to mouse Ehrlich ascites tumor cells were stimulated by Staphylococcus aureus Cowan I cells, a conspicuous luminol-dependent chemiluminescence was observed in the absence of opsonin. The profile of the chemiluminescence (CL) response evoked by staphylococcal cells from antibody-sensitized PMNs had two peaks. An initial peak, observed within 1 min after stimulation, was sharp and high and a second peak, observed about 5 min after stimulation, was low and extended. The CL response of antibody-sensitized PMNs stimulated by S. aureus Cowan I cells was dose-dependently blocked by preincubation with soluble SpA. Cells of a mutant derived from S. aureus Cowan I strain with trace amounts of cell-bound SpA failed to stimulate the antibody-sensitized PMNs to generate the CL response. The antibody-sensitized PMNs were found to phagocytize SpA-bearing S. aureus cells even in the absence of opsonic serum. These results suggest that the observation presented here might provide a useful tool for the investigation of CL response of PMNs.
Hernandez-Casner, Caroline; Ramos, Jeremiah; Serafine, Katherine M
2017-09-01
Eating a diet high in fat can lead to negative health consequences, including obesity and insulin resistance. Omega-3 polyunsaturated fatty acids (such as those found in fish oil) prevent high fat diet-induced obesity and insulin resistance in rats. Eating a high fat diet also enhances sensitivity of rats to the behavioral effects of drugs that act on dopamine systems (e.g. quinpirole, a dopamine D2/D3 receptor agonist). To test the hypothesis that dietary supplementation with fish oil prevents high fat diet-induced enhanced sensitivity to the behavioral effects of quinpirole (0.0032-0.32 mg/kg), male rats ate standard laboratory chow, high fat chow, standard chow with fish oil, or high fat chow with fish oil (20% w/w). After 5 weeks, rats eating high fat chow were more sensitive (e.g. leftward shift of the quinpirole dose-response curve) than rats eating standard chow to yawning induced by quinpirole. Dietary supplementation with fish oil prevented this effect. That is, quinpirole dose-response curves were not different between rats eating high fat chow supplemented with fish oil and standard chow fed controls. These data add to a growing literature showing the complex relationship between diet and dopamine systems, and the health benefits of fish oil.
Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
Pozdeyev, Nikita; Yoo, Minjae; Mackie, Ryan; Schweppe, Rebecca E; Tan, Aik Choon; Haugen, Bryan R
2016-08-09
The consistency of in vitro drug sensitivity data is of key importance for cancer pharmacogenomics. Previous attempts to correlate drug sensitivities from the large pharmacogenomics databases, such as the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC), have produced discordant results. We developed a new drug sensitivity metric, the area under the dose response curve adjusted for the range of tested drug concentrations, which allows integration of heterogeneous drug sensitivity data from the CCLE, the GDSC, and the Cancer Therapeutics Response Portal (CTRP). We show that there is moderate to good agreement of drug sensitivity data for many targeted therapies, particularly kinase inhibitors. The results of this largest cancer cell line drug sensitivity data analysis to date are accessible through the online portal, which serves as a platform for high power pharmacogenomics analysis.
van der Jeugd, Henk P.; van de Pol, Martijn
2018-01-01
It is generally assumed that populations of a species will have similar responses to climate change, and thereby that a single value of sensitivity will reflect species-specific responses. However, this assumption is rarely systematically tested. High intraspecific variation will have consequences for identifying species- or population-level traits that can predict differences in sensitivity, which in turn can affect the reliability of projections of future climate change impacts. We investigate avian body condition responses to changes in six climatic variables and how consistent and generalisable these responses are both across and within species, using 21 years of data from 46 common passerines across 80 Dutch sites. We show that body condition decreases with warmer spring/early summer temperatures and increases with higher humidity, but other climate variables do not show consistent trends across species. In the future, body condition is projected to decrease by 2050, mainly driven by temperature effects. Strikingly, populations of the same species generally responded just as differently as populations of different species implying that a single species signal is not meaningful. Consequently, species-level traits did not explain interspecific differences in sensitivities, rather population-level traits were more important. The absence of a clear species signal in body condition responses implies that generalisation and identifying species for conservation prioritisation is problematic, which sharply contrasts conclusions of previous studies on the climate sensitivity of phenology. PMID:29466460
Akazawa, Kazuki; Sugihara, Fuminori; Nakamura, Tatsuya; Mizukami, Shin; Kikuchi, Kazuya
2018-05-16
Highly sensitive imaging of enzymatic activities in the deep tissues of living mammals provides useful information about their biological functions and for developing new drugs; however, such imaging is challenging. 19 F magnetic resonance imaging (MRI) is suitable for noninvasive visualization of enzymatic activities without endogenous background signals. Although various enzyme-responsive 19 F MRI probes have been developed, most cannot be used for in vivo imaging because of their low sensitivity. Recently, we developed unique nanoparticles, called FLAMEs, that are composed of a liquid perfluorocarbon core and a robust silica shell, and demonstrated their outstanding sensitivity in vivo. Here, we report a highly functionalized nanoprobe, FLAME-DEVD 2, with an OFF/ON 19 F MRI switch for detecting caspase-3/7 activity based on the paramagnetic relaxation enhancement effect. To improve the cleavage efficiency of peptides by caspase-3, we designed a novel Gd 3+ complex-conjugated peptide, DEVD X ( X = 1, 2), which is a substrate peptide sequence tandemly repeated X times, and demonstrated that DEVD 2 showed faster cleavage kinetics than DEVD 1. By incorporating this novel concept into a signal activation strategy, FLAME-DEVD 2 showed a high 19 F MRI signal enhancement rate in response to caspase-3 activity. After intravenous injection of FLAME-DEVD 2 and an apoptosis-inducing reagent, caspase-3/7 activity in the spleen of a living mouse was successfully imaged by 19 F MRI. This imaging platform shows great potential for highly sensitive detection of enzymatic activities in vivo.
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
Fines classification based on sensitivity to pore-fluid chemistry
Jang, Junbong; Santamarina, J. Carlos
2016-01-01
The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.
Borowiak, Kamila; von Kriegstein, Katharina
2016-01-01
The ability to recognise the identity of others is a key requirement for successful communication. Brain regions that respond selectively to voices exist in humans from early infancy on. Currently, it is unclear whether dysfunction of these voice-sensitive regions can explain voice identity recognition impairments. Here, we used two independent functional magnetic resonance imaging studies to investigate voice processing in a population that has been reported to have no voice-sensitive regions: autism spectrum disorder (ASD). Our results refute the earlier report that individuals with ASD have no responses in voice-sensitive regions: Passive listening to vocal, compared to non-vocal, sounds elicited typical responses in voice-sensitive regions in the high-functioning ASD group and controls. In contrast, the ASD group had a dysfunction in voice-sensitive regions during voice identity but not speech recognition in the right posterior superior temporal sulcus/gyrus (STS/STG)—a region implicated in processing complex spectrotemporal voice features and unfamiliar voices. The right anterior STS/STG correlated with voice identity recognition performance in controls but not in the ASD group. The findings suggest that right STS/STG dysfunction is critical for explaining voice recognition impairments in high-functioning ASD and show that ASD is not characterised by a general lack of voice-sensitive responses. PMID:27369067
NASA Astrophysics Data System (ADS)
Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice
2012-10-01
Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.
NASA Astrophysics Data System (ADS)
Downs, Peter W.; Dusterhoff, Scott R.; Sears, William A.
2013-05-01
Understanding the cumulative impact of natural and human influences on the sensitivity of channel morphodynamics, a relative measure between the drivers for change and the magnitude of channel response, requires an approach that accommodates spatial and temporal variability in the suite of primary stressors. Multiple historical data sources were assembled to provide a reach-scale analysis of the lower Santa Clara River (LSCR) in Ventura County, California, USA. Sediment supply is naturally high due to tectonic activity, earthquake-generated landslides, wildfires, and high magnitude flow events during El Niño years. Somewhat typically for the region, the catchment has been subject to four reasonably distinct land use and resource management combinations since European-American settlement. When combined with analysis of channel morphological response (quantifiable since ca. 1930), reach-scale and temporal differences in channel sensitivity become apparent. Downstream reaches have incised on average 2.4 m and become narrower by almost 50% with changes focused in a period of highly sensitive response after about 1950 followed by forced insensitivity caused by structural flood embankments and a significant grade control structure. In contrast, the middle reaches have been responsive but are morphologically resilient, and the upstream reaches show a mildly sensitive aggradational trend. Superimposing the natural and human drivers for change reveals that large scale stressors (related to ranching and irrigation) have been replaced over time by a suite of stressors operating at multiple spatial scales. Lower reaches have been sensitive primarily to 'local' scale impacts (urban growth, flood control, and aggregate mining) whereas, upstream, catchment-scale influences still prevail (including flow regulation and climate-driven sediment supply factors). These factors illustrate the complexity inherent to cumulative impact assessment in fluvial systems, provide evidence for a distinct Anthropocene fluvial response, and underpin the enormity of the challenge faced in trying to sustainably manage and restore rivers.
Milton, Alyssa C; Ellis, Louise A; Davenport, Tracey A; Burns, Jane M; Hickie, Ian B
2017-09-26
Web-based self-report surveying has increased in popularity, as it can rapidly yield large samples at a low cost. Despite this increase in popularity, in the area of youth mental health, there is a distinct lack of research comparing the results of Web-based self-report surveys with the more traditional and widely accepted computer-assisted telephone interviewing (CATI). The Second Australian Young and Well National Survey 2014 sought to compare differences in respondent response patterns using matched items on CATI versus a Web-based self-report survey. The aim of this study was to examine whether responses varied as a result of item sensitivity, that is, the item's susceptibility to exaggeration on underreporting and to assess whether certain subgroups demonstrated this effect to a greater extent. A subsample of young people aged 16 to 25 years (N=101), recruited through the Second Australian Young and Well National Survey 2014, completed the identical items on two occasions: via CATI and via Web-based self-report survey. Respondents also rated perceived item sensitivity. When comparing CATI with the Web-based self-report survey, a Wilcoxon signed-rank analysis showed that respondents answered 14 of the 42 matched items in a significantly different way. Significant variation in responses (CATI vs Web-based) was more frequent if the item was also rated by the respondents as highly sensitive in nature. Specifically, 63% (5/8) of the high sensitivity items, 43% (3/7) of the neutral sensitivity items, and 0% (0/4) of the low sensitivity items were answered in a significantly different manner by respondents when comparing their matched CATI and Web-based question responses. The items that were perceived as highly sensitive by respondents and demonstrated response variability included the following: sexting activities, body image concerns, experience of diagnosis, and suicidal ideation. For high sensitivity items, a regression analysis showed respondents who were male (beta=-.19, P=.048) or who were not in employment, education, or training (NEET; beta=-.32, P=.001) were significantly more likely to provide different responses on matched items when responding in the CATI as compared with the Web-based self-report survey. The Web-based self-report survey, however, demonstrated some evidence of avidity and attrition bias. Compared with CATI, Web-based self-report surveys are highly cost-effective and had higher rates of self-disclosure on sensitive items, particularly for respondents who identify as male and NEET. A drawback to Web-based surveying methodologies, however, includes the limited control over avidity bias and the greater incidence of attrition bias. These findings have important implications for further development of survey methods in the area of health and well-being, especially when considering research topics (in this case diagnosis, suicidal ideation, sexting, and body image) and groups that are being recruited (young people, males, and NEET). ©Alyssa C Milton, Louise A Ellis, Tracey A Davenport, Jane M Burns, Ian B Hickie. Originally published in JMIR Mental Health (http://mental.jmir.org), 26.09.2017.
Baladi, Michelle G; Newman, Amy H; France, Charles P
2013-01-01
Rationale Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. Objectives This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Methods Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high fat (34.3%) chow. Results In rats gaining weight with restricted or free access to high fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032–0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within one week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high fat chow also developed insulin resistance. Conclusions These results show that amount and type of chow alter sensitivity to a direct-acting dopamine receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems. PMID:21544521
Baladi, Michelle G; Newman, Amy H; France, Charles P
2011-10-01
Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high-fat (34.3%) chow. In rats gaining weight with restricted or free access to high-fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032-0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high-fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within 1 week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high-fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high-fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high-fat chow also developed insulin resistance. These results show that amount and type of chow alter sensitivity to a direct-acting dopamine-receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems.
Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen
2018-04-30
Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature sensitivity of soil respiration rates enhanced by microbial community response.
Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P
2014-09-04
Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.
NASA Astrophysics Data System (ADS)
Jamilpanah, L.; Azadian, S.; Shoa e Gharehbagh, J.; Haghniaz Jahromi, S.; Sheykhifard, Z.; Hosseinizadeh, S.; Erfanifam, S.; Hajiali, M. R.; Tehranchi, M. M.; Mohseni, S. M.
2018-07-01
Graphene oxide (GO) layers have shown to be fascinating elements for application in high performance sensors. They can be applied in multi-disciplinary designs based on surface selective sensing mechanisms. One immediate application of such surface sensitive elements is implementing of GO layer in magnetoimpedance (MI) sensors to improve their multi-functionality. In this paper, deposition of GO on the surface of Co-based amorphous ribbons (Co68.15Fe4.35Si12.5B15) is performed using electrophoretic deposition (EPD) method to evaluate the MI response. MI ratio increased from 271% (bare ribbon) up to 281% and 301% EPD GO deposited within 4 and 8 min, respectively. Similar experiment for the ribbon drop coated with GO was carried out while no enhancement in MI response was seen. Vertical growth of GO on the surface of the ribbon in EPD and drop coated layers observed by topographical measurements. We explained the difference between the MI responses based on layers verticality and surface coverage. UV-Visible absorption and Raman spectroscopy were used to study the nature of GO. Gaining a high surface area of GO along with their biocompatible and anticorrosive properties atop the MI sensors can open pathways towards increasing applications of surface selective and high sensitive MI sensors.
Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.
Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali
2018-03-27
There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.
Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor.
Zhang, Wen-Hui; Zhang, Wei-De; Chen, Lu-Ya
2010-08-06
Triacetone triperoxide (TATP) is one of the most sensitive known explosives and can be easily synthesized using the commonly available chemicals acetone and hydrogen peroxide, but is difficult to be detected. In this study, In(2)O(3) nanoparticles were synthesized by a glucose-assisted solvothermal method at 120 degrees C for 18 h. The gas sensor based on In(2)O(3) nanoparticles exhibits a high response, fast response and recovery, a wide detecting range of 0.50-500 mg, good stability and excellent stability to TATP.
Gray, Dona L.; O’Brien, Kevin D.; D’Alessio, David A.; Brehm, Bonnie J.; Deeg, Mark A.
2013-01-01
Context Although circulating glycosylphosphatidylinositol-specific phospholipase D, a minor high density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating glycosylphosphatidylinositol-specific phospholipase D levels. Objective Determine the effect of weight loss and changes in insulin sensitivity on plasma glycosylphosphatidylinositol-specific phospholipase D levels. Participants Forty two non-diabetic obese women. Intervention Three month dietary intervention randomizing patients to a low fat or a low carbohydrate diet. Main outcome measures Plasma glycosylphosphatidylinositol-specific phospholipase D levels and insulin sensitivity as estimated by the homeostasis model assessment. Results The very low carbohydrate diet group lost more weight after 3 months (−7.6 ± 3.2 vs. −4.2 ± 3.5 kg, P < 0.01) although the decrease in insulin resistance was similar between groups. Weight loss with either diet did not alter plasma glycosylphosphatidylinositol-specific phospholipase D levels. However, baseline glycosylphosphatidylinositol-specific phospholipase D levels correlated with the change in insulin sensitivity in response to the low fat diet while baseline insulin sensitivity correlated the change in insulin sensitivity in response to the low carbohydrate diet. Conclusions Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low fat diet on insulin sensitivity. PMID:18328347
Puigdemont, Anna; Brazís, Pilar; Serra, Montserrat; Fondati, Alessandra
2006-03-01
To assess whether dogs with experimentally induced type I hypersensitivity against soy protein would respond to soy hydrolysate and develop cutaneous or gastrointestinal tract reactions after intradermal and oral challenge exposure. 12 naïve Beagle pups (9 sensitized and 3 control dogs). 9 dogs were sensitized against soy protein by administration of allergens during a 90-day period. After the sensitization period, serum concentrations of soy-specific IgE were determined and an intradermal test was performed to confirm the dogs were sensitized against soy protein. An intradermal challenge test and an oral challenge test with native and hydrolyzed soy protein were conducted on 6 sensitized and 2 control dogs. High serum concentrations of soy-specific IgE and positive results for the intradermal test were observed for the 9 sensitized dogs after completion of the sesitization process. Sensitized dogs challenge exposed with hydrolyzed soy protein had a reduced inflammatory response after intradermal injection and no clinical response after an oral challenge exposure, compared with responses after intradermal and oral challenge exposure with native soy protein. Soy-sensitized dogs did not respond to oral administration of hydrolyzed soy protein. Thus, hydrolyzed soy protein may be useful in diets formulated for the management of dogs with adverse reactions to food.
DR5 as a reporter system to study auxin response in Populus.
Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B
2013-03-01
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H
2008-03-15
We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.
Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C.; van Wingen, Guido A.; Fernández, Guillén
2016-01-01
Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus–pituitary–adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. PMID:26668010
pH- and ion-sensitive polymers for drug delivery
Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro
2013-01-01
Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949
High yield Cu-Co CPP GMR multilayer sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallas, J.; Mao, M.; Law, B.
1997-01-15
We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operationalmore » devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.« less
The transient response of ice-shelf melting to ocean change
NASA Astrophysics Data System (ADS)
Holland, P.
2017-12-01
Idealised modelling studies show that the melting of ice shelves varies as a quadratic function of ocean temperature. This means that warm-water ice shelves have higher melt rates and are also more sensitive to ocean warming. However, this result is the equilibrium response, derived from a set of ice—ocean simulations subjected to a fixed ocean forcing and run until steady. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated in time with a range of periods. The results show that when the ocean forcing is varied slowly, the melt rates follow the equililbrium response. However, for rapid ocean change melting deviates from the equilibrium response in interesting ways. The residence time of water in the sub-ice cavity offers a critical timescale. When the forcing varies slowly (period of oscillation >> residence time), the cavity is fully-flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. The results also show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times, hence a short timescale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen seas, Antarctica, are highly sensitive to ocean change.
Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu
2016-11-01
Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thibodeau, Eric L; August, Gerald J; Cicchetti, Dante; Symons, Frank J
2016-03-01
Preventive interventions that target high-risk youth, via one-size-fits-all approaches, have demonstrated modest effects in reducing rates of substance use. Recently, substance use researchers have recommended personalized intervention strategies. Central to these approaches is matching preventatives to characteristics of an individual that have been shown to predict outcomes. One compelling body of literature on person × environment interactions is that of environmental sensitivity theories, including differential susceptibility theory and vantage sensitivity. Recent experimental evidence has demonstrated that environmental sensitivity (ES) factors moderate substance abuse outcomes. We propose that ES factors may augment current personalization strategies such as matching based on risk factors/severity of problem behaviors (risk severity (RS)). Specifically, individuals most sensitive to environmental influence may be those most responsive to intervention in general and thus need only a brief-type or lower-intensity program to show gains, while those least sensitive may require more comprehensive or intensive programming for optimal responsiveness. We provide an example from ongoing research to illustrate how ES factors can be incorporated into prevention trials aimed at high-risk adolescents.
Sensitive subgroups and normal variation in pulmonary function response to air pollution episodes.
Brunekreef, B; Kinney, P L; Ware, J H; Dockery, D; Speizer, F E; Spengler, J D; Ferris, B G
1991-01-01
The Clean Air Act requires that sensitive subgroups of exposed populations be protected from adverse health effects of air pollution exposure. Hence, data suggesting the existence of sensitive subgroups can have an important impact on regulatory decisions. Some investigators have interpreted differences among individuals in observed pulmonary function response to air pollution episodes as evidence that individuals differ in their sensitivity. An alternative explanation is that the differences are due entirely to normal variation in repeated pulmonary function measurements. This paper investigates this question by reanalyzing data from three studies of children exposed to air pollution episodes to determine whether the observed variability in pulmonary function response indicates differences in sensitivity or natural interoccasion variability. One study investigated exposures to total suspended particulates (TSP), the other two investigated exposure to ozone. In all studies, each child's response to air pollution exposures was summarized by regressing that child's set of pulmonary function measurements on the air pollution concentrations on the day or days before measurement. The within-child and between-child variances of these slopes were used to test the hypothesis of variable sensitivity. Regression slopes did not vary significantly among children exposed to episodes of high TSP concentration, but there was evidence of heterogeneity in both studies of ozone exposures. The finding of heterogeneous response to ozone exposure is consistent with the epidemiologic and chamber studies of ozone exposures, but the lack of evidence for heterogeneous response to TSP exposures implies that observed variation in response can be explained by sampling variability rather than the presence of sensitive subgroup. PMID:2050060
NASA Astrophysics Data System (ADS)
van Kamp, Irene; Job, R. F. Soames; Hatfield, Julie; Haines, Mary; Stellato, Rebecca K.; Stansfeld, Stephen A.
2004-12-01
In order to examine the role of noise sensitivity in response to environmental noise, this paper presents detailed comparisons of socio-acoustic studies conducted around international airports in Amsterdam, Sydney, and London. Earlier findings that noise sensitivity moderates the effect of noise on annoyance were examined to see if they could be replicated in each of the datasets, independent of the technique of measuring noise sensitivity. The relation between exposure to aircraft noise and noise annoyance was studied separately for groups of individuals with low, medium, and high noise sensitivity, with statistical adjustment for relevant confounders. Results support the previous findings that noise sensitivity is an independent predictor of annoyance and adds to the prediction of noise annoyance afforded by noise exposure level by up to 26% of explained variance. There is no evidence of a moderating effect, whereby the covariation between noise exposure level and annoyance is weak for people who score at the extreme high or low end of the sensitivity scale, and strong for people who score in the middle of the sensitivity scale. Generally, noise sensitivity appears to increase annoyance independently of the level of noise exposure after adjustment for relevant confounders. These findings were consistent across the three datasets. .
Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.
O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva
2014-12-19
Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.
Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.
Xiao, Mengmeng; Liang, Shibo; Han, Jie; Zhong, Donglai; Liu, Jingxia; Zhang, Zhiyong; Peng, Lianmao
2018-04-27
Carbon nanotube (CNT) has been considered as an ideal channel material for building highly sensitive gas sensors. However, the reported H 2 sensors based on CNT always suffered from the low sensitivity or low production. We developed the technology to massively fabricate ultra-highly sensitive H 2 sensors based on solution derived CNT network through comprehensive optimization of the CNT material, device structure, and fabrication process. In the H 2 sensors, high semiconducting purity solution-derived CNT film sorted by poly[9-(1-octylonoyl)-9 H-carbazole-2,7-diyl](PCz) is used as the main channel, which is decorated with Pd nanoparticles as functionalization for capturing H 2 . Meanwhile, Ti contacts are used to form a Schottky barrier for enhancing transferred charge-induced resistance change, and then a response of resistance change by 3 orders of magnitude is achieved at room temperature under the concentration of ∼311 ppm with a very fast response time of approximately 7 s and a detection limit of 890 ppb, which is the highest response to date for CNT H 2 sensors and the very first time to show the sub-ppm detection for H 2 at room temperature. Furthermore, the detection limit concentration can be improved to 89 ppb at 100 °C. The batch fabrication of CNT film H 2 sensors with ultra-high sensitivity and high uniformity is ready to promote CNT devices to application for the first time in some specialized field.
Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µM Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albu...
Molecular signatures of transgenerational response to ocean acidification in a species of reef fish
NASA Astrophysics Data System (ADS)
Schunter, Celia; Welch, Megan J.; Ryu, Taewoo; Zhang, Huoming; Berumen, Michael L.; Nilsson, Göran E.; Munday, Philip L.; Ravasi, Timothy
2016-11-01
The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO 2 levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO 2 in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO 2-tolerant and CO 2-sensitive parents were reared at near-future CO 2 (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO 2 and the expression of parental tolerance to high CO 2 in the offspring molecular phenotype. Exposure to high CO 2 resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO 2 conditions. This transgenerational molecular signature suggests that individual variation in CO 2 sensitivity could facilitate adaptation of fish populations to ocean acidification.
Guo, Nan; Gong, Fan; Liu, Junku; Jia, Yi; Zhao, Shaofan; Liao, Lei; Su, Meng; Fan, Zhiyong; Chen, Xiaoshuang; Lu, Wei; Xiao, Lin; Hu, Weida
2017-10-04
Photodetectors based on low-dimensional materials have attracted tremendous attention because of their high sensitivity and compatibility with conventional semiconductor technology. However, up until now, developing low-dimensional phototransistors with high responsivity and low dark currents over broad-band spectra still remains a great challenge because of the trade-offs in the potential architectures. In this work, we report a hybrid phototransistor consisting of a single In 2 O 3 nanowire as the channel material and a multilayer WSe 2 nanosheet as the decorating sensitizer for photodetection. Our devices show high responsivities of 7.5 × 10 5 and 3.5 × 10 4 A W -1 and ultrahigh detectivities of 4.17 × 10 17 and 1.95 × 10 16 jones at the wavelengths of 637 and 940 nm, respectively. The superior detectivity of the hybrid architecture arises from the extremely low dark currents and the enhanced photogating effect in the depletion regime by the unique design of energy band alignment of the channel and sensitizer materials. Moreover, the visible to near-infrared absorption properties of the multilayer WSe 2 nanosheet favor a broad-band spectral response for the devices. Our results pave the way for developing ultrahigh-sensitivity photodetectors based on low-dimensional hybrid architectures.
Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan
2017-11-16
A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm -1 °C -1 . Upon irradiation with 60 mW cm -2 infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s -1 . Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm -1 upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ying, E-mail: yingma@imr.ac.cn; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science; An, Boxing
By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: Themore » two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.« less
Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors
NASA Astrophysics Data System (ADS)
Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue
2018-04-01
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Horton, Dane M; Saint, David A; Owens, Julie A; Gatford, Kathryn L; Kind, Karen L
2017-07-01
The guinea pig is an alternate small animal model for the study of metabolism, including insulin sensitivity. However, only one study to date has reported the use of the hyperinsulinemic euglycemic clamp in anesthetized animals in this species, and the dose response has not been reported. We therefore characterized the dose-response curve for whole body glucose uptake using recombinant human insulin in the adult guinea pig. Interspecies comparisons with published data showed species differences in maximal whole body responses (guinea pig ≈ human < rat < mouse) and the insulin concentrations at which half-maximal insulin responses occurred (guinea pig > human ≈ rat > mouse). In subsequent studies, we used concomitant d-[3- 3 H]glucose infusion to characterize insulin sensitivities of whole body glucose uptake, utilization, production, storage, and glycolysis in young adult guinea pigs at human insulin doses that produced approximately half-maximal (7.5 mU·min -1 ·kg -1 ) and near-maximal whole body responses (30 mU·min -1 ·kg -1 ). Although human insulin infusion increased rates of glucose utilization (up to 68%) and storage and, at high concentrations, increased rates of glycolysis in females, glucose production was only partially suppressed (~23%), even at high insulin doses. Fasting glucose, metabolic clearance of insulin, and rates of glucose utilization, storage, and production during insulin stimulation were higher in female than in male guinea pigs ( P < 0.05), but insulin sensitivity of these and whole body glucose uptake did not differ between sexes. This study establishes a method for measuring partitioned glucose metabolism in chronically catheterized conscious guinea pigs, allowing studies of regulation of insulin sensitivity in this species. Copyright © 2017 the American Physiological Society.
Beyond equilibrium climate sensitivity
NASA Astrophysics Data System (ADS)
Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.
2017-10-01
Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.
NASA Astrophysics Data System (ADS)
Xie, Nanjie; Zhang, Hao; Liu, Bo; Wu, Jixuan; Song, Binbin; Han, Tingting
2017-11-01
A highly sensitive microfluidic sensor based on a microfiber-assisted Mach-Zehnder interferometer (MAMZI) is proposed and experimentally demonstrated for the detection of low-concentration glucose solution. A segment of microfiber tapered from standard single-mode fiber (SMF) is spliced between two SMFs with pre-designed lateral offset to constitute the miniaturized MAMZI probe. The transmission spectral response to environmental refractive index variation has been experimentally investigated for glucose concentration ranges of 300 mg dL-1 to 3000 mg dL-1 and 0 to 270 mg dL-1 and the glucose concentration detection limit is 3 mg dL-1, and the experimentally observed transmission spectral responses are in accordance with our theoretical simulation results. Owing to its high sensitivity, non-enzymatic operation method, ease of fabrication and compact size, our proposed MAMZI for glucose sensing is anticipated to be employed in biomedical applications.
Nano-textured high sensitivity ion sensitive field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.
2016-02-07
Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-01-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900
Cumulative adversity sensitizes neural response to acute stress: association with health symptoms.
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-02-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic-striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences.
O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Blake, Catherine; Doody, Catherine M
2018-05-22
In knee osteoarthritis (OA) pain sensitization has been linked to a more severe symptomatology, but the prognostic implications of pain sensitivity in people undergoing conservative treatment such as physiotherapy are not established. This study aimed to prospectively investigate the association between features of pain sensitization and clinical outcome (non-response) following guideline-based physiotherapy in people with knee OA. Participants (n=156) with moderate/severe knee OA were recruited from secondary care. All participants completed self-administered questionnaires and underwent quantitative sensory testing (QST) at baseline, thereby establishing subjective and objective measures of pain sensitization. Participants (n=134) were later classified following a physiotherapy intervention, using treatment responder criteria (responder/non-responder). QST data was reduced to a core set of latent variables using principal component analysis. A hierarchical logistic regression model was constructed to investigate if features related to pain sensitization predicted non-response after controlling for other known predictors of poor outcome in knee OA. Higher temporal summation (TS) (OR 2.00, 95% CI 1.23 to 3.27) and lower pressure pain thresholds (PPT) (OR 0.48, 95% CI 0.29 to 0.81) emerged as robust predictors of non-response following physiotherapy, along with a higher comorbidity score. The model demonstrated high sensitivity (87.8%) but modest specificity (52.3%). The independent relationship between pain sensitization and non-response may indicate an underlying explanatory association between neuroplastic changes in nociceptive processing and the maintenance of on-going pain and disability in knee OA pain. These preliminary results suggest interventions targeting pain sensitization may warrant future investigation in this population.
Goetz, Georges; Smith, Richard; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Sher, Alexander; Palanker, Daniel
2015-01-01
Purpose To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. Methods We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear–nonlinear model of the retina. Results Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. Conclusions Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis. PMID:26540657
NASA Astrophysics Data System (ADS)
Chen, Yung Ting; Chen, Yang Fang
2010-03-01
A new approach for developing highly sensitive PMOS photodetector based on the assistance of AAO membrane is proposed, fabricated, and characterized. It enables the photodetector with the tunability of not only the intensity but also the range of the response. Under a forward bias, the response of the PMOS photodetector with AAO membrane covers the visible as well as infrared spectrum; however, under a reverse bias, the near-infrared light around Si band edge dominates the photoresponse. Notably, the response at the optical communication wavelength of 850 nm can reach up to 0.24 A/W with an external quantum efficiency of 35%. Moreover, the response shows a large enhancement factor of 10 times at 1050 nm under a reverse bias of 0.5 V comparing with the device without AAO membrane. The underlying mechanism for the novel properties of the newly designed device has been proposed.
Blechert, Jens; Wilhelm, Frank H; Meuret, Alicia E; Wilhelm, Eva M; Roth, Walton T
2013-10-30
Psychometric studies indicate that anxiety sensitivity (AS) is a risk factor for anxiety disorders such as panic disorder (PD). To better understand the psychophysiological basis of AS and its relation to clinical anxiety, we examined whether high-AS individuals show similarly elevated reactivity to inhalations of carbon dioxide (CO2) as previously reported for PD and social phobia in this task. Healthy individuals with high and low AS were exposed to eight standardized inhalations of 20% CO2-enriched air, preceded and followed by inhalations of room air. Anxiety and dyspnea, in addition to autonomic and respiratory responses were measured every 15 s. Throughout the task, high AS participants showed a respiratory pattern of faster, shallower breathing and reduced inhalation of CO2 indicative of anticipatory or contextual anxiety. In addition, they showed elevated dyspnea responses to the second set of air inhalations accompanied by elevated heart rate, which could be due to sensitization or conditioning. Respiratory abnormalities seem to be common to high AS individuals and PD patients when considering previous findings with this task. Similarly, sensitization or conditioning of anxious and dyspneic symptoms might be common to high AS and clinical anxiety. Respiratory conditionability deserves greater attention in anxiety disorder research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi
2017-03-01
Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.
Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.
2014-01-01
Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426
Chaudhary, Ayesha; Harma, Harri; Hanninen, Pekka; McShane, Michael J; Srivastava, Rohit
2011-08-01
Minimally invasive optical glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring, because of their long-term stability, reversibility, repeatability, specificity, and high sensitivity. They are based on the principle of competitive binding and fluorescence resonance energy transfer. Moving to the near-infrared region of the spectrum has the potential to improve signal throughput for implanted sensors, but requires a change in dye chemistry that could alter response sensitivity, range, and toxicity profiles. The near-infrared dissolved-core alginate microsphere sensors were fabricated by emulsion followed by surface coating by layer-by-layer self-assembly. The particles were characterized for sensor stability, sensor response, and reversibility in deionized water and simulated interstitial fluid. The sensor response to step changes in bulk glucose concentrations was also evaluated under dynamic conditions using a microflow cell unit. Finally, in vitro cytotoxicity assays were performed with L929 mouse fibroblast cell lines to demonstrate preliminary biocompatibility of the sensors. The glucose sensitivity under controlled and dynamic conditions was observed to be 0.86%/mM glucose with an analytical response range of 0-30 mM glucose, covering both the physiological and pathophysiological range. The sensor demonstrated a repeatable, reversible, and reproducible response, with a maximum response time of 120 s. In vitro cytotoxicity assays revealed nearly 95% viability of cells, thereby suggesting that the alginate microsphere sensor system does not exhibit cytotoxicity. The incorporation of near-infrared dyes shows promise in improving sensor response because of their high sensitivity and improved tissue penetration of infrared light. The sensitivity for the sensors was approximately 1.5 times greater than that observed for visible dye sensors, and the new dye chemistry did not significantly alter the biocompatibility of the materials. These findings provide additional support for the potential application of alginate microspheres and similar systems such as "smart-tattoo" glucose sensors.
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.
Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy
2008-01-01
Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269
Saxena, Aditi R.; Karumanchi, S. Ananth; Brown, Nancy J.; Royle, Caroline M.; McElrath, Thomas F.; Seely, Ellen W.
2010-01-01
Pregnancies complicated by new onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear if this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high and low sodium balance. Ten women had history of hypertensive pregnancy (five with preeclampsia; five with transient hypertension of pregnancy) and 15 women had history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone and soluble fms-like tyrosine kinase 1 (sFlt-1) levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 vs. 104 mmHg and 73 vs. 65 mmHg, respectively, p<0.05). Women with history of hypertensive pregnancy had pressor response to salt loading, demonstrated by increase in systolic blood pressure on high salt diet. They also had greater systolic pressor response (10 vs. 2 mmHg, p=0.03), greater increase in aldosterone (56.8 vs. 30.8 ng/dL, p=0.03) and increase in sFlt-1 levels (11.0 vs. -18.9 pg/mL, p=0.02) after infusion of angiotensin II in low sodium balance, compared with controls. Thus, women with history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal and sFlt-1 responses to infused angiotensin II in low sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women. PMID:20308605
Saxena, Aditi R; Karumanchi, S Ananth; Brown, Nancy J; Royle, Caroline M; McElrath, Thomas F; Seely, Ellen W
2010-05-01
Pregnancies complicated by new-onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear whether this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high- and low-sodium balance. Ten women had a history of hypertensive pregnancy (5 with preeclampsia; 5 with transient hypertension of pregnancy), and 15 women had a history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone, and soluble fms-like tyrosine kinase 1 levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with a history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 versus 104 mm Hg and 73 versus 65 mm Hg, respectively; P<0.05). Women with a history of hypertensive pregnancy had a pressor response to salt loading, demonstrated by an increase in systolic blood pressure on a high-salt diet. They also had greater systolic pressor response (10 versus 2 mm Hg; P=0.03), greater increase in aldosterone (56.8 versus 30.8 ng/dL; P=0.03), and increase in soluble fms-like tyrosine kinase 1 levels (11.0 versus -18.9 pg/mL; P=0.02) after infusion of angiotensin II in low-sodium balance compared with controls. Thus, women with a history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal, and soluble fms-like tyrosine kinase 1 responses to infused angiotensin II in low-sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women.
The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.
The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.
NASA Astrophysics Data System (ADS)
Vartsky, David; Goldberg, Mark B.; Engler, Gideon; Shor, Asher; Goldschmidt, Aharon; Feldman, Gennady; Bar, Doron; Orion, Itzhak; Wielopolski, Lucian
2004-01-01
Gamma-Ray Resonant Absorption (GRA) is an automatic-decision radiographic screening technique that combines high radiation penetration with very good sensitivity and specificity to nitrogenous explosives. The method is particularly well-suited to inspection of large, massive objects (since the resonant γ-ray probe is at 9.17 MeV) such as aviation and marine containers, heavy vehicles and railroad cars. Two kinds of γ-ray detectors have been employed to date in GRA systems: 1) Resonant-response nitrogen-rich liquid scintillators and 2) BGO detectors. This paper analyses and compares the response of these detector-types to the resonant radiation, in terms of single-pixel figures of merit. The latter are sensitive not only to detector response, but also to accelerator-beam quality, via the properties of the nuclear reaction that produces the resonant-γ-rays. Generally, resonant detectors give rise to much higher nitrogen-contrast sensitivity in the radiographic image than their non-resonant detector counterparts and furthermore, do not require proton beams of high energy-resolution. By comparison, the non-resonant detectors have higher γ-detection efficiency, but their contrast sensitivity is very sensitive to the quality of the accelerator beam. Implications of these detector/accelerator characteristics for eventual GRA field systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Q. C.; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241; An, Z. H., E-mail: anzhenghua@fudan.edu.cn, E-mail: luwei@mail.sitp.ac.cn
We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).
Agardh, Carl-David; Ahrén, Bo
2012-03-01
Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.
Enhanced Raman scattering in porous silicon grating.
Wang, Jiajia; Jia, Zhenhong; Lv, Changwu
2018-03-19
The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.
Response of Cs 2LiYCl 6:Ce (CLYC) to High Energy Protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome
2015-11-23
Cs 2LiYCl 6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, andmore » compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.« less
A Protein Turnover Signaling Motif Controls the Stimulus-Sensitivity of Stress Response Pathways
Loriaux, Paul Michael; Hoffmann, Alexander
2013-01-01
Stimulus-induced perturbations from the steady state are a hallmark of signal transduction. In some signaling modules, the steady state is characterized by rapid synthesis and degradation of signaling proteins. Conspicuous among these are the p53 tumor suppressor, its negative regulator Mdm2, and the negative feedback regulator of NFκB, IκBα. We investigated the physiological importance of this turnover, or flux, using a computational method that allows flux to be systematically altered independently of the steady state protein abundances. Applying our method to a prototypical signaling module, we show that flux can precisely control the dynamic response to perturbation. Next, we applied our method to experimentally validated models of p53 and NFκB signaling. We find that high p53 flux is required for oscillations in response to a saturating dose of ionizing radiation (IR). In contrast, high flux of Mdm2 is not required for oscillations but preserves p53 sensitivity to sub-saturating doses of IR. In the NFκB system, degradation of NFκB-bound IκB by the IκB kinase (IKK) is required for activation in response to TNF, while high IKK-independent degradation prevents spurious activation in response to metabolic stress or low doses of TNF. Our work identifies flux pairs with opposing functional effects as a signaling motif that controls the stimulus-sensitivity of the p53 and NFκB stress-response pathways, and may constitute a general design principle in signaling pathways. PMID:23468615
Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon
2016-08-10
We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.
Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén
2016-04-01
Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio
2012-09-01
A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors. Copyright © 2012 Elsevier Inc. All rights reserved.
Drought sensitivity changes over the last century at the North American savanna-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.
2017-12-01
Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If changes in drought sensitivity scale to ecosystem level, decreased drought sensitivity may have helped promote regional forest expansion.
Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.
Gardiner, Stuart K; Swanson, William H; Goren, Deborah; Mansberger, Steven L; Demirel, Shaban
2014-07-01
Visual field testing uses high-contrast stimuli in areas of severe visual field loss. However, retinal ganglion cells saturate with high-contrast stimuli, suggesting that the probability of detecting perimetric stimuli may not increase indefinitely as contrast increases. Driven by this concept, this study examines the lower limit of perimetric sensitivity for reliable testing by standard automated perimetry. Evaluation of a diagnostic test. A total of 34 participants with moderate to severe glaucoma; mean deviation at their last clinic visit averaged -10.90 dB (range, -20.94 to -3.38 dB). A total of 75 of the 136 locations tested had a perimetric sensitivity of ≤ 19 dB. Frequency-of-seeing curves were constructed at 4 nonadjacent visual field locations by the Method of Constant Stimuli (MOCS), using 35 stimulus presentations at each of 7 contrasts. Locations were chosen a priori and included at least 2 with glaucomatous damage but a sensitivity of ≥ 6 dB. Cumulative Gaussian curves were fit to the data, first assuming a 5% false-negative rate and subsequently allowing the asymptotic maximum response probability to be a free parameter. The strength of the relation (R(2)) between perimetric sensitivity (mean of last 2 clinic visits) and MOCS sensitivity (from the experiment) for all locations with perimetric sensitivity within ± 4 dB of each selected value, at 0.5 dB intervals. Bins centered at sensitivities ≥ 19 dB always had R(2) >0.1. All bins centered at sensitivities ≤ 15 dB had R(2) <0.1, an indication that sensitivities are unreliable. No consistent conclusions could be drawn between 15 and 19 dB. At 57 of the 81 locations with perimetric sensitivity <19 dB, including 49 of the 63 locations ≤ 15 dB, the fitted asymptotic maximum response probability was <80%, consistent with the hypothesis of response saturation. At 29 of these locations the asymptotic maximum was <50%, and so contrast sensitivity (50% response rate) is undefined. Clinical visual field testing may be unreliable when visual field locations have sensitivity below approximately 15 to 19 dB because of a reduction in the asymptotic maximum response probability. Researchers and clinicians may have difficulty detecting worsening sensitivity in these visual field locations, and this difficulty may occur commonly in patients with glaucoma with moderate to severe glaucomatous visual field loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Brain imaging of pain sensitization in patients with knee osteoarthritis.
Pujol, Jesus; Martínez-Vilavella, Gerard; Llorente-Onaindia, Jone; Harrison, Ben J; López-Solà, Marina; López-Ruiz, Marina; Blanco-Hinojo, Laura; Benito, Pere; Deus, Joan; Monfort, Jordi
2017-09-01
A relevant aspect in osteoarthritic pain is neural sensitization. This phenomenon involves augmented responsiveness to painful stimulation and may entail a clinically worse prognosis. We used functional magnetic resonance imaging (fMRI) to study pain sensitization in patients with knee osteoarthritis. Sixty patients were recruited and pain sensitization was clinically defined on the basis of regional spreading of pain (spreading sensitization) and increased pain response to repeated stimulation (temporal summation). Functional magnetic resonance imaging testing involved assessing brain responses to both pressure and heat stimulation. Thirty-three patients (55%) showed regional pain spreading (simple sensitization) and 19 patients (32%) showed both regional spreading and temporal summation. Sensitized patients were more commonly women. Direct painful pressure stimulation of the joint (articular interline) robustly activated all of the neural elements typically involved in pain perception, but did not differentiate sensitized and nonsensitized patients. Painful pressure stimulation on the anterior tibial surface (sensitized site) evoked greater activation in sensitized patients in regions typically involved in pain and also beyond these regions, extending to the auditory, visual, and ventral sensorimotor cortices. Painful heat stimulation of the volar forearm did not discriminate the sensitization phenomenon. Results confirm the high prevalence of pain sensitization secondary to knee osteoarthritis. Relevantly, the sensitization phenomenon was associated with neural changes extending beyond strict pain-processing regions with enhancement of activity in general sensory, nonnociceptive brain areas. This effect is in contrast to the changes previously identified in primary pain sensitization in fibromyalgia patients presenting with a weakening of the general sensory integration.
Nanofiber Based Optical Sensors for Oxygen Determination
NASA Astrophysics Data System (ADS)
Xue, Ruipeng
Oxygen sensors based on luminescent quenching of nanofibers were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition metal complexes are embedded into a polymer 'core' while a synthetic biocompatible polymer provides a protective 'shell.' Various matrix polymers and luminescent probes were studied in terms of their sensitivity, linear calibration, reversibility, response time, stability and probe-matrix interactions. Due to the small size and high surface area of these nanofibers, all samples showed rapid response and a highly linear response to oxygen. The sensitivity and photostability of the sensors were controlled by the identity of both the probe molecule and the polymer matrix. Such nanofiber sensor forms are particularly suitable in biological applications due to the fact that they do not consume oxygen, are biocompatible and biomimetic and can be easily incorporated into cell culture. Applications of these fibers in cancer cell research, wound healing, breath analysis and waste water treatment were explored.
NASA Astrophysics Data System (ADS)
Sparks, Jackson T.; Dickens, Joseph C.
2016-06-01
Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.
Sparks, Jackson T; Dickens, Joseph C
2016-06-01
Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.
Schmid Mast, Marianne; Jonas, Klaus; Hall, Judith A
2009-11-01
The goal of the present research was to investigate whether high or low power leads to more interpersonal sensitivity and what potentially mediates and moderates this effect. In Study 1, 76 participants in either a high- or low-power position interacted; in Study 2, 134 participants were implicitly primed with either high- or low-power or neutral words; and in Study 3, 96 participants were asked to remember a situation in which they felt high or low power (plus a control condition). In Study 4, 157 participants were told to identify with either an egoistic, empathic, or neutral leadership style. In all studies, interpersonal sensitivity, defined as correctly assessing other people, was then measured using different instruments in each study. Consistently, high power resulted in more interpersonal sensitivity than low power. Feeling respected and proud was partially responsible for this effect. Empathic power as a personality trait was related to more interpersonal sensitivity, and high-power individuals who adopted an empathic instead of an egoistic leadership style were more interpersonally sensitive.
Designing skin response meter for psycho galvanic reflex
NASA Astrophysics Data System (ADS)
Dhokalia, Dhruv M.; Atreya, Parul; Kumar, Arun
2011-12-01
Human skin offers some resistance to current and voltage. This resistance changes with the emotional state of the body. The circuit proposed here measures changes in our skin resistance following changes in our mental state. In the relaxed state, the resistance offered by the skin is as high as 2 mega-ohms or more, which reduces to 500 kilo-ohms or less when the emotional stress is too high. The reduction in skin resistance is related to increased blood flow and permeability followed by the physiological changes during high stress. This increases the electrical conductivity of the skin. This circuit is useful to monitor the skin's response to relaxation techniques. It is very sensitive and shows response during a sudden moment of stress. Even a deep sigh will give response in the circuit. The circuit uses a sensitive amplifier to sense variations in the skin resistance. IC CA3140 is designed as a resistance- to-voltage converter that outputs varying voltage based on the skin's conductivity.
Gautam, Vineeta; Singh, Karan P; Yadav, Vijay L
2018-03-01
Nanocomposite materials are potentially revolutionizing many technologies, including sensors. In this paper, we described the application of "PANI/MWCNTs/Starch" modified carbon paste electrode (PCS-CPE) as a simple and highly sensitive cholesterol sensor. This novel nano-composite material has integrated nano-morphology, where polyaniline could interact effectively with the additives; pi-pi stacking "MWCNTs," and covalently bonded with starch. Specific binding sites (sugar chains), better electro-catalytic properties and fast electron transfer facilitated the oxidation of cholesterol. Fourier transform infrared spectra confirmed the interaction of cholesterol with the composite material. The sensing response of PCS was measured by cyclic voltammetry and chronoamperometry (0.1 M PBS-5 used as supporting electrolyte). As the amount of cholesterol increased in the test solution, cyclic voltammograms showed a rise of peak current (cathodic and anodic). Under the normal experimental conditions, the developed sensor exhibited wide linear dynamic range (0.032 to 5 mM) (upper limit is due to lack of solubility of cholesterol), high sensitivity (800 μAmM -1 cm -2 ), low detection limit (0.01 mM) and shorter response time (within 4-6 s). Analytical specificity, selectivity, and sensitivity during cholesterol estimation were compared with the response of some other analytes (ascorbic acid, glucose, l-dopa, urea and lactic acid). This novel sensor was successfully applied to estimate cholesterol in cow milk (used as a model real sample). The sensing platform is highly sensitive and shows a linear response towards cholesterol without using any additional redox mediator or enzyme, thus this material is extremely promising for the realization of a low-cost integrated cholesterol sensor device. Graphical abstract Cyclic voltammetric response of cholesterol of composite modified carbon paste capillary electrode.
Hossain, Md Faruk; Park, Jae Y.
2017-01-01
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943
Zhang, Yu-Ping; Huo, Yan-Li; Fang, Zhi-Qin; Wang, Xue-Fang; Li, Jian-Dong; Wang, Hai-Ping; Peng, Wei; Johnson, Alan Kim; Xue, Baojian
2018-05-01
Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is associated with hyperreactivity of central cardiovascular nuclei that, in all likelihood, involves elevated expression of the renin-angiotensin system, NADPH oxidase, and proinflammatory cytokines. The present study demonstrates, for the first time, the central mechanism underlying maternal high-fat diet sensitization of the hypertensive response in adult offspring.
Angiotensin II modulates salty and sweet taste sensitivities.
Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo
2013-04-10
Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.
*Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential
Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens fol...
Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K
2016-12-01
A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. Copyright © 2016. Published by Elsevier B.V.
Visible-blind ultraviolet photodetectors on porous silicon carbide substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my
2013-06-01
Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less
A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds. PMID:27171095
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-05-10
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R² ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds.
High-sensitivity bend angle measurements using optical fiber gratings.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang
2013-07-20
We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.
Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus
Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait
2012-01-01
This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917
McKim, James M.; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2016-01-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose–response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimension-ality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals’ potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced "false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. PMID:26046447
Sensitivity of plankton indices to lake trophic conditions.
Ochocka, A; Pasztaleniec, A
2016-11-01
Herein, we report the response of indices based on phytoplankton and zooplankton and their combination to different nutrient concentrations in lakes. The study was carried out in ten lakes in northeastern Poland. Integrated samples were collected from the epilimnion during the summer of 2012-2013. Secchi disk visibility (SD), total phosphorus (TP), total nitrogen (TN), and chlorophyll a were used as proxies for eutrophication. We calculated 16 plankton indices: two phytoplankton indices, six crustacean indices, five rotiferan indices, two zooplankton diversity indices, and one combined phytoplankton and zooplankton index. Among them, nine indices with the strongest correlations with TP were selected: percentage share of Crustacean species indicative of high trophy in the indicative group's numbers (IHT CRU ), percentage share of Rotifera species indicative of high trophy in the indicative group's numbers IHT ROT , Crustacean ratio of biomass to numbers B/N CRU , phytoplankton trophic index (TI TP+TN ), Margalef's index, percentage share of cyclopoid biomass in total biomass of Crustacea (CB), Rotifera numbers (N ROT ), biomass of Cyclopoida (B CY ), and ratio of the cyclopoid biomass to the biomass of Cladocera (CY/CL). The sensitivity of the normalized values of these indices to proxies of eutrophication was tested. IHT CRU , IHT ROT , and B/N CRU were the most sensitive and gave the strongest responses at lower TP concentrations (<35 μg/L). The phytoplankton trophic index, TI TP+TN , together with the zooplankton-based Margalef's index and CB were very sensitive in both low (<35 μg/L) and high (>60 μg/L) TP conditions. On the other hand, N ROT , B CY , and CY/CL were slightly sensitive at low TP concentrations while their reaction was notable at high TP concentrations. A similar pattern of response was observed for TN concentration and SD visibility.
Luechtefeld, Thomas; Maertens, Alexandra; McKim, James M; Hartung, Thomas; Kleensang, Andre; Sá-Rocha, Vanessa
2015-11-01
Supervised learning methods promise to improve integrated testing strategies (ITS), but must be adjusted to handle high dimensionality and dose-response data. ITS approaches are currently fueled by the increasing mechanistic understanding of adverse outcome pathways (AOP) and the development of tests reflecting these mechanisms. Simple approaches to combine skin sensitization data sets, such as weight of evidence, fail due to problems in information redundancy and high dimensionality. The problem is further amplified when potency information (dose/response) of hazards would be estimated. Skin sensitization currently serves as the foster child for AOP and ITS development, as legislative pressures combined with a very good mechanistic understanding of contact dermatitis have led to test development and relatively large high-quality data sets. We curated such a data set and combined a recursive variable selection algorithm to evaluate the information available through in silico, in chemico and in vitro assays. Chemical similarity alone could not cluster chemicals' potency, and in vitro models consistently ranked high in recursive feature elimination. This allows reducing the number of tests included in an ITS. Next, we analyzed with a hidden Markov model that takes advantage of an intrinsic inter-relationship among the local lymph node assay classes, i.e. the monotonous connection between local lymph node assay and dose. The dose-informed random forest/hidden Markov model was superior to the dose-naive random forest model on all data sets. Although balanced accuracy improvement may seem small, this obscures the actual improvement in misclassifications as the dose-informed hidden Markov model strongly reduced " false-negatives" (i.e. extreme sensitizers as non-sensitizer) on all data sets. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong
2017-04-01
This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak P.; Gump, Jared C.
2006-07-01
Explosive formulations with reduced-sensitivity RDX showed reduced shock sensitivity using Naval Ordnance Laboratory (NOL) Large Scale Gap Test, compared with similar formulations using standard RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light on the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. I-RDX®, a form of reduced- sensitivity RDX was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transform IR (FTIR). The pressure dependence of the Raman mode frequencies of I-RDX® was determined and compared with that of standard RDX. The behavior of I-RDX® near the pressure at which standard RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph is presented.
Flores-Serrano, Ana G; Zaldívar-Rae, Jaime; Salgado, Humberto; Pineda, Juan C
2015-03-25
Among the main issues in the pharmacological treatment of depression are the wide variation in response to antidepressants among individual patients and the lack of indexes that allow prediction of which drug will be effective in a particular case. We evaluated whether differential sensitivity to amitriptyline is related to dichotomous categorization of individuals on the basis of their behavioral responses to two common paradigms used to evaluate the potential of tricyclic drugs as antidepressants. Hence, we categorized a cohort of 38 female rats on the basis of their immobility time in the conditioning phase of the forced swimming test [FST; high immobility (HI) vs. low immobility (LI) rats] and their locomotor behavior in the circular corridor test [high locomotor response (HR) vs. low locomotor response (LR) rats]. We subjected the rodents to the FST while under the influence of vehicle (n=20) or amitriptyline (15 mg/kg; n=18). We found no statistical evidence of dependence between categorizations of rats on the basis of their behavior in the FST and circular corridor test. Rats categorized as HI/LI and HR/LR significantly differed in their sensitivity/resistance to amitriptyline, as evidenced by changes (or lack thereof) in their immobility time, climbing time, and swimming time during the FST. These results confirm that different behavioral styles among rats are linked to differential sensitivity/resistance to antidepressants. However, we specifically found that categorizing rats as HI/LI better reflected sensitivity to amitriptyline, whereas categorizing them as HR/LR better revealed resistance to the drug. These differential responses should be considered in experimental approaches. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki
2014-01-13
25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.
Goodin, Burel R; McGuire, Lynanne M; Stapleton, Laura M; Quinn, Noel B; Fabian, Lacy A; Haythornthwaite, Jennifer A; Edwards, Robert R
2009-11-01
To investigate the cross-sectional associations among self-reported weekly strenuous exercise bouts, anxiety sensitivity, and their interaction with pain catastrophizing and pain responses to the cold pressor task (CPT) in healthy, ethnically diverse young adults (n = 79). Exercise involvement has been shown to have hypoalgesic effects and cognitive factors may partially explain this effect. Particularly, alterations in pain catastrophizing have been found to mediate the positive pain outcomes of multidisciplinary treatments incorporating exercise. Further, recent evidence suggests that exercise involvement and anxiety sensitivity may act together, as interacting factors, to exert an effect on catastrophizing and pain outcomes; however, further research is needed to clarify the nature of this interaction. Before the CPT, participants were asked to complete the Godin Leisure-Time Exercise Questionnaire, the Beck Depression Inventory, and the Anxiety Sensitivity Index. After the CPT, participants completed a modified version of the Pain Catastrophizing Scale and the Short Form-McGill Pain Questionnaire. At a high level of anxiety sensitivity, controlling for depressive symptoms, CPT immersion time, and sex differences, a bias-corrected (BC), bootstrapped confidence interval revealed that pain catastrophizing significantly mediated the relationship between self-reported weekly strenuous exercise bouts and pain response (95% BC Confidence Interval = -9.558, -0.800 with 1000 resamples). At intermediate and low levels of anxiety sensitivity, no significant mediation effects were found. These findings support that, for pain catastrophizing to mediate the strenuous exercise-pain response relation, individuals must possess a high level of anxiety sensitivity.
Abnormal IgG4 antibody response to aeroallergens in allergic patients.
Jeannin, P; Delneste, Y; Tillie-Leblond, I; Wallaert, B; carlier, A; Pestel, J; Tonnel, A B
1994-01-01
Various studies have suggested the involvement of immunoglobulin G4 (IgG4) antibodies (Ab) in the physiopathology of allergic disorders. Recently, an abnormal IgG4 Ab production in response to immunization has been reported in some atopic patients. Thus, in order to evidence in allergic patients, a potential abnormal IgG4 Ab response to aeroallergens following natural exposure, we compared, in 34 patients sensitive to Dermatophagoides pteronyssinus and in 16 healthy subjects, the IgG4 Ab response to D. pteronyssinus, grass pollen and cat dander, using a solid-phase radioimmunoassay. Since some patients were also sensitive to grass pollen and/or to cat dander, we analyzed, in all patients, the IgG4 Ab responses both towards the allergen(s) they were sensitive to (sensitizing allergen) or not (unrelated allergen). The results showed that 90% of the patients produced levels of antisensitizing allergen(s) IgG4 Ab significantly higher than the controls; this IgG4 Ab response was correlated with the corresponding specific IgE Ab level. In addition, among these patients, around 40% presented high levels of IgG4 Ab to the unrelated allergen(s). Thus, in allergic patients, while specific IgE Ab define the nature of the sensitizing allergen, the presence of IgG4 Ab directed against various allergens seems in relation with an abnormal isotype regulation associated with atopic disorders.
Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D
2009-01-01
We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.
Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation
Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.
2010-01-01
Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540
Clements, William H; Cadmus, Pete; Brinkman, Stephen F
2013-07-02
Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible for variation in sensitivity among metals and metal mixtures is of critical importance.
Wagner, Angela; Simmons, Alan N; Oberndorfer, Tyson A; Frank, Guido K W; McCurdy-McKinnon, Danyale; Fudge, Julie L; Yang, Tony T; Paulus, Martin P; Kaye, Walter H
2015-12-30
Recent studies show that higher-order appetitive neural circuitry may contribute to restricted eating in anorexia nervosa (AN) and overeating in bulimia nervosa (BN). The purpose of this study was to determine whether sensitization effects might underlie pathologic eating behavior when a taste stimulus is administered repeatedly. Recovered AN (RAN, n=14) and BN (RBN, n=15) subjects were studied in order to avoid the confounding effects of altered nutritional state. Functional magnetic resonance imaging (fMRI) measured higher-order brain response to repeated tastes of sucrose (caloric) and sucralose (non-caloric). To test sensitization, the neuronal response to the first and second administration was compared. RAN patients demonstrated a decreased sensitization to sucrose in contrast to RBN patients who displayed the opposite pattern, increased sensitization to sucrose. However, the latter was not as pronounced as in healthy control women (n=13). While both eating disorder subgroups showed increased sensitization to sucralose, the healthy controls revealed decreased sensitization. These findings could reflect on a neuronal level the high caloric intake of RBN during binges and the low energy intake for RAN. RAN seem to distinguish between high energy and low energy sweet stimuli while RBN do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham
1999-05-19
The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage ("-OH") of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an arraymore » to distinguish the responses to methanol-water mixtures.« less
Rahal, Vanessa; Gallinari, Marjorie de Oliveira; Barbosa, Juliana Stuginski; Martins-Junior, Reynaldo Leite; Santos, Paulo Henrique Dos; Cintra, Luciano Tavares Angelo; Briso, André Luiz Fraga
2018-01-18
This study verified the occurrence of dental sensitivity in patients submitted to a 35% hydrogen peroxide based product (Whiteness HP Maxx 35% - FGM), skin cold sensation threshold (SCST) and its influence on dental sensitivity. Sixty volunteers were divided into 4 groups (n = 15), according to SCST (low: GI and GIII, and high: GII and IV) and bleaching treatment (hydrogen peroxide: GI and GII, and placebo: GIII and GIV). SCST was determined in the inner forearm for 6 different times using a neurosensory analyzer, the TSA II (Medoc Advanced Medical Systems, Ramat Yishai, Northern District, Israel). Dental sensitivity measurements were performed 10 different times using a thermal stimulus and an intraoral device attached to TSA II, positioned in the buccal surface of the upper right central incisor. Spontaneous dental sensitivity was also determined using the Visual Analogue Scale (VAS). Data were submitted to Student's t-test and Pearson's Correlation Test (α=0.05). SCST remained the same during bleaching treatment. Distinct responses of dental sensitivity were found in patients with low and high SCST during the first and third bleaching session (p≤0.05). The teeth submitted to the bleaching treatment became more sensitive to cold than those treated with placebo. Moreover, data obtained with TSA and VAS presented moderate correlation. Bleaching treatment increased dental sensitivity and skin cold sensation threshold might represent a determining factor in this occurrence, since low and high SCST patients had different responses to the thermal stimulus in the teeth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.
Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less
De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; ...
2015-12-21
Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less
Dodo, Naomi; Hashimoto, Ryusaku
2017-07-01
We examined the relationship between anxiety sensitivity (AS) and autonomic nervous system responses (ANS) during the cold pressor test (CPT). Seventy-four university students participated and were divided into low-AS (M=9.06, SD=3.97) and high-AS groups (M=28.68, SD=6.63) based on AS Index scores (n's=36 and 38, respectively). The study included three phases: Rest, CPT, and Recovery. We measured the psychological variables (fear of pain and subjective pain) at pre- and post-CPT. ANS response data were collected during each phase. Fear of pain was experienced more strongly in the high-AS group (M=4.74, SD=3.25) relative to the low-AS group (M=2.72, SD=2.31), and subjective pain was also stronger in the high-AS group (M=3.08, SD=1.91) relative to the low-AS group (M=2.47, SD=1.00) in post-CPT. While parasympathetic nervous system (PNS) responses did not differ between the two groups during the CPT, the high AS-group demonstrated lower PNS activity during the Recovery phase. The high-AS group reported significantly more anticipatory fear and pain prior to the CPT, which appeared to aggravate subjective pain experiences. Furthermore, for individuals with anxiety sensitivity, ANS reactivity may be the mechanism underlying the relationship between negative affect and subjective pain. Copyright © 2017. Published by Elsevier B.V.
The noninvasive mouse ear swelling assay. I. Refinements for detecting weak contact sensitizers.
Thorne, P S; Hawk, C; Kaliszewski, S D; Guiney, P D
1991-11-01
The noninvasive mouse ear swelling assay (MESA) is a model for delayed-type hypersensitivity that holds promise as a testing protocol for allergic contact dermatitis (ACD). The MESA employs only topical sensitization on the abdomen and does not use injections, adjuvants, anesthesia, occlusion, or disruption of the stratum corneum. Five days after induction, the ears are challenged topically and ear swelling measurements taken at 24, 48, and 72 hr indicate the extent of ACD. In this study, refinements of the assay were explored in BALB/cBy mice using dinitrofluorobenzene (DNFB) and dinitrochlorobenzene (DNCB). A complete dose-response curve was developed for DNFB and the dose which sensitized half the mice in a group (SD50, 0.001%, w/v) was used to test noninvasive enhancement protocols. Several triple-dose protocols tested produced no increase in responsiveness and daily dosing showed a trend toward tolerance induction yielding 20% positive responses. Dietary vitamin A supplementation produced a dramatic enhancement of the responses: ear thickness increase was doubled and the SD50 sensitized 94 to 100% of the mice in the vitamin A groups. We conclude that the MESA allowed identification of ACD potency for known sensitizers at very low concentrations which do not produce ACD with other techniques. The importance of dose-response studies for avoiding the high-dose reduced-response region was also shown. Based on the observation that the vitamin A-augmented MESA was considerably more sensitive than with regular feed, a companion study (P.S. Thorne. C. Hawk, S.D. Kaliszewski, P.D. Guiney, Fundam. Appl. Tox. 17, 807-820, 1991) presents tests of the enhancements to the MESA developed in this work, using weak sensitizers and complex mixtures.
Effect of hypothyroidism on insulin sensitivity and glucose tolerance in dogs.
Hofer-Inteeworn, Natalie; Panciera, David L; Monroe, William E; Saker, Korinn E; Davies, Rebecca Hegstad; Refsal, Kent R; Kemnitz, Joseph W
2012-04-01
To determine the effects of hypothyroidism on insulin sensitivity, glucose tolerance, and concentrations of hormones counter-regulatory to insulin in dogs. 8 anestrous mixed-breed bitches with experimentally induced hypothyroidism and 8 euthyroid control dogs. The insulin-modified frequently sampled IV glucose tolerance test and minimal model analysis were used to determine basal plasma insulin and glucose concentrations, acute insulin response to glucose, insulin sensitivity, glucose effectiveness, and disposition index. Growth hormone response was assessed by stimulation and suppression tests. Additionally, basal serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentrations and urine cortisol-to-creatinine concentration ratios were measured and dual energy x-ray absorptiometry was performed to evaluate body composition. Insulin sensitivity was lower in the hypothyroid group than in the euthyroid group, whereas acute insulin response to glucose was higher. Glucose effectiveness and disposition index were not different between groups. Basal serum GH and IGF-1 concentrations as well as abdominal fat content were high in hypothyroid dogs, but urine cortisol-to-creatinine concentration ratios were unchanged. Hypothyroidism appeared to negatively affect glucose homeostasis by inducing insulin resistance, but overall glucose tolerance was maintained by increased insulin secretion in hypothyroid dogs. Possible factors affecting insulin sensitivity are high serum GH and IGF-1 concentrations and an increase in abdominal fat. In dogs with diseases involving impaired insulin secretion such as diabetes mellitus, concurrent hypothyroidism can have important clinical implications.
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc
2015-01-01
The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.
USDA-ARS?s Scientific Manuscript database
Background: Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively “normal” level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloro...
Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis.
Siegelin, Markus David
2012-08-01
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising death ligand who has received significant attention due to its specific anti-cancer activity. Recently, a number of clinical trials involving either recombinant soluble TRAIL or agonistic death receptor (DR) antibodies have even been initiated. One major caveat in TRAIL-based anti-cancer therapies is that a considerable number of cancer cells are notorious resistant to apoptosis induction by TRAIL. Overcoming this primary or secondary evolved resistance is an utmost important goal of present cancer research. The current literature suggests that TRAIL resistance is mediated by a number of endogenous factors. According to recent research, stress-related transcription factors have acquired a pivotal role in the sensitization of highly resistant cancer cells, for example, pancreatic cancer and glioblastoma cells, to TRAIL-mediated cell death. Out of this transcription factor family, C/EBP-homologous protein (CHOP) is linked to the control of DR-mediated apoptosis by modulation of several apoptotic and anti-apoptotic factors. Stress responses in certain organelles, such as endoplasmic reticulum (ER) and mitochondria, are potent inductors of CHOP expression. This report focuses on the influence of stress responses on endogenous or acquired resistance to extrinsic apoptosis in tumor cells and summarizes recent findings and results. The Medline and ClinicalTrials database with key words were used for this review. A potential novel treatment strategy for highly treatment-resistant tumors is the induction of a cellular stress response in cancer cells. The induction of an organelle-related stress response, such as nuclear, ER and mitochondrial stress, leads to a dramatic sensitization of a broad variety of cancer cells of different tumor entities to the apoptotic ligand, TRAIL. Importantly, non-neoplastic cells are not sensitized to TRAIL-mediated cell death through the unfolded protein response in most instances, suggesting that this treatment is not only of high efficacy, but even more less of unwanted toxicity in patients.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
Spatial contrast sensitivity - Effects of age, test-retest, and psychophysical method
NASA Technical Reports Server (NTRS)
Higgins, Kent E.; Jaffe, Myles J.; Caruso, Rafael C.; Demonasterio, Francisco M.
1988-01-01
Two different psychophysical methods were used to test the spatial contrast sensitivity in normal subjects from five age groups. The method of adjustment showed a decline in sensitivity with increasing age at all spatial frequencies, while the forced-choice procedure showed an age-related decline predominantly at high spatial frequencies. It is suggested that a neural component is responsible for this decline.
Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon
2018-04-22
Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.
Improving the analysis of slug tests
McElwee, C.D.
2002-01-01
This paper examines several techniques that have the potential to improve the quality of slug test analysis. These techniques are applicable in the range from low hydraulic conductivities with overdamped responses to high hydraulic conductivities with nonlinear oscillatory responses. Four techniques for improving slug test analysis will be discussed: use of an extended capability nonlinear model, sensitivity analysis, correction for acceleration and velocity effects, and use of multiple slug tests. The four-parameter nonlinear slug test model used in this work is shown to allow accurate analysis of slug tests with widely differing character. The parameter ?? represents a correction to the water column length caused primarily by radius variations in the wellbore and is most useful in matching the oscillation frequency and amplitude. The water column velocity at slug initiation (V0) is an additional model parameter, which would ideally be zero but may not be due to the initiation mechanism. The remaining two model parameters are A (parameter for nonlinear effects) and K (hydraulic conductivity). Sensitivity analysis shows that in general ?? and V0 have the lowest sensitivity and K usually has the highest. However, for very high K values the sensitivity to A may surpass the sensitivity to K. Oscillatory slug tests involve higher accelerations and velocities of the water column; thus, the pressure transducer responses are affected by these factors and the model response must be corrected to allow maximum accuracy for the analysis. The performance of multiple slug tests will allow some statistical measure of the experimental accuracy and of the reliability of the resulting aquifer parameters. ?? 2002 Elsevier Science B.V. All rights reserved.
Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy
2011-07-15
The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.
High Throughput Transcriptomics @ USEPA (Toxicology Forum)
The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest...
USDA-ARS?s Scientific Manuscript database
The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...
Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun
2012-08-01
This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.
Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K
2015-11-10
Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs can inform control programs. This manuscript describes modifications to high resolution melting technology that further increase its sensitivity to identify polygenomic infections in patient samples.
Mei, Hao; Gu, Dongfeng; Hixson, James E.; Rice, Treva K.; Chen, Jing; Shimmin, Lawrence C.; Schwander, Karen; Kelly, Tanika N.; Liu, De-Pei; Chen, Shufeng; Huang, Jian-feng; Jaquish, Cashell E.; Rao, Dabeeru C.; He, Jiang
2012-01-01
The authors conducted a genome-wide linkage scan and positional association analysis to identify the genetic determinants of salt sensitivity of blood pressure (BP) in a large family-based, dietary-feeding study. The dietary intervention was conducted among 1,906 participants in rural China (2003–2005). A 7-day low-sodium intervention was followed by a 7-day high-sodium intervention. Salt sensitivity was defined as BP responses to low- and high-sodium interventions. Signals of the logarithm of the odds to the base 10 (LOD ≥ 3) were detected at 33–42 centimorgans of chromosome 2 (2p24.3-2p24.1), with a maximum LOD score of 3.33 for diastolic blood pressure responses to high-sodium intervention. LOD scores were 2.35–2.91 for mean arterial pressure (MAP) and 0.80–1.49 for systolic blood pressure responses in this region, respectively. Correcting for multiple tests, single nucleotide polymorphism (SNP) rs11674786 (2.7 kilobases upstream of the family with sequence similarity 84, member A, gene (FAM84A)) in the linkage region was significantly associated with diastolic blood pressure (P = 0.0007) and MAP responses (P = 0.0007), and SNP rs16983422 (2.8 kilobases upstream of the visinin-like 1 gene (VSNL1)) was marginally associated with diastolic blood pressure (P = 0.005) and MAP responses (P = 0.005). An additive interaction between SNPs rs11674786 and rs16983422 was observed, with P = 7.00 × 10−5 and P = 7.23 × 10−5 for diastolic blood pressure and MAP responses, respectively. The authors concluded that genetic region 2p24.3-2p24.1 might harbor functional variants for the salt sensitivity of BP. PMID:22865701
Alsaadi, Hanin M; Van Vugt, Dean A
2015-11-01
This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.
Imholte, Gregory; Gottardo, Raphael
2017-01-01
Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097
Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C
NASA Technical Reports Server (NTRS)
Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.
2004-01-01
This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.
An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis
Alvi, Naveed ul Hassan; Gómez, Victor J.; Rodriguez, Paul E.D. Soto; Kumar, Praveen; Zaman, Saima; Willander, Magnus; Nötzel, Richard
2013-01-01
Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications. PMID:24132228
Highly sensitive antenna using inkjet overprinting with particle-free conductive inks.
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Otsuka, Kanji
2012-11-01
Printed antennas with low signal losses and fast response in high-frequency bands have been required. Here we reported on highly sensitive antennas using additive patterning of particle-free metallo-organic decomposition silver inks. Inkjet overprinting of metallo-organic decomposition inks onto copper foil and silver nanowire line produced antenna with mirror surfaces. As a result, the overprinted antennas decreased their return losses at 0.5-4.0 GHz and increased the speed of data communication in WiFi network.
Wang, Can; Ji, Hongyu; Li, Mengshu; Cai, Likun; Wang, Zhipeng; Li, Qianqian; Li, Zhen
2017-02-22
As a reactive oxygen species (ROS), hypochlorite (OCl - ) plays a crucial role in oxidative stress and signal transduction, controlling a wide range of physiological functions. In addition, the wide use of OCl - in the treatment of food and water might possibly threaten human health if the residual quantity was out of limits. Currently, sensitive methods employed to selectively monitor OCl - in aqueous samples in situ are still scarce and badly needed. Boron esters or acids are considered to be suitable functional groups for the detection of hydrogen peroxide due to their reliable reactivity. In this work, we try to develop a highly sensitive and selective OCl - probe (TPE2B) based on the mechanism of aggregation induced emission (AIE). Due to the distinct increase in water solubility of TPE2OH, which is generated from the reaction between TPE2B and OCl - , the strong emission of TPE2B is quenched dramatically. The response speed was as fast as 30 seconds with a detection limit as low as 28 nM. Additionally, test papers were also fabricated and exhibited a highly sensitive response to 0.1 mM OCl - .
Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.
Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V
2008-12-22
A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.
Greenfield, Jerry R; Samaras, Katherine; Chisholm, Donald J; Campbell, Lesley V
2007-01-02
Arterial stiffness, specifically augmentation index (AIx), is an independent predictor of cardiovascular risk. Previous studies suggest that insulin infusion decreases AIx and that this response is attenuated in insulin resistance. Whether physiological postprandial insulinemia similarly affects AIx measurements, and whether insulin resistance modifies this response, has not been studied. Seven relatively insulin-resistant and seven insulin-sensitive postmenopausal women received low-carbohydrate and high-carbohydrate high-fat meals on separate days. Glucose and insulin levels were measured for 360-min following meal consumption. AIx was measured by radial artery applanation tonometry at regular intervals postprandially. Postprandial increases in glucose and insulin were greater following the high-carbohydrate high-fat meal in both insulin-sensitive and insulin-resistant subjects. AIx decreased in both groups following both meals. In insulin-sensitive subjects, the postprandial reduction (incremental area above the curve) in AIx was greater following the high-carbohydrate vs. low-carbohydrate high-fat meal (-6821+/-1089 vs. -3797+/-1171% x min, respectively, P=0.009). In contrast, in insulin-resistant subjects, postprandial AIx responses were similar following the meals, suggesting that insulin resistance is associated with impaired postprandial arterial relaxation. This study demonstrates that the carbohydrate content of a meal, and, hence, the magnitude of the postprandial glucose and insulin responses it elicits, are important determinants of postprandial AIx measurements. The further observation that insulin resistance modified this effect raises the possibility that this phenomenon is a contributor to increased cardiovascular risk in insulin resistance. The results indicate that future studies of AIx need to control for the effects of these potentially confounding variables and that measurement of AIx should be standardized with respect to meals.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1971-01-01
The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.
Alius, Manuela G; Pané-Farré, Christiane A; Von Leupoldt, Andreas; Hamm, Alfons O
2013-05-01
Although respiratory symptoms are relevant for diagnosis and etiology of panic disorder, anxiety responses and breathing behavior evoked by induction of dyspnea have rarely been studied. Therefore, dyspnea sensations and affective evaluations evoked by inspiratory resistive loads of different intensities were first assessed in 23 individuals with high versus 24 participants with low anxiety sensitivity (AS). High AS participants with high fear of suffocation rated loads of the same physical intensity as more unpleasant and reported more intense feelings of dyspnea and more respiratory and panic symptoms than low AS individuals. In the second experiment assessing physiological responses to physically comparable loads, high suffocation fear participants showed an increase in minute ventilation to compensate for fear-induced air hunger. This ventilation behavior results in increased frequency of dyspnea sensations, thus increasing fear of suffocation. Copyright © 2013 Society for Psychophysiological Research.
Lewis, Ceri N.; Brown, Kristina A.; Edwards, Laura A.; Cooper, Glenn; Findlay, Helen S.
2013-01-01
The Arctic Ocean already experiences areas of low pH and high CO2, and it is expected to be most rapidly affected by future ocean acidification (OA). Copepods comprise the dominant Arctic zooplankton; hence, their responses to OA have important implications for Arctic ecosystems, yet there is little data on their current under-ice winter ecology on which to base future monitoring or make predictions about climate-induced change. Here, we report results from Arctic under-ice investigations of copepod natural distributions associated with late-winter carbonate chemistry environmental data and their response to manipulated pCO2 conditions (OA exposures). Our data reveal that species and life stage sensitivities to manipulated OA conditions were correlated with their vertical migration behavior and with their natural exposures to different pCO2 ranges. Vertically migrating adult Calanus spp. crossed a pCO2 range of >140 μatm daily and showed only minor responses to manipulated high CO2. Oithona similis, which remained in the surface waters and experienced a pCO2 range of <75 μatm, showed significantly reduced adult and nauplii survival in high CO2 experiments. These results support the relatively untested hypothesis that the natural range of pCO2 experienced by an organism determines its sensitivity to future OA and highlight that the globally important copepod species, Oithona spp., may be more sensitive to future high pCO2 conditions compared with the more widely studied larger copepods. PMID:24297880
Reproduction elevates the corticosterone stress response in common fruit bats.
Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V
2006-04-01
Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.
Huber, Malin; Hadziosmanovic, Nermin; Berglund, Lars; Holte, Jan
2013-11-01
To explore the utility of using the ratio between oocyte yield and total dose of FSH, i.e., the ovarian sensitivity index (OSI), to define ovarian response patterns. Retrospective cross-sectional study. University-affiliated private center. The entire unselected cohort of 7,520 IVF/intracytoplasmic sperm injection treatments (oocyte pick-ups [OPUs]) during an 8-year period (long GnRH agonist-recombinant FSH protocol). None. The distribution of the OSI (oocytes recovered × 1,000/total dose of FSH), the cutoff levels for poor and high response, set at ±1 SD, and the relationship between OSI and treatment outcome. OSI showed a log-normal distribution with cutoff levels for poor and high response at 1.697/IU and 10.07/IU, respectively. A nomogram is presented. Live-birth rates per OPU were 10.5 ± 0.1%, 26.9 ± 0.6%, and 36.0 ± 1.4% for poor, normal, and high response treatments, respectively. The predictive power (C-statistic) for OSI to predict live birth was superior to that of oocyte yield. The OSI improves the definition of ovarian response patterns because it takes into account the degree of stimulation. The nomogram presents evidence-based cutoff levels for poor, normal, and high response and could be used for unifying study designs involving ovarian response patterns. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy.
Fan, Wenpei; Yung, Bryant C; Chen, Xiaoyuan
2018-03-08
Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.
Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu
2018-01-15
Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young
2017-06-01
Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V = 1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Zhan, Da; Wang, Ke; Hang, Weiwei
2018-01-01
A micro-scale gas sensor based on mass-sensitive film bulk acoustic resonator is demonstrated for the detection of trace formaldehyde at room temperature. The composites mixed with multiwalled carbon nanotubes and polyethyleneimine (MWNTs-PEI) were coated on the resonator surface as the sensitive layer to specifically absorb formaldehyde molecules using a facile spray process. The influence of spraying processes on the formaldehyde sensing properties were investigated. Different response behaviors were determined by both the chemical absorption between formaldehyde molecules and the amine functional groups on PEI and the increase of absorption surface came from the nanostructure. The combination of high frequency of the film bulk acoustic resonator (~4.3 GHz) and the specific absorbability of MWNTs-PEI composites provided a high sensitivity in the detections of trace formaldehyde. The obtained ultra-low limit of detection was as low as 60 ppb with linear response, quick response/recovery time, good reproducibility and selectivity. The proposed sensor shows potential as a portable and convenient gas-sensing system for monitoring the low-level concentration of indoor air pollution.
A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase
Usman Ali, Syed M.; Ibupoto, Zafar Hussain; Kashif, Muhammad; Hashim, Uda; Willander, Magnus
2012-01-01
In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a low temperature hydrothermal method. The enzyme uricase was electrostatically immobilized in conjunction with Nafion membrane on the surface of well oriented ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode was found to be linear over a relatively wide logarithmic concentration range (500 nM to 1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF array-based sensor exhibited a high sensitivity of ∼66 mV/ decade in test electrolyte solutions of uric acid, with fast response time. The sensor response was unaffected by normal concentrations of common interferents such as ascorbic acid, glucose, and urea. PMID:22736977
High order statistical signatures from source-driven measurements of subcritical fissile systems
NASA Astrophysics Data System (ADS)
Mattingly, John Kelly
1998-11-01
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.
Evolution and Ontogeny of Stress Response to Social Challenges in the Human Child
ERIC Educational Resources Information Center
Flinn, Mark V.
2006-01-01
The stress response systems of the human child are highly sensitive to social challenges. Because stress hormones can have negative developmental and health consequences, this presents an evolutionary paradox: Why would natural selection have favored mechanisms that elevate stress hormone levels in response to psychosocial stimuli? Two…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.
2016-05-01
The nature of the multi-modal n = 2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n = 2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n = 2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...
2016-03-31
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
NASA Technical Reports Server (NTRS)
Baird, Richard A.
1994-01-01
The present study was motivated by an interest in seeing whether hair cell types in the bullfrog utriculus might differ in their voltage responses to hair bundle displacement. Particular interest was in assessing the contributions of two factors to the responses of utricular hair cells. First, interest in examining the effect of hair bundle morphology on the sensitivity of hair cells to natural stimulation was motivated by the observation that vestibular hair cells, unlike many auditory hair cells, are not free-standing but rather linked to an accessory cupular or otolithic membrane via the tip of their kinocilium. Interest also laid in examining the contribution, if any, of adaptation to the response properties of utricular hair cells. Hair cells in auditory and vibratory inner ear endorgans adapt to maintained displacements of their hair bundles, sharply limiting their low frequency sensitivity. This adaptation is mediated by a shift in the displacement-response curve (DRC) of the hair cell along the displacement axis. Observations suggest that the adaptation process occurs within the hair bundle and precedes mechanoelectric transduction. Recent observations of time-dependent changes in hair bundle stiffness are consistent with this conclusion. Adaptation would be expected to be most useful in inner ear endorgans in which hair cells are subject to large static displacements that could potentially saturate their instantaneous response and compromise their sensitivity to high frequency stimulation. The adaptation process also permits hair cells to maintain their sensory hair bundle in the most sensitive portion of their DRC. In vestibular otolith organs in which static sensitivity is desirable, any adaptation process in the hair cells may be undesirable. The rate and extent of the decline of the voltage responses was measured of utricular hair cells to step and sinusoidal hair bundle displacements. Then for similar resting potentials and response amplitudes, the voltage responses of individual hair cells were compared to both hair bundle displacement and intracellular current.
Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si
NASA Astrophysics Data System (ADS)
Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser
2018-03-01
Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (<3%), and a response correlation coefficient (>0.995) with a response time of <4 ms to the inhomogeneous IR illumination. The presented hybrid configuration also benefits from a straightforward low-temperature fabrication process. These advantages of the PEDOT:PSS/n-Si heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.
Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre
2013-01-01
Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245
Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre
2013-06-01
Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. © 2013 Blackwell Publishing Ltd.
Lee, Robyn K; Hittel, Dustin S; Nyamandi, Vongai Z; Kang, Li; Soh, Jung; Sensen, Christoph W; Shearer, Jane
2012-04-01
Obesity is a chronic condition involving the excessive accumulation of adipose tissue that adversely affects all systems in the body. The aim of the present study was to employ an unbiased, genome-wide assessment of transcript abundance in order to identify common gene expression pathways within insulin-sensitive tissues in response to dietary-induced diabetes. Following 20 weeks of chow or high-fat feeding (60% kcal), age-matched mice underwent a euglycemic-hyperinsulinemic clamp to assess insulin sensitivity. High-fat-fed animals were obese and highly insulin resistant, disposing of ∼75% less glucose compared with their chow-fed counterparts. Tissues were collected, and gene expression was examined by microarray in 4 tissues known to exhibit obesity-related metabolic disturbances: white adipose tissue, skeletal muscle, liver, and heart. A total of 463 genes were differentially expressed between diets. Analysis of individual tissues showed skeletal muscle to exhibit the largest number of differentially expressed genes (191) in response to high-fat feeding, followed by adipose tissue (169), liver (115), and heart (65). Analyses revealed that the response of individual genes to obesity is distinct and largely tissue specific, with less than 10% of transcripts being shared among tissues. Although transcripts are largely tissue specific, a systems approach shows numerous commonly activated pathways, including those involved in signal transduction, inflammation, oxidative stress, substrate transport, and metabolism. This suggests a coordinated attempt by tissues to limit metabolic perturbations occurring in early-stage obesity. Many identified genes were associated with a variety of disorders, thereby serving as potential links between obesity and its related health risks.
Flores-Montero, J; Sanoja-Flores, L; Paiva, B; Puig, N; García-Sánchez, O; Böttcher, S; van der Velden, V H J; Pérez-Morán, J-J; Vidriales, M-B; García-Sanz, R; Jimenez, C; González, M; Martínez-López, J; Corral-Mateos, A; Grigore, G-E; Fluxá, R; Pontes, R; Caetano, J; Sedek, L; Del Cañizo, M-C; Bladé, J; Lahuerta, J-J; Aguilar, C; Bárez, A; García-Mateo, A; Labrador, J; Leoz, P; Aguilera-Sanz, C; San-Miguel, J; Mateos, M-V; Durie, B; van Dongen, J J M; Orfao, A
2017-10-01
Flow cytometry has become a highly valuable method to monitor minimal residual disease (MRD) and evaluate the depth of complete response (CR) in bone marrow (BM) of multiple myeloma (MM) after therapy. However, current flow-MRD has lower sensitivity than molecular methods and lacks standardization. Here we report on a novel next generation flow (NGF) approach for highly sensitive and standardized MRD detection in MM. An optimized 2-tube 8-color antibody panel was constructed in five cycles of design-evaluation-redesign. In addition, a bulk-lysis procedure was established for acquisition of ⩾10 7 cells/sample, and novel software tools were constructed for automatic plasma cell gating. Multicenter evaluation of 110 follow-up BM from MM patients in very good partial response (VGPR) or CR showed a higher sensitivity for NGF-MRD vs conventional 8-color flow-MRD -MRD-positive rate of 47 vs 34% (P=0.003)-. Thus, 25% of patients classified as MRD-negative by conventional 8-color flow were MRD-positive by NGF, translating into a significantly longer progression-free survival for MRD-negative vs MRD-positive CR patients by NGF (75% progression-free survival not reached vs 7 months; P=0.02). This study establishes EuroFlow-based NGF as a highly sensitive, fully standardized approach for MRD detection in MM which overcomes the major limitations of conventional flow-MRD methods and is ready for implementation in routine diagnostics.
Hot electron induced NIR detection in CdS films.
Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir
2016-03-11
We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.
Fast photoresponse and high detectivity in copper indium selenide (CuIn7Se11) phototransistors
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy; Patil, Prasanna D.; Wasala, Milinda; Lei, Sidong; Nolander, Andrew; Sivakumar, Pooplasingam; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat
2018-03-01
The fast and sensitive detection of light can lead to a variety of optoelectronics and/or photonic-based applications in fields ranging from fast optical switching devices to health and environmental monitoring systems. Although several systems based on organic and inorganic materials show high sensitivity to visible light, in general they suffer from slow response times. Here we show that phototransistors fabricated using multilayers of CuIn7Se11 exhibit response times of ~ tens of µs with responsivity (R) values > 10 AW-1 and with external quantum efficiencies reaching beyond 103 % when excited with a 658 nm wavelength laser. These devices also show high specific detectivity (D *) values of ~1012 Jones. The responsivity and detectivity exhibited by these phototransistors are at least an order of magnitude better than commercially available conventional Si-based photodetectors, coupled with response times that are orders of magnitude better than several other families of layered materials investigated so far. The properties of the CuIn7Se11 phototransistor can be further tuned and enhanced by applying a back-gate voltage. Our investigations indicate that such layered ternary compounds can potentially be used as components in opto-electronics-related applications.
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Demeterová, Katarína
2016-10-01
The numerical and experimental approach in structural dynamics problems is more and more current nowadays. This approach is applied and solved in many research and developing institutions of the all the world. Vibrations effect caused by passing trains used in manufacturing facilities can affect the quality of the production activity. This effect is possible to be solved by a numerical or an experimental way. Numerical solution is not so financially and time demanding. The main aim of this article is to focus on just experimental measurement of this problem. In this paper, the case study with measurement due to cramped conditions realized in situ is presented. The case study is located close to railway. The vibration effect caused by passing trains on the high-sensitivity machinery contained in this object were observed. The structure was a high-sensitivity machine that was placed in a construction process. For the measurements, the high-sensitivity standard vibrations equipment was used. The assessments of measurements’ results were performed for the technological conditions and Slovak Standard Criteria. Both of these assessments were divided to amplitude and frequency domain. The amplitude criterion is also divided to peak particle velocity and RMS (Root Mean Square). Frequency domain assessment were realised using the frequency response curves obtained from high-sensitivity machinery manufacturer. The frequency limits are established for each axis of triaxle system. The measurement results can be predicted if the vibration have to be reduced. Measurement implemented in the production hall should obtain materials to determine the seismic loading and response of production machinery caused by technical seismicity.
Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U
2014-12-07
A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.
Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah
2017-12-13
A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.
Story, Tyler J; Craske, Michelle G
2008-09-01
Participants with elevated anxiety sensitivity and a history of panic attacks were compared to a low anxiety comparison group with respect to physiological and subjective reactivity to false heart-rate feedback and reactivity to a priming procedure. Whereas accurate heart-rate feedback elicited minimal responses, participants across groups showed significant physiological and subjective responses to false feedback. High risk and low risk participants did not differ in heart-rate responses to false feedback, though panic attack frequency did predict physiological and subjective reactions to false feedback in the high risk group. Self-reported nonspecific anxiety was significantly higher in high risk female participants than in low risk female participants, while males did not different in general subjective anxiety. However, high risk participants reported more panic-specific symptoms during the false feedback task than low risk participants, regardless of the sex of the participant. Therefore, although the experimental paradigm appeared to trigger nonspecific anxiety in high risk female participants, panic attack symptoms in reaction to the task were specific to risk group, not sex, and consistent with hypotheses. Surprisingly, the priming procedure did not influence physiological or subjective responses to false feedback in either group. These results raise additional questions regarding the process and impact of interception in individuals with panic attacks, and suggest that false perception of internal changes may contribute to risk for panic disorder when exposed to believable cues.
O'Gorman, David E; Colburn, H Steven; Shera, Christopher A
2010-11-01
The response of the auditory nerve to electrical stimulation is highly sensitive to small modulations (<0.5%). This report demonstrates that dynamical instability (i.e., a positive Lyapunov exponent) can account for this sensitivity in a modified FitzHugh-Nagumo model of spike generation, so long as the input noise is not too large. This finding suggests both that spike generator instability is necessary to account for auditory nerve sensitivity and that the amplitude of physiological noise, such as that produced by the random behavior of voltage-gated sodium channels, is small. Based on these results with direct electrical stimulation, it is hypothesized that spike generator instability may be the mechanism that reconciles high sensitivity with the cross-fiber independence observed under acoustic stimulation.
Simultaneous Loss of NCKX4 and CNG Channel Desensitization Impairs Olfactory Sensitivity.
Ferguson, Christopher H; Zhao, Haiqing
2017-01-04
In vertebrate olfactory sensory neurons (OSNs), Ca 2+ plays key roles in both mediating and regulating the olfactory response. Ca 2+ enters OSN cilia during the response through the olfactory cyclic nucleotide-gated (CNG) channel and stimulates a depolarizing chloride current by opening the olfactory Ca 2+ -activated chloride channel to amplify the response. Ca 2+ also exerts negative regulation on the olfactory transduction cascade, through mechanisms that include reducing the CNG current by desensitizing the CNG channel via Ca 2+ /calmodulin (CaM), to reduce the response. Ca 2+ is removed from the cilia primarily by the K + -dependent Na + /Ca 2+ exchanger 4 (NCKX4), and the removal of Ca 2+ leads to closure of the chloride channel and response termination. In this study, we investigate how two mechanisms conventionally considered negative regulatory mechanisms of olfactory transduction, Ca 2+ removal by NCKX4, and desensitization of the CNG channel by Ca 2+ /CaM, interact to regulate the olfactory response. We performed electro-olfactogram (EOG) recordings on the double-mutant mice, NCKX4 -/- ;CNGB1 ΔCaM , which are simultaneously lacking NCKX4 (NCKX4 -/- ) and Ca 2+ /CaM-mediated CNG channel desensitization (CNGB1 ΔCaM ). Despite exhibiting alterations in various response attributes, including termination kinetics and adaption properties, OSNs in either NCKX4 -/- mice or CNGB1 ΔCaM mice show normal resting sensitivity, as determined by their unchanged EOG response amplitude. We found that OSNs in NCKX4 -/- ;CNGB1 ΔCaM mice displayed markedly reduced EOG amplitude accompanied by alterations in other response attributes. This study suggests that what are conventionally considered negative regulatory mechanisms of olfactory transduction also play a role in setting the resting sensitivity in OSNs. Sensory receptor cells maintain high sensitivity at rest. Although the mechanisms responsible for setting the resting sensitivity of sensory receptor cells are not well understood, it has generally been assumed that the sensitivity is set primarily by how effectively the components in the activation cascade of sensory transduction can be stimulated. Our findings in mouse olfactory sensory neurons suggest that mechanisms that are primarily responsible for terminating the olfactory response are also critical for proper resting sensitivity. Copyright © 2017 the authors 0270-6474/17/370110-10$15.00/0.
VKORC1 V66M mutation in African Brazilian patients resistant to oral anticoagulant therapy.
Orsi, Fernanda A; Annichino Bizzacchi, Joyce M; de Paula, Erich V; Ozelo, Margareth C; Langley, Michael R; Weck, Karen E
2010-09-01
Warfarin-based anticoagulant therapy is associated with large variability in dose response. Genetic variability in the VKORC1 and CYP2C9 genes is associated with increased warfarin sensitivity. In addition, rare coding region mutations in VKORC1 have been associated with resistance to warfarin. VKORC1 and CYP2C9 variability associated with altered warfarin response is less well characterized in African and mixed-raced populations such as Brazilians. To determine genetic variability associated with altered warfarin response among Brazilian patients, sixty-two adult patients with extreme resistance or sensitivity to warfarin were genotyped for variants in CYP2C9 and VKORC1. Of the 51 patients on low doses of warfarin, the VKORC1--1639 (3673) G>A polymorphism associated with warfarin sensitivity was present in 48 (94.1%), including 97% of Caucasians, 82% of African-descent patients, and all 7 (100%) patients of Indian descent. Additionally, 52.9% of warfarin sensitive patients had at least one CYP2C9*2 or CYP2C9*3 decreased metabolism allele, 63.6% of Caucasians and 54% of African-descent patients. Of the 11 patients on high doses of warfarin, sequencing of VKORC1 revealed a nonsynonymous V66M mutation in two warfarin resistant patients, both of African-descent. Brazilian patients requiring low doses of warfarin have a high frequency of VKORC1 and CYP2C9 variants associated with warfarin sensitivity. The presence of the rare VKORC1 V66M in two warfarin high dose outlier patients implies that this variant may be more frequent among African Brazilians and has implications for future warfarin studies in other populations of African descent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Mumby, Peter J; van Woesik, Robert
2014-05-19
Coral reefs are highly sensitive to the stress associated with greenhouse gas emissions, in particular ocean warming and acidification. While experiments show negative responses of most reef organisms to ocean warming, some autotrophs benefit from ocean acidification. Yet, we are uncertain of the response of coral reefs as systems. We begin by reviewing sources of uncertainty and complexity including the translation of physiological effects into demographic processes, indirect ecological interactions among species, the ability of coral reefs to modify their own chemistry, adaptation and trans-generational plasticity. We then incorporate these uncertainties into two simple qualitative models of a coral reef system under climate change. Some sources of uncertainty are far more problematic than others. Climate change is predicted to have an unambiguous negative effect on corals that is robust to several sources of uncertainty but sensitive to the degree of biogeochemical coupling between benthos and seawater. Macroalgal, zoanthid, and herbivorous fish populations are generally predicted to increase, but the ambiguity (confidence) of such predictions are sensitive to the source of uncertainty. For example, reversing the effect of climate-related stress on macroalgae from being positive to negative had no influence on system behaviour. By contrast, the system was highly sensitive to a change in the stress upon herbivorous fishes. Minor changes in competitive interactions had profound impacts on system behaviour, implying that the outcomes of mesocosm studies could be highly sensitive to the choice of taxa. We use our analysis to identify new hypotheses and suggest that the effects of climatic stress on coral reefs provide an exceptional opportunity to test emerging theories of ecological inheritance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genotoxic damage in polychaetes: a study of species and cell-type sensitivities.
Lewis, Ceri; Galloway, Tamara
2008-06-30
The marine environment is becoming increasingly contaminated by environmental pollutants with the potential to damage DNA, with marine sediments acting as a sink for many of these contaminants. Understanding genotoxic responses in sediment-dwelling marine organisms, such as polychaetes, is therefore of increasing importance. This study is an exploration of species-specific and cell-specific differences in cell sensitivities to DNA-damaging agents in polychaete worms, aimed at increasing fundamental knowledge of their responses to genotoxic damage. The sensitivities of coelomocytes from three polychaetes species of high ecological relevance, i.e. the lugworm Arenicola marina, the harbour ragworm Nereis diversicolor and the king ragworm Nereis virens to genotoxic damage are compared, and differences in sensitivities of their different coelomic cell types determined by use of the comet assay. A. marina was found to be the most sensitive to genotoxic damage induced by the direct-acting mutagen methyl methanesulfonate (MMS), and showed dose-dependent responses to MMS and the polycyclic aromatic hydrocarbon benzo(a)pyrene. Significant differences in sensitivity were also measured for the different types of coelomocyte. Eleocytes were more sensitive to induction of DNA damage than amoebocytes in both N. virens and N. diversicolor. Spermatozoa from A. marina showed significant DNA damage following in vitro exposure to MMS, but were less sensitive to DNA damage than coelomocytes. This investigation has clearly demonstrated that different cell types within the same species and different species within the polychaetes show significantly different responses to genotoxic insult. These findings are discussed in terms of the relationship between cell function and sensitivity and their implications for the use of polychaetes in environmental genotoxicity studies.
Brown, Timothy M.; Allen, Annette E.; al-Enezi, Jazi; Wynne, Jonathan; Schlangen, Luc; Hommes, Vanja; Lucas, Robert J.
2013-01-01
In addition to rods and cones, photoreception in mammals extends to a third retinal cell type expressing the photopigment melanopsin. The influences of this novel opsin are widespread, ranging from pupillary and circadian responses to brightness perception, yet established approaches to quantifying the biological effects of light do not adequately account for melanopsin sensitivity. We have recently proposed a novel metric, the melanopic sensitivity function (VZλ), to address this deficiency. Here, we further validate this new measure with a variety of tests based on potential barriers to its applicability identified in the literature or relating to obvious practical benefits. Using electrophysiogical approaches and pupillometry, initially in rodless+coneless mice, our data demonstrate that under a very wide range of different conditions (including switching between stimuli with highly divergent spectral content) the VZλ function provides an accurate prediction of the sensitivity of melanopsin-dependent responses. We further show that VZλ provides the best available description of the spectral sensitivity of at least one aspect of the visual response in mice with functional rods and cones: tonic firing activity in the lateral geniculate nuclei. Together, these data establish VZλ as an important new approach for light measurement with widespread practical utility. PMID:23301090
Walzer, Andreas; Schausberger, Peter
2013-01-01
Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040
The voices of seduction: cross-gender effects in processing of erotic prosody
Ethofer, Thomas; Wiethoff, Sarah; Anders, Silke; Kreifelts, Benjamin; Grodd, Wolfgang
2007-01-01
Gender specific differences in cognitive functions have been widely discussed. Considering social cognition such as emotion perception conveyed by non-verbal cues, generally a female advantage is assumed. In the present study, however, we revealed a cross-gender interaction with increasing responses to the voice of opposite sex in male and female subjects. This effect was confined to erotic tone of speech in behavioural data and haemodynamic responses within voice sensitive brain areas (right middle superior temporal gyrus). The observed response pattern, thus, indicates a particular sensitivity to emotional voices that have a high behavioural relevance for the listener. PMID:18985138
Kelly, Tanika N; Hixson, James E; Rao, Dabeeru C; Mei, Hao; Rice, Treva K; Jaquish, Cashell E; Shimmin, Lawrence C; Schwander, Karen; Chen, Chung-Shuian; Liu, Depei; Chen, Jichun; Bormans, Concetta; Shukla, Pramila; Farhana, Naveed; Stuart, Colin; Whelton, Paul K; He, Jiang; Gu, Dongfeng
2010-12-01
Genetic determinants of blood pressure (BP) response to potassium, or potassium sensitivity, are largely unknown. We conducted a genome-wide linkage scan and positional candidate gene analysis to identify genetic determinants of potassium sensitivity. A total of 1906 Han Chinese participants took part in a 7-day high-sodium diet followed by a 7-day high-sodium plus potassium dietary intervention. BP measurements were obtained at baseline and after each intervention using a random-zero sphygmomanometer. Significant linkage signals (logarithm of odds [LOD] score, >3) for BP responses to potassium were detected at chromosomal regions 3q24-q26.1, 3q28, and 11q22.3-q24.3. Maximum multipoint LOD scores of 3.09 at 3q25.2 and 3.41 at 11q23.3 were observed for absolute diastolic BP (DBP) and mean arterial pressure (MAP) responses, respectively. Linkage peaks of 3.56 at 3q25.1 and 3.01 at 11q23.3 for percent DBP response and 3.22 at 3q25.2, 3.01 at 3q28, and 4.48 at 11q23.3 for percent MAP response also were identified. Angiotensin II receptor, type 1 (AGTR1), single-nucleotide polymorphism rs16860760 in the 3q24-q26.1 region was significantly associated with absolute and percent systolic BP responses to potassium (P=0.0008 and P=0.0006, respectively). Absolute (95% CI) systolic BP responses for genotypes C/C, C/T, and T/T were -3.71 (-4.02 to -3.40), -2.62 (-3.38 to -1.85), and 1.03 (-3.73 to 5.79) mm Hg, respectively, and percent responses (95% CI) were -3.07 (-3.33 to -2.80), -2.07 (-2.74 to -1.41), and 0.90 (-3.20 to 4.99), respectively. Similar trends were observed for DBP and MAP responses. Genetic regions on chromosomes 3 and 11 may harbor important susceptibility loci for potassium sensitivity. Furthermore, the AGTR1 gene was a significant predictor of BP responses to potassium intake.
Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V
2015-01-05
We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).
Kagawa, Takatoshi; Kimura, Mitsuhiro; Wada, Masamitsu
2009-10-01
Phototropin family photoreceptors, phot1 and phot2, in Arabidopsis thaliana control the blue light (BL)-mediated phototropic responses of the hypocotyl, chloroplast relocation movement and stomatal opening. Phototropic responses in dark-grown tissues have been well studied but those in de-etiolated green plants are not well understood. Here, we analyzed phototropic responses of inflorescence stems and petioles of wild-type and phototropin mutant plants of A. thaliana. Similar to the results obtained from dark-grown seedlings, inflorescence stems and petioles in wild-type and phot2 mutant plants showed phototropic bending towards low fluence BL, while in phot1 mutant plants, a high fluence rate of BL was required. phot1 phot2 double mutant plants did not show any phototropic responses even under very high fluence rates of BL. We further studied the photoreceptive sites for phototropic responses of stems and petioles by partial tissue irradiation. The whole part of the inflorescence stem is sensitive to BL and shows phototropism, but in the petiole only the irradiated abaxial side is sensitive. Similar to dark-grown etiolated seedlings, phot1 plays a major role in phototropic responses under weak light, but phot2 functions under high fluence rate conditions in green plants.
Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism
Vandell, Alexander G; Walker, Joseph; Brown, Karen S; Zhang, George; Lin, Min; Grosso, Michael A; Mercuri, Michele F
2017-01-01
Objective The aim of this study was to investigate whether genetic variants can identify patients with venous thromboembolism (VTE) at an increased risk of bleeding with warfarin. Methods Hokusai-venous thromboembolism (Hokusai VTE), a randomised, multinational, double-blind, non-inferiority trial, evaluated the safety and efficacy of edoxaban versus warfarin in patients with VTE initially treated with heparin. In this subanalysis of Hokusai VTE, patients genotyped for variants in CYP2C9 and VKORC1 genes were divided into three warfarin sensitivity types (normal, sensitive and highly sensitive) based on their genotypes. An exploratory analysis was also conducted comparing normal responders to pooled sensitive responders (ie, sensitive and highly sensitive responders). Results The analysis included 47.7% (3956/8292) of the patients in Hokusai VTE. Among 1978 patients randomised to warfarin, 63.0% (1247) were normal responders, 34.1% (675) were sensitive responders and 2.8% (56) were highly sensitive responders. Compared with normal responders, sensitive and highly sensitive responders had heparin therapy discontinued earlier (p<0.001), had a decreased final weekly warfarin dose (p<0.001), spent more time overanticoagulated (p<0.001) and had an increased bleeding risk with warfarin (sensitive responders HR 1.38 [95% CI 1.11 to 1.71], p=0.0035; highly sensitive responders 1.79 [1.09 to 2.99]; p=0.0252). Conclusion In this study, CYP2C9 and VKORC1 genotypes identified patients with VTE at increased bleeding risk with warfarin. Trial registration number NCT00986154. PMID:28689179
Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander
2016-08-24
A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.
An approach to measure parameter sensitivity in watershed ...
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Pei, Kai; Wu, Yongzhen; Li, Hui; Geng, Zhiyuan; Tian, He; Zhu, Wei-Hong
2015-03-11
In the efficient cosensitization, the pure organic sensitizers with high molecular extinction coefficients and long wavelength response are highly preferable since the dye loading amount for each dye in cosensitization is decreased with respect to single dye sensitization. A D-A-π-A featured quinoxaline organic sensitizer IQ21 is specifically designed. The high conjugation building block of 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) is introduced as the π bridge, instead of the traditional thiophene unit, especially in realizing high molecular extinction coefficients (up to 66 600 M(-1) cm(-1)) and extending the light response wavelength. With respect to the reference dye IQ4, the slightly lower efficiency of IQ21 (9.03%) arises from the decrease of VOC, which offsets the gain in JSC. While cosensitized with a smaller D-π-A dye S2, the efficiency in IQ21 is further improved to 10.41% (JSC = 19.8 mA cm(-2), VOC = 731 mV, FF = 0.72). The large improvement in efficiency is attributed to the well-matched molecular structures and loading amounts of both dyes in the cosensitization system. We also demonstrated that coabsorbent dye S2 can distinctly compensate the inherent drawbacks of IQ21, not only enhancing the response intensity of IPCE, making up the absorption defects around low wavelength region of IPCE, but also repressing the charge recombination rate to some extent.
Dermatitis in a rubber tyre factory.
Zina, A M; Bedello, P G; Cane, D; Bundino, S; Benedetto, A
1987-07-01
An outbreak of occupational dermatitis in a rubber tyre factory is reported. An unusual clinical picture was recognized. Patch tests revealed a high sensitization rate to the MBT derivative used: 2-(2'-4'dinitrophenylthio)benzothiazole. Since tests with MBT mix and dinitrophenol were negative; sensitization to a contaminant was suspected. DNCB was traced as the substance responsible.
A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor
Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel
2014-01-01
A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771
Huang, Qiuyuan; Briggs, Brandon R; Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen
2014-01-01
Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.
Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen
2014-01-01
Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change. PMID:25365331
Klein, Amanda H.; Sawyer, Carolyn M.; Takechi, Kenichi; Davoodi, Auva; Ivanov, Margaret A.; Carstens, Mirela Iodi; Carstens, E
2012-01-01
Menthol is used in pharmaceutical applications because of its desired cooling and analgesic properties. The neural mechanism by which topical application of menthol decreases heat pain is not fully understood. We investigated the effects of topical menthol application on lumbar dorsal horn wide dynamic range and nociceptive-specific neuronal responses to noxious heat and cooling of glaborous hindpaw cutaneous receptive fields. Menthol increased thresholds for responses to noxious heat in a concentration-dependent manner. Menthol had a biphasic effect on cold-evoked responses, reducing the threshold (to warmer temperatures) at a low (1%) concentration and increasing threshold and reducing response magnitude at high (10, 40%) concentrations. Menthol had little effect on responses to innocuous or noxious mechanical stimuli, ruling out a local anesthetic action. Application of 40% menthol to the contralateral hindpaw tended to reduce responses to cooling and noxious heat, suggesting a weak heterosegmental inhibitory effect. These results indicate that menthol has an analgesic effect on heat sensitivity of nociceptive dorsal horn neurons, as well as biphasic effects on cold sensitivity, consistent with previous behavioral observations. PMID:22687951
Pupillometric and saccadic measures of affective and executive processing in anxiety.
Hepsomali, Piril; Hadwin, Julie A; Liversedge, Simon P; Garner, Matthew
2017-07-01
Anxious individuals report hyper-arousal and sensitivity to environmental stimuli, difficulties concentrating, performing tasks efficiently and inhibiting unwanted thoughts and distraction. We used pupillometry and eye-movement measures to compare high vs. low anxious individuals hyper-reactivity to emotional stimuli (facial expressions) and subsequent attentional biases in a memory-guided pro- and antisaccade task during conditions of low and high cognitive load (short vs. long delay). High anxious individuals produced larger and slower pupillary responses to face stimuli, and more erroneous eye-movements, particularly following long delay. Low anxious individuals' pupillary responses were sensitive to task demand (reduced during short delay), whereas high anxious individuals' were not. These findings provide evidence in anxiety of enhanced, sustained and inflexible patterns of pupil responding during affective stimulus processing and cognitive load that precede deficits in task performance. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Tongxin; Luo, Yanhua; Peng, Gang-Ding; Zhang, Qijin
2012-02-01
Bragg grating in a single-mode photosensitive polymer optical fiber (POF) with benzil dimethyl ketal (BDK)-doped in core has been inscribed through the Sagnac ring interference method. The Bragg wavelength of grating is about 1570nm. The stress and strain response of fiber Bragg grating (FBG) has been studied respectively. By fitting the experimental result, the strain sensitivity of FBG in POF has been found to be almost same to that of conventional silica fiber Bragg gratings. However, the stress sensitivity of FBG in POF is measured to be 421pm/MPa, which is 28 times higher than FBG in silica fiber. And such high stress sensitivity makes Bragg grating in a single-mode BDK-doped POF appear to be very attractive for constructing stress sensor with high resolution.
Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K
2015-01-01
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands. © 2014 John Wiley & Sons Ltd.
Nierenberg, Jovia L; Li, Changwei; He, Jiang; Gu, Dongfeng; Chen, Jichun; Lu, Xiangfeng; Li, Jianxin; Wu, Xigui; Gu, C Charles; Hixson, James E; Rao, Dabeeru C; Kelly, Tanika N
2017-12-01
We examined the association between genetic risk score (GRS) for blood pressure (BP), based on single nucleotide polymorphisms identified in previous BP genome-wide association study meta-analyses, and salt and potassium sensitivity of BP among participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). The GenSalt study was conducted among 1906 participants who underwent a 7-day low-sodium (51.3 mmol sodium/d), 7-day high-sodium (307.8 mmol sodium/d), and 7-day high-sodium plus potassium (60 mmol potassium/d) intervention. BP was measured 9× at baseline and at the end of each intervention period using a random zero sphygmomanometer. Associations between systolic BP (SBP), diastolic BP, and mean arterial pressure GRS and respective SBP, diastolic BP, and mean arterial pressure responses to the dietary interventions were assessed using mixed linear regression models that accounted for familial dependencies and adjusted for age, sex, field center, body mass index, and baseline BP. As expected, baseline SBP, diastolic BP, and mean arterial pressure significantly increased per quartile increase in GRS ( P =2.7×10 -8 , 9.8×10 -8 , and 6.4×10 -6 , respectively). In contrast, increasing GRS quartile conferred smaller SBP, diastolic BP, and mean arterial pressure responses to the low-sodium intervention ( P =1.4×10 -3 , 0.02, and 0.06, respectively) and smaller SBP responses to the high-sodium and potassium interventions ( P =0.10 and 0.05). In addition, overall findings were similar when examining GRS as a continuous measure. Contrary to our initial hypothesis, we identified an inverse relationship between BP GRS and salt and potassium sensitivity of BP. These data may provide novel implications on the relationship between BP responses to dietary sodium and potassium and hypertension. © 2017 American Heart Association, Inc.
Yabu, Julie M.; Siebert, Janet C.; Maecker, Holden T.
2016-01-01
Background Kidney transplantation is the most effective treatment for end-stage kidney disease. Sensitization, the formation of human leukocyte antigen (HLA) antibodies, remains a major barrier to successful kidney transplantation. Despite the implementation of desensitization strategies, many candidates fail to respond. Current progress is hindered by the lack of biomarkers to predict response and to guide therapy. Our objective was to determine whether differences in immune and gene profiles may help identify which candidates will respond to desensitization therapy. Methods and Findings Single-cell mass cytometry by time-of-flight (CyTOF) phenotyping, gene arrays, and phosphoepitope flow cytometry were performed in a study of 20 highly sensitized kidney transplant candidates undergoing desensitization therapy. Responders to desensitization therapy were defined as 5% or greater decrease in cumulative calculated panel reactive antibody (cPRA) levels, and non-responders had 0% decrease in cPRA. Using a decision tree analysis, we found that a combination of transitional B cell and regulatory T cell (Treg) frequencies at baseline before initiation of desensitization therapy could distinguish responders from non-responders. Using a support vector machine (SVM) and longitudinal data, TRAF3IP3 transcripts and HLA-DR-CD38+CD4+ T cells could also distinguish responders from non-responders. Combining all assays in a multivariate analysis and elastic net regression model with 72 analytes, we identified seven that were highly interrelated and eleven that predicted response to desensitization therapy. Conclusions Measuring baseline and longitudinal immune and gene profiles could provide a useful strategy to distinguish responders from non-responders to desensitization therapy. This study presents the integration of novel translational studies including CyTOF immunophenotyping in a multivariate analysis model that has potential applications to predict response to desensitization, select candidates, and personalize medicine to ultimately improve overall outcomes in highly sensitized kidney transplant candidates. PMID:27078882
Yabu, Julie M; Siebert, Janet C; Maecker, Holden T
2016-01-01
Kidney transplantation is the most effective treatment for end-stage kidney disease. Sensitization, the formation of human leukocyte antigen (HLA) antibodies, remains a major barrier to successful kidney transplantation. Despite the implementation of desensitization strategies, many candidates fail to respond. Current progress is hindered by the lack of biomarkers to predict response and to guide therapy. Our objective was to determine whether differences in immune and gene profiles may help identify which candidates will respond to desensitization therapy. Single-cell mass cytometry by time-of-flight (CyTOF) phenotyping, gene arrays, and phosphoepitope flow cytometry were performed in a study of 20 highly sensitized kidney transplant candidates undergoing desensitization therapy. Responders to desensitization therapy were defined as 5% or greater decrease in cumulative calculated panel reactive antibody (cPRA) levels, and non-responders had 0% decrease in cPRA. Using a decision tree analysis, we found that a combination of transitional B cell and regulatory T cell (Treg) frequencies at baseline before initiation of desensitization therapy could distinguish responders from non-responders. Using a support vector machine (SVM) and longitudinal data, TRAF3IP3 transcripts and HLA-DR-CD38+CD4+ T cells could also distinguish responders from non-responders. Combining all assays in a multivariate analysis and elastic net regression model with 72 analytes, we identified seven that were highly interrelated and eleven that predicted response to desensitization therapy. Measuring baseline and longitudinal immune and gene profiles could provide a useful strategy to distinguish responders from non-responders to desensitization therapy. This study presents the integration of novel translational studies including CyTOF immunophenotyping in a multivariate analysis model that has potential applications to predict response to desensitization, select candidates, and personalize medicine to ultimately improve overall outcomes in highly sensitized kidney transplant candidates.
Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.
Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang
2018-02-07
There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis <12%) responses at the mechanical strain of up to 100%. A strain sensor in this format can be scalably manufactured and implemented as wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.
Xiao, Jinshu; Wang, La; Liu, Taihang; Wu, Yunfei; Dong, Feifan; Jiang, Yaming; Pan, Minhui; Zhang, Youhong; Lu, Cheng
2017-01-01
Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs) using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO) analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours) and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours) showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects. PMID:28542312
Xiao, Wenfu; Chen, Peng; Xiao, Jinshu; Wang, La; Liu, Taihang; Wu, Yunfei; Dong, Feifan; Jiang, Yaming; Pan, Minhui; Zhang, Youhong; Lu, Cheng
2017-01-01
Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs) using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO) analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours) and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours) showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.
NASA Astrophysics Data System (ADS)
Kaila, M. M.
2002-11-01
Dynamical theory of responsivity and response time for an high temperature superconductor (HTSC) photo-thermoelectrical bolometer is analysed in this paper. There is a thermoelectric feedback (TEF) due to the heat transfer from the sensitive area (HTSC-BiSb thermojunction) towards the cold junction of the thermocouple. This is in addition to the normal electrothermal feedback (ETF) between the detector and the substrate, in a photoelectrical bolometer. The two legs of the thermocouple are connected in a parallel geometry configuration. It is seen that TEF can be used in combination with the ETF to enhance responsivity and response time of the detector.
From climate change to molecular response: redox proteomics of ozone-induced responses in soybean
USDA-ARS?s Scientific Manuscript database
Ozone (O3) causes significant agricultural losses with soybean being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O3 exposure on the total and redox proteomes of soybean. To understand the molecular responses to O3 exposure, soybean grown at the Soybean Free Air C...
Alcohol and Memory: Storage and State Dependency
ERIC Educational Resources Information Center
Parker, Elizabeth S.; And Others
1976-01-01
Effects of acute alcohol intoxication on the storage phase of memory were evaluated with two tasks that minimized response retrieval: unpaced paired-associate learning with highly available responses and forced-choice picture recognition. It was concluded that storage processes are sensitive to disruption by alcohol. (CHK)
Remote Calibration Procedure and Results for the Ctbto AS109 STS-2HG at Ybh
NASA Astrophysics Data System (ADS)
Uhrhammer, R. A.; Taira, T.; Hellweg, M.
2013-12-01
Berkeley Digital Seismic Station (BDSN) YBH, located in Yreka, CA, USA, is certified as Auxiliary Seismic Station 109 (AS109) by the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO). YBH, sited in an abandoned hard rock mining drift, houses a Streckeisen STS-2HG triaxial broadband seismometer (the AS109 sensor) and a co-sited three-component set of Streckeisen STS-1 broadband seismometers and a Kinemetrics Episensor strong motion accelerometer (the BDSN sensors). CTBTO requested that we preform a remote calibration test of the STS-2HG (20,000 V/(m/s) nominal sensitivity) to verify its response and sensitivity. The remote calibration test was done successfully on June 17, 2013 and we report here on the procedure and results of the calibration. The calibration of the STS-2HG (s/n 30235) was accomplished using two Random Telegraph (RT) stimuli which were applied to the triaxial U,V,W component calibration coils through an appropriate series resistance to limit the drive current. The first was a four hour RT at 1.25 Hz (to determine the low-frequency response) and the second was a one hour RT at 25 Hz (to determine the high-frequency response). The RT stimulus signals were generated by the Kinemetrics Q330 data logger and both the stimuli and the response were recorded simultaneously with synchronous sampling at 100 sps. The RT calibrations were invoked remotely from Berkeley. The response to the 1.25 Hz RT stimulus was used to determine the seismometer natural period, fraction of critical damping and sensitivity of the STS-2HG sensors and the response to the 25 Hz RT stimulus was used to determine their corresponding high-frequency response. The accuracy of the sensitivity as determined by the response to the RT stimuli is limited by the accuracy of the calibration coil motor constant (2 g/A) provided on the factory calibration sheet. As a check on the accuracy of the sensitivity determined from the response to the RT stimuli, we also compare the ground motions inferred from the STS-2HG with the corresponding ground motions inferred from the co-sited STS-1's and the Episensor strong motion accelerometer using seismic signals which have adequate signal-to-noise ratios in passband common to both instruments.
McHugh, Kieran; Naranjo, Arlene; Van Ryn, Collin; Kirby, Chaim; Brock, Penelope; Lyons, Karen A.; States, Lisa J.; Rojas, Yesenia; Miller, Alexandra; Volchenboum, Sam L.; Simon, Thorsten; Krug, Barbara; Sarnacki, Sabine; Valteau-Couanet, Dominique; von Schweinitz, Dietrich; Kammer, Birgit; Granata, Claudio; Pio, Luca; Park, Julie R.; Nuchtern, Jed
2016-01-01
Purpose The International Neuroblastoma Response Criteria (INRC) require serial measurements of primary tumors in three dimensions, whereas the Response Evaluation Criteria in Solid Tumors (RECIST) require measurement in one dimension. This study was conducted to identify the preferred method of primary tumor response assessment for use in revised INRC. Patients and Methods Patients younger than 20 years with high-risk neuroblastoma were eligible if they were diagnosed between 2000 and 2012 and if three primary tumor measurements (antero-posterior, width, cranio-caudal) were recorded at least twice before resection. Responses were defined as ≥ 30% reduction in longest dimension as per RECIST, ≥ 50% reduction in volume as per INRC, or ≥ 65% reduction in volume. Results Three-year event-free survival for all patients (N = 229) was 44% and overall survival was 58%. The sensitivity of both volume response measures (ability to detect responses in patients who survived) exceeded the sensitivity of the single dimension measure, but the specificity of all response measures (ability to identify lack of response in patients who later died) was low. In multivariable analyses, none of the response measures studied was predictive of outcome, and none was predictive of the extent of resection. Conclusion None of the methods of primary tumor response assessment was predictive of outcome. Measurement of three dimensions followed by calculation of resultant volume is more complex than measurement of a single dimension. Primary tumor response in children with high-risk neuroblastoma should therefore be evaluated in accordance with RECIST criteria, using the single longest dimension. PMID:26755515
Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method.
Wang, Zhihui; Zhang, Ling; Liu, Jin; Jiang, Hao; Li, Chunzhong
2018-05-30
Recently, flexible pressure sensors featuring high sensitivity, broad sensing range and real-time detection have aroused great attention owing to their crucial role in the development of artificial intelligent devices and healthcare systems. Herein, highly sensitive pressure sensors based on hemisphere-microarray flexible substrates are fabricated via inversely templating honeycomb structures deriving from a facile and static breath figure process. The interlocked and subtle microstructures greatly improve the sensing characteristics and compressibility of the as-prepared pressure sensor, endowing it a sensitivity as high as 196 kPa-1 and a wide pressure sensing range (0-100 kPa), as well as other superior performance, including a lower detection limit of 0.5 Pa, fast response time (<26 ms) and high reversibility (>10 000 cycles). Based on the outstanding sensing performance, the potential capability of our pressure sensor in capturing physiological information and recognizing speech signals has been demonstrated, indicating promising application in wearable and intelligent electronics.
Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)
NASA Astrophysics Data System (ADS)
Brittan-Powell, Elizabeth F.; Dooling, Robert J.
2004-06-01
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.
Ma, Long; Wu, Guanrong; Li, Yufeng; Qin, Ping; Meng, Lingpei; Liu, Haiyan; Li, Yuyin; Diao, Aipo
2015-11-21
We constructed a reversible molecular device in the nanoscale based on a DNA three-way junction (3WJ) fueled by Hg(2+) binding and sequestration. It is highly responsive to external stimuli, which brings about optically detectable global structural changes. Such a DNA device can serve as a novel "turn-on and -off" fluorescent sensor for Hg(2+) and biothiol detection with high selectivity and sensitivity.
Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.
Lee, Jaehong; Kwon, Hyukho; Seo, Jungmok; Shin, Sera; Koo, Ja Hoon; Pang, Changhyun; Son, Seungbae; Kim, Jae Hyung; Jang, Yong Hoon; Kim, Dae Eun; Lee, Taeyoon
2015-04-17
A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2.
Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C K; Ahmad, Harith; Chong, W Y
2016-01-01
Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol
2014-01-01
Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845
Ultra-Sensitive Humidity Sensor Based on Optical Properties of Graphene Oxide and Nano-Anatase TiO2
Ghadiry, Mahdiar; Gholami, Mehrdad; Lai, C. K.; Ahmad, Harith; Chong, W. Y.
2016-01-01
Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications. PMID:27101247
NBS work on neutron resonance radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrack, R.A.
1987-01-01
NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously imagemore » three isotopes in a sample with no interference.« less
Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.
Conducting Qualitative Research on Stigmatizing Conditions with Military Populations
Lincoln, Martha L.; Ames, Genevieve M.; Moore, Roland S.
2016-01-01
This article addresses the conduct of qualitative research regarding sensitive or stigmatizing topics with military populations, and provides suggestions for implementing culturally responsive and effective data collection with these groups. Given high rates of underreporting of sensitive and stigmatizing conditions in the military, qualitative methods have potential to shed light on phenomena that are not well understood. Drawing on a study of U.S. Army National Guard personnel by civilian anthropologists, we present lessons learned and argue that the value of similar studies can be maximized by culturally responsive research design. PMID:27722033
An early warning system for high climate sensitivity? (Invited)
NASA Astrophysics Data System (ADS)
Pierrehumbert, R.
2010-12-01
The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart from this problem, the transient nature of climate response driven by increasing CO2 requires careful monitoring of ocean heat storage as well as top-of-atmosphere radiative budgets, if climate sensitivity is to be estimated. Water vapor feedback is not considered as uncertain as cloud feedback, but there is still a considerable potential for surprises. I will discuss microwave monitoring requirements for tracking water vapor feedback. At the other extreme, the longer term feedbacks that contribute to Earth System Sensitivity are even more uncertain than cloud feedbacks, particularly with regard to the terrestrial carbon cycle. Prospects for obtaining an early warning of a PETM-type organic carbon release seem bleak. Finally, I will discuss the particular challenge of obtaining an early warning of high climate sensitivity in the case that the climate system has a bifurcation.
Copper ion sensing with fluorescent electrospun nanofibers.
Ongun, Merve Zeyrek; Ertekin, Kadriye; Gocmenturk, Mustafa; Ergun, Yavuz; Suslu, Aslıhan
2012-05-01
In this work, the use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based copper sensitive chemosensor is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric support materials. Sensing slides were fabricated by electrospinning technique. Copper sensors based on the change in the fluorescence signal intensity of fluoroionophore; N'-3-(4-(dimethylamino phenly)allylidene)isonicotinohydrazide. The sensor slides exhibited high sensitivities due to the high surface area of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect Cu(II) ions are 6-20-fold higher than those of the continuous thin films. By this way we obtained linear calibration plots for Cu(II) ions in the concentration range of 10(-12)-10(-5)M. The response times of the sensing slides were less than 1 min. Stability of the employed ionophore in the matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 6 months. Our stability tests are still in progress. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong
2016-09-01
A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
The emotional reasoning heuristic in children.
Muris, P; Merckelbach, H; van Spauwen, I
2003-03-01
A previous study by Arntz, Rauner, and Van den Hout (1995; Behaviour Research and Therapy, 33, 917-925) has shown that adult anxiety patients tend to infer danger not only on the basis of objective danger information, but also on the basis of anxiety response information. The current study examined whether this so-called emotional reasoning phenomenon also occurs in children. Normal primary school children (N = 101) first completed scales tapping anxiety disorders symptoms, anxiety sensitivity, and trait anxiety. Next, they were asked to rate danger levels of scripts in which objective danger versus objective safety and anxiety response versus no anxiety response were systematically varied. Evidence was found for a general emotional reasoning effect. That is, children's danger ratings were not only a function of objective danger information, but also, in the case of objective safety scripts, by anxiety response information. This emotional reasoning effect was predicted by levels of anxiety sensitivity and trait anxiety. More specifically, high levels of anxiety sensitivity and trait anxiety were accompanied by a greater tendency to use anxiety-response information as an heuristic for assessing dangerousness of safety scripts. Implications of these findings are briefly discussed.
Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond
Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; ...
2011-06-06
The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 10 9 sec -1mV -1 range, linear response in a broad spectral range belowmore » 320 nm, photocurrents around ~10 -5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.« less
Chen, Yungting; Cheng, Tzuhuan; Cheng, Chungliang; Wang, Chunhsiung; Chen, Chihwei; Wei, Chihming; Chen, Yangfang
2010-01-04
A new approach for developing highly sensitive MOS photodetector based on the assistance of anodic aluminum oxide (AAO) membrane is proposed, fabricated, and characterized. It enables the photodetector with the tunability of not only the intensity but also the range of the response. Under a forward bias, the response of the MOS photodetector with AAO membrane covers the visible as well as infrared spectrum; however, under a reverse bias, the near-infrared light around Si band edge dominates the photoresponse. Unlike general MOS photodetectors which only work under a reverse bias, our MOS photodetectors can work even under a forward bias, and the responsivity at the optical communication wavelength of 850nm can reach up to 0.24 A/W with an external quantum efficiency (EQE) of 35%. Moreover, the response shows a large enhancement factor of 10 times at 1050 nm under a reverse bias of 0.5V comparing with the device without AAO membrane. The underlying mechanism for the novel properties of the newly designed device has been proposed.
Pantophlet, A J; Gerrits, W J J; Vonk, R J; van den Borne, J J G C
2016-12-01
In veal calves, the major portion of digestible energy intake originates from milk replacer (MR), with lactose and fat contributing approximately 45 and 35%, respectively. In veal calves older than 4 mo, prolonged high intakes of MR may lead to problems with glucose homeostasis and insulin sensitivity, ultimately resulting in sustained insulin resistance, hepatic steatosis, and impaired animal performance. The contribution of each of the dietary energy sources (lactose and fat) to deteriorated glucose homeostasis and insulin resistance is currently unknown. Therefore, an experiment was designed to compare the effects of a high-lactose and a high-fat MR on glucose homeostasis and insulin sensitivity in veal calves. Sixteen male Holstein-Friesian calves (120±2.8kg of BW) were assigned to either a high-lactose (HL) or a high-fat (HF) MR for 13 consecutive weeks. After at least 7 wk of adaptation, whole-body insulin sensitivity and insulin secretion were assessed by euglycemic-hyperinsulinemic and hyperglycemic clamps, respectively. Postprandial blood samples were collected to assess glucose, insulin, and triglyceride responses to feeding, and 24-h urine was collected to quantify urinary glucose excretion. At the end of the trial, liver and muscle biopsies were taken to assess triglyceride contents in these tissues. Long-term exposure of calves to HF or HL MR did not affect whole-body insulin sensitivity (averaging 4.2±0.5×10 -2 [(mg/kg∙min)/(μU/mL)]) and insulin secretion. Responses to feeding were greater for plasma glucose and tended to be greater for plasma insulin in HL calves than in HF calves. Urinary glucose excretion was substantially higher in HL calves (75±13g/d) than in HF calves (21±6g/d). Muscle triglyceride content was not affected by treatment and averaged 4.5±0.6g/kg, but liver triglyceride content was higher in HF calves (16.4±0.9g/kg) than in HL calves (11.2±0.7g/kg), indicating increased hepatic fat accumulation. We conclude that increasing the contribution of fat to the digestible energy intake from the MR from 20 to 50%, at the expense of lactose does not affect whole-body insulin sensitivity and insulin secretion in calves. However, a high-lactose MR increases postprandial glucose and insulin responses, whereas a high-fat MR increases fat accumulation in liver but not muscle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Foliar ozone injury on different-sized Prumus serotina Ehrh. trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.
1995-06-01
Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less
Ordelheide, Anna-Maria; Heni, Martin; Thamer, Claus; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald
2011-12-01
Peroxisome proliferator-activated receptor δ (PPARδ) activation enhances muscular fatty acid oxidation and oxidative phosphorylation, and muscle's oxidative capacity positively associates with whole-body insulin sensitivity. Therefore, we asked here whether human muscle cell PPARD expression is a determinant of donors' insulin sensitivity. Skeletal muscle cells derived from 38 nondiabetic donors were differentiated in vitro to myotubes, and gene (mRNA) expression was quantified by real-time RT-PCR. Donors' insulin sensitivity was calculated from plasma insulin and glucose levels during oral glucose tolerance test (OGTT) and hyperinsulinemic-euglycemic clamp. Basal myotube PPARD expression was closely related to the expression of its target genes PDK4 and ANGPTL4 (P = 0·0312 and P = 0·0003, respectively). Basal PPARD, PDK4 and ANGPTL4 expression levels were not associated with donors' insulin sensitivity (P > 0·2, all). Treatment of myotubes with a selective high-affinity PPARδ agonist (GW501516) did not change mean PPARD, but enhanced mean PDK4 and ANGPTL4 expression 13- and 16-fold, respectively (P < 0·0001, both). The individual PDK4 and ANGPTL4 expression levels reached upon GW501516 treatment were associated with donors' insulin sensitivity neither (P > 0·2, both). However, GW501516-mediated fold increments in PDK4 and ANGPTL4 expression, reflecting PPARδ responsiveness, were positively associated with donors' insulin sensitivity derived from OGTT (P = 0·0182 and P = 0·0231, respectively) and hyperinsulinemic-euglycemic clamp (P = 0·0046 and P = 0·0258, respectively). Using a highly selective pharmacological tool, we show here that the individual responsiveness of human muscle cell PPARδ, rather than the absolute PPARD expression level, represents a major determinant of insulin sensitivity. © 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation.
Itzhak, Yossef; Anderson, Karen L; Ali, Syed F
2004-10-01
It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.
Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad
2018-04-18
Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (<3.0 eV), high absorption coefficient, and tunable internal ferroelectric (FE) polarization. A high-speed switchable photodiode based on multiferroic Bi 2 FeCrO 6 (BFCO)/SrRuO 3 (SRO)-layered heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.
Tokura, Yuki; Nakada, Gentoku; Moriyama, Yukari; Oaki, Yuya; Imai, Hiroaki; Shiratori, Seimei
2017-11-21
Methylmercaptan (MM) is a marker of periodontal disease; however, the required sensitivity for MM is parts per billion, which has been challenging to realize with a simple sensor. Here, we report the capability to detect MM at concentrations as low as 20 ppb using layered manganese oxide nanosheets with a quartz crystal microbalance sensor. The sensing capabilities of the manganese oxide nanosheets are promoted by adsorbed water present on and between the nanosheets. The strong adsorption of MM to the sensor, which is necessary for the high sensitivity, leads to significant hysteresis in the response on cycling due to irreversible adsorption. However, the sensor can be readily reset by heating to 80 °C, which leads to highly reproducible response to MM vapor at low concentrations. A key aspect of this sensor design is the high selectivity toward MM in comparison to other compounds such as ethanol, ammonia, acetaldehyde, acetic acid, toluene, and pyridine. This layered nanosheets design for high-sensitivity sensors, demonstrated here for dilute MM, holds significant promise for addressing needs to identify sulfur compounds associated for environmental protection and medical diagnostics.
NASA Astrophysics Data System (ADS)
Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura
2018-03-01
We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.
Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles
NASA Astrophysics Data System (ADS)
Ren, Shoutian; Fan, Guanghua; Qu, Shiliang; Wang, Qiang
2011-10-01
For sensitive detection of H2, ZnO nanowires networks decorated with photo-decomposed Pd nanoparticles were fabricated between femtosecond laser-writing interdigitated electrodes by chemical vapor deposition method. When H2 concentration is increased from 20 to 4000 ppm at room temperature, sensitivity of the sample is increased from 3.7% to 1017.9%. The high sensitivity can be explained by considering the reaction between the adsorbed O2- and the disassociated H atoms facilitated by Pd nanoparticles. This mechanism is further supported by the H2 response results under UV light illumination, which can reduce the amount of O2- on the ZnO surface, leading to depressed sensitivity. The sensor also shows high selectivity, long-term stability, and ultra-low power consumption of nanowatt level, due to the novel fabrication process.
Probing dynamics of micro-magnets with multi-mode superconducting resonator
NASA Astrophysics Data System (ADS)
Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Shchetinin, I. V.; Dzhumaev, P. S.; Averkin, A. S.; Kozlov, S. N.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.
2018-05-01
In this work, we propose and explore a sensitive technique for investigation of ferromagnetic resonance and corresponding magnetic properties of individual micro-scaled and/or weak ferromagnetic samples. The technique is based on coupling the investigated sample to a high-Q transmission line superconducting resonator, where the response of the sample is studied at eigen frequencies of the resonator. The high quality factor of the resonator enables sensitive detection of weak absorption losses at multiple frequencies of the ferromagnetic resonance. Studying the microwave response of individual micro-scaled permalloy rectangles, we have confirmed the superiority of fluxometric demagnetizing factor over the commonly accepted magnetometric one and have depicted the demagnetization of the sample, as well as magnetostatic standing wave resonance.
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
Walzer, Andreas; Schausberger, Peter
2013-05-01
Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.
Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W
2018-06-01
Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.
Effects of gasoline engine emissions on preexisting allergic airway responses in mice.
Day, Kimberly C; Reed, Matthew D; McDonald, Jacob D; Seilkop, Steven K; Barrett, Edward G
2008-10-01
Gasoline-powered vehicle emissions contribute significantly to ambient air pollution. We hypothesized that exposure to gasoline engine emissions (GEE) may exacerbate preexisting allergic airway responses. Male BALB/c mice were sensitized by injection with ovalbumin (OVA) and then received a 10-min aerosolized OVA challenge. Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day to air (control, C) or GEE containing particulate matter (PM) at low (L), medium (M), or high (H) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after GEE exposure mice received another 10-min aerosol OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air or GEE exposure. Measurements of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed approximately 24 h after the last exposure. In both protocols, M, H, and HF GEE exposure significantly decreased BAL neutrophils from nonsensitized mice but had no significant effect on BAL cells from OVA-sensitized mice. In the pre-OVA protocol, GEE exposure increased OVA-specific IgG(1) but had no effect on BAL interleukin (IL)-2, IL-4, IL-13, or interferon (IFN)-gamma in OVA-sensitized mice. Nonsensitized GEE-exposed mice had increased OVA-specific IgG(2a), IgE, and IL-2, but decreased total IgE. In the post-OVA protocol, GEE exposure reduced BAL IL-4, IL-5, and IFN-gamma in nonsensitized mice but had no effect on sensitized mice. These results suggest acute exposure to the gas-vapor phase of GEE suppressed inflammatory cells and cytokines from nonsensitized mice but did not substantially exacerbate allergic responses.
Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
Wang, Rong; Jin, Chengmeng; Hu, Xun
2017-06-20
One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
Highly sensitive heavy metal ion detection using AlQ3 microwire functionalized QCM
NASA Astrophysics Data System (ADS)
Can, Nursel; Aǧar, Meltem; Altındal, Ahmet
2016-03-01
Tris(8-hydroxyquinoline) aluminum (Alq3) microwires was successfully synthesized for the fabrication of Alq3 microwires-coated QCM sensors to detect the heavy metal ions in aqueous solution. AT-cut quartz crystal microbalance (QCM) of 10 MHz fundamental resonance frequency having gold electrodes were used as transducers. Typical measuring cycle consisted of repeated flow of target measurands through the flow cell and subsequent washing to return the baseline. The QCM results indicated that the Alq3 microwires exhibit excellent sensitivity, stability and short response-recovery time, which are much attractive for the development of portable and highly sensitive heavy metal ion sensors in water samples.
ERIC Educational Resources Information Center
Gudino, Omar G.; Nadeem, Erum; Kataoka, Sheryl H.; Lau, Anna S.
2012-01-01
Urban Latino youth are exposed to high rates of violence, which increases risk for diverse forms of psychopathology. The current study aims to increase specificity in predicting responses by testing the hypothesis that youths' reinforcement sensitivity--behavioral inhibition (BIS) and behavioral approach (BAS)--is associated with specific clinical…
USDA-ARS?s Scientific Manuscript database
Youth type 2 diabetes mellitus (T2DM) occurs decades earlier than adult T2DM and is characterized by high therapeutic failure rates and decreased response to insulin sensitizers suggesting a more severe disease process than in adults. To explain these observations, we hypothesized that insulin resis...
Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402
Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.
Factors modifying the response of large animals to low-intensity radiation exposure
NASA Technical Reports Server (NTRS)
Page, N. P.; Still, E. T.
1972-01-01
In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.
NASA Astrophysics Data System (ADS)
Romain, Xavier; Baida, Fadi; Boyer, Philippe
2016-07-01
We study a polarizer-analyzer mounting for the terahertz regime with perfectly conducting metallic polarizers made of a periodic subwavelength pattern. With a renewed Jones formalism, we analytically investigate the influence of the multiple reflections, which occur between the polarizer and the analyzer, on the transmission response. We demonstrate that this interaction leads to a modified transmission response: the extended Malus law. In addition, we show that the transmission response can be controlled by the distance between the polarizer and the analyzer. For particular setups, the mounting exhibits extremely sensitive transmission responses. This interesting feature can be employed for high-precision sensing and characterization applications. We specifically propose a general design for measuring the electro-optical response of materials in the terahertz domain allowing detection of refractive index variations as small as 10-5.
Highly sensitive Europium doped SrSO4 OSL nanophosphor for radiation dosimetry applications
NASA Astrophysics Data System (ADS)
Patle, Anita; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.
2015-10-01
Highly sensitive Europium doped SrSO4 optically stimulated luminescent (OSL) phosphor was developed by synthesizing a nano phosphor which is treated at 1000 °C. Excellent OSL properties are observed in the developed phosphor and the sensitivity is found to be 1.26 times to that of the commercial Al2O3:C (Landauer Inc.) phosphor based on area integration method. The sample showed a single TL glow peak around 230 °C which is found to reduce by 47% after the OSL readout. Sublinear dose response with the saturation around 100 mGy is observed in this sample which suggests that it is extremely sensitive and hence will be suitable in detecting very low dose levels. Minimum measurable dose on the used set up is estimated to be 1.42 μGy. Practically no fading is observed for first ten days and the phosphor has excellent reusability. High sensitivity, low fading, excellent reusability will make this phosphor suitable for radiation dosimetry applications using OSL.
Highly stretchable miniature strain sensor for large dynamic strain measurement
Song, Bo; Yao, Shurong; Nie, Xu; ...
2016-01-01
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism.
Vandell, Alexander G; Walker, Joseph; Brown, Karen S; Zhang, George; Lin, Min; Grosso, Michael A; Mercuri, Michele F
2017-11-01
The aim of this study was to investigate whether genetic variants can identify patients with venous thromboembolism (VTE) at an increased risk of bleeding with warfarin. Hokusai-venous thromboembolism (Hokusai VTE), a randomised, multinational, double-blind, non-inferiority trial, evaluated the safety and efficacy of edoxaban versus warfarin in patients with VTE initially treated with heparin. In this subanalysis of Hokusai VTE, patients genotyped for variants in CYP2C9 and VKORC1 genes were divided into three warfarin sensitivity types (normal, sensitive and highly sensitive) based on their genotypes. An exploratory analysis was also conducted comparing normal responders to pooled sensitive responders (ie, sensitive and highly sensitive responders). The analysis included 47.7% (3956/8292) of the patients in Hokusai VTE. Among 1978 patients randomised to warfarin, 63.0% (1247) were normal responders, 34.1% (675) were sensitive responders and 2.8% (56) were highly sensitive responders. Compared with normal responders, sensitive and highly sensitive responders had heparin therapy discontinued earlier (p<0.001), had a decreased final weekly warfarin dose (p<0.001), spent more time overanticoagulated (p<0.001) and had an increased bleeding risk with warfarin (sensitive responders HR 1.38 [95% CI 1.11 to 1.71], p=0.0035; highly sensitive responders 1.79 [1.09 to 2.99]; p=0.0252). In this study, CYP2C9 and VKORC1 genotypes identified patients with VTE at increased bleeding risk with warfarin. NCT00986154. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Yan, Guofeng; Zhang, Liang; He, Sailing
2016-04-01
In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.
Mazza, Carlos A.; Izaguirre, Miriam M.; Curiale, Javier; Ballaré, Carlos L.
2010-01-01
Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia. PMID:19846453
Rosenbaum, Paul R
2016-03-01
A common practice with ordered doses of treatment and ordered responses, perhaps recorded in a contingency table with ordered rows and columns, is to cut or remove a cross from the table, leaving the outer corners--that is, the high-versus-low dose, high-versus-low response corners--and from these corners to compute a risk or odds ratio. This little remarked but common practice seems to be motivated by the oldest and most familiar method of sensitivity analysis in observational studies, proposed by Cornfield et al. (1959), which says that to explain a population risk ratio purely as bias from an unobserved binary covariate, the prevalence ratio of the covariate must exceed the risk ratio. Quite often, the largest risk ratio, hence the one least sensitive to bias by this standard, is derived from the corners of the ordered table with the central cross removed. Obviously, the corners use only a portion of the data, so a focus on the corners has consequences for the standard error as well as for bias, but sampling variability was not a consideration in this early and familiar form of sensitivity analysis, where point estimates replaced population parameters. Here, this cross-cut analysis is examined with the aid of design sensitivity and the power of a sensitivity analysis. © 2015, The International Biometric Society.
Nakonieczna, Joanna; Grinholc, Mariusz
2012-12-01
It is known that Staphylococcus aureus is susceptible to photodynamic inactivation in general, but the significant variation among particular strains in the response to the treatment exists. However, factors that determine the observed phenomenon remain unclear. This study was aimed to explore the PDI effect of two sensitizers (protoporphyrin diarginate and toluidine blue O) against clinical as well as reference strains of S. aureus. Obtained results indicate that the same isolate could be characterized as highly resistant or highly sensitive to PDI according to a sensitizer used. Moreover, the same sensitizing agent could be successfully used for total eradication of some isolates and could be non-effective in the case of other strains. Additionally, changing the photosensitizer, we are able to reverse the PDI "resistant" phenotype into "sensitive" one. Thus, one could conclude that photoinactivation involving several sensitizing agents and several isolates of the same bacterial species should be undertaken to make antimicrobial photodynamic inactivation reliable. Copyright © 2012 Elsevier B.V. All rights reserved.
Agrawal, Abhay V; Kumar, Rahul; Venkatesan, Swaminathan; Zakhidov, Alex; Yang, Guang; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh
2018-05-25
Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS 2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS 2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO 2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS 2 flakes (mixed MoS 2 ). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO 2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO 2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO 2 concentration. The sensor performance is also investigated under thermal energy, and a better sensor performance with reduced sensitivity and high selectivity toward NO 2 was observed. A detailed gas sensing mechanism based on the density functional theory (DFT) calculations for favorable NO 2 adsorption sites on in-plane and edge-enriched MoS 2 flakes is proposed. This study revealed the role of favorable adsorption sites in MoS 2 flakes for the enhanced interaction of target gases and developed a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature.
Meslec, Nicoleta; Aggarwal, Ishani; Curseu, Petru L
2016-01-01
A group's collective intelligence reflects its capacity to perform well across a variety of cognitive tasks and it transcends the individual intelligence of its members. Previous research shows that group members' social sensitivity is a potential antecedent of collective intelligence, yet it is still unclear whether individual or group-level indices are responsible for the positive association between social sensitivity and collective intelligence. In a comprehensive manner, we test the extent to which both compositional (lowest and highest individual score) and compilational aspects (emergent group level) of social sensitivity are associated with collective intelligence. This study has implications for research that explores groups as information processors, and for group design as it indicates how a group should be composed with respect to social sensitivity if the group is to reach high levels of collective intelligence. Our empirical results indicate that collectively intelligent groups are those in which the least socially sensitive group member has a rather high score on social sensitivity. Differently stated, (socially sensitive) group members cannot compensate for the lack of social sensitivity of the other group members.
Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong
2017-10-11
The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
Caio, Giacomo; Volta, Umberto; Tovoli, Francesco; De Giorgio, Roberto
2014-02-13
Non-celiac gluten sensitivity is a syndrome characterized by gastrointestinal and extra-intestinal symptoms occurring in a few hours/days after gluten and/or other wheat protein ingestion and rapidly improving after exclusion of potential dietary triggers. There are no established laboratory markers for non-celiac gluten sensitivity, although a high prevalence of first generation anti-gliadin antibodies of IgG class has been reported in this condition. This study was designed to characterize the effect of the gluten-free diet on anti-gliadin antibodies of IgG class in patients with non-celiac gluten sensitivity. Anti-gliadin antibodies of both IgG and IgA classes were assayed by ELISA in 44 non-celiac gluten sensitivity and 40 celiac disease patients after 6 months of gluten-free diet. The majority of non-celiac gluten sensitivity patients (93.2%) showed the disappearance of anti-gliadin antibodies of IgG class after 6 months of gluten-free diet; in contrast, 16/40 (40%) of celiac patients displayed the persistence of these antibodies after gluten withdrawal. In non-celiac gluten sensitivity patients anti-gliadin antibodies IgG persistence after gluten withdrawal was significantly correlated with the low compliance to gluten-free diet and a mild clinical response. Anti-gliadin antibodies of the IgG class disappear in patients with non-celiac gluten sensitivity reflecting a strict compliance to the gluten-free diet and a good clinical response to gluten withdrawal.
A brief history of trp: commentary and personal perspective.
Hardie, Roger C
2011-05-01
The history of the discovery of the transient receptor potential (TRP) cation channel superfamily began in 1969 with Cosens and Manning's isolation of the Drosophila transient receptor potential mutant, in which the photoreceptor response decays during continuous illumination. Early studies from Minke found that the elementary light response was unaffected in trp mutants, and he attributed the defect to an intermediate stage of phototransduction. Montell and Rubin cloned the trp gene in 1989: they recognised it as a transmembrane protein, but also concluded that it did not encode the light-sensitive channels. In 1991, Minke and Selinger proposed that TRP represented a Ca2+ transporter required for refilling intracellular InsP3-sensitive Ca2+ stores, in turn required for activation of the light-sensitive channels. Also in 1991, after developing a photoreceptor patch clamp preparation, I showed that the light-sensitive channels themselves were highly permeable to Ca2+, questioning the need for such a dedicated Ca2+ transporter. In 1992, in collaboration with Minke, I resolved this paradox by showing there were two classes of light-sensitive channels, one highly Ca2+ permeable and eliminated in trp mutants. This represented the first and compelling evidence that TRP represented a light-sensitive channel and was supported by the cloning of the second light-sensitive channel, TRPL, by Kelly's lab. Three years later, in 1995, the labs of Montell and Birnbaumer independently cloned TRPC1, the first of 29 vertebrate TRP isoforms distributed amongst seven subfamilies.
Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei
2013-01-01
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366
Influence of Lake Stratification Onset on Summer Surface Water Temperature
NASA Astrophysics Data System (ADS)
Woolway, R. I.; Merchant, C. J.
2016-12-01
Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.
NASA Astrophysics Data System (ADS)
Puszka, Agathe; Planat-Chrétien, Anne; Berger, Michel; Hervé, Lionel; Dinten, Jean-Marc
2014-02-01
We demonstrate the loss of depth sensitivity induced by the instrument response function on reflectance time-resolved diffuse optical tomography through the comparison of 3 detection systems: on one hand a photomultiplier tube (PMT) and a hybrid PMT coupled with a time-correlated single-photon counting card and on the other hand a high rate intensified camera. We experimentally evaluate the depth sensitivity achieved for each detection module with an absorbing inclusion embedded in a turbid medium. The different interfiber distances of 5, 10 and 15 mm are considered. Finally, we determine a maximal depth reached for each detection system by using 3D tomographic reconstructions based on the Mellin-Laplace transform.
Petersen, Helena; Kecklund, Göran; D'Onofrio, Paolo; Nilsson, Jens; Åkerstedt, Torbjörn
2013-02-01
The purpose of this study was to investigate if and how sleep physiology is affected by naturally occurring high work stress and identify individual differences in the response of sleep to stress. Probable upcoming stress levels were estimated through weekly web questionnaire ratings. Based on the modified FIRST-scale (Ford insomnia response to stress) participants were grouped into high (n = 9) or low (n = 19) sensitivity to stress related sleep disturbances (Drake et al., 2004). Sleep was recorded in 28 teachers with polysomnography, sleep diaries and actigraphs during one high stress and one low stress condition in the participants home. EEG showed a decrease in sleep efficiency during the high stress condition. Significant interactions between group and condition were seen for REM sleep, arousals and stage transitions. The sensitive group had an increase in arousals and stage transitions during the high stress condition and a decrease in REM, whereas the opposite was seen in the resilient group. Diary ratings during the high stress condition showed higher bedtime stress and lower ratings on the awakening index (insufficient sleep and difficulties awakening). Ratings also showed lower cognitive function and preoccupation with work thoughts in the evening. KSS ratings of sleepiness increased during stress for the sensitive group. Saliva samples of cortisol showed no effect of stress. It was concluded that moderate daily stress is associated with a moderate negative effect on sleep sleep efficiency and fragmentation. A slightly stronger effect was seen in the sensitive group. © 2012 European Sleep Research Society.
Guinea pigs inbred for studies of respiratory anaphylaxis.
Lundberg, L
1979-02-01
A selective inbreeding of approximately 24 generations of albino guinea pigs by brother x sister mating has resulted in two strains, registered IMM/S and IMM/R, with high and low responsiveness, respectively, to ovalbumin-induced respiratory anaphylaxis. The two guinea pig strains differed in their ability to be immunized by the inhalation of antigen and produce antibodies, as well as to develop respiratory anaphylaxis. A correlation between the strength of the anaphylactic reactions and the amount of hemagglutinating antibodies produced was observed. When immunization was carried out by an intradermal injection of ovalbumin (OA), even in small doses incorporated in FCA, guinea pigs from both strains produced hemagglutinating antibodies in nearly the same amount. These antibodies do not influence the ability of the animals to react with a high respectively low anaphylactic response on subsequent challenge by inhalation of OA, neither in the actively sensitized animals nor in passively sensitized animals. However, with repeated inhalations of OA, desensitization occurred in the intradermally immunized high-responders, while the passively immunized high-responders could be provoked several times without any signs of desensitization. No systematical differences between the two strains with regard to sensitivity to inhalations of histamine were demonstrated. The low responders were found to be less resistant to infections than high-responders.
Sato, Keiichiro; Yamawaki, Yoshifumi
2014-08-01
In responses to looming objects, the praying mantis shows a defense behavior, which consists of retracting forelegs under the prothorax. The role of a looming-sensitive neuron in triggering this behavior was investigated by simultaneously recording the activity and behavioral responses of the neuron. The mantis initiated the defense behavior earlier in response to larger and slower looming stimuli. The time remaining to collision at defense initiation was linearly correlated with the ratio of the half-size of an approaching object to its speed (l/|v|), suggesting that the defense behavior occurred a fixed delay after the stimuli had reached a fixed angular threshold. Furthermore, the results suggested that high-frequency spikes of the looming-sensitive neuron were involved in triggering the defense behavior: the distribution of maximum firing rate for trials with defense was shifted to larger rates compared with trials without defense; the firing rate of the neuron exceeded 150 Hz ∼100 ms before the defense initiation regardless of stimulus parameters; when a looming stimulus ceased approach prematurely, high-frequency spikes were removed, and the occurrence of defense was reduced. Copyright © 2014 the American Physiological Society.
Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.
Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime
2017-12-05
Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.
Tournier, Benjamin B; Dimiziani, Andrea; Tsartsalis, Stergios; Millet, Philippe; Ginovart, Nathalie
2018-04-01
The Roman high (RHA)- and low (RLA)-avoidance rat sublines have been identified as an addiction-prone and addiction-resistant phenotype based on their high vs. low locomotor responsiveness to novelty and high vs. low ability to develop neurochemical and behavioral sensitization to psychostimulants, respectively. Most studies though have focused on psychostimulants and little is known about the neuroadaptive response of these two lines to cannabinoids. This study investigated the effects of chronic exposure to Δ 9 -tetrahydrocannabinol (THC) on dopamine D 2/3 receptor (D 2/3 R) availabilities and functional sensitivity in the mesostriatal system of RHA and RLA rats. At baseline, RLA rats exhibited higher densities of mesostriatal D2/3R but lower levels of striatal CB 1 R mRNA and displayed a lower locomotor response to acute THC as compared to RHAs. Following chronic THC treatment, striking changes in D 2/3 R signaling were observed in RLA but not in RHA rats, namely an increased availability and functional supersensitivity of striatal D 2/3 R, as evidenced by a supersensitive psychomotor response to the D 2/3 R agonist quinpirole. Moreover, in RLA rats, the lower was the locomotor response to acute THC, the higher was the psychomotor response to quinpirole following chronic THC. These results showing a greater neuroadaptive response of RLA vs. RHA rats to chronic THC thus contrast with previous studies showing a resistance to neuroadaptive response of RLAs to psychostimulants, This suggests that, contrasting with their low proneness to psychostimulant drug-seeking, RLAs may exhibit a heightened proneness to cannabinoid drug-seeking as compared to RHA rats. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-07-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-12-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.
2016-01-01
Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835
Internal coordination between hydraulics and stomatal control in leaves.
Brodribb, Tim J; Jordan, Gregory J
2008-11-01
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.
Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.
Tani, Hidenori; Torimura, Masaki
2015-05-01
Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Structural Glycomic Analyses at High Sensitivity: A Decade of Progress
NASA Astrophysics Data System (ADS)
Alley, William R.; Novotny, Milos V.
2013-06-01
The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.
Structural Glycomic Analyses at High Sensitivity: A Decade of Progress
Alley, William R.; Novotny, Milos V.
2014-01-01
The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems. PMID:23560930
NASA Technical Reports Server (NTRS)
George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.
2009-01-01
Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further investigate the sensitivity differences for low and low high doses, we performed chronic low dose-rate irradiation, and have begun studies with ATM and Nibrin inhibitors and siRNA knockout of these proteins. Results support the conclusion that for the endpoint of simple chromosomal aberrations (translocation or dicentrics), the increased radiation sensitivity of AT cells found at high doses (>1 Gy) does not carry over to low doses or doserates, while NBS cells show increased sensitivity for both high and low dose exposures.
Ponnath, Abhilash
2010-01-01
Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated. PMID:20559640
Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana
2018-04-19
During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Yao, Shurong; Nie, Xu
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
Sensitizing and Eliciting Capacity of Egg White Proteins in BALB/c Mice As Affected by Processing.
Pablos-Tanarro, Alba; Lozano-Ojalvo, Daniel; Martínez-Blanco, Mónica; López-Fandiño, Rosina; Molina, Elena
2017-06-07
This study assesses to what extent technological processes that lead to different degrees of denaturation of egg white proteins affect their allergenicity. We focused on heat (80 °C, 10 min) and high-pressure (400 MPa and 37 °C, 10 min) treatments and used a BALB/c mouse model of food allergy. Oral sensitization to egg white using cholera toxin as adjuvant induced the production of IgE and IgG1 isotypes and led to severe clinical signs following challenge with the allergen. Extensive protein denaturation caused by heat treatment increased its ability to induce Th1 responses and reduced both its sensitizing and eliciting capacity. Heated egg white stimulated the production of IgE over IgG1 antibodies directed, at least in part, toward new epitopes exposed as a result of heat treatment. Conversely, partial denaturation caused by high-pressure treatment increased the ability of egg white to stimulate Th2 responses and its allergenic potential.
Shape control of Co3O4 micro-structures for high-performance gas sensor
NASA Astrophysics Data System (ADS)
Zhou, Qu; Zeng, Wen
2018-01-01
Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.
An electrophysiological investigation of the receptor apparatus of the duck's bill
Gregory, J. E.
1973-01-01
1. The properties of receptors in the duck's bill have been studied by recording from units isolated by dissecting fine filaments from the maxillary and ophthalmic nerves. 2. The units studied were divisible into three groups, phasic mechanoreceptors responsive to vibration, thermoreceptive units, and high threshold mechanoreceptors. 3. Vibration-sensitive mechanoreceptors (113 units) had small receptive fields, showed a rapidly adapting discharge to mechanical stimulation of the bill, were sensitive to vibratory but not to thermal stimuli and showed no background discharge. 4. Temperature receptors (twenty-one units) were insensitive to mechanical stimulation and showed a temperature-dependent background discharge. Sudden cooling produced a transient increase in discharge frequency. 5. High threshold mechanosensitive units (eight units) gave a slowly adapting discharge to strong mechanical stimulation and were insensitive to vibratory and thermal stimulation. 6. It is concluded that the low-threshold, vibration-sensitive responses come from Herbst corpuscles. No specific function can yet be assigned to the Grandry corpuscles. PMID:4689962
Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE
2014-01-01
Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932
Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Liao, Qiang; Zhu, Xun; Luo, Binbin; Li, Yishan
2016-11-15
In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Xianxia; Xiao, Kunyi; Cheng, Liwei; Chen, Hui; Liu, Baohong; Zhang, Song; Kong, Jilie
2014-06-03
Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme
Han, Xue-Sheng; Dahlquist, Frederick W.; Parkinson, John S.
2017-01-01
A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON–OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands. PMID:28827352
Uncertainty Analysis of Decomposing Polyurethane Foam
NASA Technical Reports Server (NTRS)
Hobbs, Michael L.; Romero, Vicente J.
2000-01-01
Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved predictions in support of our nation's nuclear safety mission. Yet, sensitivity/uncertainty analyses are not commonly performed on complex combustion models because the calculations are time consuming, CPU intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, a variety of sensitivity/uncertainty analyses were used to determine the uncertainty associated with thermal decomposition of polyurethane foam exposed to high radiative flux boundary conditions. The polyurethane used in this study is a rigid closed-cell foam used as an encapsulant. Related polyurethane binders such as Estane are used in many energetic materials of interest to the JANNAF community. The complex, finite element foam decomposition model used in this study has 25 input parameters that include chemistry, polymer structure, and thermophysical properties. The response variable was selected as the steady-state decomposition front velocity calculated as the derivative of the decomposition front location versus time. An analytical mean value sensitivity/uncertainty (MV) analysis was used to determine the standard deviation by taking numerical derivatives of the response variable with respect to each of the 25 input parameters. Since the response variable is also a derivative, the standard deviation was essentially determined from a second derivative that was extremely sensitive to numerical noise. To minimize the numerical noise, 50-micrometer element dimensions and approximately 1-msec time steps were required to obtain stable uncertainty results. As an alternative method to determine the uncertainty and sensitivity in the decomposition front velocity, surrogate response surfaces were generated for use with a constrained Latin Hypercube Sampling (LHS) technique. Two surrogate response surfaces were investigated: 1) a linear surrogate response surface (LIN) and 2) a quadratic response surface (QUAD). The LHS techniques do not require derivatives of the response variable and are subsequently relatively insensitive to numerical noise. To compare the LIN and QUAD methods to the MV method, a direct LHS analysis (DLHS) was performed using the full grid and timestep resolved finite element model. The surrogate response models (LIN and QUAD) are shown to give acceptable values of the mean and standard deviation when compared to the fully converged DLHS model.
Wenstrup, J J
1999-11-01
The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.
Maternal sensitivity in rural Andean and Amazonian Peru.
Fourment, Katherine; Nóblega, Magaly; Conde, Gabriela; Del Prado, Juan Nuñez; Mesman, Judi
2018-03-27
In the current study, we observed 12 mothers with a 4-21-month-old infant during their daily activities for around 3 h per dyad, focusing on daily caregiving practices such as feeding, bathing, and soothing in the rural multiple-caregiver cultural contexts of the Andean and Amazonian parts of Peru. Overall, sensitivity levels were high, with an average of 7.33 (out of 9), and 7 out of the 12 mothers scoring in the high range (scores 7-9), and the remaining 5 in the good-enough range (scores 5-6). In-depth descriptions of mother-infant interactions show that these high sensitivity levels reflect mothers' ability to multitask, combining household and agricultural chores with high sensitive responsiveness to their infants' signals. The presence of multiple caregivers seemed to allow mothers to make sure the infants were well attended when they were temporarily unavailable but combined with quick renewed availability if the infant seemed to need maternal proximity.
Li, Haitao; Boling, C Sam; Mason, Andrew J
2016-08-01
Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.
Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.
Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto
2009-03-15
A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.
Freely suspended nanocomposite membranes as highly sensitive sensors
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri; Tsukruk, Vladimir V.
2004-10-01
Highly sensitive sensor arrays are in high demand for prospective applications in remote sensing and imaging. Measuring microscopic deflections of compliant micromembranes and cantilevers is developing into one of the most versatile approaches for thermal, acoustic and chemical sensing. Here, we report on an innovative fabrication of compliant nanocomposite membranes with nanoscale thickness showing extraordinary sensitivity and dynamic range, which makes them candidates for a new generation of membrane-based sensor arrays. These nanomembranes with a thickness of 25-70 nm, which can be freely suspended over large (hundred micrometres) openings are fabricated with molecular precision by time-efficient, spin-assisted layer-by-layer assembly. They are designed as multilayered molecular composites made of a combination of polymeric monolayers and a metal nanoparticle intralayer. We demonstrate that these nanocomposite membranes possess unparalleled sensitivity and a unique autorecovering ability. The membrane nanostructure that is responsible for these outstanding properties combines multilayered polymer/nanoparticle organization, high polymer-chain orientation, and a pre-stretched state.
Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L
2014-04-16
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.
Oliveira, Lucas Rangel; Dias, Flávia Regina Cruz; Santos, Breno Garone; Silva, Jade Leal Loureiro; Carey, Robert J; Carrera, Marinete Pinheiro
2016-09-15
Haloperidol can induce catalepsy and this drug effect can be conditioned as well as sensitized to contextual cues. We used a paired/unpaired Pavlovian conditioning protocol to establish haloperidol catalepsy conditioned and sensitized responses. Groups of rats were given 10 daily catalepsy tests following administration of vehicle (n=24) or haloperidol (1.0mg/kg) either paired (n=18) or unpaired (n=18) to testing. Subsequently, testing for conditioning was conducted and conditioning and sensitization of catalepsy were observed selectively in the paired group. Immediately following a second test for catalepsy conditioning, the groups were subdivided into 4 vehicle groups, 3 unpaired haloperidol groups and 3 paired haloperidol groups and were given one of three post-trial treatments (vehicle, 0.05mg/kg or 2.0mg/kg apomorphine). One day later the conditioned catalepsy test 3 was carried out and on the next day, a haloperidol challenge test was performed. The post-trial apomorphine treatments had major effects on the paired groups upon both conditioning and the haloperidol challenge test. The low dose apomorphine post-trial treatment enhanced both the conditioned and the haloperidol sensitized catalepsy responses. The high dose apomorphine post-trial treatment eliminated conditioned catalepsy and eliminated the initial acute catalepsy response to haloperidol that was induced in the vehicle control groups. These results demonstrate the sensitivity of conditioned drug cues to modification by increases/decreases in activity of the dopamine system in the immediate post-trial interval after a conditioning trial. This demonstration that post-trial dopaminergic drug treatments can modify conditioned drug behavior has broad implications for conditioned drug effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Guicheng; Wang, Miaomiao; Zeng, Bin; Zhang, Jing; Jiang, Chenliang; Hu, Qirui; Geng, Guangtao; Tang, Canming
2015-05-01
Pollen tube growth in styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the adverse effect of high temperatures during square development. High-temperature stress during flowering influences the square development of upland cotton (Gossypium hirsutum L.) and cotton yield. Although it is well known that square development is sensitive to high temperature, high-temperature sensitive stages of square development and the effects of high temperature on pollen tube growth in the styles are unknown. The effect of high temperature on anther development corresponding to pollen vigor is unknown during anther development. The objectives of this study were to identify the stages of square development that are sensitive to high temperatures (37/30 and 40/34 °C), to determine whether the abnormal development of squares influenced by high temperature is responsible for the variation in the in vitro germination percent of pollen grains at anthesis, to identify the effect of high temperature on pollen germination in the styles, and to determine pollen thermotolerance heterosis. Our results show that the stages from the sporogenous cell to tetrad stage (square length <6.0 mm) were the most sensitive to high temperature, and the corresponding pollen viability at anthesis was consistent with the changes in the square development stage. Pollen tube growth in the styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the effect of high temperature during square development. The thermotolerance of hybrid F1 pollen showed heterosis, and pollen viability could be used as a criterion for screening for high-temperature tolerance cultivars. These results can be used in breeding to develop new cotton cultivars that can withstand high-temperature conditions, particularly in a future warmer climate.
Cubic mesoporous Ag@CN: a high performance humidity sensor.
Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan
2016-12-01
The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Ding, Junwen; Xu, Wei; Liu, Yuan; Wang, Renxin; Han, Janjun; Bai, Bing; Xue, Chenyang; Liu, Jun; Zhang, Wendong
2018-05-01
A micro hydrophone based on piezoresistive effect, "MEMS vector hydrophone" was developed for acoustic detection application. To improve the sensitivity of MEMS vector hydrophone at low frequency, we reported a stress centralized MEMS vector hydrophone (SCVH) mainly used in 20-500 Hz. Stress concentration area was actualized in sensitive unit of hydrophone by silicon micromachining technology. Then piezoresistors were placed in stress concentration area for better mechanical response, thereby obtaining higher sensitivity. Static analysis was done to compare the mechanical response of three different sensitive microstructure: SCVH, conventional micro-silicon four-beam vector hydrophone (CFVH) and Lollipop-shaped vector hydrophone (LVH) respectively. And fluid-structure interaction (FSI) was used to analyze the natural frequency of SCVH for ensuring the measurable bandwidth. Eventually, the calibration experiment in standing wave field was done to test the property of SCVH and verify the accuracy of simulation. The results show that the sensitivity of SCVH has nearly increased by 17.2 dB in contrast to CFVH and 7.6 dB in contrast to LVH during 20-500 Hz.
Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi
2015-11-01
A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2013-01-01
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2014-06-05
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.
Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun
2017-02-07
A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.
Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.
Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres
2016-07-01
Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.
Photovoltage field-effect transistors
NASA Astrophysics Data System (ADS)
Adinolfi, Valerio; Sargent, Edward H.
2017-02-01
The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
Nano-biosensor for highly sensitive detection of HER2 positive breast cancer.
Salahandish, Razieh; Ghaffarinejad, Ali; Naghib, Seyed Morteza; Majidzadeh-A, Keivan; Zargartalebi, Hossein; Sanati-Nezhad, Amir
2018-05-25
Nanocomposite materials have provided a wide range of conductivity, sensitivity, selectivity and linear response for electrochemical biosensors. However, the detection of rare cells at single cell level requires a new class of nanocomposite-coated electrodes with exceptional sensitivity and specificity. We recently developed a construct of gold nanoparticle-grafted functionalized graphene and nanostructured polyaniline (PANI) for high-performance biosensing within a very wide linear response and selective performance. Further, replacing the expensive gold nanoparticles with low-cost silver nanoparticles as well as optimizing the nanocomposite synthesis and functionalization protocols on the electrode surface in this work enabled us to develop ultrasensitive nanocomposites for label-free detection of breast cancer cells. The sensor presented a fast response time of 30 min within a dynamic range of 10 - 5 × 10 6 cells mL -1 and with a detection limit of 2 cells mL -1 for the detection of SK-BR3 breast cancer cell. The nano-biosensor, for the first time, demonstrated a high efficiency of > 90% for the label-free detection of cancer cells in whole blood sample without any need for sample preparation and cell staining. The results demonstrated that the optimized nanocomposite developed in this work is a promising nanomaterial for electrochemical biosensing and with the potential applications in electro-catalysis and super-capacitances. Copyright © 2018 Elsevier B.V. All rights reserved.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Wang, Guangji; Yan, Bei; Zhang, Sujiang; Huang, Qing; Ni, Lingna; Zha, Weibin; Liu, Linsheng; Cao, Bei; Hong, Ming; Wu, Hanxin; Lu, Hua; Shi, Jian; Li, Mengjie; Li, Jianyong
2010-01-01
The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML). However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML) showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML) and patients resistant to imatinib (RCML) had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA). In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention. PMID:20949032
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Liang; Dong, Dongdong; Qiao, Keke
Wearable and sensitive photodetectors (PDs) have been demonstrated based on a blend film of PbS quantum dots (QDs) and QDs modified multiwalled carbon nanotubes (MWCNTs). Owing to the synergetic effect from high light sensitivity of PbS QDs and excellent conductive and mechanical properties of MWCNTs, the blend PDs show high sensitivity and flexibility performance: device responsivity and detectivity reach 583 mA/W and 3.25 × 10{sup 12 }Jones, respectively, and could stand large number (at least 10 000 cycles) and wide angle (up to 80°) bending. Furthermore, the wearable and sensitive PDs have been applied to measure the heart rate in both red and near infraredmore » (NIR) ranges. The presented PDs are expected to work as sensor candidates in integrated electronic skin.« less
Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae
USDA-ARS?s Scientific Manuscript database
The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...
Pisani, Samantha L.; Neese, Steven L.; Doerge, Daniel R.; Helferich, William G.; Schantz, Susan L.; Korol, Donna L.
2012-01-01
Endogenous estrogens have bidirectional effects on learning and memory, enhancing or impairing cognition depending on many variables, including the task and the memory systems that are engaged. Moderate increases in estradiol enhance hippocampus-sensitive place learning, yet impair response learning that taps dorsal striatum function. This memory modulation likely occurs via activation of estrogen receptors, resulting in altered neural function. Supplements containing estrogenic compounds from plants are widely consumed despite limited information about their effects on brain function, including learning and memory. Phytoestrogens can enter the brain and signal through estrogen receptors to affect cognition. Enhancements in spatial memory and impairments in executive function have been found following treatment with soy phytoestrogens, but no tests of actions on striatum-sensitive tasks have been made to date. The present study compared the effects of acute exposure to the isoflavone genistein with the effects of estradiol on performance in place and response learning tasks. Long-Evans rats were ovariectomized, treated with 17β-estradiol benzoate, genistein-containing sucrose pellets, or vehicle (oil or plain sucrose pellets) for two days prior to behavioral training. Compared to vehicle controls, estradiol treatment enhanced place learning at a low (4.5 μg/kg) but not high dose (45 μg/kg), indicating an inverted pattern of spatial memory facilitation. Treatment with 4.4 mg of genistein over two days also significantly enhanced place learning over vehicle controls. For the response task, treatment with estradiol impaired learning at both the low and high doses; likewise, genistein treatment impaired response learning compared to rats receiving vehicle. Overall, genistein was found to mimic estradiol-induced shifts in place and response learning, facilitating hippocampus-sensitive learning and slowing striatum-sensitive learning. These results suggest signaling through estrogen receptor β and membrane-associated estrogen receptors in learning enhancements and impairments given the preferential binding of genistein to the ERβ subtype and affinity for GPER. PMID:22944517
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun
2017-07-19
Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.
A sensitive slope: estimating landscape patterns of forest resilience in a changing climate
Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric
2010-01-01
Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...
Functional organization of the face-sensitive areas in human occipital-temporal cortex.
Shao, Hanyu; Weng, Xuchu; He, Sheng
2017-08-15
Human occipital-temporal cortex features several areas sensitive to faces, presumably forming the biological substrate for face perception. To date, there are piecemeal insights regarding the functional organization of these regions. They have come, however, from studies that are far from homogeneous with regard to the regions involved, the experimental design, and the data analysis approach. In order to provide an overall view of the functional organization of the face-sensitive areas, it is necessary to conduct a comprehensive study that taps into the pivotal functional properties of all the face-sensitive areas, within the context of the same experimental design, and uses multiple data analysis approaches. In this study, we identified the most robustly activated face-sensitive areas in bilateral occipital-temporal cortices (i.e., AFP, aFFA, pFFA, OFA, pcSTS, pSTS) and systemically compared their regionally averaged activation and multivoxel activation patterns to 96 images from 16 object categories, including faces and non-faces. This condition-rich and single-image analysis approach critically samples the functional properties of a brain region, allowing us to test how two basic functional properties, namely face-category selectivity and face-exemplar sensitivity are distributed among these regions. Moreover, by examining the correlational structure of neural responses to the 96 images, we characterize their interactions in the greater face-processing network. We found that (1) r-pFFA showed the highest face-category selectivity, followed by l-pFFA, bilateral aFFA and OFA, and then bilateral pcSTS. In contrast, bilateral AFP and pSTS showed low face-category selectivity; (2) l-aFFA, l-pcSTS and bilateral AFP showed evidence of face-exemplar sensitivity; (3) r-OFA showed high overall response similarities with bilateral LOC and r-pFFA, suggesting it might be a transitional stage between general and face-selective information processing; (4) r-aFFA showed high face-selective response similarity with r-pFFA and r-OFA, indicating it was specifically involved in processing face information. Results also reveal two properties of these face sensitive regions across the two hemispheres: (1) the averaged left intra-hemispheric response similarity for the images was lower than the averaged right intra-hemispheric and the inter-hemispheric response similarity, implying convergence of face processing towards the right hemisphere, and (2) the response similarities between homologous regions in the two hemispheres decreased as information processing proceeded from the early, more posterior, processing stage (OFA), indicating an increasing degree of hemispheric specialization and right hemisphere bias for face information processing. This study contributes to an emerging picture of how faces are processed within the occipital and temporal cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.
2018-06-01
The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.
Zhao, Changzhi; Wan, Li; Jiang, Li; Wang, Qin; Jiao, Kui
2008-12-01
A cholesterol biosensor based on direct electron transfer of a hemoglobin-encapsulated chitosan-modified glassy carbon electrode has been developed for highly sensitive and selective analysis of serum samples. Modified by films containing hemoglobin and cholesterol oxidase, the electrode was prepared by encapsulation of enzyme in chitosan matrix. The hydrogen peroxide produced by the catalytic oxidation of cholesterol by cholesterol oxidase was reduced electrocatalytically by immobilized hemoglobin and used to obtain a sensitive amperometric response to cholesterol. The linear response of cholesterol concentrations ranged from 1.00 x 10(-5) to 6.00 x 10(-4) mol/L, with a correlation coefficient of 0.9969 and estimated detection limit of cholesterol of 9.5 micromol/L at a signal/noise ratio of 3. The cholesterol biosensor can efficiently exclude interference by the commonly coexisting ascorbic acid, uric acid, dopamine, and epinephrine. The sensitivity to the change in the concentration of cholesterol as the slope of the calibration curve was 0.596 A/M. The relative standard deviation was under 4.0% (n=5) for the determination of real samples. The biosensor is satisfactory in the determination of human serum samples.
Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.
2015-01-01
Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560
Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P
2015-03-24
Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.
NASA Astrophysics Data System (ADS)
Ciavatti, A.; Cramer, T.; Carroli, M.; Basiricò, L.; Fuhrer, R.; De Leeuw, D. M.; Fraboni, B.
2017-10-01
Semiconducting polymer based X-ray detectors doped with high-Z nanoparticles hold the promise to combine mechanical flexibility and large-area processing with a high X-ray stopping power and sensitivity. Currently, a lack of understanding of how nanoparticle doping impacts the detector dynamics impedes the optimization of such detectors. Here, we study direct X-ray radiation detectors based on the semiconducting polymer poly(9,9-dioctyfluorene) blended with Bismuth(III)oxide (Bi2O3) nanoparticles (NPs). Pure polymer diodes show a high mobility of 1.3 × 10-5 cm2/V s, a low leakage current of 200 nA/cm2 at -80 V, and a high rectifying factor up to 3 × 105 that allow us to compare the X-ray response of a polymer detector in charge-injection conditions (forward bias) and in charge-collection conditions (reverse bias), together with the impact of NP-loading in the two operation regimes. When operated in reverse bias, the detectors reach the state of the art sensitivity of 24 μC/Gy cm2, providing a fast photoresponse. In forward operation, a slower detection dynamics but improved sensitivity (up to 450 ± 150 nC/Gy) due to conductive gain is observed. High-Z NP doping increases the X-ray absorption, but higher NP loadings lead to a strong reduction of charge-carrier injection and transport due to a strong impact on the semiconductor morphology. Finally, the time response of optimized detectors showed a cut-off frequency up to 200 Hz. Taking advantage of such a fast dynamic response, we demonstrate an X-ray based velocity tracking system.
Mpindi, John-Patrick; Swapnil, Potdar; Dmitrii, Bychkov; Jani, Saarela; Saeed, Khalid; Wennerberg, Krister; Aittokallio, Tero; Östling, Päivi; Kallioniemi, Olli
2015-12-01
Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active drugs. In particular, drug sensitivity testing on primary cells is often based on dose-response experiments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation. Here, we compared common plate normalization and noise-reduction methods, including the B-score and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160 (42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration. We identified 20% (77/384) as the critical hit-rate after which the normalizations started to perform poorly. Results from real drug testing experiments supported this estimation. In particular, the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality, which could be attributed to its dependency on the median polish algorithm. We conclude that a combination of a scattered layout of controls per plate and normalization using a polynomial least squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experiments with high hit-rates and is optimal for generating accurate dose-response curves. john.mpindi@helsinki.fi. Supplementary information: R code and Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor
NASA Astrophysics Data System (ADS)
Du, Z.; Yang, X.; Li, J.; Yang, Y.; Qiao, C.
2017-05-01
This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.
Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor.
Du, Z; Yang, X; Li, J; Yang, Y; Qiao, C
2017-05-01
This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.
Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.
Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming
2014-10-17
The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The RclR Protein Is a Reactive Chlorine-specific Transcription Factor in Escherichia coli *
Parker, Benjamin W.; Schwessinger, Emily A.; Jakob, Ursula; Gray, Michael J.
2013-01-01
Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance. PMID:24078635
The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli.
Parker, Benjamin W; Schwessinger, Emily A; Jakob, Ursula; Gray, Michael J
2013-11-08
Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.
He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun
2018-04-18
Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.
Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice
Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick
2011-01-01
OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512
FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila
Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.
2011-01-01
Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes. PMID:22102829
Link, K H; Aigner, K R; Kuehn, W; Schwemmle, K; Kern, D H
1986-09-01
Clinical response of liver metastases treated by high-dose intraarterial chemotherapy (HDIAC) delivered via the hepatic artery was predicted by a modification of the human tumor colony-forming assay (HTCFA) originally described by Hamburger and Salmon [Science (Wash. DC), 197:461-463, 1977. In a first set of experiments, the immediate clinical response to HDIAC was determined in 12 patients with colorectal liver metastases. Biopsies were taken immediately before and after HDIAC, and cells were plated in the HTCFA. Three patients received intraoperative 4-epidoxorubicin and another 9 received mitomycin C by 15-min intraarterial infusions. Sensitivity in the HTCFA was defined as 50% inhibition of colony formation in tumors exposed to the chemotherapeutic agent, compared to the untreated controls. Clinical response was accurately predicted by the HTCFA in 11 of 12 cases. Eight patients had a regression of disease following HDIAC treatment with mitomycin C, as evidenced by either greater than 50% reduction in carcinoembryonic antigen serum level (7 patients) or regression of tumor by computed tomography scan (1 patient). Three patients had no evidence of clinical response to epidoxorubicin, and their tumors were resistant to epidoxorubicin in the HTCFA. One tumor was sensitive to mitomycin C in the HTCFA, but serum carcinoembryonic antigen in the patient continued to increase following HDIAC. The HTCFA was also performed on untreated biopsies following incubation in vitro with the drug used for HDIAC. Results correlated with clinical response in all 12 cases. In a second set of experiments, the HTCFA was used to predict the long-term clinical response to HDIAC of 30 patients with liver metastases. One patient had breast cancer metastases, one patient had carcinoid liver metastases, 4 had liver metastases of malignant melanoma, and 24 patients had colorectal liver metastases. All 21 of the patients whose tumors were sensitive in vitro had clinical response, while 6 of 9 patients predicted by the HTCFA to be resistant had no clinical response. Our results demonstrate a high correlation between the HTCFA and clinical response.
Hatzis, Christos; Pusztai, Lajos; Valero, Vicente; Booser, Daniel J.; Esserman, Laura; Lluch, Ana; Vidaurre, Tatiana; Holmes, Frankie; Souchon, Eduardo; Martin, Miguel; Cotrina, José; Gomez, Henry; Hubbard, Rebekah; Chacón, J. Ignacio; Ferrer-Lozano, Jaime; Dyer, Richard; Buxton, Meredith; Gong, Yun; Wu, Yun; Ibrahim, Nuhad; Andreopoulou, Eleni; Ueno, Naoto T.; Hunt, Kelly; Yang, Wei; Nazario, Arlene; DeMichele, Angela; O’Shaughnessy, Joyce; Hortobagyi, Gabriel N.; Symmans, W. Fraser
2017-01-01
CONTEXT Accurate prediction of who will (or won’t) have high probability of survival benefit from standard treatments is fundamental for individualized cancer treatment strategies. OBJECTIVE To develop a predictor of response and survival from chemotherapy for newly diagnosed invasive breast cancer. DESIGN Development of different predictive signatures for resistance and response to neoadjuvant chemotherapy (stratified according to estrogen receptor (ER) status) from gene expression microarrays of newly diagnosed breast cancer (310 patients). Then prediction of breast cancer treatment-sensitivity using the combination of signatures for: 1) sensitivity to endocrine therapy, 2) chemo-resistance, and 3) chemo-sensitivity. Independent validation (198 patients) and comparison with other reported genomic predictors of chemotherapy response. SETTING Prospective multicenter study to develop and test genomic predictors for neoadjuvant chemotherapy. PATIENTS Newly diagnosed HER2-negative breast cancer treated with chemotherapy containing sequential taxane and anthracycline-based regimens then endocrine therapy (if hormone receptor-positive). MAIN OUTCOME MEASURES Distant relapse-free survival (DRFS) if predicted treatment-sensitive and absolute risk reduction (ARR, difference in DRFS of the two predicted groups) at median follow-up (3 years), and their 95% confidence intervals (CI). RESULTS Patients in the independent validation cohort (99% clinical Stage II–III) who were predicted to be treatment-sensitive (28% of total) had DRFS of 92% (CI 85–100) and survival benefit compared to others (absolute risk reduction (ARR) 18%; CI 6–28). Predictions were accurate if breast cancer was ER-positive (30% predicted sensitive, DRFS 97%, CI 91–100; ARR 11%, CI 0.1–21) or ER-negative (26% predicted sensitive, DRFS 83%, CI 68–100; ARR 26%, CI 4–28), and were significant in multivariate analysis after adjusting for relevant clinical-pathologic characteristics. Other genomic predictors showed paradoxically worse survival if predicted to be responsive to chemotherapy. CONCLUSION A genomic predictor combining ER status, predicted chemo-resistance, predicted chemo-sensitivity, and predicted endocrine sensitivity accurately identified patients with survival benefit following taxane-anthracycline chemotherapy. PMID:21558518
Klippel, Annelie; Reininghaus, Ulrich; Viechtbauer, Wolfgang; Decoster, Jeroen; Delespaul, Philippe; Derom, Cathérine; de Hert, Marc; Jacobs, Nele; Menne-Lothmann, Claudia; Rutten, Bart; Thiery, Evert; van Os, Jim; van Winkel, Ruud; Myin-Germeys, Inez; Wichers, Marieke
2018-02-23
Adolescents and young adults are highly focused on peer evaluation, but little is known about sources of their differential sensitivity. We examined to what extent sensitivity to peer evaluation is influenced by interacting environmental and genetic factors. A sample of 354 healthy adolescent twin pairs (n = 708) took part in a structured, laboratory task in which they were exposed to peer evaluation. The proportion of the variance in sensitivity to peer evaluation due to genetic and environmental factors was estimated, as was the association with specific a priori environmental risk factors. Differences in sensitivity to peer evaluation between adolescents were explained mainly by non-shared environmental influences. The results on shared environmental influences were not conclusive. No impact of latent genetic factors or gene-environment interactions was found. Adolescents with lower self-rated positions on the social ladder or who reported to have been bullied more severely showed significantly stronger responses to peer evaluation. Not genes, but subjective social status and past experience of being bullied seem to impact sensitivity to peer evaluation. This suggests that altered response to peer evaluation is the outcome of cumulative sensitization to social interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun
2015-06-15
A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Wessels, Uwe; Schick, Eginhard; Ritter, Mirko; Kowalewsky, Frank; Heinrich, Julia; Stubenrauch, Kay
2017-06-01
Bridging immunoassays for detection of antidrug antibodies (ADAs) are typically susceptible to high concentrations of residual drug. Sensitive drug-tolerant assays are, therefore, needed. An immune complex assay to detect ADAs against therapeutic antibodies bearing Pro329Gly mutation was established. The assay uses antibodies specific for the Pro329Gly mutation for capture and human soluble Fcγ receptor for detection. When compared with a bridging assay, the new assay showed similar precision, high sensitivity to IgG1 ADA and dramatically improved drug tolerance. However, it was not able to detect early (IgM-based) immune responses. Applied in combination with a bridging assay, the novel assay serves as orthogonal assay for immunogenicity assessment and allows further characterization of ADA responses.
A quartz-based micro catalytic methane sensor by high resolution screen printing
NASA Astrophysics Data System (ADS)
Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong
2016-02-01
A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.
High Throughput Transcriptomics @ USEPA (Toxicology ...
The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.
Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection
NASA Astrophysics Data System (ADS)
Okita, Y.; Katagiri, T.; Matsuura, Y.
2011-03-01
The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.
NASA Astrophysics Data System (ADS)
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
Place your bets: psychophysiological correlates of decision-making under risk.
Studer, Bettina; Clark, Luke
2011-06-01
Emotions and their psychophysiological correlates are thought to play an important role in decision-making under risk. We used a novel gambling task to measure psychophysiological responses during selection of explicitly presented risky options and feedback processing. Active-choice trials, in which the participant had to select the size of bet, were compared to fixed-bet, no-choice trials. We further tested how the chances of winning and bet size affected choice behavior and psychophysiological arousal. Individual differences in impulsive and risk-taking traits were assessed. The behavioral results showed sensitivity to the choice requirement and to the chances of winning: Participants were faster to make a response on no-choice trials and when the chances of winning were high. In active-choice trials, electrodermal activity (EDA) increased with bet size during both selection and processing of losses. Cardiac responses were sensitive to choice uncertainty: Stronger selection-related heart rate (HR) decelerations were observed in trials with lower chances of winning, particularly on active-choice trials. Finally, betting behavior and psychophysiological responsiveness were moderately correlated with self-reported impulsivity-related traits. In conclusion, we demonstrate that psychophysiological arousal covaries with risk-sensitive decision-making outside of a learning context. Our results further highlight the differential sensitivities of EDA and HR to psychological features of the decision scenario.
Sensitivity of bandpass filters using recirculating delay-line structures
NASA Astrophysics Data System (ADS)
Heyde, Eric C.
1996-12-01
Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.
Milsom, William K
2012-12-01
The location (gills, oro-branchial cavity or elsewhere) and orientation (external (water) or internal (blood) sensing) of the receptors involved in reflex changes in each of the different components of the cardiorespiratory response (breathing frequency, breath amplitude, heart rate, systemic vascular resistance) to hypoxia and hypercarbia are highly variable between species of water and air breathing fish. Although not universal, the receptors involved in eliciting changes in heart rate and breathing frequency in response to hypoxia and hypercarbia tend to be restricted exclusively to the gills while those producing increases in breath amplitude are more wide spread, frequently also being found at extrabranchial sites. The distribution of the chemoreceptors sensitive to CO(2) in the gills involved in producing ventilatory responses tend to be more restricted than that of the O(2)-sensitive chemoreceptors and the specific location of the receptors involved in the various components of the cardiorespiratory response can vary from those of the O(2)-sensitive chemoreceptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Sinha, Rajita; Fox, Helen C; Hong, Kwang-Ik Adam; Hansen, Julie; Tuit, Keri; Kreek, Mary Jeanne
2011-09-01
Alcoholism is a chronic, relapsing illness in which stress and alcohol cues contribute significantly to relapse risk. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased anxiety, and high alcohol craving have been documented during early alcohol recovery, but their influence on relapse risk has not been well studied. To investigate these responses in treatment-engaged, 1-month-abstinent, recovering alcohol-dependent patients relative to matched controls (study 1) and to assess whether HPA axis function, anxiety, and craving responses are predictive of subsequent alcohol relapse and treatment outcome (study 2). Experimental exposure to stress, alcohol cues, and neutral, relaxing context to provoke alcohol craving, anxiety, and HPA axis responses (corticotropin and cortisol levels and cortisol to corticotropin ratio) and a prospective 90-day follow-up outcome design to assess alcohol relapse and aftercare treatment outcomes. Inpatient treatment in a community mental health center and hospital-based research unit. Treatment-engaged alcohol-dependent individuals and healthy controls. Time to alcohol relapse and to heavy drinking relapse. Significant HPA axis dysregulation, marked by higher basal corticotropin level and lack of stress- and cue-induced corticotropin and cortisol responses, higher anxiety, and greater stress- and cue-induced alcohol craving, was seen in the alcohol-dependent patients vs the control group. Stress- and cue-induced anxiety and stress-induced alcohol craving were associated with fewer days in aftercare alcohol treatment. High provoked alcohol craving to both stress and to cues and greater neutral, relaxed-state cortisol to corticotropin ratio (adrenal sensitivity) were each predictive of shorter time to alcohol relapse. These results identify a significant effect of high adrenal sensitivity, anxiety, and increased stress- and cue-induced alcohol craving on subsequent alcohol relapse and treatment outcomes. Findings suggest that new treatments that decrease adrenal sensitivity, stress- and cue-induced alcohol craving, and anxiety could be beneficial in improving alcohol relapse outcomes.
NASA Astrophysics Data System (ADS)
Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.
2016-12-01
In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.
NASA Technical Reports Server (NTRS)
Mazer, Susan J.; Travers, Steven E.; Cook, Benjamin I.; Davies, T. Jonathan; Bolmgren, Kjell; Kraft, Nathan J. B.; Salamin, Nicolas; Inouye, David W.
2013-01-01
Premise of the study: Numerous long-term studies in seasonal habitats have tracked interannual variation in fi rst fl owering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affi nity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied; Methods: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before fl owering and whether families differ signifi cantly in the direction of their phenological shifts; Key results: Patterns observed among species within and across sites are mirrored among family means across sites; earlyfl owering families advance their FFD in response to warming more than late-fl owering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here; Conclusions: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-fl owering families (and the absence of earlyfl owering families not sensitive to temperature) may refl ect plasticity in fl owering time, which may be adaptive in environments where early-season conditions are highly variable among years.
Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun
2018-06-01
Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.
The orthographic sensitivity to written Chinese in the occipital-temporal cortex.
Liu, Haicheng; Jiang, Yi; Zhang, Bo; Ma, Lifei; He, Sheng; Weng, Xuchu
2013-06-01
Previous studies have identified an area in the left lateral fusiform cortex that is highly responsive to written words and has been named the visual word form area (VWFA). However, there is disagreement on the specific functional role of this area in word recognition. Chinese characters, which are dramatically different from Roman alphabets in the visual form and in the form to phonological mapping, provide a unique opportunity to investigate the properties of the VWFA. Specifically, to clarify the orthographic sensitivity in the mid-fusiform cortex, we compared fMRI response amplitudes (Exp. 1) as well as the spatial patterns of response across multiple voxels (Exp. 2) between Chinese characters and stimuli derived from Chinese characters with different orthographic properties. The fMRI response amplitude results suggest the existence of orthographic sensitivity in the VWFA. The results from multi-voxel pattern analysis indicate that spatial distribution of the responses across voxels in the occipitotemporal cortex contained discriminative information between the different types of character-related stimuli. These results together suggest that the orthographic rules are likely represented in a distributed neural network with the VWFA containing the most specific information regarding a stimulus' orthographic regularity.
Substrate-dependent temperature sensitivity of soil organic matter decomposition
NASA Astrophysics Data System (ADS)
Myachina, Olga; Blagodatskaya, Evgenia
2015-04-01
Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.
NASA Astrophysics Data System (ADS)
Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David
2016-01-01
Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.
Yang, Yang; Zhang, Guanxin; Luo, Hewei; Yao, Jingjing; Liu, Zitong; Zhang, Deqing
2016-02-17
The sensing and detection of ammonia have received increasing attention in recent years because of the growing emphasis on environmental and health issues. In this paper, we report a thin-film field-effect transistor (FET)-based sensor for ammonia and other amines with remarkable high sensitivity and satisfactory selectivity by employing the DPP-bithiophene conjugated polymer pDPPBu-BT in which tert-butoxycarboxyl groups are incorporated in the side chains. This polymer thin film shows p-type semiconducting property. On the basis of TGA and FT-IR analysis, tert-butoxycarboxyl groups can be transformed into the -COOH ones by eliminating gaseous isobutylene after thermal annealing of pDPPBu-BT thin film at 240 °C. The FET with the thermally treated thin film of pDPPBu-BT displays remarkably sensitive and selective response toward ammonia and volatile amines. This can be attributed to the fact that the elimination of gaseous isobutylene accompanies the formation of nanopores with the thin film, which will facilitate the diffusion and interaction of ammonia and other amines with the semiconducting layer, leading to high sensitivity and fast response for this FET sensor. This FET sensor can detect ammonia down to 10 ppb and the interferences from other volatile analytes except amines can be negligible.
Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D
2014-08-01
People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.
Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I
2010-11-01
Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.
te Beest, Dennis; de Bruin, Erwin; Imholz, Sandra; Wallinga, Jacco; Teunis, Peter; Koopmans, Marion; van Boven, Michiel
2014-01-01
Reliable discrimination of recent influenza A infection from previous exposure using hemagglutination inhibition (HI) or virus neutralization tests is currently not feasible. This is due to low sensitivity of the tests and the interference of antibody responses generated by previous infections. Here we investigate the diagnostic characteristics of a newly developed antibody (HA1) protein microarray using data from cross-sectional serological studies carried out before and after the pandemic of 2009. The data are analysed by mixture models, providing a probabilistic classification of sera (susceptible, prior-exposed, recently infected). Estimated sensitivity and specificity for identifying A/2009 infections are low using HI (66% and 51%), and high when using A/2009 microarray data alone or together with A/1918 microarray data (96% and 95%). As a heuristic, a high A/2009 to A/1918 antibody ratio (>1.05) is indicative of recent infection, while a low ratio is indicative of a pre-existing response, even if the A/2009 titer is high. We conclude that highly sensitive and specific classification of individual sera is possible using the protein microarray, thereby enabling precise estimation of age-specific infection attack rates in the population even if sample sizes are small. PMID:25405997
Glucose-responsive hydrogel electrode for biocompatible glucose transistor
NASA Astrophysics Data System (ADS)
Kajisa, Taira; Sakata, Toshiya
2017-12-01
In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.
Fernández, Macarena Soledad; Báez, Bárbara; Bordón, Ana; Espinosa, Laura; Martínez, Eliana; Pautassi, Ricardo Marcos
2017-10-03
Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F 0 ) and filial generation 1 (F 1 ), F 2 , and F 3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F 2 and F 3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F 2 and F 3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating effects, and enhanced innate anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.
Maternal sensitivity: a concept analysis.
Shin, Hyunjeong; Park, Young-Joo; Ryu, Hosihn; Seomun, Gyeong-Ae
2008-11-01
The aim of this paper is to report a concept analysis of maternal sensitivity. Maternal sensitivity is a broad concept encompassing a variety of interrelated affective and behavioural caregiving attributes. It is used interchangeably with the terms maternal responsiveness or maternal competency, with no consistency of use. There is a need to clarify the concept of maternal sensitivity for research and practice. A search was performed on the CINAHL and Ovid MEDLINE databases using 'maternal sensitivity', 'maternal responsiveness' and 'sensitive mothering' as key words. The searches yielded 54 records for the years 1981-2007. Rodgers' method of evolutionary concept analysis was used to analyse the material. Four critical attributes of maternal sensitivity were identified: (a) dynamic process involving maternal abilities; (b) reciprocal give-and-take with the infant; (c) contingency on the infant's behaviour and (d) quality of maternal behaviours. Maternal identity and infant's needs and cues are antecedents for these attributes. The consequences are infant's comfort, mother-infant attachment and infant development. In addition, three positive affecting factors (social support, maternal-foetal attachment and high self-esteem) and three negative affecting factors (maternal depression, maternal stress and maternal anxiety) were identified. A clear understanding of the concept of maternal sensitivity could be useful for developing ways to enhance maternal sensitivity and to maximize the developmental potential of infants. Knowledge of the attributes of maternal sensitivity identified in this concept analysis may be helpful for constructing measuring items or dimensions.
NASA Astrophysics Data System (ADS)
Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia
2017-03-01
Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.
Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia
2017-01-01
Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488
Renewable Energy Resources Portfolio Optimization in the Presence of Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behboodi, Sahand; Chassin, David P.; Crawford, Curran
In this paper we introduce a simple cost model of renewable integration and demand response that can be used to determine the optimal mix of generation and demand response resources. The model includes production cost, demand elasticity, uncertainty costs, capacity expansion costs, retirement and mothballing costs, and wind variability impacts to determine the hourly cost and revenue of electricity delivery. The model is tested on the 2024 planning case for British Columbia and we find that cost is minimized with about 31% renewable generation. We also find that demand responsive does not have a significant impact on cost at themore » hourly level. The results suggest that the optimal level of renewable resource is not sensitive to a carbon tax or demand elasticity, but it is highly sensitive to the renewable resource installation cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Søren Thor, E-mail: stl@nrcwe.dk; Wolkoff, Peder, E-mail: pwo@nrcwe.dk; Hammer, Maria, E-mail: mha@nrcwe.dk
We investigated the role of air humidity and allergic sensitization on the acute airway response to inhaled formaldehyde (FA) vapor. Mice were sensitized to the immunogen ovalbumin (OVA) by three intraperitoneal injections followed by two aerosol challenges, giving rise to allergic airway inflammation. Control mice were sham sensitized by saline injections and challenged by saline aerosols. Once sensitized, the mice were housed at high (85–89%) or low (< 10%) relative humidity, respectively for 48 h prior to a 60-min exposure to either 0.4, 1.8 or about 5 ppm FA. Before, during and after exposure, breathing parameters were monitored. These includedmore » the specific markers of nose and lung irritations as well as the expiratory flow rate, the latter being a marker of airflow limitation. The sensory irritation response in the upper airways was not affected by allergic inflammation or changes in humidity. At high relative humidity, the OVA-sensitized mice had a decreased expiratory airflow rate compared to the saline control mice after exposure to approximately 5 ppm FA. This is in accordance with the observations that asthmatics are more sensitive than non-asthmatics to higher concentrations of airway irritants including FA. In the dry environment, the opposite trend was seen; here, the saline control mice had a significantly decreased expiratory airflow rate compared to OVA-sensitized mice when exposed to 1.8 and 4 ppm FA. We speculate that increased mucus production in the OVA-sensitized mice has increased the “scrubber effect” in the nose, consequently protecting the conducting and lower airways. - Highlights: ► Role of air humidity and allergy on sensitivity to an airway irritant was studied. ► In the humid environment, allergy amplified the effects of formaldehyde. ► In the dry environment, allergy reduced the effect of formaldehyde. ► Neither allergy nor humidity changed the formaldehyde-induced nasal irritation.« less
An in vitro human skin test for assessing sensitization potential.
Ahmed, S S; Wang, X N; Fielding, M; Kerry, A; Dickinson, I; Munuswamy, R; Kimber, I; Dickinson, A M
2016-05-01
Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.
Zhang, Fan; Liu, Xiao-Ling; Rong, Nan; Huang, Xiao-Wen
2017-02-01
The present study aimed to investigate the clinical value of serum anti-mullerian hormone (AMH) and inhibin B (INHB) in predicting the ovarian response of patients with polycystic ovary syndrome (PCOS). A total of 120 PCOS patients were enrolled and divided into three groups in terms of the ovarian response: a low-response group (n=36), a normal-response group (n=44), and a high-response group (n=40). The serum AMH and INHB levels were measured by enzyme-linked immunosorbent assay (ELISA). The follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by chemiluminescence microparticle immunoassay. The correlation of the serum AMH and INHB levels with other indicators was analyzed. A receiver operating characteristic (ROC) curve was established to analyze the prediction of ovarian response by AMH and INHB. The results showed that there were significant differences in age, body mass index (BMI), FSH, total gonadotropin-releasing hormone (GnRH), LH, E2, and antral follicle counts (AFCs) between the groups (P<0.05). The serum AMH and INHB levels were increased significantly with the ovarian response of PCOS patients increasing (P<0.05). The serum AMH and INHB levels were negatively correlated with the age, BMI, FSH level, Gn, and E2 levels (P<0.05). They were positively correlated with the LH levels and AFCs (P<0.05). ROC curve analysis of serum AMH and INHB in prediction of a low ovarian response showed that the area under the ROC curve (AUC) value of the serum AMH level was 0.817, with a cut-off value of 1.29 ng/mL. The sensitivity and specificity were 71.2% and 79.6%, respectively. The AUC value of serum INHB was 0.674, with a cut-off value of 38.65 ng/mL, and the sensitivity and specificity were 50.7% and 74.5%, respectively. ROC curve analysis showed when the serum AMH and INHB levels were used to predict a high ovarian response, the AUC value of the serum AMH level was 0.742, with a cut-off value of 2.84 ng/mL, and the sensitivity and specificity were 72.7% and 65.9%, respectively; the AUC value of the serum INHB level was 0.551 with a cut-off of 45.76 ng/mL, and the sensitivity and specificity were 76.3% and 40.2%, respectively. It was suggested the serum AMH and INHB levels have high clinical value in predicting the ovarian response of PCOS patients.
Assessing the influence of multiple stressors on stream diatom metrics in the upper Midwest, USA
Munn, Mark D.; Waite, Ian R.; Konrad, Christopher P.
2018-01-01
Water resource managers face increasing challenges in identifying what physical and chemical stressors are responsible for the alteration of biological conditions in streams. The objective of this study was to assess the comparative influence of multiple stressors on benthic diatoms at 98 sites that spanned a range of stressors in an agriculturally dominated region in the upper Midwest, USA. The primary stressors of interest included: nutrients, herbicides and fungicides, sediment, and streamflow; although the influence of physical habitat was incorporated in the assessment. Boosted Regression Tree was used to examine both the sensitivity of various diatom metrics and the relative importance of the primary stressors. Percent Sensitive Taxa, percent Highly Motile Taxa, and percent High Phosphorus Taxa had the strongest response to stressors. Habitat and total phosphorous were the most common discriminators of diatom metrics, with herbicides as secondary factors. A Classification and Regression Tree (CART) model was used to examine conditional relations among stressors and indicated that fine-grain streams had a lower percentage of Sensitive Taxa than coarse-grain streams, with Sensitive Taxa decreasing further with increased water temperature (>30 °C) and triazine concentrations (>1500 ng/L). In contrast, streams dominated by coarse-grain substrate contained a higher percentage of Sensitive Taxa, with relative abundance increasing with lower water temperatures (<29 °C) and shallower water depth (<0.3 m). Quantile regression indicated that maximum water temperature appears to be a major limiting factor in Midwest streams; whereas both total phosphorus and percent fines showed a slight subsidy-stress response. While using benthic algae for assessing stream quality can be challenging, field-based studies can elucidate stressor effects and interactions when the response variables are appropriate, sufficient stressor resolution is achieved, and the number and type of sites represent a gradient of stressor conditions and at least a quasi-factorial design.
NASA Astrophysics Data System (ADS)
Joetzjer, E.; Delire, C.; Douville, H.; Ciais, P.; Decharme, B.; Fisher, R.; Christoffersen, B.; Calvet, J. C.; da Costa, A. C. L.; Ferreira, L. V.; Meir, P.
2014-08-01
While a majority of Global Climate Models project dryer and longer dry seasons over the Amazon under higher CO2 levels, large uncertainties surround the response of vegetation to persistent droughts in both present-day and future climates. We propose a detailed evaluation of the ability of the ISBACC Land Surface Model to capture drought effects on both water and carbon budgets, comparing fluxes and stocks at two recent ThroughFall Exclusion (TFE) experiments performed in the Amazon. We also explore the model sensitivity to different Water Stress Function (WSF) and to an idealized increase in CO2 concentration and/or temperature. In spite of a reasonable soil moisture simulation, ISBACC struggles to correctly simulate the vegetation response to TFE whose amplitude and timing is highly sensitive to the WSF. Under higher CO2 concentration, the increased Water Use Efficiency (WUE) mitigates the ISBACC's sensitivity to drought. While one of the proposed WSF formulation improves the response of most ISBACC fluxes, except respiration, a parameterization of drought-induced tree mortality is missing for an accurate estimate of the vegetation response. Also, a better mechanistic understanding of the forest responses to drought under a warmer climate and higher CO2 concentration is clearly needed.
Dickens, J C
1984-12-01
Electroantennogram (EAG) techniques were utilized to measure the antennal olfactory responsiveness of adult boll weevils,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to 38 odorants, including both insect and host plant (Gossypium hirsutum L.) volatiles. EAGs of both sexes were indicative of at least two receptor populations: one receptor population primarily responsive to pheromone components and related compounds, the other receptor population primarily responsive to plant odors. Similar responses to male aggregation pheromone components (i.e., compounds I, II, and III + IV) were obtained from both sexes, but females were slightly more sensitive to I. Both sexes were highly responsive to components of the "green leaf volatile complex," especially the six-carbon saturated and monounsaturated primary alcohols. Heptanal was the most active aldehyde tested. More acceptors responded to oxygenated monoterpenes than to monoterpene hydrocarbons. β-Bisabolol, the major volatile of cotton, was the most active sesquiterpene. In general, males, which are responsible for host selection and pheromone production, were more sensitive to plant odors than were females. In fact, males were as sensitive to β-bisabolol and heptanal as to aggregation pheromone components. Electrophysiological data are discussed with regard to the role of insect and host plant volatiles in host selection and aggregation behavior of the boll weevil.
How does the sensitivity of climate affect stratospheric solar radiation management?
NASA Astrophysics Data System (ADS)
Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.
2011-12-01
If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.
NASA Astrophysics Data System (ADS)
Yang, Jun; Ran, Qincui; Wei, Dapeng; Sun, Tai; Yu, Leyong; Song, Xuefen; Pu, Lichun; Shi, Haofei; Du, Chunlei
2017-03-01
We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.
NASA Astrophysics Data System (ADS)
Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling
2017-03-01
In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.
Chamaillé-Jammes, Simon; Malcuit, Hélène; Le Saout, Soizic; Martin, Jean-Louis
2014-04-01
Anti-predator behaviors often entail foraging costs, and thus prey response to predator cues should be adjusted to the level of risk (threat-sensitive foraging). Simultaneously dangerous predators (with high hunting success) should engender the evolution of innate predator recognition and appropriate anti-predator behaviors that are effective even upon the first encounter with the predator. The above leads to the prediction that prey might respond more strongly to cues of dangerous predators that are absent, than to cues of less dangerous predators that are actually present. In an applied context this would predict an immediate and stronger response of ungulates to the return of top predators such as wolves (Canis lupus) in many parts of Europe and North America than to current, less threatening, mesopredators. We investigated the existence of innate threat-sensitive foraging in black-tailed deer. We took advantage of a quasi-experimental situation where deer had not experienced wolf predation for ca. 100 years, and were only potentially exposed to black bears (Ursus americanus). We tested the response of deer to the urine of wolf (dangerous) and black bear (less dangerous). Our results support the hypothesis of innate threat-sensitive foraging with clear increased passive avoidance and olfactory investigation of cues from wolf, and surprisingly none to black bear. Prey which have previously evolved under high risk of predation by wolves may react strongly to the return of wolf cues in their environments thanks to innate responses retained during the period of predator absence, and this could be the source of far stronger non-consumptive effects of the predator guild than currently observed.
Gralewicz, Sławomir; Lutz, Piotr; Wiaderna, Dorota; Tomas, Tadeusz
2003-12-17
Our earlier experiment revealed that rats pretreated once with an anticholinesterase develop hyposensitivity to amphetamine (AMPH). One of the likely causes of this effect might be a transient hyperexcitation of the central muscarinic receptors. It has appeared, however, that rats pretreated with oxotremorine (OX), a muscarinic agonist, show an augmented behavioral response to AMPH weeks later. The present experiments were performed in order to obtain more information on the relationship between the OX-induced sensitization to AMPH and the OX dose and dosing regime (single or repeated), and to find out whether the environment associated with the acute effects of OX could affect the response to AMPH. In experiment 1, adult male rats were given a single i.p. injection of OX in home cages at a moderate (0.5 mg/kg) or high (1.0 mg/kg) dose. In experiment 2, the rats received eight 1.0 mg/kg doses of OX in the course of three days. After each injection, some animals returned to their home cages, and some were placed in the test cages for 30 min. In both experiments, the response to AMPH was assessed on day 21 after the treatment. The obtained results indicate that: (i) a single i.p. exposure to OX results in an increase of the rat's behavioral sensitivity to AMPH but the moderate dose is more effective in inducing this effect; (ii) repeated exposure to OX at high doses, in a regime enabling development of tolerance to the acute OX effects, does not alter the rat sensitivity to AMPH, and (iii) expression of the AMPH response is suppressed in environment which has been associated with acute effects of OX.
NASA Astrophysics Data System (ADS)
Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.
Centritto, Mauro; Brilli, Federico; Fodale, Roberta; Loreto, Francesco
2011-03-01
The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected.
Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun
2015-01-01
As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105
Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.
Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong
2018-06-12
Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Voliotis, M.; Liverpool, T. B.
2017-03-01
Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.
Lewandowska-Sabat, Anna M.; Fjellheim, Siri; Olsen, Jorunn E.; Rognli, Odd A.
2017-01-01
Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana. PMID:28659966
Validity of parent's self-reported responses to home safety questions.
Osborne, Jodie M; Shibl, Rania; Cameron, Cate M; Kendrick, Denise; Lyons, Ronan A; Spinks, Anneliese B; Sipe, Neil; McClure, Roderick J
2016-09-01
The aim of the study was to describe the validity of parent's self-reported responses to questions on home safety practices for children of 2-4 years. A cross-sectional validation study compared parent's self-administered responses to items in the Home Injury Prevention Survey with home observations undertaken by trained researchers. The relationship between the questionnaire and observation results was assessed using percentage agreement, sensitivity, specificity, positive predictive value, negative predictive value and intraclass correlation coefficients. Percentage agreements ranged from 44% to 100% with 40 of the total 45 items scoring higher than 70%. Sensitivities ranged from 0% to 100%, with 27 items scoring at least 70%. Specificities also ranged from 0% to 100%, with 33 items scoring at least 70%. As such, the study identified a series of self-administered home safety questions that have sensitivities, specificities and predictive values sufficiently high to allow the information to be useful in research and injury prevention practice.
Sundström, I; Nyberg, S; Bäckström, T
1997-12-01
Premenstrual syndrome (PMS) depends on gonadal hormones produced by the corpus luteum. Given the facilitory actions on GABAergic inhibitory neurotransmission exerted by certain progesterone metabolites, further studies on the GABAA receptor system in premenstrual syndrome are warranted. This study evaluated the benzodiazepine sensitivity in PMS patients and control subjects, using saccadic eye velocity (SEV) and visual analogue ratings of sedation as dependent measures. PMS patients displayed a significantly reduced SEV responsiveness to benzodiazepines compared to control subjects in the follicular phase, whereas there was no difference between groups in the luteal phase. In the luteal phase, the sedation response to benzodiazepines was significantly reduced in PMS patients compared to control subjects. There was also an influence of PMS symptom severity on these measures, as high-severity PMS patients displayed blunted SEV and sedation responses to benzodiazepines compared to low-severity patients. These results indicate that PMS patients have a reduced functional sensitivity at the GABAA/benzodiazepine receptor complex throughout the menstrual cycle.
Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model
Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E
2012-01-01
Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883
Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines
NASA Astrophysics Data System (ADS)
Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.
2015-01-01
The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-06
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.
Integrated multi-ISE arrays with improved sensitivity, accuracy and precision
NASA Astrophysics Data System (ADS)
Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan
2017-03-01
Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.
Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F
1995-01-01
1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and specific approach for the detection of pulse pressure changes. A battery of non-invasive tests appears useful for the characterization of cardiovascular drugs. Gender differences may not pose a relevant problem for the study of acute haemodynamic effects of cardiovascular drugs. Images Figure 1 PMID:7640140
NASA Technical Reports Server (NTRS)
Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri
2002-01-01
Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.
NASA Astrophysics Data System (ADS)
Faridi, Ehsan; Moradi, Maryam; Ansari, Narges; Ghasemi, Amir Hossein Baradaran; Afshar, Amir; Mohseni, Seyed Majid
2017-12-01
The demonstration of biosensors based on the surface plasmon effect holds promise for future high-sensitive electrodeless biodetection. The combination of magnetic effects with surface plasmon waves brings additional freedom to improve sensitivity and signal selectivity. Stacking biosensors with two-dimensional (2-D) materials, e.g., graphene (Gr) and MoS2, can influence plasmon waves and facilitate surface physiochemical properties as additional versatility aspects. We demonstrate magnetoplasmonic biosensors through the detuning of surface plasmon oscillation modes affected by magnetic effect via the presence of the NiFe (Py) layer and different light absorbers of Gr, MoS2, and Au ultrathin layers in three stacks of Au/Py/M(MoS2, Gr, Au) trilayers. We found minimum reflection, resonance angle shift, and transverse magneto-optical Kerr effect (TMOKE) responses of all sensors in the presence of the ss-DNA monolayer. Very few changes of ˜5×10-7 in the ss-DNA's refractive index result in valuable TMOKE response. We found that the presence of three-layer Gr and two-layer MoS2 on top of the Au/Py bilayer can dramatically increase the sensitivity by nine and four times, respectively, than the conventional Au/Co/Au trilayer. Our results show the highest reported DNA sensitivity based on the coupling of light with 2-D materials in magnetoplasmonic devices.
Early life IgE responses in children living in the tropics: a prospective analysis.
Zakzuk, Josefina; Acevedo, Nathalie; Cifuentes, Liliana; Bornacelly, Adriana; Sánchez, Jorge; Ahumada, Velky; Ring, Johannes; Ollert, Markus; Caraballo, Luis
2013-12-01
There are few birth cohort studies analyzing IgE sensitization in the tropics. We aimed to describe the evolution of total IgE and specific IgE responses to house-dust mite (HDM) allergens and Ascaris in a birth cohort (Risk Factors for Asthma and Allergy in the Tropics, FRAAT), analyzing their relationships with wheezing. Total and specific IgE were measured by ImmunoCap in mothers and children at four different time points (S1-S4) between 0 and 42 months. Parasite infection was evaluated by stool examination. Maternal total IgE (aOR: 2.43, 95% CI: 1.09-5.43; p = 0.03) and socio-demographic factors were associated with high cord blood (CB) total IgE. High CB total IgE was positively associated with higher Blomia tropicalis and Ascaris-specific IgE values during lifetime, but protected from recurrent wheezing (aOR: 0.26, 95% CI: 0.08-0.88, p = 0.03). Prevalence rates of IgE sensitization were high; at around 3 yr old, they were 33.3, 18.6, and 26.5% for B. tropicalis, Dermatophagoides pteronyssinus, and Ascaris, respectively. Indicators of unhygienic conditions were risk factors for HDM and Ascaris sensitization in children. A weak statistical association between B. tropicalis-specific IgE and ever wheezing was found (aOR: 1.47 95% CI: 1.00-2.28, p = 0.05). In a socioeconomically deprived community from the tropics, sensitization to HDM allergens was very frequent at early life, especially to B. tropicalis. In contrast to expected according to the hygiene hypothesis, unhygienic/poverty conditions were risk factors for allergen sensitization. High CB total IgE levels were a risk factor for allergen sensitization but protected from recurrent wheezing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mothers' pupillary responses to infant facial expressions.
Yrttiaho, Santeri; Niehaus, Dana; Thomas, Eileen; Leppänen, Jukka M
2017-02-06
Human parental care relies heavily on the ability to monitor and respond to a child's affective states. The current study examined pupil diameter as a potential physiological index of mothers' affective response to infant facial expressions. Pupillary time-series were measured from 86 mothers of young infants in response to an array of photographic infant faces falling into four emotive categories based on valence (positive vs. negative) and arousal (mild vs. strong). Pupil dilation was highly sensitive to the valence of facial expressions, being larger for negative vs. positive facial expressions. A separate control experiment with luminance-matched non-face stimuli indicated that the valence effect was specific to facial expressions and cannot be explained by luminance confounds. Pupil response was not sensitive to the arousal level of facial expressions. The results show the feasibility of using pupil diameter as a marker of mothers' affective responses to ecologically valid infant stimuli and point to a particularly prompt maternal response to infant distress cues.
Felix, Richard A; Portfors, Christine V
2007-06-01
Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaohui; Wang, Ying; Wang, Jun
2010-08-15
A portable fluorescence biosensor with rapid and ultrasensitive response for trace protein has been built up with quantum dots and lateral flow test strip. The superior signal brightness and high photostability of quantum dots are combined with the promising advantages of lateral flow test strip and resulted in high sensitivity, selectivity and speedy for protein detection. Nitrated ceruloplasmin, a significant biomarker for cardiovascular disease, lung cancer and stress response to smoking, was used as model protein to demonstrate the good performances of this proposed Qdot-based lateral flow test strip. Quantitative detection of nitrated ceruloplasmin was realized by recording the fluorescencemore » intensity of quantum dots captured on the test line. Under optimal conditions, this portable fluorescence biosensor displays rapid responses for nitrated ceruloplasmin in wide dynamic range with a detection limit of 0.1ng/mL (S/N=3). Furthermore, the biosensor was successfully utilized for spiked human plasma sample detection with the concentration as low as 1ng/mL. The results demonstrate that the quantum dot-based lateral flow test strip is capable for rapid, sensitive, and quantitative detection of nitrated ceruloplasmin and hold a great promise for point-of-care and in field analysis of other protein biomarkers.« less
Superior piezoelectric composite films: taking advantage of carbon nanomaterials.
Saber, Nasser; Araby, Sherif; Meng, Qingshi; Hsu, Hung-Yao; Yan, Cheng; Azari, Sara; Lee, Sang-Heon; Xu, Yanan; Ma, Jun; Yu, Sirong
2014-01-31
Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently found numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We here investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. The carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of the epoxy. GnPs have been proved to be far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by the GnPs' high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. The reduced acoustic impedance mismatch resulting from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.
High-sensitivity microfluidic calorimeters for biological and chemical applications.
Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L
2009-09-08
High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.
NASA Astrophysics Data System (ADS)
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-07-01
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-04-18
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
Binaural sensitivity changes between cortical on and off responses
Dahmen, Johannes C.; King, Andrew J.; Schnupp, Jan W. H.
2011-01-01
Neurons exhibiting on and off responses with different frequency tuning have previously been described in the primary auditory cortex (A1) of anesthetized and awake animals, but it is unknown whether other tuning properties, including sensitivity to binaural localization cues, also differ between on and off responses. We measured the sensitivity of A1 neurons in anesthetized ferrets to 1) interaural level differences (ILDs), using unmodulated broadband noise with varying ILDs and average binaural levels, and 2) interaural time delays (ITDs), using sinusoidally amplitude-modulated broadband noise with varying envelope ITDs. We also assessed fine-structure ITD sensitivity and frequency tuning, using pure-tone stimuli. Neurons most commonly responded to stimulus onset only, but purely off responses and on-off responses were also recorded. Of the units exhibiting significant binaural sensitivity nearly one-quarter showed binaural sensitivity in both on and off responses, but in almost all (∼97%) of these units the binaural tuning of the on responses differed significantly from that seen in the off responses. Moreover, averaged, normalized ILD and ITD tuning curves calculated from all units showing significant sensitivity to binaural cues indicated that on and off responses displayed different sensitivity patterns across the population. A principal component analysis of ITD response functions suggested a continuous cortical distribution of binaural sensitivity, rather than discrete response classes. Rather than reflecting a release from inhibition without any functional significance, we propose that binaural off responses may be important to cortical encoding of sound-source location. PMID:21562191
Nelson, D E; Takahashi, J S
1991-01-01
1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235
de Matos, Liana Wermelinger; Carey, Robert J; Carrera, Marinete Pinheiro
2010-09-01
Repeated treatments with psychostimulant drugs generate behavioral sensitization. In the present study we employed a paired/unpaired protocol to assess the effects of repeated apomorphine (2.0 mg/kg) treatments upon locomotion behavior. In the first experiment we assessed the effects of conditioning upon apomorphine sensitization. Neither the extinction of the conditioned response nor a counter-conditioning procedure in which we paired an inhibitory treatment (apomorphine 0.05 mg/kg) with the previously established conditioned stimulus modified the sensitization response. In the second experiment, we administered the paired/unpaired protocol in two phases. In the second phase, we reversed the paired/unpaired protocol. Following the first phase, the paired group alone exhibited conditioned locomotion in the vehicle test and a sensitization response. In the second phase, the initial unpaired group which received 5 paired apomorphine trials during the reversal phase did not develop a conditioned response but developed a potentiated sensitization response. This disassociation of the conditioned response from the sensitization response is attributed to an apomorphine anti-habituation effect that can generate a false positive Pavlovian conditioned response effect. The potentiated sensitization response induced by the treatment reversal protocol points to an important role for the sequential experience of the paired/unpaired protocol in behavioral sensitization. 2010 Elsevier Inc. All rights reserved.
Maple, P A C; Gray, J; Breuer, J; Kafatos, G; Parker, S; Brown, D
2006-02-01
Highly sensitive and specific, quantitative assays are needed to detect varicella-zoster virus (VZV) immunoglobulin G in human sera, particularly for determining immune status and response following vaccination. A time-resolved fluorescence immunoassay (TRFIA) has been developed, and its performance was compared to that of two commercial enzyme immunoassays (EIAs) and Merck glycoprotein EIA (gpEIA). The TRFIA had equivalent sensitivity (97.8%) and high specificity (93.5%) in relation to gpEIA. A commercial (Behring) EIA compared favorably with TRFIA in terms of sensitivity (98.4%) but had lower specificity (80.7%). Another commercial EIA (Diamedix) had high specificity (97.1%) but low sensitivity (76.4%) compared to TRFIA if equivocal test results were treated as negative for VZV antibody. A novel feature of the TRFIA was that the cutoff was generated using population mixture modeling and was expressed in mIU/ml, as the assay was calibrated using the British standard VZV antibody.
NASA Astrophysics Data System (ADS)
Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.
2001-02-01
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.
High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors
NASA Astrophysics Data System (ADS)
Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.
2018-03-01
This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.
2017-01-01
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193818
Longhurst, Penelope A; Levendusky, Mark
2000-01-01
Experiments were done to determine the influence of gender and the oestrous cycle on rat urinary bladder contractility in response to cholinergic stimulation. Bladder strips from female rats responded to high frequency stimulation with smaller contractile responses than did strips from males, and to low concentrations of carbachol with greater responses. The decreased responsiveness of bladder strips from female rats to electrical field stimulation can be primarily attributed to the rats in the oestrous stage of the oestrous cycle. Bladder strips from female rats in all stages of the oestrous cycle were more sensitive to carbachol than those from males, but there were no differences in sensitivity to electrical field stimulation. The contractile responses of strips from both male and female rats to carbachol were antagonized by muscarinic antagonists with the following rank order of affinity (pA2) estimates: 4-DAMP>>pirenzepine>methoctramine, suggesting that the receptor mediating contraction was the M3 subtype. There were no differences in pA2 values between bladder strips from male and female rats. The data indicate that responsiveness of bladder strips to electrical field stimulation and carbachol is altered in female rats in the oestrous stage of the oestrous cycle. Furthermore, gender influences the sensitivity of rat bladder to muscarinic stimulation. PMID:10991909
Takeshita, Daisuke; Smeds, Lina; Ala-Laurila, Petri
2017-04-05
Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold.This article is part of the themed issue 'Vision in dim light'. © 2017 The Authors.
Quinn, Andrea M; Williams, Allison R; Sivilli, Teresa I; Raison, Charles L; Pace, Thaddeus W W
2018-03-13
Circulating concentrations of interleukin (IL)-6, an inflammatory biomarker widely assessed in humans to study the inflammatory response to acute psychological stress, have for decades been quantified using enzyme-linked immunosorbent assay (ELISA). However, biobehavioral researchers are increasingly using cytokine multiplex assays instead of ELISA to measure IL-6 and other cytokines. Despite this trend, multiplex assays have not been directly compared to ELISA for their ability to detect subtle stress-induced changes of IL-6. Here, we tested the prediction that a high-sensitivity multiplex assay (human Magnetic Luminex Performance Assay, R&D Systems, Minneapolis, MN) would detect changes in IL-6 as a result of acute stress challenge in a manner comparable to high-sensitivity ELISA. Blood was collected from 12 healthy adults immediately before and then 90 and 210 min after the start of the Trier Social Stress Test (TSST), an acute laboratory psychosocial stress challenge. In addition to quantifying IL-6 concentrations in plasma with both multiplex and ELISA, we also assessed concentrations of tumor necrosis factor-alpha, IL-8, IL-10, IL-5, and IL-2 with multiplex. The multiplex detected IL-6 in all samples. Concentrations strongly correlated with values determined by ELISA across all samples (r = 0.941, p < .001) as well as among samples collected at individual TSST time points. IL-6 responses to the TSST (i.e. area under the curve) captured by multiplex and ELISA were also strongly correlated (r s = 0.937, p < .001). While other cytokines were detected by multiplex, none changed as a result of TSST challenge at time points examined. These results suggest high-sensitivity magnetic multiplex assay is able to detect changes in plasma concentrations of IL-6 as a result of acute stress in humans.
Cortical lamina-dependent blood volume changes in human brain at 7 T.
Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E
2015-02-15
Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Oldehinkel, Albertine J; Bouma, Esther M C
2011-08-01
Adolescence is characterized by major biological, psychological, and social challenges, as well as by an increase in depression rates. This review focuses on the association between stressful experiences and depression in adolescence, and the possible role of the hypothalamus-pituitary-adrenal cortex (HPA-)axis in this link. Adolescent girls have a higher probability to develop depressive symptoms than adolescent boys and preadolescents. Increasing evidence indicates that girls' higher risk of depression is partly brought about by an increased sensitivity for stressful life events, particularly interpersonal stressors, which are highly prevalent in adolescent girls. Genetic risk factors for depression, as well as those for stress sensitivity, are often expressed differently in girls and boys. Also environmental adversity tends to affect girls' stress responses more than those of boys. These gender-specific association patterns have been reported for both sensitivity to stressful life events and HPA-axis responses to social stress. Together, the findings suggest that girls are more malleable than boys in response to internal and external influences. This postulated greater malleability may be adaptive in many circumstances, but also brings along risk, such as an increased probability of depression. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Hui-Jie; Faucher, Cécile P; Anderson, Alisha; Berna, Amalia Z; Trowell, Stephen; Chen, Quan-Mei; Xia, Qing-You; Chyb, Sylwester
2013-08-01
We compared food choice and the initial response to deterrent treated diet between fifth instars of Helicoverpa armigera, a polyphagous generalist pest, and Bombyx mori, an oligophagous specialist beneficial. Bombyx mori was more behaviorally sensitive to salicin than to caffeine. The relative sensitivities were reversed for H. armigera, which was tolerant to the highest levels of salicin found in natural sources but sensitive to caffeine. A single gustatory receptor neuron (GRN) in the medial styloconic sensillum of B. mori was highly sensitive to salicin and caffeine. The styloconic sensilla of H. armigera did not respond consistently to either of the bitter compounds. Phagostimulants also were tested. Myo-inositol and sucrose were detected specifically by two GRNs located in B. mori lateral styloconic sensillum, whereas, in H. armigera, sucrose was sensed by a GRN in the lateral sensillum, and myo-inositol by a GRN in the medial sensillum. Myo-inositol responsiveness in both species occurred at or below 10(-3) mM, which is far below the naturally occurring concentration of 1 mM in plants. Larval responses to specific plant secondary compounds appear to have complex determinants that may include host range, metabolic capacity, and gustatory repertoire.
Ackerman, L K; Noonan, G O; Begley, T H
2009-12-01
The ambient ionization technique direct analysis in real time (DART) was characterized and evaluated for the screening of food packaging for the presence of packaging additives using a benchtop mass spectrometer (MS). Approximate optimum conditions were determined for 13 common food-packaging additives, including plasticizers, anti-oxidants, colorants, grease-proofers, and ultraviolet light stabilizers. Method sensitivity and linearity were evaluated using solutions and characterized polymer samples. Additionally, the response of a model additive (di-ethyl-hexyl-phthalate) was examined across a range of sample positions, DART, and MS conditions (temperature, voltage and helium flow). Under optimal conditions, molecular ion (M+H+) was the major ion for most additives. Additive responses were highly sensitive to sample and DART source orientation, as well as to DART flow rates, temperatures, and MS inlet voltages, respectively. DART-MS response was neither consistently linear nor quantitative in this setting, and sensitivity varied by additive. All additives studied were rapidly identified in multiple food-packaging materials by DART-MS/MS, suggesting this technique can be used to screen food packaging rapidly. However, method sensitivity and quantitation requires further study and improvement.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
NASA Astrophysics Data System (ADS)
Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.
2014-05-01
We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.
Cyclic tensile response of a pre-tensioned polyurethane
NASA Astrophysics Data System (ADS)
Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.
2018-05-01
In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.
ERIC Educational Resources Information Center
Foster, Erin R.; Black, Kevin J.; Antenor-Dorsey, Jo Ann V.; Perlmutter, Joel S.; Hershey, Tamara
2008-01-01
Studies suggest motor deficit asymmetry may help predict the pattern of cognitive impairment in individuals with Parkinson disease (PD). We tested this hypothesis using a highly validated and sensitive spatial memory task, spatial delayed response (SDR), and clinical and neuroimaging measures of PD asymmetry. We predicted SDR performance would be…
Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.
Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan
2014-09-01
Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.
Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils
NASA Astrophysics Data System (ADS)
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou
2013-09-01
High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.
Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices
Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.
2015-01-01
The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451
Thorn, Mitchell; Hudson, Adam W; Kreeger, John; Kawabe, Thomas T; Bowman, Christopher J; Collinge, Mark
2015-01-01
Delayed-type hypersensitivity (DTH) is a T-cell-mediated immune response that may be used for immunotoxicity testing in non-clinical species. However, in some cases DTH assays using T-dependent antigens may be confounded by the production of antibodies to the antigen. The authors have previously modified a DTH assay, initially validated in the mouse, for use in juvenile rats to assess the effect of immunosuppressive drugs on the developing rat immune system. The assay measures footpad swelling induced by subcutaneous footpad injection of Candida albicans (C. albicans) derived-chitosan in rats previously sensitized with C. albicans. Antibodies to chitosan are not produced in this model. However, considerable inter-animal variability inherent in the footpad swelling assay can make it difficult to precisely quantify the magnitude of the immune response and inhibition by immunosuppressants, particularly if complete suppression is not observed. This report describes the development of an ex vivo assay to assess DTH in rats using interferon (IFN)-γ production by splenocytes, obtained from rats sensitized with C. albicans, as the quantifiable measure of the DTH response. Adult and neonatal rats administered dexamethasone (DEX), a known immunosuppressant, exhibited immunosuppression as evidenced by a reduction in ex vivo IFNγ production from splenocytes challenged with C. albicans-derived chitosan. Current data indicate that the ex vivo based DTH assay is more sensitive than the conventional footpad swelling assay due to a lower background response and the ability to detect a response as early as post-natal day (PND) 12. The ex vivo based rat DTH assay offers a highly sensitive and quantitative alternative to the footpad swelling assay for the assessment of the immunotoxic potential of drugs. The increased sensitivity of the ex vivo DTH assay may be useful for identifying smaller changes in response to immunotoxic drugs, as well as detecting responses earlier in animal development.
NASA Astrophysics Data System (ADS)
LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.
2015-04-01
The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
Santos, Marina Scarulis Mamede Dos; Panobianco, Marislei Sanches; Mamede, Marli Villela; Meirelles, Maria Cristina Cortez Carneiro; Barros, Vanessa Mundim E
2009-07-01
to identify sensitivity alteration in the intercostal brachial nerve pathway using an extensiometer, and to observe the measurement reproducibility of the apparatus. the Semmes-Weinstein extensiometer was used to evaluate the sensitivity along the intercostal brachial nerve pathway. Ninety-four women have participated in the study, divided into two groups: a CA Group composed of 47 women submitted to breast cancer axillary lymphadenectomy, and a comparative group composed of 47 women without breast cancer, who had not been submitted to any kind of axillary surgery. Each participant underwent anamnesis and two consecutive applications of the extensiometer. The Control Group responses to the extensiometer test were used as normality reference values. based on Control Group responses, the prevalence of sensitivity changes was 85.1% in the CA Group. Reproducibility of the extensiometer application was confirmed in the CA Group through the Kappa's test (p=0.8). in this studied sample, sensitivity alterations had high prevalence; evaluations made with the extensiometer were reproducible, and thus we consider the equipment reliable to evaluate sensitivity along the intercostal brachial nerve pathway.
Mapping Kainate Activation of Inner Neurons in the Rat Retina
Nivison-Smith, Lisa; Sun, Daniel; Fletcher, Erica L.; Marc, Robert E.; Kalloniatis, Michael
2014-01-01
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues. PMID:23348566
de Villiers, Bernadette; Lionetti, Francesca; Pluess, Michael
2018-06-01
People differ significantly in their response to psychological intervention, with some benefitting more from treatment than others. According to the recently proposed theoretical framework of vantage sensitivity, some of this variability may be due to individual differences in environmental sensitivity, the inherent ability to register, and process external stimuli. In this paper, we apply the vantage sensitivity framework to the field of psychiatry and clinical psychology, proposing that some people are more responsive to the positive effects of psychological intervention due to heightened sensitivity. After presenting theoretical frameworks related to environmental sensitivity, we review a selection of recent studies reporting individual differences in the positive response to psychological intervention. A growing number of studies report that some people benefit more from psychological intervention than others as a function of genetic, physiological, and psychological characteristics. These studies support the vantage sensitivity proposition that treatment response is influenced by factors associated with heightened sensitivity to environmental influences. More recently, studies have also shown that sensitivity can be measured with a short questionnaire which appears to predict the response to psychological intervention. Vantage sensitivity is a framework with significant relevance for our understanding of widely observed heterogeneity in treatment response. It suggests that variability in response to treatment is partly influenced by people's differing capacity for environmental sensitivity, which can be measured with a short questionnaire. Application of the vantage sensitivity framework to psychiatry and clinical psychology may improve our knowledge regarding when, how, and for whom interventions work.
Rugged switch responds to minute pressure differentials
NASA Technical Reports Server (NTRS)
Friend, L. C.; Shaub, K. D.
1967-01-01
Pressure responsive switching device exhibits high sensitivity but is extremely rugged and resistant to large amplitude shock and velocity loading. This snap-action, single pole-double throw switch operates over a wide temperature range.
Seismic response of precast segmental bridge superstructures.
DOT National Transportation Integrated Search
2006-12-01
Precast segmental construction of bridges can accelerate construction and minimize the cost of bridges in highly congested urban environments and environmentally sensitive regions. Despite their proven benefits, the use of precast segmental bridges i...
The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L.; Lu, H. B.; Li, J. C.
2007-10-22
In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.
Rivera, Manuel; Rahaman, Mostafizur; Zhou, Andrew F.; Mohammed Alzuraiqi, Waleed; Feng, Peter
2017-01-01
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. PMID:29257098
Choi, Seon-Jin; Kim, Sang-Joon; Cho, Hee-Jin; Jang, Ji-Soo; Lin, Yi-Min; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo
2016-02-17
A novel catalyst functionalization method, based on protein-encapsulated metallic nanoparticles (NPs) and their self-assembly on polystyrene (PS) colloid templates, is used to form catalyst-loaded porous WO3 nanofibers (NFs). The metallic NPs, composed of Au, Pd, or Pt, are encapsulated within a protein cage, i.e., apoferritin, to form unagglomerated monodispersed particles with diameters of less than 5 nm. The catalytic NPs maintain their nanoscale size, even following high-temperature heat-treatment during synthesis, which is attributed to the discrete self-assembly of NPs on PS colloid templates. In addition, the PS templates generate open pores on the electrospun WO3 NFs, facilitating gas molecule transport into the sensing layers and promoting active surface reactions. As a result, the Au and Pd NP-loaded porous WO3 NFs show superior sensitivity toward hydrogen sulfide, as evidenced by responses (R(air)/R(gas)) of 11.1 and 43.5 at 350 °C, respectively. These responses represent 1.8- and 7.1-fold improvements compared to that of dense WO3 NFs (R(air)/R(gas) = 6.1). Moreover, Pt NP-loaded porous WO3 NFs exhibit high acetone sensitivity with response of 28.9. These results demonstrate a novel catalyst loading method, in which small NPs are well-dispersed within the pores of WO3 NFs, that is applicable to high sensitivity breath sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg
2012-07-01
Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.
NASA Astrophysics Data System (ADS)
Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.
2015-12-01
Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.
Temporal and regional onset of leptin resistance in diet-induced obese mice.
Rizwan, M Z; Mehlitz, S; Grattan, D R; Tups, A
2017-10-01
In common forms of obesity, leptin fails to convey its regulatory effect. This so called "leptin resistance" is not well understood, and solving this puzzle is a key to understanding how obesity develops. In the present study, we investigated the temporal and regional onset of leptin resistance in response to a diet enriched with long-chain saturated fatty acids (high-fat diet; HFD) in mice. Mice were exposed to either a low-fat diet (LFD) or a HFD for 4 hours, 24 hours, 10 days and 28 days. Mice in each group received an i.p. injection of either phosphate-buffered saline or leptin and the number of phosphorylated signal transducer and activator of transcription-3 (pSTAT3) immunoreactive (-IR) cells in the arcuate nucleus (ARC), ventromedial nucleus of the hypothalamus (VMH) and dorsomedial nucleus of the hypothalamus (DMH) was analysed 30 or 120 minutes after treatment. In the ARC, as soon as 24 hours of HFD, the molecular leptin response was reduced by 40% (P≤.01). Compared to at 24 hours, after 10 days, the number of leptin-induced pSTAT3-IR cells was elevated after 120 minutes, suggesting a sustained response and a partial return of leptin sensitivity. After 28 days, leptin failed to induce the number of pSTAT3-IR over control levels, suggesting a markedly reduced sensitivity to leptin. In the VMH after 24 hours, we observed a 50% reduction in leptin-induced pSTAT-3-IR cells, followed by a further decline after 10 days. However, after 28 days, there was a significant increase in pSTAT-3-IR cells (P≤.05), indicating partial recovery of leptin sensitivity. By contrast to these two regions, in the DMH, no loss of leptin sensitivity was observed at any time-point. These findings demonstrate that a loss of sensitivity to leptin occurs rapidly after exposure to HFD in the ARC and VMH but not the DMH. However, there appears to be a biphasic pattern of leptin responsiveness, with a partial return of leptin sensitivity occurring after 10 days in the arcuate nucleus, and after 28 days in the VMH. By 28 days, the response to leptin in the arcuate nucleus was completely lost. These findings suggest that the molecular responses to leptin are altered after high-fat feeding in a time- and region-specific manner. © 2017 British Society for Neuroendocrinology.
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Liu, Beiying; Qin, Feng
2016-01-01
Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678
Stronach, Euan A.; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H.; Browne, Alacoque; Magdy, Nesreen; Studd, James B.; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona
2015-01-01
Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease. PMID:26267317
Stronach, Euan A; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H; Browne, Alacoque; Magdy, Nesreen; Studd, James B; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona
2015-10-13
Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease.
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Derefinko, Karen J.; Eisenlohr-Moul, Tory A.; Peters, Jessica R.; Roberts, Walter; Walsh, Erin C.; Milich, Richard; Lynam, Donald R.
2017-01-01
Background Physiological responses to reward and extinction are believed to represent the Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS) constructs of Reinforcement Sensitivity Theory and underlie externalizing behaviors, including substance use. However, little research has examined these relations directly. Methods We assessed individuals’ cardiac pre-ejection periods (PEP) and electrodermal responses (EDR) during reward and extinction trials through the “Number Elimination Game” paradigm. Responses represented BAS and BIS, respectively. We then examined whether these responses provided incremental utility in the prediction of future alcohol, marijuana, and cigarette use. Results Zero-inflated Poisson (ZIP) regression models were used to examine the predictive utility of physiological BAS and BIS responses above and beyond previous substance use. Physiological responses accounted for incremental variance over previous use. Low BAS responses during reward predicted frequency of alcohol use at year 3. Low BAS responses during reward and extinction and high BIS responses during extinction predicted frequency of marijuana use at year 3. For cigarette use, low BAS response during extinction predicted use at year 3. Conclusions These findings suggest that the constructs of Reinforcement Sensitivity Theory, as assessed through physiology, contribute to the longitudinal maintenance of substance use. PMID:27306728
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2016-01-01
A "disinhibited" cognitive profile has been proposed for individuals with high reward sensitivity, characterized by increased engagement in goal-directed responses and reduced processing of negative or unexpected cues, which impairs adequate behavioral regulation after feedback in these individuals. This pattern is manifested through deficits in inhibitory control and/or increases in RT variability. In the present work, we aimed to test whether this profile is associated with the activity of functional networks during a stop-signal task using independent component analysis (ICA). Sixty-one participants underwent fMRI while performing a stop-signal task, during which a manual response had to be inhibited. ICA was used to mainly replicate the functional networks involved in the task (Zhang and Li, 2012): two motor networks involved in the go response, the left and right fronto-parietal networks for stopping, a midline error-processing network, and the default-mode network (DMN), which was further subdivided into its anterior and posterior parts. Reward sensitivity was mainly associated with greater activity of motor networks, reduced activity in the midline network during correct stop trials and, behaviorally, increased RT variability. All these variables explained 36% of variance of the SR scores. This pattern of associations suggests that reward sensitivity involves greater motor engagement in the dominant response, more distractibility and reduced processing of salient or unexpected events, which may lead to disinhibited behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Furukawa, Emi; Shimabukuro, Shizuka; Alsop, Brent; Tripp, Gail
2017-09-25
Most research on motivational processes in attention deficit hyperactivity disorder (ADHD) has been undertaken in Western Europe and North America. The extent to which these findings apply to other cultural groups is unclear. The current study evaluated the behavioral sensitivity of Japanese children with and without ADHD to changing reward availability. Forty-one school-aged children, 19 diagnosed with DSM-IV ADHD, completed a signal-detection task in which correct discriminations between two stimuli were associated with different reinforcement frequencies. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. Both groups of children developed an initial bias toward the more frequently reinforced response alternative. When the reward contingencies switched the response allocation (bias) of the control group children followed suit. The response bias scores of the children with ADHD did not, suggesting impaired tracking of reward availability over time. Japanese children with ADHD adjust their behavioral responses to changing reinforcer availability less than their typically developing peers. This is not explained by poor attention to task or a lack of sensitivity to reward. The current results are consistent with altered sensitivity to changing reward contingencies identified in non-Japanese samples of children with ADHD. Irrespective of their country of origin, children with ADHD will likely benefit from behavioral expectations and reinforcement contingencies being made explicit together with high rates of reinforcement for appropriate behaviors.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
Saitoh, T; Ishida, M; Maruyama, M; Shinozaki, H
1994-01-01
1. 3-[2'-Phosphonomethyl[1,1'-biphenyl]-3-yl]alanine (PMBA) is a novel glycine antagonist at strychnine-sensitive receptors. The chemical structure of PMBA, possessing both a glycine moiety and a phosphono group, is quite different from that of strychnine. 2. In the spinal motoneurone of newborn rats, glycine (100 microM-1 mM) induced depolarizing responses in a concentration-dependent manner. PMBA effectively inhibited depolarizing responses to glycine and other agonists, such as taurine and beta-alanine. The dose-response curves for glycine were shifted to the right in an almost parallel manner (pA2 value: 5.30 +/- 0.23, n = 5) by PMBA which was about 60 times less potent than strychnine (pA2 value: 7.08 +/- 0.21, n = 5) as a glycine antagonist. 3. PMBA (1-100 microM) did not interact with modulatory glycine sites on N-methyl-D-aspartate (NMDA) receptors, which suggests a high selectivity of PMBA for strychnine-sensitive glycine receptors. At considerably high concentrations (0.1 mM-1 mM), PMBA depressed responses to GABA (pA2 value: 3.57 +/- 0.24, n = 3). 4. PMBA inhibited the binding of [3H]-strychnine to synaptosomes from adult rat spinal cords; the IC50 values of PMBA, glycine and strychnine were 8 +/- 2, 9 +/- 3 and 0.08 +/- 0.04 microM, respectively (n = 5) for [3H]-strychnine (4.8 nM). 5. PMBA is a central excitant drug with relatively high potency and selectivity and should be useful as a pharmacological probe for analysing the mechanisms underlying physiological functions of glycine receptors. PMID:7812607
Heden, Timothy D; Liu, Ying; Kearney, Monica L; Kanaley, Jill A
2014-05-01
Obesity and high-fructose corn syrup (HFCS)-sweetened beverages are associated with an increased risk of chronic disease, but it is not clear whether obese (Ob) individuals are more susceptible to the detrimental effects of HFCS-sweetened beverages. The purpose of this study was to examine the endocrine and metabolic effects of consuming HFCS-sweetened beverages, and whether weight classification (normal weight (NW) vs. Ob) influences these effects. Ten NW and 10 Ob men and women who habitually consumed ≤355 mL per day of sugar-sweetened beverages were included in this study. Initially, the participants underwent a 4-h mixed-meal test after a 12-h overnight fast to assess insulin sensitivity, pancreatic and gut endocrine responses, insulin secretion and clearance, and glucose, triacylglycerol, and cholesterol responses. Next, the participants consumed their normal diet ad libitum, with 1065 mL per day (117 g·day(-1)) of HFCS-sweetened beverages added for 2 weeks. After the intervention, the participants repeated the mixed-meal test. HFCS-sweetened beverages did not significantly alter body weight, insulin sensitivity, insulin secretion or clearance, or endocrine, glucose, lipid, or cholesterol responses in either NW or Ob individuals. Regardless of previous diet, Ob individuals, compared with NW individuals, had ∼28% lower physical activity levels, 6%-9% lower insulin sensitivity, 12%-16% lower fasting high-density-lipoprotein cholesterol concentrations, 84%-144% greater postprandial triacylglycerol concentrations, and 46%-79% greater postprandial insulin concentrations. Greater insulin responses were associated with reduced insulin clearance, and there were no differences in insulin secretion. These findings suggest that weight classification does not influence the short-term endocrine and metabolic effects of HFCS-sweetened beverages.
Beske, Phillip H.; Scheeler, Stephen M.; Adler, Michael; McNutt, Patrick M.
2015-01-01
Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT. PMID:25954159