A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection
Jo, Minjoung; Ahn, Ji-Young; Lee, Joohyung; Lee, Seram; Hong, Sun Woo; Yoo, Jae-Wook; Kang, Jeehye; Dua, Pooja
2011-01-01
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 1015 random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4′-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol–gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules. PMID:21413891
Hiasat, Jamila G; Saleh, Alaa; Al-Hussaini, Maysa; Al Nawaiseh, Ibrahim; Mehyar, Mustafa; Qandeel, Monther; Mohammad, Mona; Deebajah, Rasha; Sultan, Iyad; Jaradat, Imad; Mansour, Asem; Yousef, Yacoub A
2018-06-01
To evaluate the predictive value of magnetic resonance imaging in retinoblastoma for the likelihood of high-risk pathologic features. A retrospective study of 64 eyes enucleated from 60 retinoblastoma patients. Contrast-enhanced magnetic resonance imaging was performed before enucleation. Main outcome measures included demographics, laterality, accuracy, sensitivity, and specificity of magnetic resonance imaging in detecting high-risk pathologic features. Optic nerve invasion and choroidal invasion were seen microscopically in 34 (53%) and 28 (44%) eyes, respectively, while they were detected in magnetic resonance imaging in 22 (34%) and 15 (23%) eyes, respectively. The accuracy of magnetic resonance imaging in detecting prelaminar invasion was 77% (sensitivity 89%, specificity 98%), 56% for laminar invasion (sensitivity 27%, specificity 94%), 84% for postlaminar invasion (sensitivity 42%, specificity 98%), and 100% for optic cut edge invasion (sensitivity100%, specificity 100%). The accuracy of magnetic resonance imaging in detecting focal choroidal invasion was 48% (sensitivity 33%, specificity 97%), and 84% for massive choroidal invasion (sensitivity 53%, specificity 98%), and the accuracy in detecting extrascleral extension was 96% (sensitivity 67%, specificity 98%). Magnetic resonance imaging should not be the only method to stratify patients at high risk from those who are not, eventhough it can predict with high accuracy extensive postlaminar optic nerve invasion, massive choroidal invasion, and extrascleral tumor extension.
Smith, M A; Dyson, S J; Murray, R C
2012-11-01
To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high- and low-field MR images with a low incidence of false positive or negative results; that low-field images are less reliable than high-field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. High- and low-field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. High-field T2*-weighted gradient echo (T2*W-GRE) and low-field T2-weighted fast spin echo (T2W-FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low-moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate-high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low-field T2*W-GRE images had higher sensitivity and specificity than T2W-FSE images. There is high likelihood of false positive results using high- or low-field MRI for detection of cartilage lesions and moderate-high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang
2016-06-01
A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.
Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le
2013-05-22
In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.
Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang
2015-11-15
Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A
2010-06-28
Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Takahashi, Hitoshi; Nagata, Shiho; Odagiri, Takato; Kageyama, Tsutomu
2018-04-15
The H5 subtype of highly pathogenic avian influenza (H5 HPAI) viruses is a threat to both animal and human public health and has the potential to cause a serious future pandemic in humans. Thus, specific and rapid detection of H5 HPAI viruses is required for infection control in humans. To develop a simple and rapid diagnostic system to detect H5 HPAI viruses with high specificity and sensitivity, we attempted to prepare monoclonal antibodies (mAbs) that specifically recognize linear epitopes in hemagglutinin (HA) of H5 subtype viruses. Nine mAb clones were obtained from mice immunized with a synthetic partial peptide of H5 HA molecules conserved among various H5 HPAI viruses. The antigen-capture enzyme-linked immunosorbent assay using the most suitable combination of these mAbs, which bound specifically to lysed H5 HA under an optimized detergent condition, was specific for H5 viruses and could broadly detect H5 viruses in multiple different clades. Taken together, these peptide mAbs, which recognize linear epitopes in a highly conserved region of H5 HA, may be useful for specific and highly sensitive detection of H5 HPAI viruses and can help in the rapid diagnosis of human, avian, and animal H5 virus infections. Copyright © 2018 Elsevier Inc. All rights reserved.
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xi, Zhijiang; Gong, Quan; Wang, Chao; Zheng, Bing
2018-06-21
Hepatitis B virus (HBV) infection is a major global public health problem and one of the leading causes of chronic liver disease. HBsAg is the first serological marker to appear in the blood and is the most important marker of HBV infection. Detection of HBsAg in serum samples is commonly carried out using an immunoassay such as an enzyme-linked immunosorbent assay (ELISA), which is complex to perform, time-consuming, and unsatisfactory for testing sensitivity. Therefore, new methods for highly sensitive detection of HBV infection are urgently needed. Aptamers are specific recognition molecules with high affinity and specificity toward their targets. Biosensors that employ aptamers as biorecognition elements are known as aptasensors. In this study, we select an HBsAg-specific aptamer and use it to develop a new chemiluminescent aptasensor based on rapid magnetic separation and double-functionalized gold nanoparticles. This sensor enables rapid magnetic separation and highly sensitive detection of HBsAg in HBV-positive serum. The detection limit of this HBsAg-detecting chemiluminescent aptasensor is as low as 0.05 ng/mL, which is much lower than the 0.5 ng/mL limit of a typical ELISA used in hospitals. Furthermore, this aptasensor works well and is highly specific to HBV infection.
Zheng, S; Wu, X; Shi, J; Peng, Z; Gao, M; Xin, C; Liu, Y; Wang, S; Xu, S; Han, H; Yu, J; Sun, W; Cong, X; Li, J; Wang, J
2018-06-01
In this study, a rapid and specific assay for the detection of porcine circovirus type 3 (PCV3) was established using loop-mediated isothermal amplification (LAMP). Four primers were specifically designed to amplify PCV3. The LAMP assay was effectively optimized to amplify PCV3 by water bath at 60°C for 60 min. The detection limit was approximately 1 × 10 1 copy in this LAMP assay. Compared to porcine circovirus type 2 (PCV2), both gE and gD genes of pseudorabies virus (PRV) and porcine parvovirus (PPV), the LAMP assay showed a high specific detection of PCV3. A visible detection method was developed using SYBR Green I to recognize the results rapidly. Based on the detection of 20 clinical tissue samples, the LAMP assay was more practical and convenient than classical PCR due to its simplicity, high sensitivity, rapidity, specificity, visibility and cost efficiency. © 2018 Blackwell Verlag GmbH.
Magnetic relaxometry as applied to sensitive cancer detection and localization
De Haro, Leyma P.; Karaulanov, Todor; Vreeland, Erika C.; ...
2015-06-02
Abstract Here we describe superparamagnetic relaxometry (SPMR), a technology that utilizes highly sensitive magnetic sensors and superparamagnetic nanoparticles for cancer detection. Using SPMR, we sensitively and specifically detect nanoparticles conjugated to biomarkers for various types of cancer. SPMR offers high contrast In SPMR measurements, a brief magnetizing pulse is used to align superparamagnetic nanoparticles of a discrete size. Following the pulse, an array of superconducting quantum interference detectors (SQUID) sensors detect the decaying magnetization field. NP size is chosen so that, when bound, the induced field decays in seconds. They are functionalized with specific biomarkers and incubated with cancer cellsmore » As a result, superparamagnetic NPs developed here have small size dispersion. Cell incubation studies measure specificity for different cell lines and antibodies with very high contrast.« less
Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong
2012-01-01
To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.
Yan, Juan; Hu, Chongya; Wang, Ping; Liu, Rui; Zuo, Xiaolei; Liu, Xunwei; Song, Shiping; Fan, Chunhai; He, Dannong; Sun, Gang
2014-11-26
Prostate-specific antigen (PSA) is one of the most important biomarkers for the early diagnosis and prognosis of prostate cancer. Although many efforts have been made to achieve significant progress for the detection of PSA, challenges including relative low sensitivity, complicated operation, sophisticated instruments, and high cost remain unsolved. Here, we have developed a strategy combining rolling circle amplification (RCA)-based DNA belts and magnetic bead-based enzyme-linked immunosorbent assay (ELISA) for the highly sensitive and specific detection of PSA. At first, a 96-base circular DNA template was designed and prepared for the following RCA. Single stranded DNA (ssDNA) products from RCA were used as scaffold strand for DNA origami, which was hybridized with three staple strands of DNA. The resulting DNA belts were conjugated with multiple enzymes for signal amplification and then employed to magnetic bead based ELISA for PSA detection. Through our strategy, as low as 50 aM of PSA can be detected with excellent specificity.
Vitkova, O N; Kapustina, T P; Mikhailova, V V; Safonov, G A; Vlasova, N N; Belousova, R V
2015-01-01
The goal of this work was to demonstrate the results of the development of the enzyme-linked immunosorbent tests with chemiluminescence detection and colorimetric detection of specific viral antigens and antibodies for identifying the avian influenza and the Newcastle disease viruses: high sensitivity and specificity of the immuno- chemiluminescence assay, which are 10-50 times higher than those of the ELISA colorimetric method. The high effectiveness of the results and the automation of the process of laboratory testing (using a luminometer) allow these methods to be recommended for including in primary screening tests for these infectious diseases.
Draz, Mohamed Shehata; Lu, Xiaonan
2016-01-01
As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.
Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing
2016-04-15
In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.
Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun
2016-12-23
Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.
Adlhoch, Cornelia; Kaiser, Marco; Hoehne, Marina; Mas Marques, Andreas; Stefas, Ilias; Veas, Francisco; Ellerbrok, Heinz
2011-02-10
The principle of a capture ELISA is binding of specific capture antibodies (polyclonal or monoclonal) to the surface of a suitable 96 well plate. These immobilized antibodies are capable of specifically binding a virus present in a clinical sample. Subsequently, the captured virus is detected using a specific detection antibody. The drawback of this method is that a capture ELISA can only function for a single virus captured by the primary antibody. Human Apolipoprotein H (ApoH) or β2-glycoprotein 1 is able to poly-specifically bind viral pathogens. Replacing specific capture antibodies by ApoH should allow poly-specific capture of different viruses that subsequently could be revealed using specific detection antibodies. Thus, using a single capture ELISA format different viruses could be analysed depending on the detection antibody that is applied. In order to demonstrate that this is a valid approach we show detection of group A rotaviruses from stool samples as a proof of principle for a new method of capture ELISA that should also be applicable to other viruses. Stool samples of different circulating common human and potentially zoonotic group A rotavirus strains, which were pretested in commercial EIAs and genotyped by PCR, were tested in parallel in an ApoH-ELISA set-up and by quantitative real-time PCR (qPCR). Several control samples were included in the analysis. The ApoH-ELISA was suitable for the capture of rotavirus-particles and the detection down to 1,000 infectious units (TCID(50/ml)). Subsets of diagnostic samples of different G- and P-types were tested positive in the ApoH-ELISA in different dilutions. Compared to the qPCR results, the analysis showed high sensitivity, specificity and low cross-reactivity for the ApoH-ELISA, which was confirmed in receiver operating characteristics (ROC) analysis. In this study the development of a highly sensitive and specific capture ELISA was demonstrated by combining a poly-specific ApoH capture step with specific detection antibodies using group A rotaviruses as an example.
Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J
2010-12-08
Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.
2010-01-01
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837
Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte
2012-01-01
Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.
DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis.
Bayraç, Ceren; Eyidoğan, Füsun; Avni Öktem, Hüseyin
2017-12-15
Food safety is a major issue to protect public health and a key challenge is to find detection methods for identification of hazards in food. Food borne infections affects millions of people each year and among pathogens, Salmonella Enteritidis is most widely found bacteria causing food borne diseases. Therefore, simple, rapid, and specific detection methods are needed for food safety. In this study, we demonstrated the selection of DNA aptamers with high affinity and specificity against S. Enteritidis via Cell Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX) and development of sandwich type aptamer-based colorimetric platforms for its detection. Two highly specific aptamers, crn-1 and crn-2, were developed through 12 rounds of selection with K d of 0.971µM and 0.309µM, respectively. Both aptamers were used to construct sandwich type capillary detection platforms. With the detection limit of 10 3 CFU/mL, crn-1 and crn-2 based platforms detected target bacteria specifically based on color change. This platform is also suitable for detection of S. Enteritidis in complex food matrix. Thus, this is the first to demonstrate use of Salmonella aptamers for development of the colorimetric aptamer-based detection platform in its identification and detection with naked eye in point-of-care. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Yueying; Sun, Yuanyuan; Tian, Weimin; Liu, Chenghui; Gao, Kejian; Li, Zhengping
2018-02-07
Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.
Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.
Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E
2015-07-07
Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.
van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D
2011-01-01
A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.
Bil-Lula, Iwona; Matuszek, Patryk; Pfeiffer, Thomas; Woźniak, Mieczysław
2015-01-01
Infections of Borrelia burgdorferi sensu lato reveal clinical manifestations affecting numerous organs and tissues. The standard diagnostic procedure of these infections is quite simple if a positive history of tick exposure or typical erythema migrans appears. Lack of unequivocal clinical symptoms creates the necessity for further evaluation with laboratory tests. This study discusses the utility of a novel, improved, well-optimized, sensitive and highly specific quantitative real-time PCR assay for the diagnostics of infections caused by Borrelia burgdorferi sensu lato. We designed an improved, specific, highly sensitive real-time quantitative polymerase chain reaction (RQ-PCR) assay for the detection and quantification of all Borrelia burgdorferi genotypes. A wide validation effort was undertaken to ensure confidence in the highly sensitive and specific detection of B. burgdorferi. Due to high sensitivity and great specificity, as low as 1.6×10² copies of Borrelia per mL of whole blood could be detected. As much as 12 (3%) negative ELISA IgM results, 14 (2.8%) negative results of Line blot IgM, 11 (3.1%) and 7 (2.7%) of negative ELISA IgG and Line blot IgG results, respectively, were positive in real-time PCR. The data in this study confirms the high positive predictive value of real-time PCR test in the detection of Borrelia infections.
Nucleic Acid-Based Approaches for Detection of Viral Hepatitis
Behzadi, Payam; Ranjbar, Reza; Alavian, Seyed Moayed
2014-01-01
Context: To determining suitable nucleic acid diagnostics for individual viral hepatitis agent, an extensive search using related keywords was done in major medical library and data were collected, categorized, and summarized in different sections. Results: Various types of molecular biology tools can be used to detect and quantify viral genomic elements and analyze the sequences. These molecular assays are proper technologies for rapidly detecting viral agents with high accuracy, high sensitivity, and high specificity. Nonetheless, the application of each diagnostic method is completely dependent on viral agent. Conclusions: Despite rapidity, automation, accuracy, cost-effectiveness, high sensitivity, and high specificity of molecular techniques, each type of molecular technology has its own advantages and disadvantages. PMID:25789132
Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing
Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun
2016-01-01
Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects. PMID:28025540
Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity
NASA Technical Reports Server (NTRS)
Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)
2014-01-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity
Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng
2014-04-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
2015-01-01
The Salmonella enterotoxin (stn) gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity. PMID:26543859
Wu, Wenjie; Cheng, Peng; Lyu, Jingtong; Zhang, Zehua; Xu, Jianzhong
2018-05-01
We developed a Tag Array chip for detecting first- and second-line anti tuberculosis drug resistance in pulmonary tuberculosis and compared the analytical performance of the gene chip to that of phenotypic drug susceptibility testing (DST). From November 2011 to April 2016.234 consecutive culture-confirmed, clinically and imaging diagnosed patients with pulmonary tuberculosis from Southwest Hospital, Chongqing were enrolled into the study. Specimens collected during sputum or bronchoalveolar lavage fluid from the pulmonary tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the Tag Array gene chip, and evaluate the sensitivity and specificity of chip. A total of 186 patients was diagnosed drug-resistant tuberculosis. The detection of rifampicin (RFP), isoniazid (INH), fluoroquinolones (FQS), streptomycin (SM) resistance genes was highly sensitive and specific: however, for detection of amikacin (AMK), capreomycin (CPM), Kanamycin (KM), specificity was higher, but sensitivity was lower. Sensitivity for the detection of a mutation in the eis promoter region could be improved. The detection sensitivity of the EMB resistance gene was low, therefore it is easy to miss a diagnosis of EMB drug resistance, but its specificity was high. Tag Array chip can achieve rapid, accurate and high-throughput detection of tuberculosis resistance in pulmonary tuberculosis, which has important clinical significance and feasibility. Copyright © 2018. Published by Elsevier Ltd.
Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L
2015-08-10
The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.
Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun
2015-06-15
A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Hestekin, Christa N.; Lin, Jennifer S.; Senderowicz, Lionel; Jakupciak, John P.; O’Connell, Catherine; Rademaker, Alfred; Barron, Annelise E.
2012-01-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here we demonstrate the first blinded study using microchip electrophoresis-SSCP/HA. We demonstrate the ability of microchip electrophoresis-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5–9 in a blinded study in an analysis time of less than 10 minutes. PMID:22002021
NASA Astrophysics Data System (ADS)
Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro
2008-06-01
An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.
Sensitive, fast, and specific immunoassays for methyltestosterone detection.
Kong, Na; Song, Shanshan; Peng, Juan; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai
2015-04-29
An indirect competitive enzyme-linked immunosorbent assay (icELISA) and an immunochromatographic strip assay using a highly specific monoclonal antibody, were developed to detect methyltestosterone (MT) residues in animal feed. The optimized icELISA had a half-inhibition concentration value of 0.26 ng/mL and a limit of detection value of 0.045 ng/mL. There was no cross-reactivity with eight analogues, revealing high specificity for MT. Based on icELISA results, the recovery rate of MT in animal feed was 82.4%-100.6%. The results were in accordance with those obtained by gas chromatography-mass spectrometry. The developed immunochromatographic strip assay, as the first report for MT detection, had a visual cut-off value of 1 ng/mL in PBS, 2.5 ng/g in fish feed, and 2.5 ng/g in pig feed. Therefore, these immunoassays are useful and fast tools for MT residue detection in animal feed.
MOF-Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus.
Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash
2017-10-04
To produce a sensitive and specific biosensor for Staphylococcus aureus, bacteriophages have been interfaced with a water-dispersible and environmentally stable metal-organic framework (MOF), NH 2 -MIL-53(Fe). The conjugation of the MOF with bacteriophages has been achieved through the use of glutaraldehyde as cross-linker. Highly sensitive detection of S. aureus in both synthetic and real samples was realized by the proposed MOF-bacteriophage biosensor based on the photoluminescence quenching phenomena: limit of detection (31 CFU/mL) and range of detection (40 to 4 × 10 8 CFU/mL). This is the first report exploiting the use of an MOF-bacteriophage complex for the biosensing of S. aureus. The results of our study highlight that the proposed biosensor is more sensitive than most of the previous methods while exhibiting some advanced features like specificity, regenerability, extended range of linear detection, and stability for long-term storage (even at room temperature).
Ko, Kiwoong; Yu, Shinae; Lee, Eun Hee; Park, Hyosoon; Woo, Hee-Yeon; Kwon, Min-Jung
2016-09-01
Various assays for detecting high-risk human papillomavirus (HR HPV) have been introduced recently, including the Abbott RealTime High-Risk HPV assay. We sought to compare the performance of Abbott PCR to Hybrid Capture 2 for the detection of HR HPV. A total of 941 cervical swab specimens were obtained. We submitted all specimens for HR HPV detection with HC2 and Abbott PCR, and then additionally analyzed discordant and concordant positive results using restriction fragment mass polymorphism (RFMP) genotyping analysis. HC2 detected one of 13 HR HPV types in 12.3% (116/941) of cases, while Abbott PCR detected one of 14 detectable HR HPV types in 12.9% (121/941) of cases. The overall agreement rate was 97.3% with a kappa coefficient of 0.879. Discordant results between these two assays were observed in 25 cases. HC2 showed a sensitivity of 90.0% and specificity of 95.9%, while Abbott PCR showed a sensitivity of 98.0% and specificity of 96.8% when using RFMP results as the gold standard. For HPV 16/18 detection, Abbott PCR showed 95.8%/88.9% sensitivity and 99.2%/99.8% specificity, respectively. The overall coinfection rate between HPV 16, 18 and non-16/18 was 9.9% (12/121) in Abbott PCR analysis. Considering its high agreement rate with HC2, higher sensitivity/specificity compared to HC2, and ability to differentiate HPV 16/18 from other HPV types, Abbott PCR could be a reliable laboratory testing method for the screening of HPV infections. © 2016 by the Association of Clinical Scientists, Inc.
Nucleic acid detection system and method for detecting influenza
Cai, Hong; Song, Jian
2015-03-17
The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-05
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-01
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930
Yu, Cui; Yang, Cuiyun; Song, Shaoyi; Yu, Zixiang; Zhou, Xueping; Wu, Jianxiang
2018-04-04
Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.
Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor.
Oueslati, Rania; Cheng, Cheng; Wu, Jayne; Chen, Jiangang
2018-06-15
Cocaine is one of the most used illegal recreational drugs. Developing an on-site test for cocaine use detection has been a focus of research effort, since it is essential to the control and legal action against drug abuse. Currently most of cocaine detection methods are time-consuming and require special or expensive equipment, and the detection often suffers from high cross-reactivity with cocaine metabolites and relative low sensitivity with the best limit of detection reported at sub nanomolar (nM) level. In this work, an aptasensor has been developed using capacitive monitoring of sensor surface incorporating alternating current electrokinetics effects to speed up molecular transport and minimize matrix effects. The aptasensor is rapid, low cost, highly sensitive and specific as well as simple-to-use for the detection of cocaine from serum. The assay has a sample-to-result time of 30 s, a limit of detection of 7.8 fM, and a linear response for cocaine ranging from 14.5fM to 14.5pM in standard buffer, which are great improvements from other reported cocaine sensors. Special buffer is used for serum cocaine detection, and a limit of detection of 13.4 fM is experimentally demonstrated for cocaine spiked in human serum (equivalent to 1.34pM cocaine in neat serum). The specificity of the biosensor is also demonstrated with structurally similar chemicals, ecgonine ethyl ester and methylecgonidine. This biosensor shows high promise in detection of low levels of cocaine from complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.
Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun
2016-11-01
Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost. Copyright © 2016. Published by Elsevier B.V.
Tsao, Chia-Wen; Yang, Zhi-Jie
2015-10-14
Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.
Influenza A virus H5-specific antibodies in mute swans (Cygnus olor) in the USA.
Kistler, Whitney M; Stallknecht, David E; Lebarbenchon, Camille; Pedersen, Kerri; Marks, David R; Mickley, Randy; DeLiberto, Thomas J; Yabsley, Michael J
2015-04-01
The use of serologic assays for influenza A virus (IAV) surveillance in wild birds has increased because of the availability of commercial enzyme-linked immunosorbent assays (ELISAs). Recently, an H5-specific blocking ELISA (bELISA) was shown to reliably detect H5-specific antibodies to low- and high-pathogenic H5 viruses in experimentally infected waterfowl. Mute Swans (Cygnus olor) were frequently associated with highly pathogenic H5N1 outbreaks in Europe and may have a similar role if highly pathogenic H5N1 is introduced into North America. We measured the prevalence of antibodies to the nucleoprotein and H5 protein in Mute Swans using three serologic assays. We collected 340 serum samples from Mute Swans in Michigan, New Jersey, New York, and Rhode Island, US. We detected antibodies to the IAV nucleoprotein in 66.2% (225/340) of the samples. We detected H5-specific antibodies in 62.9% (214/340) and 18.8% (64/340) using a modified H5 bELISA protocol and hemagglutination inhibition (HI) assay, respectively. The modified H5 bELISA protocol detected significantly more positive samples than did the manufacturer's protocol. We also tested 46 samples using virus neutralization. Neutralization results had high agreement with the modified H5 bELISA protocol and detected a higher prevalence than did the HI assay. These results indicate that North American Mute Swans have high nucleoprotein and H5 antibody prevalences.
Lin, Fan; Shi, Jianhui; Wang, Hanlin L; Ma, Xiao-Jun; Monroe, Robert; Luo, Yuling; Chen, Zongming; Liu, Haiyan
2018-05-09
Inconsistent data on detection of albumin expression by ribonucleic acid (RNA) in situ hybridization have been reported. We investigated the utility of RNAscope (Advanced Cell Diagnostics, Hayward, CA) in detection of albumin in hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (ICCs), and carcinomas from various organs using manual and automated staining. RNAscope for albumin detection was performed on 482 cases on tissue microarray sections and on 22 cases of ICC, including 14 surgical resection and eight core biopsy specimens. Thirty-six of 37 (97%) HCCs had detectable mRNA, whereas all non-HCC and non-ICC cases, except one lung adenocarcinoma, were negative for albumin. Fourteen of 22 ICCs (64%) were positive for albumin. RNAscope for albumin is highly sensitive and specific for identifying HCCs and is highly specific and moderately sensitive for detection of ICCs; however, rare carcinomas (non-HCC, non-ICC, and those with no hepatoid histomorphology) can also have aberrant expression of albumin.
2012-01-01
Background Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection. Results Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than the 2.8-μm diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for 105 CFU/mL) was significantly higher (P < 0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results. Conclusions IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food. PMID:23176167
Detection of IL-6 by magnetic nanoparticles grown with the assistance of mid-infrared lighting.
Jiang, Xiufeng; Zhang, Ye; Miao, Xiaofei; Li, Zenghui; Bao, Zengtao; Wang, Tong
2013-01-01
Nanomedical systems have attracted considerable attention primarily due to suitability in applications for specific cell selection through biomolecular targeting and rare cell detection enhancement in a diverse, multicellular population. In the present study, magnetic nanoparticles were prepared for use in high accuracy cell sensing. Magnetic nanoparticle growth was assisted by mid-infrared lighting. By this mechanism, a narrow window, estimated to be 2%, was achieved for the dimension distribution of grown nanoparticles. Combined with silicon nanowire (SiNW) transistors, a sensor with ultra high sensitivity for the detection of specific potential low abundance biomarkers has been achieved, which has been specifically used to detect interleukin-6 (IL-6) at extremely low concentrations. A novel biosensor with high sensitivity has been fabricated and utilized in the detection of IL-6 at 75 fM to 50 pM. The system consists of an SiNW transistor and magnetic nanoparticles with even dimension distribution. The novel sensor system is suitable for quantifying IL-6 at low concentrations in protein samples.
A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction
Costanzo, Salvatore; Zambrano, Gerardo; Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Nastri, Flavia; Pavone, Vincenzo
2017-01-01
A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations. PMID:29182568
Liu, Jian; Chen, Chunye; Zhu, Rui; Ye, Xiangzhong; Jia, Jizong; Yang, Lianwei; Wang, Yongmei; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhu, Hua; Zhao, Qinjian; Zhang, Jun; Cheng, Tong; Xia, Ningshao
2016-11-01
Varicella is a highly contagious disease caused by primary infection of Varicella zoster virus (VZV). Varicella can be severe or even lethal in susceptible adults, immunocompromised patients and neonates. Determination of the status of immunity to VZV is recommended for these high-risk populations. Furthermore, measurement of population immunity to VZV can help in developing proper varicella vaccination programmes. VZV glycoprotein E (gE) is an antigen that has been demonstrated to be a highly accurate indicator of VZV-specific immunity. In this study, recombinant gE (rgE) was used to establish a double antigen sandwich enzyme-linked immunosorbent assay (ELISA). The established sandwich ELISA showed high specificity and sensitivity in the detection of human sera, and it could detect VZV-specific antibodies at a concentration of 11.25 m IU/mL with a detection linearity interval of 11.25 to 360 m IU/mL (R 2 = 0.9985). The double gE antigen sandwich ELISA showed a sensitivity of 95.08 % and specificity of 100 % compared to the fluorescent-antibody-to-membrane-antigen (FAMA) test, and it showed a sensitivity of 100 % and a specificity of 94.74 % compared to a commercial neutralizing antibody detection kit. Thus, the established double antigen sandwich ELISA can be used as a sensitive and specific quantitative method to evaluate immunity to VZV.
Asati, Atul; Kachurina, Olga; Kachurin, Anatoly
2012-01-01
Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders. PMID:22952605
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Wangt, Dan-Chen; Hu, Li-Hui; Zhou, Yu-Hui; Huang, Yu-Ting; Li, Xinhua; Zhu, Jun-Jie
2014-04-01
An isothermal, highly sensitive and specific assay for the detection of hsa-miR-21 with the integration of QDs tagging and rolling circle amplification was offered. In addition, a dual channel strategy for miRNA detection was proposed: anodic stripping voltammetry (ASV) and fluorescent method were both performed for the final Cd2+ signal readout. The designed strategy exhibited good specificity to hsa-miR-21 and presented comparable detection results by detection methods.
Woo, Sungmin; Suh, Chong Hyun; Kim, Sang Youn; Cho, Jeong Yeon; Kim, Seung Hyup
2018-01-01
The purpose of this study was to perform a head-to-head comparison between high-b-value (> 1000 s/mm 2 ) and standard-b-value (800-1000 s/mm 2 ) DWI regarding diagnostic performance in the detection of prostate cancer. The MEDLINE and EMBASE databases were searched up to April 1, 2017. The analysis included diagnostic accuracy studies in which high- and standard-b-value DWI were used for prostate cancer detection with histopathologic examination as the reference standard. Methodologic quality was assessed with the revised Quality Assessment of Diagnostic Accuracy Studies tool. Sensitivity and specificity of all studies were calculated and were pooled and plotted in a hierarchic summary ROC plot. Meta-regression and multiple-subgroup analyses were performed to compare the diagnostic performances of high- and standard-b-value DWI. Eleven studies (789 patients) were included. High-b-value DWI had greater pooled sensitivity (0.80 [95% CI, 0.70-0.87]) (p = 0.03) and specificity (0.92 [95% CI, 0.87-0.95]) (p = 0.01) than standard-b-value DWI (sensitivity, 0.78 [95% CI, 0.66-0.86]); specificity, 0.87 [95% CI, 0.77-0.93] (p < 0.01). Multiple-subgroup analyses showed that specificity was consistently higher for high- than for standard-b-value DWI (p ≤ 0.05). Sensitivity was significantly higher for high- than for standard-b-value DWI only in the following subgroups: peripheral zone only, transition zone only, multiparametric protocol (DWI and T2-weighted imaging), visual assessment of DW images, and per-lesion analysis (p ≤ 0.04). In a head-to-head comparison, high-b-value DWI had significantly better sensitivity and specificity for detection of prostate cancer than did standard-b-value DWI. Multiple-subgroup analyses showed that specificity was consistently superior for high-b-value DWI.
Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne
2009-02-02
The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.
Nagata, Satoshi; Hamada, Tomofumi; Yamada, Norishige; Yokoyama, Seiya; Kitamoto, Sho; Kanmura, Yuji; Nomura, Masahiro; Kamikawa, Yoshiaki; Yonezawa, Suguru; Sugihara, Kazumasa
2012-09-01
The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC. Copyright © 2012 American Cancer Society.
Powell, Rebecca L R; Ouellette, Ian; Lindsay, Ross W; Parks, Christopher L; King, C Richter; McDermott, Adrian B; Morrow, Gavin
2013-06-01
Results from recent HIV-1 vaccine studies have indicated that high serum antibody (Ab) titers may not be necessary for Ab-mediated protection, and that Abs localized to mucosal sites might be critical for preventing infection. Enzyme-linked immunosorbent assay (ELISA) has been used for decades as the gold standard for Ab measurement, though recently, highly sensitive microsphere-based assays have become available, with potential utility for improved detection of Abs. In this study, we assessed the Bio-Plex(®) Suspension Array System for the detection of simian immunodeficiency virus (SIV)-specific Abs in rhesus macaques (RMs) chronically infected with SIV, whose serum or mucosal SIV-specific Ab titers were negative by ELISA. We developed a SIVmac239-specific 4-plex bead array for the simultaneous detection of Abs binding to Env, Gag, Pol, and Nef. The 4-plex assay was used to quantify SIV-specific serum IgG and rectal swab IgA titers from control (SIV-naive) and SIVmac239-infected RMs. The Bio-Plex assay specifically detected anti-SIV Abs in specimens from SIV-infected animals for all four analytes when compared to SIV-naive control samples (p≤0.04). Furthermore, in 70% of Env and 79% of Gag ELISA-negative serum samples, specific Ab was detected using the Bio-Plex assay. Similarly, 71% of Env and 48% of Gag ELISA-negative rectal swab samples were identified as positive using the Bio-Plex assay. Importantly, assay specificity (i.e., probability of true positives) was comparable to ELISA (94%-100%). The results reported here indicate that microsphere-based methods provide a substantial improvement over ELISA for the detection of Ab responses, aid in detecting specific Abs when analyzing samples containing low levels of Abs, such as during the early stages of a vaccine trial, and may be valuable in attempts to link protective efficacy of vaccines with induced Ab responses.
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-29
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity
NASA Astrophysics Data System (ADS)
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-01
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
High performance of a new PCR-based urine assay for HPV-DNA detection and genotyping.
Tanzi, Elisabetta; Bianchi, Silvia; Fasolo, Maria Michela; Frati, Elena R; Mazza, Francesca; Martinelli, Marianna; Colzani, Daniela; Beretta, Rosangela; Zappa, Alessandra; Orlando, Giovanna
2013-01-01
Human papillomavirus (HPV) testing has been proposed as a means of replacing or supporting conventional cervical screening (Pap test). However, both methods require the collection of cervical samples. Urine sample is easier and more acceptable to collect and could be helpful in facilitating cervical cancer screening. The aim of this study was to evaluate the sensitivity and specificity of urine testing compared to conventional cervical smear testing using a PCR-based method with a new, designed specifically primer set. Paired cervical and first voided urine samples collected from 107 women infected with HIV were subjected to HPV-DNA detection and genotyping using a PCR-based assay and a restriction fragment length polymorphism method. Sensitivity, specificity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) were calculated using the McNemar's test for differences. Concordance between tests was assessed using the Cohen's unweighted Kappa (k). HPV DNA was detected in 64.5% (95% CI: 55.1-73.1%) of both cytobrush and urine samples. High concordance rates of HPV-DNA detection (k = 0.96; 95% CI: 0.90-1.0) and of high risk-clade and low-risk genotyping in paired samples (k = 0.80; 95% CI: 0.67-0.92 and k = 0.74; 95% CI: 0.60-0.88, respectively) were observed. HPV-DNA detection in urine versus cervix testing revealed a sensitivity of 98.6% (95% CI: 93.1-99.9%) and a specificity of 97.4% (95% CI: 87.7-99.9%), with a very high NPV (97.4%; 95% CI: 87.7-99.9%). The PCR-based assay utilized in this study proved highly sensitive and specific for HPV-DNA detection and genotyping in urine samples. These data suggest that a urine-based assay would be a suitable and effective tool for epidemiological surveillance and, most of all, screening programs. Copyright © 2012 Wiley Periodicals, Inc.
Epidemiology of Chronic Wasting Disease: PrPres Detection, Shedding, and Environmental Contamination
2008-08-01
encephalopathies (TSEs) in that it occurs in free- ranging as well as captive wild ruminants and environmental contamination appears to play a...sensitivity and high specificity and second, dogma suggests that current assays for the detection of PrPres utilize protease digestion . Proving a highly...to achieve specificity as samples require protease digestion , protein precipitation, or extensive processing in order to distinguish PrPres from the
Dixit, Chandra K.; Kadimisetty, Karteek; Otieno, Brunah A.; Tang, Chi; Malla, Spundana; Krause, Colleen E.; Rusling, James F.
2015-01-01
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. Simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that doesn’t require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for highly sensitive detection of the panel of cancer-specific biomarkers with high specificity and at the same time have the potential to be translated into a POC. PMID:26525998
Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F
2016-01-21
Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.
Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa.
Wylie, J L; Worobec, E A
1993-07-01
Specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa was examined. At a concentration of [14C]glucose near the Vmax of the system, inhibition by maltose, galactose, and xylose was detected. This inhibition is similar to that detected in earlier in vivo studies and correlates with the known specificity of OprB, a glucose-specific porin of P. aeruginosa. At a level of [14C]glucose 100 times lower, only unlabelled glucose inhibited uptake to any extent. This matches the known in vitro specificity of the periplasmic glucose binding protein. These findings were used to explain the discrepancy between earlier in vivo and in vitro results reported in the literature.
MicroRNA Detection by DNA-Mediated Liposome Fusion.
Jumeaux, Coline; Wahlsten, Olov; Block, Stephan; Kim, Eunjung; Chandrawati, Rona; Howes, Philip D; Höök, Fredrik; Stevens, Molly M
2018-03-02
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.
2016-05-01
The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis. Electronic supplementary information (ESI) available: Base pair mismatch tuning of CProbes. Binding capacity of the QDs. Theoretical limit of detection (LOD) for the monoplex systems. Kinetics of strand displacement. Kinetics of QProbe-CProbe binding. LOD and saturation point calculations. See DOI: 10.1039/c6nr00484a
Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu
2016-05-01
Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions.
Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen
NASA Astrophysics Data System (ADS)
Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd
2018-02-01
The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.
Detecting decay fungi with antibody-based tests and immunoassays
Carol A. Clausen
2003-01-01
Early detection of wood decay can prolong the service life of wood. Antibodies are the ideal probe for detecting fungi that cause biodeterioration because they are highly specific and can quantitatively determine the fungal antigen concentration from highly complex structures, such as wood. Polyclonal antibodies recognize multiple chemical sites of the targeted...
Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua
2018-01-05
A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.
Crouch, C F
1995-01-01
AIMS--To evaluate the clinical performance of enzyme immunoassays for IgG and IgM antibodies to Toxoplasma gondii based on enhanced chemiluminescence. METHODS--Classification of routine clinical samples from the originating laboratories was compared with that obtained using the chemiluminescence based assays. Resolution of discordant results was achieved by testing in alternative enzyme immunoassays (IgM) or by an independent laboratory using the dye test (IgG). RESULTS--Compared with resolved data, the IgM assay was found to be highly specific (100%) with a cut off selected to give optimal performance with respect to both the early detection of specific IgM and the detection of persistent levels of specific IgM (sensitivity 98%). Compared with resolved data, the IgG assay was shown to have a sensitivity and a specificity of 99.4%. CONCLUSIONS--The Amerlite Toxo IgM assay possesses high levels of sensitivity and specificity. Assay interference due to rheumatoid factor like substances is not a problem. The Amerlite Toxo IgG assay possesses good sensitivity and specificity, but is less sensitive for the detection of seroconversion than methods detecting both IgG and IgM. PMID:7560174
Hestekin, Christa N; Lin, Jennifer S; Senderowicz, Lionel; Jakupciak, John P; O'Connell, Catherine; Rademaker, Alfred; Barron, Annelise E
2011-11-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here, we demonstrate the first blinded study using microchip electrophoresis (ME)-SSCP/HA. We demonstrate the ability of ME-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5-9 in a blinded study in an analysis time of <10 min. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Rui; Wang, Lei; Zhao, Haiyan; Jiang, Wei
2016-12-15
MicroRNAs (miRNAs) are vital for many biological processes and have been regarded as cancer biomarkers. Specific and sensitive detection of miRNAs is essential for cancer diagnosis and therapy. Herein, a split recognition mode combined with cascade signal amplification strategy is developed for highly specific and sensitive detection of miRNA. The split recognition mode possesses two specific recognition processes, which are based on toehold-mediated strand displacement reaction (TSDR) and direct hybridization reaction. Two recognition probes, hairpin probe (HP) with overhanging toehold domain and assistant probe (AP), are specially designed. Firstly, the toehold domain of HP and AP recognize part of miRNA simultaneously, accompanied with TSDR to unfold the HP and form the stable DNA Y-shaped junction structure (YJS). Then, the AP in YJS can further act as primer to initiate strand displacement amplification, releasing numerous trigger sequences. Finally, the trigger sequences hybridize with padlock DNA to initiate circular rolling circle amplification and generate enhanced fluorescence responses. In this strategy, the dual recognition effect of split recognition mode guarantees the excellent selectivity to discriminate let-7b from high-homology sequences. Furthermore, the high amplification efficiency of cascade signal amplification guarantees a high sensitivity with the detection limit of 3.2 pM and the concentration of let-7b in total RNA sample extracted from Hela cells is determined. These results indicate our strategy will be a promising miRNA detection strategy in clinical diagnosis and disease treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly personalized detection of minimal Ewing sarcoma disease burden from plasma tumor DNA.
Hayashi, Masanori; Chu, David; Meyer, Christian F; Llosa, Nicolas J; McCarty, Gregory; Morris, Carol D; Levin, Adam S; Wolinsky, Jean-Paul; Albert, Catherine M; Steppan, Diana A; Park, Ben Ho; Loeb, David M
2016-10-01
Even though virtually all patients with Ewing sarcoma achieve a radiographic complete response, up to 30% of patients who present with localized disease and up to 90% of those who present with metastases experience a metastatic disease recurrence, highlighting the inability to identify patients with residual disease at the end of therapy. Up to 95% of Ewing sarcomas carry a driving EWS-ETS translocation that has an intronic breakpoint that is specific to each tumor, and the authors developed a system to quantitatively detect the specific breakpoint DNA fragment in patient plasma. The authors used a long-range multiplex polymerase chain reaction (PCR) technique to identify tumor-specific EWS-ETS breakpoints in Ewing sarcoma cell lines, patient-derived xenografts, and patient tumors, and this sequence was used to design tumor-specific primer sets to detect plasma tumor DNA (ptDNA) by droplet digital PCR in xenograft-bearing mice and patients. Tumor-specific breakpoint DNA fragments were detected in the plasma of xenograft-bearing mice, and the signal correlated with tumor burden during primary tumor growth, after surgical resection, and at the time of metastatic disease recurrence. Furthermore, the authors were able to detect the specific breakpoint in plasma DNA obtained from 3 patients with Ewing sarcoma and in 2 patients the authors were able to detect ptDNA when there was radiographically undetectable disease present. The use of droplet digital PCR to detect tumor-specific EWS-ETS fusion gene breakpoint ptDNA fragments can be developed into a highly personalized biomarker of disease recurrence that can be optimized in animal studies for ultimate use in patients. Cancer 2016;122:3015-3023. © 2016 American Cancer Society. © 2016 American Cancer Society.
Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P
2012-12-01
Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Carratalà, Anna; Rusinol, Marta; Hundesa, Ayalkibet; Biarnes, Mar; Rodriguez-Manzano, Jesus; Vantarakis, Apostolos; Kern, Anita; Suñen, Ester; Girones, Rosina; Bofill-Mas, Sílvia
2012-10-01
Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination.
Autoantibody Approach for Serum-Based Detection of Head and Neck Cancer — EDRN Public Portal
Our long term goal is to improve survival of patients with head and neck squamous cell carcinoma (HNSCC) through early detection using simple noninvasive serum assays in an ELISA-like platform. The objective of this proposal is to improve and confirm the validity of a diagnostic serum assay based on a panel of cancer-specific biomarkers for early cancer detection in patients with HNSCC. Our central hypothesis is that the detection of antibody responses to HNSCC-specific antigens, using a panel of biomarkers, can provide sufficient sensitivity and specificity suitable for clinical testing in the primary setting to screen and diagnose HNSCC in high risk populations to improve early detection.
NASA Astrophysics Data System (ADS)
Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius
2015-09-01
New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.
Aptamer-based SERRS Sensor for Thrombin Detection
Cho, Hansang; Baker, Brian R.; Wachsmann-Hogiu, Sebastian; Pagba, Cynthia V.; Laurence, Ted A.; Lane, Stephen M.; Lee, Luke P.; Tok, Jeffrey B.-H.
2012-01-01
We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human α-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5'-capped, 3'-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes. PMID:19367849
A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.
Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han
2014-02-01
The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.
Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection
Kong, Na; Song, Shanshan; Peng, Juan; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai
2015-01-01
An indirect competitive enzyme-linked immunosorbent assay (icELISA) and an immunochromatographic strip assay using a highly specific monoclonal antibody, were developed to detect methyltestosterone (MT) residues in animal feed. The optimized icELISA had a half-inhibition concentration value of 0.26 ng/mL and a limit of detection value of 0.045 ng/mL. There was no cross-reactivity with eight analogues, revealing high specificity for MT. Based on icELISA results, the recovery rate of MT in animal feed was 82.4%–100.6%. The results were in accordance with those obtained by gas chromatography-mass spectrometry. The developed immunochromatographic strip assay, as the first report for MT detection, had a visual cut-off value of 1 ng/mL in PBS, 2.5 ng/g in fish feed, and 2.5 ng/g in pig feed. Therefore, these immunoassays are useful and fast tools for MT residue detection in animal feed. PMID:25938198
Mucosal immunogenicity of plant lectins in mice
Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O’Hagan, D T
2000-01-01
The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated [Viscum album (mistletoe lectin 1; ML‐1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA‐1)] stimulated the production of specific serum IgG and IgA antibody after three i.n. or oral doses. Immunization with ML‐1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML‐1 was comparable to that induced by CT, although a 10‐fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i.n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA‐1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected. PMID:10651938
The Detection of Protein via ZnO Resonant Raman Scattering Signal
NASA Astrophysics Data System (ADS)
Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun
2008-03-01
Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.
ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts.
Dalton, K P; Podadera, A; Granda, V; Nicieza, I; Del Llano, D; González, R; de Los Toyos, J R; García Ocaña, M; Vázquez, F; Martín Alonso, J M; Prieto, J M; Parra, F; Casais, R
2018-01-01
The emergence and rapid spread of variant of the rabbit hemorrhagic disease virus (RHDV2) require new diagnostic tools to ensure that efficient control measures are adopted. In the present study, a specific sandwich enzyme-linked immunosorbent assay (ELISA) for detection of RHDV2 antigens in rabbit liver homogenates, based on the use of an RHDV2-specific monoclonal antibody (Mab) 2D9 for antigen capture and an anti-RHDV2 goat polyclonal antibody (Pab), was developed. This ELISA was able to successfully detect RHDV2 and RHDV2 recombinant virions with high sensitivity (100%) and specificity (97.22%). No cross-reactions were detected with RHDV G1 viruses while low cross-reactivity was detected with one of the RHDVa samples analyzed. The ELISA afforded good repeatability and had high analytical sensitivity as it was able to detect a dilution 1:163,640 (6.10ng/mL) of purified RHDV-N11 VLPs, which contained approximately 3.4×10 8 molecules/mL particles. The reliable discrimination between closely related viruses is crucial to understand the epidemiology and the interaction of co-existing pathogens. In the work described here we design and validate an ELISA for laboratory based, specific, sensitive and reliable detection of RHDVb/RHDV2. This ELISA is a valuable, specific virological tool for monitoring virus circulation, which will permit a better control of this disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanotechnology: a promising method for oral cancer detection and diagnosis.
Chen, Xiao-Jie; Zhang, Xue-Qiong; Liu, Qi; Zhang, Jing; Zhou, Gang
2018-06-11
Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.
Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.
Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M
2016-12-20
Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
Mertens, Marc; Vatansever, Zati; Mrenoshki, Slavcho; Krstevski, Kiril; Stefanovska, Jovana; Djadjovski, Igor; Cvetkovikj, Iskra; Farkas, Robert; Schuster, Isolde; Donnet, Fabien; Comtet, Loic; Tordo, Noël; Ben Mechlia, Mohamed; Balkema-Buschmann, Anne; Mitrov, Dine; Groschup, Martin H.
2015-01-01
Background There are only few assays available for the detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-specific antibodies in animals, and data about diagnostic sensitivity and specificity are incompletely documented for most of these tests. This is unfortunate since CCHFV antibodies in animals can be used as indicator for virus circulation in a geographic area and therewith potential risk of human exposure. This paper therefore reports on a novel ELISA for the detection of CCHFV-specific antibodies in cattle and on its application for testing ruminant sera from the Former Yugoslav Republic of Macedonia. Principal Findings A highly sensitive and specific ELISA was developed to detect CCHFV-specific IgG antibodies in cattle. The assay was validated by using 503 negative serum samples from a country where CCHFV has never been detected until now, and by using 54 positive serum samples. The positive sera were verified by using two commercially available assays (for testing human serum) which we have adapted for use in animals. The sensitivity of the novel ELISA was 98% and its specificity 99%. The presence of Hyalomma ticks was demonstrated in the Former Yugoslav Republic of Macedonia and depending on the region antibody prevalence rates up to 80% were detected in the cattle population. Conclusion This article describes a fully validated, highly sensitive and specific ELISA for the detection of CCHFV-specific IgG antibodies in cattle. Using this assay, CCHFV-specific antibodies were detected for the first time in cattle in the Former Yugoslav Republic of Macedonia, giving evidence for an active circulation of this virus in the country. Supporting this conclusion, the occurrence of the main vector of CCHFV was demonstrated in the present work for the first time in Former Yugoslav Republic of Macedonia. PMID:25742017
Starkey, Jean R; Makarov, Nikolay S; Drobizhev, Mikhail; Rebane, Aleksander
2012-07-01
We describe novel imaging protocols that allow detection of small cancer cell colonies deep inside tissue phantoms with high sensitivity and specificity. We compare fluorescence excited in Styryl-9M molecules by femtosecond pulses at near IR wavelengths, where Styryl-9M shows the largest dependence of the two-photon absorption (2PA) cross section on the local environment. We show that by calculating the normalized ratio of the two-photon excited fluorescence (2PEF) intensity at 1200 nm and 1100 nm excitation wavelengths we can achieve high sensitivity and specificity for determining the location of cancer cells surrounded by normal cells. The 2PEF results showed a positive correlation with the levels of MDR1 proteins expressed by the cells, and, for high MDR1 expressors, as few as ten cancer cells could be detected. Similar high sensitivity is also demonstrated for tumor colonies induced in mouse external ears. This technique could be useful in early cancer detection, and, perhaps, also in monitoring dormant cancer deposits.
Le Strat, Yann
2017-01-01
The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489
This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...
Tamaro, Giorgio; Donato, Michela; Princi, Tanja; Parco, Sergio
2009-04-01
A symptom-based diagnosis of infectious mononucleosis is not sufficiently accurate, since some clinical symptoms of infectious mononucleosis are also detected in other virally induced diseases. Moreover, not all patients suffering from infectious mononucleosis show circulating atypical lymphocytes, which are considered characteristic of this disease. Therefore, when this disorder is suspected, serum analyses are carried out to detect the presence of certain immunoglobulins associated with infectious mononucleosis in the patient's blood. The aim of this study was to evaluate the sensitivity and the specificity of a rapid test detecting heterophil antibodies in diagnosing infectious mononucleosis in a paediatric population. We considered 163 paediatric patients with suspected infectious mononucleosis and we tested their serums to detect heterophil antibodies (using an inexpensive and rapid test) and specific immunoglobulins directed against Epstein-Barr virus (EBV) (these assays are known to be characterized by high sensitivity and specificity, but are more expensive and time-consuming). By comparing the results of the rapid test with those of the other assays, we found that the sensitivity of the first test was 61.8%, whereas its specificity was sufficiently high (about 90%). We show that, in paediatric patients, the detection of heterophil antibodies is not a very sensitive test, therefore the determination of immunoglobulins against specific antigens of EBV is recommended.
Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie
2016-06-15
Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs. Copyright © 2016 Elsevier B.V. All rights reserved.
CAO, Lili; CHENG, Ronghua; YAO, Lin; YUAN, Shuxian; YAO, Xinhua
2013-01-01
ABSTRACT The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6 primers targeting a highly conserved region of the GRA1 gene was developed to diagnose Toxoplasma gondii. The reaction time of the LAMP assay was shortened to 30 min after optimizing the reaction system. The LAMP assay was found to be highly specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic protocol to quantitate T. gondii DNA and generated a log-linear regression plot by plotting the time-to-threshold values against genomic equivalent copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples obtained from 6 pig farms. The LAMP assay established in this study resulted in simple, specific, sensitive and rapid detection of T. gondii DNA and is expected to play an important role in clinical detection of T. gondii. PMID:23965849
Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib
2017-03-15
A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan
2014-01-01
Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.
Carratalà, Anna; Rusinol, Marta; Hundesa, Ayalkibet; Biarnes, Mar; Rodriguez-Manzano, Jesus; Vantarakis, Apostolos; Kern, Anita; Suñen, Ester; Bofill-Mas, Sílvia
2012-01-01
Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination. PMID:22904047
Lee, Su Jin; Kwon, Young Seop; Lee, Ji-eun; Choi, Eun-Jin; Lee, Chang-Hee; Song, Jae-Young; Gu, Man Bock
2013-01-02
Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome disease (PRRS), a disease that has a significant and economic impact on the swine industry. In this study, single-stranded DNA (ssDNA) aptamers with high specificity and affinity against VR-2332 strain of PRRSV type II were successfully obtained. Of 19 candidates, the LB32 aptamer was found to be the most specific and sensitive to VR-2332 strain according to an aptamer-based surface plasmon resonance (SPR) analysis. The detection of VR-2332 of PRRSV type II was successfully accomplished using the enzyme-linked antibody-aptamer sandwich (ELAAS) method. The detection limit of ELAAS was 4.8 × 10(0) TCID(50)/mL that is comparable to some of the previous reports of the PCR-based detection but does not require any complicated equipment or extra costs. Moreover, this ELAAS-based PRRSV detection showed similar sensitivity for both the VR-2332 samples spiked in diluted swine serum and in buffer. Therefore, this VR-2332 strain-specific aptamer and its assay method with high specificity can be used as an alternative method for the fast and precise detection of PRRSV.
Wood-Bouwens, Christina; Lau, Billy T; Handy, Christine M; Lee, HoJoon; Ji, Hanlee P
2017-09-01
We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type-bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich
2014-10-01
Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.
[Skin prick testing versus immumofluorescence testing for mites allergens].
Zhang, Yong; Wang, Zhiyi; Chen, Wei; Ji, Junfeng; Wang, Tianyou; Wang, Qiuping; Li, Zeqing
2012-03-01
To discuss the characteristics of skin prick test (SPT) and immumofluorescence method (IFM) in detecting the atopy of dermatophagoides pteronyssinus (Dp) and dermatophagoides farinae (Df)and explore the relationship of them. Four hundred and ninety-one patients with two or more symptoms of nasal obstruction,itching, sneezing and rhinorrhea received SPT and serum specific IgE detection using IFM. SPT was more sensitive than IFM in detecting the atopy of Dp and Df (P < 0.05). If using the IFM as the gold standard, the sensitivity of SPT was all above 95% with the specificity a little bit lower than 80%. These two methods had a positive correlation in detecting the atopy of Dp and Df (r = 0.779, 0.776; P < 0.01). The sIgE concentrations of these two mites were highly correlated with each other (r = 0.954, P < 0.01), the SPT was highly correlated with each other (r = 0. 946, P < 0.01). SPT was more sensitive than IFM in detecting the atopy of Dp and Df. In most cases, SPT can replace IFM to detect patients' allergia on mites. Besides, it is good enough to detect either of the serum specific IgE concentrations of Dp and Df.
Tanabe, Soichi; Miyauchi, Eiji; Muneshige, Akemi; Mio, Kazuhiro; Sato, Chikara; Sato, Masahiko
2007-07-01
A PCR method to detect porcine DNA was developed for verifying the allergen labeling of foods and for identifying hidden pork ingredients in processed foods. The primer pair, F2/R1, was designed to detect the gene encoding porcine cytochrome b for the specific detection of pork with high sensitivity. The amplified DNA fragment (130 bp) was specifically detected from porcine DNA, while no amplification occurred with other species such as cattle, chicken, sheep, and horse. When the developed PCR method was used for investigating commercial food products, porcine DNA was clearly detected in those containing pork in the list of ingredients. In addition, 100 ppb of pork in heated gyoza (pork and vegetable dumpling) could be detected by this method. This method is rapid, specific and sensitive, making it applicable for detecting trace amounts of pork in processed foods.
Wong, O G; Ho, M W; Tsun, O K; Ng, A K; Tsui, E Y; Chow, J N; Ip, P P; Cheung, A N
2018-03-26
To evaluate the performance of an automated DNA-image-cytometry system as a tool to detect cervical carcinoma. Of 384 liquid-based cervical cytology samples with available biopsy follow-up were analyzed by both the Imager System and a high-risk HPV test (Cobas). The sensitivity and specificity of Imager System for detecting biopsy proven high-grade squamous intraepithelial lesion (HSIL, cervical intraepithelial neoplasia [CIN]2-3) and carcinoma were 89.58% and 56.25%, respectively, compared to 97.22% and 23.33% of HPV test but additional HPV 16/18 genotyping increased the specificity to 69.58%. The sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions among atypical squamous cells of undetermined significance samples were 80.00% and 70.53%, respectively, compared to 100% and 11.58% of HPV test whilst the HPV 16/18 genotyping increased the specificity to 77.89%. Among atypical squamous cells-cannot exclude HSIL, the sensitivity and specificity of Imager System for predicting HSIL+ (CIN2-3+) lesions upon follow up were 82.86% and 33.33%%, respectively, compared to 97.14% and 4.76% of HPV test and the HPV 16/18 genotyping increased the specificity to 19.05%. Among low-grade squamous intraepithelial lesion cases, the sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions were 66.67% and 35.71%%, respectively, compared to 66.67% and 29.76% of HPV test while HPV 16/18 genotyping increased the specificity to 79.76%. The overall results of imager and high-risk HPV test agreed in 69.43% (268) of all samples. The automated imager system and HPV 16/18 genotyping can enhance the specificity of detecting HSIL+ (CIN2-3+) lesions. © 2018 John Wiley & Sons Ltd.
Latner, Donald R.; McGrew, Marcia; Williams, Nobia; Lowe, Luis; Werman, Roniel; Warnock, Eli; Gallagher, Kathleen; Doyle, Peter; Smole, Sandra; Lett, Susan; Cocoros, Noelle; DeMaria, Alfred; Konomi, Raimond; Brown, Cedric J.; Rota, Paul A.; Bellini, William J.; Hickman, Carole J.
2011-01-01
Although high measles, mumps, and rubella (MMR) vaccination coverage has been successful in dramatically reducing mumps disease in the United States, mumps (re)infections occasionally occur in individuals who have been either previously vaccinated or naturally infected. Standard diagnostics that detect virus or virus-specific antibody are dependable for confirming primary mumps infection in immunologically naïve persons, but these methods perform inconsistently for individuals with prior immune exposure. We hypothesized that detection of activated mumps-specific antibody-secreting B cells (ASCs) by enzyme-linked immunospot (ELISPOT) assay could be used as a more reliable diagnostic. To test this, a time course of virus-specific ASC responses was measured by ELISPOT assay following MMR vaccination of 16 previously vaccinated or naturally exposed adult volunteers. Mumps-specific ASCs were detectable in 68% of these individuals at some point during the first 3 weeks following revaccination. In addition, mumps-specific ASCs were detected in 7/7 previously vaccinated individuals who recently had been infected as part of a confirmed mumps outbreak. These data suggest that ELISPOT detection of mumps-specific ASCs has the potential for use as an alternative method of diagnosis when suspect cases cannot be confirmed by detection of IgM or virus. In addition, it was determined that mumps-specific memory B cells are detected at a much lower frequency than measles- or rubella-specific cells, suggesting that mumps infection may not generate robust B-cell memory. PMID:21047998
Four human Plasmodium species quantification using droplet digital PCR.
Srisutham, Suttipat; Saralamba, Naowarat; Malleret, Benoit; Rénia, Laurent; Dondorp, Arjen M; Imwong, Mallika
2017-01-01
Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.
He, Shengfa; Li, Xin; Gao, Jinyan; Tong, Ping; Chen, Hongbing
2017-07-15
Bovine β-lactoglobulin (BLG) is the main allergen in cows' milk, and the most commonly used method for detecting BLG is enzyme-linked immunosorbent assay (ELISA). However, antibodies used in commercial ELISA kits do not recognize specifically BLG IgE epitopes. Here, an antibody specific to IgE linear epitopes for BLG was used to develop a sandwich ELISA using a rabbit anti-BLG polyclonal antibody. The linear range for BLG detection was 31.25-8000ng/mL and limit of detection was 1.96ng/mL. BLG content in dairy samples was determined, and there was a good agreement between this immunoassay and reversed-phase high-performance liquid chromatography with high recovery. Additionally, BLG content in food samples had an average recovery of 104.25%. Allergenic residues were also detected in hydrolyzed infant formulas. The method developed could be a practical approach to determine BLG and its allergenic residues in food with a high degree of sensitivity, reliability and recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guo, Xu-Guang; Zhou, Yong-Zhuo; Li, Qin; Wang, Wei; Wen, Jin-Zhou; Zheng, Lei; Wang, Qian
2018-04-18
To detect Zika virus more rapidly and accurately, we developed a novel method that utilized a real-time fluorescence reverse transcription loop-mediated isothermal amplification (LAMP) technique. The NS5 gene was amplified by a set of six specific primers that recognized six distinct sequences. The amplification process, including 60 min of thermostatic reaction with Bst DNA polymerase following real-time fluorescence reverse transcriptase using genomic Zika virus standard strain (MR766), was conducted through fluorescent signaling. Among the six pairs of primers that we designate here, NS5 was the most efficient with a high sensitivity of up to 3.3 ng/μl and reproducible specificity on eight pathogen samples that were used as negative controls. The real-time fluorescence reverse transcription LAMP detection process can be completed within 35 min. Our study demonstrated that real-time fluorescence reverse transcription LAMP could be highly beneficial and convenient clinical application to detect Zika virus due to its high specificity and stability.
Li, Fengqin; Xu, Yanmei; Yu, Xiang; Yu, Zhigang; He, Xunjun; Ji, Hongrui; Dong, Jinghao; Song, Yongbin; Yan, Hong; Zhang, Guiling
2016-08-15
One "signal on" electrochemical sensing strategy was constructed for the detection of a specific hepatitis B virus (HBV) gene sequence based on the protection-displacement-hybridization-based (PDHB) signaling mechanism. This sensing system is composed of three probes, one capturing probe (CP) and one assistant probe (AP) which are co-immobilized on the Au electrode surface, and one 3-methylene blue (MB) modified signaling probe (SP) free in the detection solution. One duplex are formed between AP and SP with the target, a specific HBV gene sequence, hybridizing with CP. This structure can drive the MB labels close to the electrode surface, thereby producing a large detection current. Two electrochemical testing techniques, alternating current voltammetry (ACV) and cyclic voltammetry (CV), were used for characterizing the sensor. Under the optimized conditions, the proposed sensor exhibits a high sensitivity with the detection limit of ∼5fM for the target. When used for the discrimination of point mutation, the sensor also features an outstanding ability and its peculiar high adjustability. Copyright © 2016 Elsevier B.V. All rights reserved.
Nakanishi, Hideo; Akagi, Tadamichi; Hangai, Masanori; Kimura, Yugo; Suda, Kenji; Kumagai, Kyoko Kawashima; Morooka, Satoshi; Ikeda, Hanako Ohashi; Yoshimura, Nagahisa
2015-07-01
We aimed to determine the sensitivity and specificity of the normative database of non-myopic and highly myopic eyes of the macular ganglion cell complex (mGCC) thickness embedded in the NIDEK RS-3000 spectral-domain optical coherence tomography (SD-OCT) for detecting early glaucoma in highly myopic eyes. Forty-seven highly myopic eyes (axial length ≥26.0 mm) of 47 subjects were studied. The SD-OCT images were used to determine the mGCC thickness within a 9-mm diameter circle centered on the fovea. The sensitivity and specificity of the non-myopic database were compared to that of the highly myopic database for distinguishing the early glaucomatous eyes from the non-glaucomatous eyes. The mGCC scans were classified as abnormal if at least one of the eight sectors of the significance map was < 1 % of the normative thickness. Twenty-one eyes were diagnosed to be non-glaucomatous and 26 eyes to have early glaucoma. . The average mGCC thickness was significantly thinner (80.9 ± 8.5 μm) in the early glaucoma group than in the non-glaucomatous group (91.2 ± 7.5 μm; p <1 × 10(-4)). The sensitivity was 96.2 % and specificity was 47.6 % when the non-myopic database was used, and the sensitivity was 92.3 % and the specificity was 90.5 % when the highly myopic database was used. The difference in the specificity was significant (p < 0.01). The significantly higher specificity of the myopic normative database for detecting early glaucoma in highly myopic eyes will lead to fewer false positive diagnoses. The database obtained from highly myopic eyes should be used when evaluating the mGCC thickness of highly myopic eyes.
Quantifying the effect of side branches in endothelial shear stress estimates
Giannopoulos, Andreas A.; Chatzizisis, Yiannis S.; Maurovich-Horvat, Pal; Antoniadis, Antonios P.; Hoffmann, Udo; Steigner, Michael L.; Rybicki, Frank J.; Mitsouras, Dimitrios
2016-01-01
Background and aims Low and high endothelial shear stress (ESS) is associated with coronary atherosclerosis progression and high-risk plaque features. Coronary ESS is currently assessed via computational fluid dynamic (CFD) simulation in the lumen geometry determined from invasive imaging such as intravascular ultrasound and optical coherence tomography. This process typically omits side branches of the target vessel in the CFD model as invasive imaging of those vessels is not clinically-indicated. The purpose of this study was to determine the extent to which this simplification affects the determination of those regions of the coronary endothelium subjected to pathologic ESS. Methods We determined the diagnostic accuracy of ESS profiling without side branches to detect pathologic ESS in the major coronary arteries of 5 hearts imaged ex vivo with CT angiography. ESS of the three major coronary arteries was calculated both without (test model), and with (reference model) inclusion of all side branches >1.5 mm in diameter, using previously-validated CFD approaches. Diagnostic test characteristics (accuracy, sensitivity, specificity and negative and positive predictive value [NPV/PPV]) with respect to the reference model were assessed for both the entire length as well as only the proximal portion of each major coronary artery, where the majority of high-risk plaques occur. Results Using the model without side branches overall accuracy, sensitivity, specificity, NPV and PPV were 83.4%, 54.0%, 96%, 95.9% and 55.1%, respectively to detect low ESS, and 87.0%, 67.7%, 90.7%, 93.7% and 57.5%, respectively to detect high ESS. When considering only the proximal arteries, test characteristics differed for low and high ESS, with low sensitivity (67.7%) and high specificity (90.7%) to detect low ESS, and low sensitivity (44.7%) and high specificity (95.5%) to detect high ESS. Conclusions The exclusion of side branches in ESS vascular profiling studies greatly reduces the ability to detect regions of the major coronary arteries subjected to pathologic ESS. Single-conduit models can in general only be used to rule out pathologic ESS. PMID:27372207
Quantifying the effect of side branches in endothelial shear stress estimates.
Giannopoulos, Andreas A; Chatzizisis, Yiannis S; Maurovich-Horvat, Pal; Antoniadis, Antonios P; Hoffmann, Udo; Steigner, Michael L; Rybicki, Frank J; Mitsouras, Dimitrios
2016-08-01
Low and high endothelial shear stress (ESS) is associated with coronary atherosclerosis progression and high-risk plaque features. Coronary ESS is currently assessed via computational fluid dynamic (CFD) simulation of coronary blood flow in the lumen geometry determined from invasive imaging such as intravascular ultrasound and optical coherence tomography. This process typically omits side branches of the target vessel in the CFD model as invasive imaging of those vessels is not usually clinically-indicated. The purpose of this study was to determine the extent to which this simplification affects the determination of those regions of the coronary endothelium subjected to pathologic ESS. We determined the diagnostic accuracy of ESS profiling without side branches to detect pathologic ESS in the major coronary arteries of 5 hearts imaged ex vivo with computed tomography angiography (CTA). ESS of the three major coronary arteries was calculated both without (test model), and with (reference model) inclusion of all side branches >1.5 mm in diameter, using previously-validated CFD approaches. Diagnostic test characteristics (accuracy, sensitivity, specificity and negative and positive predictive value [NPV/PPV]) with respect to the reference model were assessed for both the entire length as well as only the proximal portion of each major coronary artery, where the majority of high-risk plaques occur. Using the model without side branches overall accuracy, sensitivity, specificity, NPV and PPV were 83.4%, 54.0%, 96%, 95.9% and 55.1%, respectively to detect low ESS, and 87.0%, 67.7%, 90.7%, 93.7% and 57.5%, respectively to detect high ESS. When considering only the proximal arteries, test characteristics differed for low and high ESS, with low sensitivity (67.7%) and high specificity (90.7%) to detect low ESS, and low sensitivity (44.7%) and high specificity (95.5%) to detect high ESS. The exclusion of side branches in ESS vascular profiling studies greatly reduces the ability to detect regions of the major coronary arteries subjected to pathologic ESS. Single-conduit models can in general only be used to rule out pathologic ESS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Burgos, Joaquin; Hernández-Losa, Javier; Landolfi, Stefania; Guelar, Ana; Dinares, MªCarmen; Villar, Judith; Navarro, Jordi; Ribera, Esteve; Falcó, Vicenç; Curran, Adria
2017-10-23
To assess the oncogenic human papillomavirus (HPV) determination and the cotesting HPV and anal cytology value to detect high-grade anal intraepithelial neoplasia (HGAIN) in a cohort of HIV-MSM. Prospective study of HIV-infected MSM who underwent screening for anal dysplasia. Screening program includes anal cytology, HPV testing, and high-resolution anoscopy (HRA) at each visit. Histological samples were obtained if suspicious lesions were revealed by HRA. Sensitivity and specificity of the different tests were calculated by using histological results of HRA-guided biopsy as the reference test for HGAIN diagnosis. From May 2009 to August 2016, 692 HIV-infected MSM underwent 1827 anal cytologies, 1841 HRA examinations, and 1607 HPV testing. At first screening visit, anal cytology results were abnormal in 418 (60.4%) of 692 patients, and oncogenic HPV genotypes were found in 482 (79.5%) of 606 patients. Anal cytology showed a sensitivity of 89.2% [95% confidence interval (CI); 80.7-94.2] and a specificity of 44.2% (95% CI; 40.2-48.2) to detect HGAIN. Oncogenic HPV testing had 90.4% sensitivity (95% CI; 82-86.8) and 24.4% specificity (95% CI; 20.8-28.3). Cotesting showed a 97.4% sensitivity (95% CI; 91-99.3) and 14% specificity (95% CI; 11.2-17.3). In patients with atypical squamous cells of uncertain significance on cytology, oncogenic HPV testing had 91.3% sensitivity and 28.3% specificity to detect HGAIN. Abnormal cytology and oncogenic HPV determination showed similar sensitivity for detecting HGAIN. The two tests used together improved the sensitivity but with lowered specificity. In our opinion, HPV testing does not improve HGAIN detection and should not replace anal cytology as a standard screening test for HIV-infected MSM.
Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR
Lamarche, Josyanne; Potvin, Amélie; Pelletier, Gervais; Stewart, Don; Feau, Nicolas; Alayon, Dario I. O.; Dale, Angela L.; Coelho, Aaron; Uzunovic, Adnan; Bilodeau, Guillaume J.; Brière, Stephan C.; Hamelin, Richard C.; Tanguay, Philippe
2015-01-01
Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada. PMID:26274489
Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins
NASA Astrophysics Data System (ADS)
Poshtiban, Somayyeh
Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.
Moustafa, Mohamed Abdallah Mohamed; Lee, Kyunglee; Taylor, Kyle; Nakao, Ryo; Sashika, Mariko; Shimozuru, Michito; Tsubota, Toshio
2015-12-01
A previously undescribed Anaplasma species (herein referred to as AP-sd) has been detected in sika deer, cattle and ticks in Japan. Despite being highly similar to some strains of A. phagocytophilum, AP-sd has never been detected in humans. Its ambiguous epidemiology and the lack of tools for its specific detection make it difficult to understand and interpret the prevalence of this Anaplasma species. We developed a method for specific detection, and examined AP-sd prevalence in Hokkaido wildlife. Our study included 250 sika deer (Cervus nippon yesoensis), 13 brown bears (Ursus arctos yesoensis) and 252 rodents including 138 (Apodemus speciosus), 45 (Apodemus argenteus), 42 (Myodes rufocanus) and 27 (Myodes rutilus) were collected from Hokkaido island, northern Japan, collected during 2010 to 2015. A 770 bp and 382 bp segment of the 16S rRNA and gltA genes, respectively, were amplified by nested PCR. Results were confirmed by cloning and sequencing of the positive PCR products. A reverse line blot hybridization (RLB) based on the 16S rRNA gene was then developed for the specific detection of AP-sd. The prevalence of AP-sd by nested PCR in sika deer was 51% (128/250). We detected this Anaplasma sp. for the first time in wild brown bears and rodents with a prevalence of 15% (2/13) and 2.4% (6/252), respectively. The sequencing results of the 16S rRNA and gltA gene amplicons were divergent from the selected A. phagocytophilum sequences in GenBank. Using a newly designed AP-sd specific probe for RLB has enabled us to specifically detect this Anaplasma species. Besides sika deer and cattle, wild brown bears and rodents were identified as potential reservoir hosts for AP-sd. This study provided a high throughput molecular method that specifically detects AP-sd, and which can be used to investigate its ecology and its potential as a threat to humans in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Comparative sequence analysis of six independent chicken and turkey parvovirus nonstructural (NS) genes revealed specific genomic regions with 100% nucleotide sequence identity. A PCR assay with primers targeting these conserved genome sequences proved to be highly specific and sensitive to detect p...
Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M
2014-12-10
A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.
Dynon, Kemperly; Heng, Sophea; Puryer, Michelle; Li, Ying; Walton, Kelly; Endo, Yaeta; Nie, Guiying
2012-01-01
Mammalian HtrA3 (high temperature requirement A3) is a serine protease of the HtrA family. It has two isoforms [long (HtrA3-L) and short (HtrA3-S)] and is important for placental development and cancer progression. Recently, HtrA3 was identified as a potential diagnostic marker for early detection of preeclampsia, a life-threatening pregnancy-specific disorder. Currently there are no high-throughput assays available to detect HtrA3 in human serum. In this study we generated and fully tested a panel of five HtrA3 mouse monoclonal antibodies (mAbs). Three mAbs recognised both HtrA3-L and HtrA3-S and the other two detected HtrA3-L only. All five mAbs were highly specific to HtrA3 and applicable in western blotting and immunohistochemical analysis of endogenous HtrA3 proteins in the mouse and human tissues. Amplified luminescent proximity homogeneous assays-linked immunosorbent assays (AlphaLISAs), were developed to detect HtrA3 isoforms in picomolar levels in serum. The HtrA3 AlphaLISA detected significantly higher serum levels of HtrA3 in women at 13–14 weeks of gestation who subsequently developed preeclampsia compared to gestational-age matched controls. These HtrA3 mAbs are valuable for the development of immunoassays and characterisation of HtrA3 isoform-specific biology. The newly developed HtrA3 AlphaLISA assays are suitable for large scale screening of human serum. PMID:23049902
Detection of cow milk adulteration in yak milk by ELISA.
Ren, Q R; Zhang, H; Guo, H Y; Jiang, L; Tian, M; Ren, F Z
2014-10-01
In the current study, a simple, sensitive, and specific ELISA assay using a high-affinity anti-bovine β-casein monoclonal antibody was developed for the rapid detection of cow milk in adulterated yak milk. The developed ELISA was highly specific and could be applied to detect bovine β-casein (10-8,000 μg/mL) and cow milk (1:1,300 to 1:2 dilution) in yak milk. Cross-reactivity was <1% when tested against yak milk. The linear range of adulterant concentration was 1 to 80% (vol/vol) and the minimum detection limit was 1% (vol/vol) cow milk in yak milk. Different treatments, including heating, acidification, and rennet addition, did not interfere with the assay. Moreover, the results were highly reproducible (coefficient of variation <10%) and we detected no significant differences between known and estimated values. Therefore, this assay is appropriate for the routine analysis of yak milk adulterated with cow milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Multimodal imaging system for dental caries detection
NASA Astrophysics Data System (ADS)
Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul
2007-02-01
Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.
Chen, Hai-Hua; Yang, Ji-Long; Lu, Hui-Fang; Zhou, Wei-Jun; Yao, Fei; Deng, Lan
2014-02-01
This study was purposed to investigate the feasibility of high resolution melting (HRM) in the detection of JAK2V617F mutation in patients with myeloproliferative neoplasm (MPN). The 29 marrow samples randomly selected from patients with clinically diagnosed MPN from January 2008 to January 2011 were detected by HRM method. The results of HRM analysis were compared with that detected by allele specific polymerase chain reaction (AS-PCR) and DNA direct sequencing. The results showed that the JAK2V617F mutations were detected in 11 (37.9%, 11/29) cases by HRM, and its comparability with the direct sequencing result was 100%. While the consistency of AS-PCR with the direct sequencing was moderate (Kappa = 0.179, P = 0.316). It is concluded that the HRM analysis may be an optimal method for clinical screening of JAK2V617F mutation due to its simplicity and promptness with a high specificity.
He, Shengfa; Li, Xin; Gao, Jinyan; Tong, Ping; Chen, Hongbing
2018-01-01
Bovine β-lactoglobulin (BLG) is the major allergen in cows' milk, and the specific epitope plays a key role in food allergy. Developing a method specifically bind to the IgE epitope is necessary for testing BLG and its allergenic residues. The monoclonal antibody (1G9) specific to the IgE linear epitope for BLG was identified as high affinity and specificity. Based on 1G9, a sensitive fluorescent sandwich enzyme-linked immunosorbent assay (sELISA) was successfully developed using catalase-mediated fluorescence quenching of thiolated CdTe quantum dots in the presence of hydrogen peroxide as fluorescent signal output. The fluorescent sELISA showed high sensitivity and specificity, the limit of detection was 0.49 ng mL -1 , which was 16-fold lower than horseradish peroxidase (HRP)-based sELISA. The linear range for BLG detection were 125-4000 ng mL -1 (r = 0.9939) and 0.48-62.5 ng mL -1 (r = 0.9919). The recoveries and coefficients of variation were 94.25-109.83% and 4.38-20.29%, respectively. Allergenic residues were also detected in hydrolysed infant formulas. The results of fluorescent sELISA showed good performance as HRP-based sELISA and commercial sELISA kit. This proposed fluorescent sELISA could be employed to detect BLG and its allergenic residues in food with highly sensitivity, reliability, and recovery. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Detecting High Hyperopia: The Plus Lens Test and the Spot Vision Screener.
Feldman, Samuel; Peterseim, Mae Millicent W; Trivedi, Rupal H; Edward Wilson, M; Cheeseman, Edward W; Papa, Carrie E
2017-05-01
To evaluate the usefulness of the Plus Lens (Goodlite Company, Elgin, IL) test and the Spot Vision Screener (Welch Allyn, Skaneateles Falls, NY) in detecting high hyperopia in a pediatric population. Between June and August 2015, patients were screened with the Spot Vision Screener and the Plus Lens test prior to a scheduled pediatric ophthalmology visit. The following data were analyzed: demographic data, Plus Lens result, Spot Vision Screener result, cycloplegic refraction, and examination findings. Sensitivity/specificity and positive/negative predictive values were calculated for the Plus Lens test and Spot Vision Screener in detecting hyperopia as determined by the "gold-standard" cycloplegic refraction. A total of 109 children (average age: 82 months) were included. Compared to the ophthalmologist's cycloplegic refraction, the Spot Vision Screener sensitivity for +3.50 diopters (D) hyperopia was 31.25% and the specificity was 100%. The Plus Lens sensitivity for +3.50 D hyperopia was 43.75% and the specificity was 89.25%. Spot Vision Screener sensitivity increased with higher degrees of hyperopia. In this preliminary study, the Plus Lens test and the Spot Vision Screener demonstrated moderate sensitivity with good specificity in detecting high hyperopia. [J Pediatr Ophthalmol Strabismus. 2017;54(3):163-167.]. Copyright 2017, SLACK Incorporated.
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.
Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood
NASA Astrophysics Data System (ADS)
Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery
2010-08-01
The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.
Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita
2014-01-01
Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488
2014-01-01
Background Although sophisticated methodologies are available, the use of endpoint polymerase chain reaction (PCR) to detect 16S rDNA genes remains a good approach for estimating the incidence and prevalence of specific infections and for monitoring infections. Considering the importance of the early diagnosis of sexually transmitted infections (STIs), the development of a sensitive and affordable method for identifying pathogens in clinical samples is needed. Highly specific and efficient primers for a multiplex polymerase chain reaction (m-PCR) system were designed in silico to detect the 16S rDNA genes of four bacteria that cause genital infections, and the PCR method was developed. Methods The Genosensor Probe Designer (GPD) (version 1.0a) software was initially used to design highly specific and efficient primers for in-house m-PCR. Single-locus PCR reactions were performed and standardised, and then primers for each locus in turn were added individually in subsequent amplifications until m-PCR was achieved. Amplicons of the expected size were obtained from each of the four bacterial gene fragments. Finally, the analytical specificity and limits of detection were tested. Results Because they did not amplify any product from non-STI tested species, the primers were specific. The detection limits for the Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum primer sets were 5.12 × 105, 3.9 × 103, 61.19 × 106 and 6.37 × 105 copies of a DNA template, respectively. Conclusions The methodology designed and standardised here could be applied satisfactorily for the simultaneous or individual detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum. This method is at least as efficient as other previously described methods; however, this method is more affordable for low-income countries. PMID:24997675
In vivo bioelectronic nose using transgenic mice for specific odor detection.
Gao, Keqiang; Li, Songmin; Zhuang, Liujing; Qin, Zhen; Zhang, Bin; Huang, Liquan; Wang, Ping
2018-04-15
The olfactory system is a natural biosensor since its peripheral olfactory sensory neurons (OSNs) respond to the external stimuli and transmit the signals to the olfactory bulb (OB) where they are integrated and processed. The axonal connections from the OSNs expressing about 1000 different types of odorant receptors are precisely organized and sorted out onto 1800 glomeruli in the OB, from which the olfactory information is delivered to and perceived by the central nervous system. This process is carried out with particularly high sensitivity, specificity and rapidity, which can be used for explosive detection. Biomimetic olfactory biosensors use various biological components from the olfactory system as sensing elements, possessing great commercial prospects. In this study, we utilized the genetically labeled murine M72 olfactory sensory neurons with the green fluorescent protein (GFP) as sensing components and obtained long-term in vivo electrophysiological recordings from the M72 OSNs by implanting the microelectrode arrays (MEAs) into the behaving mouse's OB. The electrophysiological responses showed high reliability, reproducibility and specificity for odor detection, and particularly, the high sensitivity for the detection of odorants that contain benzene rings. Furthermore, our results indicated that it can detect trinitrotoluene (TNT) in liquid at a concentration as low as 10 -5 M and can distinguish TNT from other chemicals with a similar structure. Thus our study demonstrated that the in vivo biomimetic olfactory system could provide novel approaches to enhancing the specificity and increasing working lifespan of olfactory biosensors capable of detecting explosives. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser-based detection of chemical contraband
NASA Astrophysics Data System (ADS)
Clemmer, Robert G.; Kelly, James F.; Martin, Steven W.; Mong, Gary M.; Sharpe, Steven W.
1997-02-01
The goal of our work is tow fold; 1) develop a portable and rapid laser based air sampler for detection of specific chemical contraband and 2) compile a spectral data base in both the near- and mid-IR of sufficiently high quality to be useful for gas phase spectroscopic identification of chemical contraband. During the synthesis or 'cooking' of many illicit chemical substances, relatively high concentrations of volatile solvents, chemical precursors and byproducts are unavoidably released to the atmosphere. In some instances, the final product may have sufficient vapor pressure to be detectable in the surrounding air. The detection of a single high-value effluent or the simultaneous detection of two or more low-value effluents can be used as reliable indicators of a nearby clandestine cooking operation. The designation of high- versus low-value effluent reflects both the commercial availability and legitimate usage of a specific chemical. This paper will describe PNNL's progress and efforts towards the development of a portable laser based air sampling system for the detection of clandestine manufacturing of methamphetamine. Although our current efforts ar focused on methamphetamine, we see no fundamental limitations on detection of other forms of chemical contraband manufacturing. This also includes the synthesis of certain classes of chemical weapons that have recently been deployed by terrorist groups.
Su, Zi Dan; Shi, Cheng Yin; Huang, Jie; Shen, Gui Ming; Li, Jin; Wang, Sheng Qiang; Fan, Chao
2015-09-26
Red-spotted grouper nervous necrosis virus (RGNNV) is an important pathogen that causes diseases in many species of fish in marine aquaculture. The larvae and juveniles are more easily infected by RGNNV and the cumulative mortality is as high as 100 % after being infected with RGNNV. This virus imposes a serious threat to aquaculture of grouper fry. This study aimed to establish a simple, accurate and highly sensitive method for rapid detection of RGNNV on the spot. In this study, the primers specifically targeting RGNNV were designed and cross-priming isothermal amplification (CPA) system was established. The product amplified by CPA was detected through visualization with lateral flow dipstick (LFD). Three important parameters, including the amplification temperature, the concentration of dNTPs and the concentration of Mg(2+) for the CPA system, were optimized. The sensitivity and specificity of this method for RGNNV were tested and compared with those of the conventional RT-PCR and real-time quantitative RT-PCR (qRT-PCR). The optimized conditions for the CPA amplification system were determined as follows: the optimal amplification temperature, the optimized concentration of dNTPs and the concentration for Mg(2+) were 69 °C, 1.2 mmol/L and 5 mmol/L, respectively. The lowest limit of detection (LLOD) of this method for RGNNV was 10(1) copies/μL of RNA sample, which was 10 times lower than that of conventional RT-PCR and comparable to that of RT-qPCR. This method was specific for RGNNV in combination with SJNNV and had no cross-reactions with 8 types of virus and bacterial strains tested. This method was successfully applied to detect RGNNV in fish samples. This study established a CPA-LFD method for detection of RGNNV. This method is simple and rapid with high sensitivity and good specificity and can be widely applied for rapid detection of this virus on the spot.
Modeling seasonal detection patterns for burrowing owl surveys
Quresh S. Latif; Kathleen D. Fleming; Cameron Barrows; John T. Rotenberry
2012-01-01
To guide monitoring of burrowing owls (Athene cunicularia) in the Coachella Valley, California, USA, we analyzed survey-method-specific seasonal variation in detectability. Point-based call-broadcast surveys yielded high early season detectability that then declined through time, whereas detectability on driving surveys increased through the season. Point surveys...
Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M
2016-03-01
Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.
Universal and specific quantitative detection of botulinum neurotoxin genes
2010-01-01
Background Clostridium botulinum, an obligate anaerobic spore-forming bacterium, produces seven antigenic variants of botulinum toxin that are distinguished serologically and termed "serotypes". Botulinum toxin blocks the release of acetylcholine at neuromuscular junctions resulting in flaccid paralysis. The potential lethality of the disease warrants a fast and accurate means of diagnosing suspected instances of food contamination or human intoxication. Currently, the Food and Drug Administration (FDA)-accepted assay to detect and type botulinum neurotoxins (BoNTs) is the mouse protection bioassay. While specific and sensitive, this assay requires the use of laboratory animals, may take up to four days to achieve a diagnosis, and is unsuitable for high-throughput analysis. We report here a two-step PCR assay that identifies all toxin types, that achieves the specificity of the mouse bioassay while surpassing it in equivalent sensitivity, that has capability for high-throughput analysis, and that provides quantitative results within hours. The first step of our assay consists of a conventional PCR that detects the presence of C. botulinum regardless of the neurotoxin type. The second step uses quantitative PCR (qPCR) technology to determine the specific serotype of the neurotoxin. Results We assayed purified C. botulinum DNA and crude toxin preparations, as well as food and stool from healthy individuals spiked with purified BoNT DNA, and one stool sample from a case of infant botulism for the presence of the NTNH gene, which is part of the BoNT gene cluster, and for the presence of serotype-specific BoNT genes. The PCR surpassed the mouse bioassay both in specificity and sensitivity, detecting positive signals in BoNT preparations containing well below the 1 LD50 required for detection via the mouse bioassay. These results were type-specific and we were reliably able to quantify as few as 10 genomic copies. Conclusions While other studies have reported conventional or quantitative PCR-based assays for the detection of C. botulinum genes, our procedure's high-throughput capability and its portability allows most laboratories to quickly assess the possible presence of BoNTs either in food processing samples or in suspected cases of botulism. Thus, this assay provides rapid and specific detection of BoNT and toxin complex genes and would enable the targeting of appropriate therapeutics to infected individuals in a timely manner. PMID:20961439
Dong, Chongmei; Vincent, Kate; Sharp, Peter
2009-12-04
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.
Multiplexed BioCD for prostate specific antigen detection
NASA Astrophysics Data System (ADS)
Wang, Xuefeng; Zhao, Ming; Nolte, David D.
2008-02-01
Specific protein concentrations in human body fluid can serve as diagnostic markers for some diseases, and a quantitative and high-throughput technique for multiplexed protein detection would speed up diagnosis and facilitate medical research. For this purpose, our group developed the BioCD, a spinning-disc interferometric biosensor on which antibody is immobilized. The detection system adopts a common-path scheme making it ultra stable. The scaling mass sensitivity is below 10 pg/mm for protein surface density. A 25000-spot antibody BioCD was fabricated to measure the concentration of prostate specific antigen (PSA), a protein indicating prostate cancer if its level is high. Statistical analysis of our immunoassay results projects that the detection limit of PSA would reach 20 pg/ml in a 2 mg/ml background solution. For future prospects, a multiplexed BioCD can be produced for simultaneous diagnosis of diverse diseases. For instance, 100 markers above 200 pg/ml could be measured on a single disc given that the detection limit is inversely proportional to square root of the number of spots.
Andersen, Gary L.; DeSantis, Todd D.
2014-07-08
The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.
A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection.
Altintas, Zeynep; Akgun, Mete; Kokturk, Guzin; Uludag, Yildiz
2018-02-15
A fully automated microfluidic-based electrochemical biosensor was designed and manufactured for pathogen detection. The quantification of Escherichia coli was investigated with standard and nanomaterial amplified immunoassays in the concentration ranges of 0.99 × 10 4 3.98 × 10 9 cfu mL -1 and 103.97 × 10 7 cfu mL -1 which resulted in detection limits of 1.99 × 10 4 cfu mL -1 and 50 cfu mL -1 , respectively. The developed methodology was then applied for E. coli quantification in water samples using nanomaterial modified assay. Same detection limit for E. coli was achieved for real sample analysis with a little decrease on the sensor signal. Cross-reactivity studies were conducted by testing Shigella, Salmonella spp., Salmonella typhimurium and Staphylococcus aureus on E. coli specific antibody surface that confirmed the high specificity of the developed immunoassays. The sensor surface could be regenerated multiple times which significantly reduces the cost of the system. Our custom-designed biosensor is capable of detecting bacteria with high sensitivity and specificity, and can serve as a promising tool for pathogen detection. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui
2012-03-01
The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields.
Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua
2017-01-01
Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.
Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton
2017-01-01
Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691
A novel SERRS sandwich-hybridization assay to detect specific DNA target.
Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2011-01-01
In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.
A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target
Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine
2011-01-01
In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics. PMID:21655320
Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J
2011-05-01
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.
Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles.
Qiu, Suyan; Lin, Zhenyu; Zhou, Yaomin; Wang, Donggen; Yuan, Lijuan; Wei, Yihua; Dai, Tingcan; Luo, Linguang; Chen, Guonan
2015-02-21
A rapid and cost-effective colorimetric sensor has been developed for the detection of bacteria (Bacillus subtilis was selected as an example). The sensor was designed to rely on lysozyme-capped AuNPs with the advantages of effective amplification and high specificity. In the sensing system, lysozyme was able to bind strongly to Bacillus subtilis, which effectively induced a color change of the solution from light purple to purplish red. The lowest concentration of Bacillus subtilis detectable by the naked eye was 4.5 × 10(3) colony-forming units (CFU) mL(-1). Similar results were discernable from UV-Vis absorption measurements. A good specificity was observed through a statistical analysis method using the SPSS software (version 17.0). This simple colorimetric sensor may therefore be a rapid and specific method for a bacterial detection assay in complex samples.
Mirzai, S; Safi, S; Mossavari, N; Afshar, D; Bolourchian, M
2016-08-31
The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders.
USDA-ARS?s Scientific Manuscript database
Loop-mediated isothermal amplification (LAMP) is a novel simple detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to evaluate the effectiveness of 3M Molecular Detection System (MDS) and ANSR Pathogen Det...
Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.
Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt
2016-08-16
Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.
Nowak, Rebecca G; Ambulos, Nicholas P; Schumaker, Lisa M; Mathias, Trevor J; White, Ruth A; Troyer, Jennifer; Wells, David; Charurat, Manhattan E; Bentzen, Søren M; Cullen, Kevin J
2017-06-13
Our next generation sequencing (NGS)-based human papillomavirus (HPV) genotyping assay showed a high degree of concordance with the Roche Linear Array (LA) with as little as 1.25 ng formalin-fixed paraffin-embedded-derived genomic DNA in head and neck and cervical cancer samples. This sensitive genotyping assay uses barcoded HPV PCR broad-spectrum general primers 5+/6+ (BSGP)5+/6+ applicable to population studies, but it's diagnostic performance has not been tested in cases with multiple concurrent HPV infections. We conducted a cross-sectional study to compare the positive and negative predictive value (PPV and NPV), sensitivity and specificity of the NGS assay to detect HPV genotype infections as compared to the LA. DNA was previously extracted from ten anal swab samples from men who have sex with men in Nigeria enrolled on the TRUST/RV368 cohort study. Two-sample tests of proportions were used to examine differences in the diagnostic performance of the NGS assay to detect high vs. low-risk HPV type-specific infections. In total there were 94 type-specific infections detected in 10 samples with a median of 9.5, range (9 to 10) per sample. Using the LA as the gold standard, 84.4% (95% CI: 75.2-91.2) of the same anal type-specific infections detected on the NGS assay had been detected by LA. The PPV and sensitivity differed significantly for high risk (PPV: 90%, 95% CI: 79.5-96.2; sensitivity: 93.1%, 95% CI: 83.3-98.1) as compared to low risk HPV (PPV: 73%, 95% CI: 54.1-87.7; sensitivity: 61.1, 95% CI: 43.5-76.9) (all p < 0.05). The NPV for all types was 92.5% (95% CI: 88.4-95.4). The NPV and specificity were similar for high and low risk HPVs (all p > 0.05). The NGS assay detected 10 HPV genotypes that were not among the 37 genotypes found on LA (30, 32, 43, 44, 74, 86, 87, 90, 91, 114). The NGS assay accurately detects multiple HPV infections in individual clinical specimens with limited sample volume and has extended coverage compared to LA.
Can Sample-Specific Simulations Help Detect Low Base-Rate Taxonicity?
ERIC Educational Resources Information Center
Beach, Steven R. H.; Amir, Nader; Bau, Jinn Jonp
2005-01-01
The authors examined the role of the sample-specific simulations (SSS; A. M. Ruscio & J. Ruscio, 2002; J. Ruscio & A. M. Ruscio, 2004) procedure in detecting low base-rate taxa that might otherwise prove elusive. The procedure preserved key distributional characteristics for moderate to high base-rate taxa, but it performed inadequately for low…
Detection of bacterial 16S rRNA using a molecular beacon-based X sensor
Gerasimova, Yulia V.; Kolpashchikov, Dmitry M.
2012-01-01
We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a fully complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, E.coli 16S rRNA was detected in real time with the detection limit of ~ 0.17 nM. The high specificity of the analysis was proven by differentiating B.subtilus from E.coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds. PMID:23021850
Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms
Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu
2012-01-01
Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742
Arcury, Thomas A; Chen, Haiying; Laurienti, Paul J; Howard, Timothy D; Barr, Dana Boyd; Mora, Dana C; Quandt, Sara A
2017-06-16
This article compares detections and concentrations of specific organophosphate (OP), bis-dithiocarbamate, and pyrethroid pesticide urinary metabolites among Latino male farmworkers and nonfarmworkers in North Carolina. Data are from interviews and urine samples collected in 2012 and 2013. Farmworkers and nonfarmworkers frequently had detections for OP and pyrethroid pesticide urinary metabolites. Detection of bis-dithiocarbamate urinary metabolites was less frequent, but substantial among the nonfarmworkers. The concentrations of organophosphate, bis-dithiocarbamate, and pyrethroid pesticide urinary metabolites were high for farmworkers and nonfarmworkers compared to National Health and Nutrition Examination Survey results. Pesticide urinary metabolite detection was not associated with occupation in nonfarmworkers. Research for reducing pesticide exposure among farmworkers remains important; research is also needed to determine pesticide exposure pathways among Latino nonfarmworkers.
High Detectivity Graphene-Silicon Heterojunction Photodetector.
Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying
2016-02-03
A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kamemura, Norio; Tada, Hitomi; Shimojo, Naoki; Morita, Yoshinori; Kohno, Yoichi; Ichioka, Takao; Suzuki, Koichi; Kubota, Kenji; Hiyoshi, Mineyoshi; Kido, Hiroshi
2012-07-01
To design a rational allergy prevention program, it is important to determine whether allergic sensitization starts in utero under the maternal immune system. To investigate the origin of allergen-specific IgE antibodies in cord blood (CB) and maternofetal transfer of immunoglobulins. The levels of food and inhalant allergen-specific IgE, IgA, IgG, and IgG(4) antibodies in CB and maternal blood (MB) from 92 paired neonates and mothers were measured by using a novel allergen microarray of diamond-like-carbon-coated chip, with high-sensitivity detection of allergen-specific antibodies and allergen profiles. The levels of allergen-specific IgE antibodies against food and inhalant allergens and allergen profiles were identical in CB and newborn blood, but the levels and profiles, specifically against inhalant allergens, were different from those in MB. The level of allergen-specific IgA antibodies was below the detection levels in CB despite clear detection in MB. Therefore, contamination with MB in CB was excluded on the basis of extremely low levels of IgA antibodies in CB and the obvious mismatch of the allergen-specific IgE and IgA profiles between CB and MB. However, the levels of allergen-specific IgG and IgG(4) antibodies and their allergen profiles were almost identical in both MB and CB. Allergen-specific levels of IgE and IgA antibodies and their allergen profiles analyzed by the diamond-like-carbon allergen chip indicate that IgE antibodies in CB are of fetal origin. Food-allergen specific IgE antibodies were detected more often than inhalant-allergen specific IgE antibodies in CB, the reason of which remains unclarified. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers
Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric
2009-01-01
Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894
SERS detection and targeted ablation of lymphoma cells using functionalized Ag nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Qian; Cao, Fei; Feng, Chao; Zhao, Yan; Wang, Xiuhong
2016-03-01
Lymphoma is a heterogeneous group of malignancies of the lymphoid tissue, and is prevalent worldwide affecting both children and adults with a high mortality rate. There is in dire need of accurate and noninvasive approaches for early detection of the disease. Herein, we report a facile way to fabricate silver nanoparticle based nanoprobe by incorporating the corner-stone immunotherapeutic drug Rituxan for simultaneous detection and ablation of lymphoma cells in vitro. The fabricated nanoprobe can detect CD20 positive single lymphoma cell by surface enhanced Raman scattering technique with high specificity. The engineered nanoprobe retains the same antibody property as intact drug via Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) analysis. The nanoprobe efficiently eradicates lymphoma cells in vitro. By integrating the advantages of sensitive SERS detection with targeted ablation capabilities of immunotherapeutic drug through site specificity, this nanoprobe can be applied as outstanding tools in living imaging, cancer diagnosis and treatment.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors
Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.
2012-01-01
The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725
Chaya, Dr; Parija, Subhash Chandra
2013-07-01
Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE.
Bernardi, Nadia; Benetti, Giuseppe; Haouet, Naceur M; Sergi, Manuel; Grotta, Lisa; Marchetti, Sonia; Castellani, Federica; Martino, Giuseppe
2015-12-01
The aim of the study was to investigate the possibility to differentiate the 4 most important species in Italian dairy industry (cow, buffalo, sheep, and goat), applying a bottom-up proteomic approach to assess the milk species involved in cheese production. Selective peptides were detected in milk to use as markers in cheese products. Trypsin-digested milk samples of cow, sheep, goat, and buffalo, analyzed by HPLC-tandem mass spectrometry provided species-specific peptides, some of them recognized by Mascot software (Matrix Science Ltd., Boston, MA) as derived from well-known species specific proteins. A multianalyte multiple reaction monitoring method, built with these specific peptides, was successfully applied to cheeses with different composition, showing high specificity in detection of species involved. Neither aging nor production method seemed to affect the response, demonstrating that chosen peptides well act as species markers for dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ultrasensitive Detection of Single-Walled Carbon Nanotubes Using Surface Plasmon Resonance.
Jang, Daeho; Na, Wonhwi; Kang, Minwook; Kim, Namjoon; Shin, Sehyun
2016-01-05
Because single-walled carbon nanotubes (SWNTs) are known to be a potentially dangerous material, inducing cancers and other diseases, any possible leakage of SWNTs through an aquatic medium such as drinking water will result in a major public threat. To solve this problem, for the present study, a highly sensitive, quantitative detection method of SWNTs in an aqueous solution was developed using surface plasmon resonance (SPR) spectroscopy. For a highly sensitive and specific detection, a strong affinity conjugation with biotin-streptavidin was adopted on an SPR sensing mechanism. During the pretreatment process, the SWNT surface was functionalized and hydrophilized using a thymine-chain based biotinylated single-strand DNA linker (B-ssDNA) and bovine serum albumin (BSA). The pretreated SWNTs were captured on a sensing film, the surface of which was immobilized with streptavidin on biotinylated gold film. The captured SWNTs were measured in real-time using SPR spectroscopy. Specific binding with SWNTs was verified through several validation experiments. The present method using an SPR sensor is capable of detecting SWNTs of as low as 100 fg/mL, which is the lowest level reported thus far for carbon-nanotube detection. In addition, the SPR sensor showed a linear characteristic within the range of 100 pg/mL to 200 ng/mL. These findings imply that the present SPR sensing method can detect an extremely low level of SWNTs in an aquatic environment with high sensitivity and high specificity, and thus any potential leakage of SWNTs into an aquatic environment can be precisely monitored within a couple of hours.
Hovland, S; Arbyn, M; Lie, A K; Ryd, W; Borge, B; Berle, E J; Skomedal, H; Kadima, T M; Kyembwa, L; Billay, E M; Mukwege, D; Chirimwami, R B; Mvula, T M; Snijders, P J; Meijer, C J L M; Karlsen, F
2010-01-01
Background: Given the high burden of cervical cancer in low-income settings, there is a need for a convenient and affordable method for detecting and treating pre-cancerous lesions. Methods: Samples for comparing the accuracy of cytology, virology and histology were collected. Identification of HPV E6/E7 mRNA was performed using PreTect HPV-Proofer. HPV DNA detection was performed by GP5+/6+ PCR, followed by reverse line blot (RLB) for typing. Results: A total of 343 women, aged 25–60 years, attending gynaecological polyclinics in DR Congo were included for sample enrolment. The test positivity rate was conventional and liquid-based cytology (LBC) at cutoff ASCUS+ of 6.9 and 6.6%, respectively; PreTect HPV-Proofer of 7.3% and consensus DNA PCR for 14 HR types of 18.5%. Sixteen cases of CIN2+ lesions were identified. Of these, conventional cytology identified 66.7% with a specificity of 96.2%, LBC identified 73.3% with a specificity of 96.9%, all at cutoff ASCUS+. HR-HPV DNA detected all CIN2+ cases with a specificity of 85.9%, whereas PreTect HPV-Proofer gave a sensitivity of 81.3% and a specificity of 96.6%. Conclusion: Both HPV detection assays showed a higher sensitivity for CIN2+ than did cytological methods. Detecting E6/E7 mRNA from only a subset of HR HPVs, as is the case with PreTect HPV-Proofer, resulted in a similar specificity to cytology and a significantly higher specificity than consensus HR HPV DNA (P<0.0001). PMID:20197765
Magnetoresistive biosensors for quantitative proteomics
NASA Astrophysics Data System (ADS)
Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.
2017-08-01
Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.
Reduced specificity in emotion judgment in people with autism spectrum disorder
Wang, Shuo; Adolphs, Ralph
2017-01-01
There is a conflicting literature on facial emotion processing in autism spectrum disorder (ASD): both typical and atypical performance have been reported, and inconsistencies in the literature may stem from different processes examined (emotion judgment, face perception, fixations) as well as differences in participant populations. Here we conducted a detailed investigation of the ability to discriminate graded emotions shown in morphs of fear-happy faces, in a well-characterized high-functioning sample of participants with ASD and matched controls. Signal detection approaches were used in the analyses, and concurrent high-resolution eye-tracking was collected. Although people with ASD had typical thresholds for categorical fear and confidence judgments, their psychometric specificity to detect emotions across the entire range of intensities was reduced. However, fixation patterns onto the stimuli were typical and could not account for the reduced specificity of emotion judgment. Together, our results argue for a subtle and specific deficit in emotion perception in ASD that, from a signal detection perspective, is best understood as a reduced specificity due to increased noise in central processing of the face stimuli. PMID:28343960
Chang, A; Havas, S; Borellini, F; Ostrove, J M; Bird, R E
1997-12-01
During the manufacture of biopharmaceuticals, numerous adventitious agents have been detected in Master Cell Banks, end-of-production cells as well as bulk harvest fluid. Recently, a number of large-scale production bioreactors have become infected with Minute Virus of Mice (MVM) during cGMP (current good manufacturing practices) operations, and this has resulted in both the loss of product and the need for major cleaning validation procedures to be put in place. We have developed a simple DNA extraction/PCR assay to detect the presence of MVM in cell culture supernatant (conditioned cell fluids). This highly specific assay can detect 10 or fewer genome equivalents (copies) of MVM following PCR and gel electrophoresis visualization. For routine high-throughput detection, 300-100 copies could be consistently detected. The extraction procedure was shown to reliably detect MVM at a concentration of 1 TCID50/ml. The combination of the extraction/PCR procedure establishes a powerful, sensitive, specific assay that can detect the presence of MVM sequences with a 1-day turnaround time.
Labani, Satyanarayana; Asthana, Smita
2016-01-01
Human papillomavirus (HPV) is recommended as a primary screening tool for cervical screening. Assessment of age-specific performance of newer HPV careHPV DNA testing is important as risk of cervical intraepithelial neoplasia (CIN) varies at different ages. We aim to evaluate careHPV in comparison to Papanicolaou (Pap) test and visual inspection of the cervix with acetic acid (VIA) cervical screening tests for the detection of high-grade CIN. The cross sectional study was conducted in a rural population of North India. Ever-married women 30-59 years of age were invited for screening by careHPV (self-collected vaginal and physician-collected cervical samples), Pap test and VIA. Associations for trend in age for detecting histological-confirmed CINII+ and CINIII+ for each screening test were evaluated. Age-specific association with each screening test was evaluated. Of a total of 7761 women invited, 5032 were screened and analysis was performed on 4658 with all screen test results. No significant (p>0.05) association of age for any screening test in the detection of CINII+ or CINIII+ was observed. For the older age group, cervical HPV (CHPV) showed high sensitivity and specificity for CINII+ detection. Specificity of CHPV or vaginal HPV (VHPV) was equal or higher than Pap in all age groups. Cervical screening options of CHPV or VHPV, or Pap, performed equally in the younger age group while CHPV might be an option for all ages in the detection of high-grade CIN. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.
Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge
2013-12-27
Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Rapid detection of highly pathogenic avian influenza virus (HPAIV) in the field is critical for effective disease control and to differentiate it from other diseases, such as Newcastle disease. Lateral flow devices (LFD) are commercially available and provide a fast, highly specific, on-site test fo...
Detection of an enzootic plague focus by serological methods
Cavanaugh, D. C.; Thorpe, B. D.; Bushman, J. B.; Nicholes, P. S.; Rust, J. H.
1965-01-01
Complement-fixation and haemagglutination tests, utilizing a highly purified, specific Fraction 1 antigen of Pasteurella pestis, have been employed to detect specific plague antibody in the sera of rodents resident in a sylvatic plague focus. The data show that while the isolation of P. pestis is seasonal and rather rare, antibodies can be detected for long periods of time and with great frequency in rodents surviving infection. The authors recommend that serological methods be incorporated into epidemiological surveys and control programmes involving rodent plague. PMID:14310906
DETECTION OF AN ENZOOTIC PLAGUE FOCUS BY SEROLOGICAL METHODS.
CAVANAUGH, D C; THORPE, B D; BUSHMAN, J B; NICHOLES, P S; RUST, J H
1965-01-01
Complement-fixation and haemagglutination tests, utilizing a highly purified, specific Fraction 1 antigen of Pasteurella pestis, have been employed to detect specific plague antibody in the sera of rodents resident in a sylvatic plague focus. The data show that while the isolation of P. pestis is seasonal and rather rare, antibodies can be detected for long periods of time and with great frequency in rodents surviving infection. The authors recommend that serological methods be incorporated into epidemiological surveys and control programmes involving rodent plague.
Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James
2012-10-21
Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.
Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D
2017-08-01
We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.
Zhang, XiaoQing; Feng, Ye; Yao, QiongQiong; He, Fengjiao
2017-12-15
A rapid and accurate detection method for Mycobacterium tuberculosis (M. tuberculosis) is essential for effectively treating tuberculosis. However, current detection methods cannot meet these clinical requirements because the methods are slow or of low specificity. Consequently, a new highly specific ssDNA aptamer against M. tuberculosis reference strain H37Rv was selected by using the whole-cell systematic evolution of ligands by exponential enrichment technique. The selected aptamer was used to construct a fast and highly specific H37Rv sensor. The probe was produced by immobilizing thiol-modified aptamer on an Au interdigital electrode (Au-IDE) of a multichannel series piezoelectric quartz crystal (MSPQC) through Au-S bonding, and then single-walled carbon nanotubes (SWCNTs) were bonded on the aptamer by π-π stacking. SWCNTs were used as a signal indicator because of their considerable difference in conductivity compared with H37Rv. When H37Rv is present, it replaces the SWCNTs because it binds to the aptamer much more strongly than SWCNTs do. The replacement of SWCNTs by H37Rv resulted in a large change in the electrical properties, and this change was detected by the MSPQC. The proposed sensor is highly selective and can distinguish H37Rv from Mycobacterium smegmatis (M. smegmatis) and Bacillus Calmette-Guerin vaccine (BCG). The detection time was 70min and the detection limit was 100cfu/mL. Compared with conventional methods, this new SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor was specific, rapid, and sensitive, and it holds great potential for the early detection of H37Rv in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Optoelectronic method for detection of cervical intraepithelial neoplasia and cervical cancer
NASA Astrophysics Data System (ADS)
Pruski, D.; Przybylski, M.; Kędzia, W.; Kędzia, H.; Jagielska-Pruska, J.; Spaczyński, M.
2011-12-01
The optoelectronic method is one of the most promising concepts of biophysical program of the diagnostics of CIN and cervical cancer. Objectives of the work are evaluation of sensitivity and specificity of the optoelectronic method in the detection of CIN and cervical cancer. The paper shows correlation between the pNOR number and sensitivity/specificity of the optoelectronic method. The study included 293 patients with abnormal cervical cytology result and the following examinations: examination with the use of the optoelectronic method — Truscreen, colposcopic examination, and histopathologic biopsy. Specificity of the optoelectronic method for LGSIL was estimated at 65.70%, for HGSIL and squamous cell carcinoma of cervix amounted to 90.38%. Specificity of the optoelectronic method used to confirm lack of cervical pathology was estimated at 78.89%. The field under the ROC curve for the optoelectronic method was estimated at 0.88 (95% CI, 0.84-0.92) which shows high diagnostic value of the test in the detection of HGSIL and squamous cell carcinoma. The optoelectronic method is characterised by high usefulness in the detection of CIN, present in the squamous epithelium and squamous cell carcinoma of cervix.
Taniuchi, Mami; Verweij, Jaco J.; Noor, Zannatun; Sobuz, Shihab U.; van Lieshout, Lisette; Petri, William A.; Haque, Rashidul; Houpt, Eric R.
2011-01-01
Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites—Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis—were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910
Bontempi, Iván A; Bizai, María L; Ortiz, Sylvia; Manattini, Silvia; Fabbro, Diana; Solari, Aldo; Diez, Cristina
2016-09-01
Different DNA markers to genotype Trypanosoma cruzi are now available. However, due to the low quantity of parasites present in biological samples, DNA markers with high copy number like kinetoplast minicircles are needed. The aim of this study was to complete a DNA assay called minicircle lineage specific-PCR (MLS-PCR) previously developed to genotype the T. cruzi DTUs TcV and TcVI, in order to genotype DTUs TcI and TcII and to improve TcVI detection. We screened kinetoplast minicircle hypervariable sequences from cloned PCR products from reference strains belonging to the mentioned DTUs using specific kDNA probes. With the four highly specific sequences selected, we designed primers to be used in the MLS-PCR to directly genotype T. cruzi from biological samples. High specificity and sensitivity were obtained when we evaluated the new approach for TcI, TcII, TcV and TcVI genotyping in twenty two T. cruzi reference strains. Afterward, we compared it with hybridization tests using specific kDNA probes in 32 blood samples from chronic chagasic patients from North Eastern Argentina. With both tests we were able to genotype 94% of the samples and the concordance between them was very good (kappa=0.855). The most frequent T. cruzi DTUs detected were TcV and TcVI, followed by TcII and much lower TcI. A unique T. cruzi DTU was detected in 18 samples meantime more than one in the remaining; being TcV and TcVI the most frequent association. A high percentage of mixed detections were obtained with both assays and its impact was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Cho, Min Seok; Joh, Kiseong; Ahn, Tae-Young; Park, Dong Suk
2014-09-01
Escherichia coli serotype O157 is still a major global healthcare problem. However, only limited information is now available on the molecular and serological detection of pathogenic bacteria. Therefore, the development of appropriate strategies for their rapid identification and monitoring is still needed. In general, the sequence analysis based on stx, slt, eae, hlyA, rfb, and fliCh7 genes is widely employed for the identification of E. coli serotype O157; but there have been critical defects in the diagnosis and identification of E. coli serotype O157, in that they are also present in other E. coli serogroups. In this study, NCBI-BLAST searches using the nucleotide sequences of the putative regulatory protein gene from E. coli O157:H7 str. Sakai found sequence difference at the serotype level. The specific primers from the putative regulatory protein gene were designed and investigated for their sensitivity and specificity for detecting the pathogen in environment water samples. The specificity of the primer set was evaluated using genomic DNA from 8 isolates of E. coli serotype O157 and 32 other reference strains. In addition, the sensitivity and specificity of this assay were confirmed by successful identification of E. coli serotype O157 in environmental water samples. In conclusion, this study showed that the newly developed quantitative serotype-specific PCR method is a highly specific and efficient tool for the surveillance and rapid detection of high-risk E. coli serotype O157.
Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank
2016-07-29
Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.
Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank
2016-01-01
Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277
Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei
2016-07-01
In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.
Non-parametric early seizure detection in an animal model of temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.
2008-03-01
The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.
Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.
Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia
2013-05-01
In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.
DNA-based species detection capabilities using laser transmission spectroscopy
Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.
2013-01-01
Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524
Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.
Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan
2014-09-01
Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.
Grezina, N Iu; Suleĭmenova, G M
2011-01-01
The objective of the present study was to evaluate sensitivity and specificity of the HemDirect method on test-plates (Seratec) for detecting human hemoglobin (HHb). These characteristics were compared with those of other widely used methods designed for the detection of blood traces, viz. thin layer chromatography, hemotest, spectrofluorimetry, and identification of blood species specificity (by countercurrent immunoelectrophoresis in agar and on the acetate-cellulose film). It was shown that the HemDirect test is highly specific and far more sensitive than other techniques used for the same purpose in the practical work. It can be recommended as the method of choice for the detection of blood microtraces.
Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton
2016-10-22
Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.
Cho, Min Seok; Park, Duck Hwan; Namgung, Min; Ahn, Tae-Young; Park, Dong Suk
2015-06-01
Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least 1.47×10(2) copies/μl of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or 10(-6) dilution point of 0.12 at OD600 units of cells per reaction using a calibrated cell suspension.
Cho, Min Seok; Park, Duck Hwan; Namgung, Min; Ahn, Tae-Young; Park, Dong Suk
2015-01-01
Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least 1.47×102 copies/μl of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or 10−6 dilution point of 0.12 at OD600 units of cells per reaction using a calibrated cell suspension. PMID:26060431
Multicolour probes for sequence-specific DNA detection based on graphene oxide.
Zhu, Qing; Xiang, Dongshan; Zhang, Cuiling; Ji, Xinghu; He, Zhike
2013-09-21
The bifunctionality of graphene oxide (GO) which can highly adsorb single-stranded DNA (ssDNA) and effectively quench the emission of organic dyes is reasonably utilized in a multiplexed DNA detection system, achieving sensitive and selective detection of HIV, VV and EV, respectively.
Use of real-time quantitative PCR to detect Chlamydophila felis infection.
Helps, C; Reeves, N; Tasker, S; Harbour, D
2001-07-01
A real-time PCR assay was developed to detect and quantify Chlamydophila felis infection of cats. The assay uses a molecular beacon to specifically identify the major outer membrane protein gene, is highly reproducible, and is able to detect fewer than 10 genomic copies.
Nucleic acid sequence detection using multiplexed oligonucleotide PCR
Nolan, John P [Santa Fe, NM; White, P Scott [Los Alamos, NM
2006-12-26
Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.
Avian influenza virus detection and quantitation by real-time RT-PCR
USDA-ARS?s Scientific Manuscript database
Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...
Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection.
Sharma, Tarun Kumar; Ramanathan, Rajesh; Weerathunge, Pabudi; Mohammadtaheri, Mahsa; Daima, Hemant Kumar; Shukla, Ravi; Bansal, Vipul
2014-12-28
A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.
Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy
NASA Astrophysics Data System (ADS)
Dogariu, A.; Goltsov, A.; Pestov, D.; Sokolov, A. V.; Scully, M. O.
2008-02-01
We demonstrate a realistic method for detection of anthrax-type spores in real time based on their chemical fingerprints using coherent anti-Stokes Raman scattering. Specifically, we demonstrate that coherent Raman scattering can be used to successfully identify spores with high accuracy and high selectivity in less than 50ms.
Serotype classification of Streptococcus mutans and its detection outside the oral cavity.
Nakano, Kazuhiko; Ooshima, Takashi
2009-09-01
Streptococcus mutans, generally known as a major pathogen of dental caries, is also a possible causative agent of bacteremia and infective endocarditis. S. mutans is classified into serotypes c, e, f and k based on the chemical composition of serotype-specific polysaccharides, with approximately 70-80% of strains found in the oral cavity classified as serotype c, followed by e (approximately 20%), and f and k (less than 5% each). Serotype k was recently designated as a novel serotype and shown to possess unique features, the most prominent being a defect of the glucose side chain in serotype-specific rhamnose-glucose polymers, which is related to a higher incidence of detection in cardiovascular specimens, owing to phagocytosis resistance. Molecular analyses of cardiovascular specimens showed a high detection frequency for S. mutans DNA, among which the detection rate for serotype k was quite high. These findings suggest that serotype k S. mutans possibly has a high level of virulence for systemic diseases.
NASA Astrophysics Data System (ADS)
Regmi, Abiral; Sarangadharan, Indu; Chen, Yen-Wen; Hsu, Chen-Pin; Lee, Geng-Yen; Chyi, Jen-Inn; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin
2017-08-01
Fibrinogen found in blood plasma is an important protein biomarker for potentially fatal diseases such as cardiovascular diseases. This study focuses on the development of an assay to detect plasmatic fibrinogen using electrical double layer gated AlGaN/GaN high electron mobility transistor biosensors without complex sample pre-treatment methods used in the traditional assays. The test results in buffer solution and clinical plasma samples show high sensitivity, specificity, and dynamic range. The sensor exhibits an ultra-low detection limit of 0.5 g/l and a detection range of 0.5-4.5 g/l in 1× PBS with 1% BSA. The concentration dependent sensor signal in human serum samples demonstrates the specificity to fibrinogen in a highly dense matrix of background proteins. The sensor does not require complicated automation, and quantitative results are obtained in 5 min with <5 μl sample volume. This sensing technique is ideal for speedy blood based diagnostics such as POC (point of care) tests, homecare tests, or personalized healthcare.
Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong
2013-05-07
We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.
Horstkotte, M A; Knobloch, J K; Rohde, H; Mack, D
2001-10-01
The detection of PBP 2a by the MRSA-Screen latex agglutination test with 201 clinical coagulase-negative staphylococci had an initial sensitivity of 98% and a high degree of specificity for Staphylococcus epidermidis strains compared to PCR for mecA. Determination of oxacillin MICs evaluated according to the new breakpoint (0.5 microg/ml) of the National Committee for Clinical Laboratory Standards exhibited an extremely low specificity for this population.
Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S
2015-12-01
The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Bonnet, Romaric; Farre, Carole; Valera, Lionel; Vossier, Ludivine; Léon, Fanny; Dagland, Typhaine; Pouzet, Agnès; Jaffrézic-Renault, Nicole; Fareh, Jeannette; Fournier-Wirth, Chantal; Chaix, Carole
2018-05-15
A nanoparticle-based electrochemical sandwich immunoassay was developed for bacteria detection in platelet concentrates. For the assay, magnetic beads were functionalized with antibodies to allow the specific capture of bacteria from the complex matrix, and innovative methylene blue-DNA/nanoparticle assemblies provided the electrochemical response for amplified detection. This nanoparticular system was designed as a temperature-sensitive nano-tool for electrochemical detection. First, oligonucleotide-functionalized nanoparticles were obtained by direct synthesis of the DNA strands on the nanoparticle surface using an automated oligonucleotide synthesizer. Densely packed DNA coverage was thus obtained. Then, DNA duplexes were constructed on the NP surface with a complementary strand bearing a 3 methylene blue tag. This strategy ultimately produced highly functionalized nanoparticles with electrochemical markers. These assemblies enabled amplification of the electrochemical signal, resulting in a very good sensitivity. A proof-of-concept was carried out for E. coli detection in human platelet concentrates. Bacterial contamination of this complex biological matrix is the highest residual infectious risk in blood transfusion. The development of a rapid assay that could reach 10-102 CFU mL-1 sensitivity is a great challenge. The nanoparticle-based electrochemical sandwich immunoassay carried out on a boron doped diamond electrode proved to be sensitive for E. coli detection in human platelets. Two antibody pairs were used to develop either a generic assay against certain Gram negative strains or a specific assay for E. coli. The methylene blue-DNA/nanoparticles amplify sensitivity ×1000 compared with the assay run without NPs for electrochemical detection. A limit of detection of 10 CFU mL-1 in a biological matrix was achieved for E. coli using the highly specific antibody pair.
Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2011-03-15
Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.
Dong, Sa; Zhang, Xiao; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Zhong, Jianfeng; Xu, Chongxin; Liu, Xianjin
2017-03-01
Cry1Ab toxin is commonly expressed in genetically modified crops in order to control chewing pests. At present, the detection method with enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody cannot specifically detect Cry1Ab toxin for Cry1Ab's amino acid sequence and spatial structure are highly similar to Cry1Ac toxin. In this study, based on molecular design, a novel hapten polypeptide was synthesized and conjugated to keyhole limpet hemocyanin (KLH). Then, through animal immunization with this antigen, a monoclonal antibody named 2C12, showing high affinity to Cry1Ab and having no cross reaction with Cry1Ac, was produced. The equilibrium dissociation constant (K D ) value of Cry1Ab toxin with MAb 2C12 was 1.947 × 10 -8 M. Based on this specific monoclonal antibody, a sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for the specific determination of Cry1Ab toxin and the LOD and LOQ values were determined as 0.47 ± 0.11 and 2.43 ± 0.19 ng mL -1 , respectively. The average recoveries of Cry1Ab from spiked rice leaf and rice flour samples ranged from 75 to 115%, with coefficient of variation (CV) less than 8.6% within the quantitation range (2.5-100 ng mL -1 ), showing good accuracy for the quantitative detection of Cry1Ab toxin in agricultural samples. In conclusion, this study provides a new approach for the production of high specific antibody and the newly developed DAS-ELISA is a useful method for Cry1Ab monitoring in agriculture products. Graphical Abstract Establishment of a DAS-ELISA for the specific detecting of Bacillus thuringiensis (Bt) Cry1Ab toxin.
NASA Astrophysics Data System (ADS)
Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching
2013-07-01
Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.
Ro, Young-Tae; Ticer, Anysha; Carrion, Ricardo; Patterson, Jean L
2017-04-01
Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 10 2 to 10 3 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui
2012-04-07
The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields. This journal is © The Royal Society of Chemistry 2012
Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program
NASA Astrophysics Data System (ADS)
Paulter, Nicholas G.
1998-12-01
The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.
Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok
2015-08-04
Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.
Pal, V; Saxena, A; Singh, S; Goel, A K; Kumar, J S; Parida, M M; Rai, G P
2018-02-01
Burkholderia mallei is the aetiological agent of glanders, a highly contagious and re-emerging zoonotic disease. Early diagnosis of glanders is critically important to ensure timely treatment with appropriate antibiotics in humans, and to prevent spread of infection in animals. Molecular detection of B. mallei has always been troublesome because of its genetic similarity with Burkholderia pseudomallei, the causative agent of melioidosis. In present investigation, a set of six B. mallei-specific primers were designed and a simple, rapid, specific and sensitive real-time loop-mediated isothermal amplification (LAMP) assay was developed for detection of B. mallei. The LAMP assay could detect as low as 1 pg of B. mallei genomic DNA and 5.5 × 10 3 CFU/ml of B. mallei in spiked human blood. The assay was highly specific for B. mallei as it did not cross-react with other bacterial strains used in the study. The established LAMP assay is field adaptable and can be a better and viable alternative to PCR-based techniques for detection of B. mallei in glanders endemic areas with resource-limited settings. © 2017 Blackwell Verlag GmbH.
Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui
2017-01-01
Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation. PMID:29084241
Attallah, Abdelfattah M; Omran, Mohamed M; Attallah, Ahmed A; Abdelrazek, Mohamed A; Farid, Khaled; El-Dosoky, Ibrahim
2017-04-01
Small-sized HCC can be effectively cured by surgery with good clinical outcomes. A highly sensitive HCC α-fetoprotein routine test (HCC-ART) for HCC diagnosis as well as a simplied form of the HCC-ART were reported in the British Journal of Cancer. Here, we verified and studied the applicability of the HCC-ART to the detection of early-stage HCC. 341 cirrhotic patients and 318 HCC patients were included in this study. For each, the HCC-ART score was calculated, and then the sensitivity, specificity, and results of an ROC curve analysis were compared between the HCC-ART and AFP when these biomarkers were used to detect small-sized HCC. Different HCC-ART cutoffs were set for the detection of different tumor sizes. The HCC-ART (AUC = 0.871, 70% sensitivity, 97% specificity) and the simplified HCC-ART (AUC = 0.934, 82% sensitivity, 100% specificity) were found to have high predictive power when attempting to separate cirrhotic patients from those with small-sized HCC. The simplified HCC-ART score was superior to AFP for determining stages according to the early Okuda (0.950 AUC, 84% sensitivity, 99% specificity), CLIP (0.945 AUC, 84% sensitivity, 99% specificity), and BCLC (1.000 AUC, 100% sensitivity, 99% specificity) staging systems. The simplified HCC-ART score was more strongly correlated than AFP and other staging systems with HCC tumor size (P < 0.0001; r = 0.8). The HCC-ART is superior to AFP for diagnosing early-stage HCC. Due to its advantages of minimal variability and a wide continuous scale for assessing HCC severity, the simplified HCC-ART has the potential to be more widely used than the original HCC-ART.
Buisson, Anthony; Pereira, Bruno; Goutte, Marion; Reymond, Maud; Allimant, Christophe; Obritin-Guilhen, Hélène; Bommelaer, Gilles; Hordonneau, Constance
2017-11-01
Magnetic resonance index of activity (MaRIA) and Clermont score are currently the two main MRI indices that have been validated compared to endoscopy in Crohn's disease (CD). To compare the accuracy of MaRIA and Clermont score in assessing CD mucosal healing. Fourty-four CD patients underwent prospectively and consecutively MRI and colonoscopy. Considering 207 segments, MaRIA>7 and Clermont score>8.4 demonstrated substantial accuracy to detect endoscopic ulcerations (73.9% and 74.0%, respectively) and presented with high specificity (82.1% and 81.3%) and high negative predictive value (NPV) (82.1% and 82.4%) for MaRIA and Clermont score, respectively. The sensitivity for detecting deep ulcerations was 90.9% for both MaRIA>11 and Clermont score>12.5, with a specificity of 82.0% and 80.0%, respectively. Among 44 patients, deep MRI remission predicted mucosal healing with specificity=85.3% and NPV=85.3% according to Barcelona criteria (no segmental MaRIA>7), and specificity=88.2% and NPV=85.7% according to Clermont criteria (no segmental Clermont score>8.4). In addition, MRI remission predicted mucosal healing with specificity=76.5% and NPV=86.7% according to Barcelona criteria (no segmental MaRIA>11), and specificity=79.4% and NPV=84.4% according to Clermont criteria (no segmental Clermont score>12.5). MaRIA and Clermont score are equally effective in detecting CD endoscopic ulcerations supporting their use as therapeutic endpoints. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Noureldin, Mohamed S; el-Ganaini, Goman A; Abou El-Enin, Ahmed M; el-Nemr, Hosam-Eldin I; Hussin, Eman M; Sultan, Doaa M
2004-08-01
Seven assays detecting serum IgM, IgG, IgG1, IgG4, IgA and salivary and fecal excretory IgA against Fasciola excretory/secretory (ES) antigens were evaluated in diagnosing fascioliasis, for cross reactivity with Schistosoma mansoni sera and for evaluation of cure of Fasciola infection after treatment. Assays detecting sera IgM, IgG1, IgG4 and IgA against Fasciola ES antigens showed 100% specificity and sensitivity. Assays detecting IgM and IgG showed 98% and 96% sensitivity and 100% and 94.6% specificity respectively. Assays detecting salivary and faecal IgA showed 92% & 96% sensitivity and 100% & 100% specificity respectively. Assays detecting IgM and IgG4 were the best in evaluation of cure and assays detecting IgG4 & IgA showed the lowest cross-reactivity with sera from S. mansoni infected patients. So, assays detecting serum IgA, IgG1 & IgG4 against Fasciola ES antigens were highly sensitive and specific for diagnosis of fascioliasis and assays detecting salivary and faecal IgA were promising and of great help in diagnosis of fascioliasis especially in epidemiologic studies.
Chaya, DR; Parija, Subhash Chandra
2013-01-01
Introduction: Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. Materials and Methods: A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. Results: The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. Conclusions: ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE. PMID:24470996
Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures
Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong
2013-01-01
The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790
Ultra-high sensitivity radiation detection apparatus and method
Gross, Kenneth C.; Valentine, John D.; Markum, Francis; Zawadzki, Mary; Dickerman, Charles
1999-01-01
A method and apparatus are provided to concentrate and detect very low levels of radioactive noble gases from the atmosphere. More specifically the invention provides a method and apparatus to concentrate xenon, krypton and radon in an organic fluid and to detect these gases by the radioactive emissions.
Charles, Paul T.; Stubbs, Veronte R.; Soto, Carissa M.; Martin, Brett D.; White, Brandy J.; Taitt, Chris R.
2009-01-01
Three PEG molecules (PEG-methacrylate, -diacrylate and -dimethacrylate) were incorporated into galactose-based polyacrylate hydrogels and their relative abilities to reduce non-specific protein adsorption in immunoassays were determined. Highly crosslinked hydrogels containing amine-terminated functionalities were formed and used to covalently attach antibodies specific for staphylococcal enterotoxin B (SEB). Patterned arrays of immobilized antibodies in the PEG-modified hydrogels were created with a PDMS template containing micro-channels for use in sandwich immunoassays to detect SEB. Different concentrations of the toxin were applied to the hydrogel arrays, followed with a Cy3-labeled tracer antibody specific for the two toxins. Fluorescence laser scanning confocal microscopy of the tracer molecules provided both qualitative and quantitative measurements on the detection sensitivity and the reduction in non-specific binding as a result of PEG incorporation. Results showed the PEG-modified hydrogel significantly reduced non-specific protein binding with a detection limit for SEB of 1 ng/mL. Fluorescence signals showed a 10-fold decrease in the non-specific binding and a 6-fold increase in specific binding of SEB. PMID:22389622
Methylation-Sensitive High Resolution Melting (MS-HRM).
Hussmann, Dianna; Hansen, Lise Lotte
2018-01-01
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
A multiplex PCR for detection of six viruses in ducks.
Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong
2017-10-01
In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.
Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.
Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed
2014-01-01
ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.
Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks
Ghali, Hala; Chibli, Hicham; Nadeau, Jay L.; Bianucci, Pablo; Peter, Yves-Alain
2016-01-01
Whispering Gallery Mode (WGM) microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q) factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme. PMID:27153099
Automated detection of retinal whitening in malarial retinopathy
NASA Astrophysics Data System (ADS)
Joshi, V.; Agurto, C.; Barriga, S.; Nemeth, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Lewallen, S.; Harding, S.
2016-03-01
Cerebral malaria (CM) is a severe neurological complication associated with malarial infection. Malaria affects approximately 200 million people worldwide, and claims 600,000 lives annually, 75% of whom are African children under five years of age. Because most of these mortalities are caused by the high incidence of CM misdiagnosis, there is a need for an accurate diagnostic to confirm the presence of CM. The retinal lesions associated with malarial retinopathy (MR) such as retinal whitening, vessel discoloration, and hemorrhages, are highly specific to CM, and their detection can improve the accuracy of CM diagnosis. This paper will focus on development of an automated method for the detection of retinal whitening which is a unique sign of MR that manifests due to retinal ischemia resulting from CM. We propose to detect the whitening region in retinal color images based on multiple color and textural features. First, we preprocess the image using color and textural features of the CMYK and CIE-XYZ color spaces to minimize camera reflex. Next, we utilize color features of the HSL, CMYK, and CIE-XYZ channels, along with the structural features of difference of Gaussians. A watershed segmentation algorithm is used to assign each image region a probability of being inside the whitening, based on extracted features. The algorithm was applied to a dataset of 54 images (40 with whitening and 14 controls) that resulted in an image-based (binary) classification with an AUC of 0.80. This provides 88% sensitivity at a specificity of 65%. For a clinical application that requires a high specificity setting, the algorithm can be tuned to a specificity of 89% at a sensitivity of 82%. This is the first published method for retinal whitening detection and combining it with the detection methods for vessel discoloration and hemorrhages can further improve the detection accuracy for malarial retinopathy.
Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí
2005-01-01
Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific, sensitive, and economic alternative to the current quantitative methods.
Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol
2013-11-01
Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.
Kilpatrick, David R.; Nakamura, Tomofumi; Burns, Cara C.; Bukbuk, David; Oderinde, Soji B.; Oberste, M. Steven; Kew, Olen M.; Pallansch, Mark A.; Shimizu, Hiroyuki
2014-01-01
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. PMID:25339406
Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A
2002-09-01
In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.
Fundamentals, achievements and challenges in the electrochemical sensing of pathogens.
Monzó, Javier; Insua, Ignacio; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi
2015-11-07
Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.
Detection of Entamoeba histolytica by Recombinase Polymerase Amplification
Nair, Gayatri; Rebolledo, Mauricio; White, A. Clinton; Crannell, Zachary; Richards-Kortum, R. Rebecca; Pinilla, A. Elizabeth; Ramírez, Juan David; López, M. Consuelo; Castellanos-Gonzalez, Alejandro
2015-01-01
Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. PMID:26123960
Hinterholzinger, Florian M.; Rühle, Bastian; Wuttke, Stefan; Karaghiosoff, Konstantin; Bein, Thomas
2013-01-01
The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as a host for a fluorescent reporter molecule. The detection is based on the decomposition of the host scaffold which induces the release of the fluorescent dye molecule. Specifically, the hybrid composite of the metal-organic framework NH2-MIL-101(Al) and fluorescein acting as reporter shows an exceptional turn-on fluorescence in aqueous fluoride-containing solutions. Using this novel strategy, the optical detection of fluoride is extremely sensitive and highly selective in the presence of many other anions. PMID:24008779
Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong
2014-11-01
Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.
Karas, Vlad O; Sinnott-Armstrong, Nicholas A; Varghese, Vici; Shafer, Robert W; Greenleaf, William J; Sherlock, Gavin
2018-01-01
Abstract Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation. PMID:29361139
Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun
2015-08-15
Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Zhiqing; Wang, Yi; Zhang, Dun
2017-12-15
A novel fast, sensitive, and specific multifunctional electrochemical platform has been proposed for simultaneous detection, elimination, and inactivation of pathogenic bacteria for the first time. The platform is constituted with three-dimensional ZnO nanorod arrays (3D-ZnO) decorated with sliver nanoparticles (AgNPs) and functionalized with vancomycin (Van). Based on the specific recognition of Van for Gram-positive bacteria, the fabricated electrochemical platform has presented high detection sensitivity to Staphylococcus aureus with a low detection limit of 330cfu/mL and adaptable bacterial-elimination efficiency (50%) at low concentrations (1000-2000cfu/mL). Moreover, the platform has shown high antibacterial activity (99.99%) arising from the synergistic germicidal effect of the composited antibacterial AgNPs and Van units. The current work could provide new strategies to construct advanced platforms for simultaneous detection, elimination, and inactivation of various pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly sensitive detection of target molecules using a new fluorescence-based bead assay
NASA Astrophysics Data System (ADS)
Scheffler, Silvia; Strauß, Denis; Sauer, Markus
2007-07-01
Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.
High-sensitivity explosives detection using dual-excitation-wavelength resonance-Raman detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; McCormick, William B.; Wu, Hai-Shan; Sluch, Mikhail; Martin, Robert; Ice, Robert V.; Lemoff, Brian
2014-05-01
A key challenge for standoff explosive sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To meet this challenge a sensor needs to exhibit high specificity and high sensitivity in detection at low signal-to-noise ratio levels. We had proposed a Dual-Excitation- Wavelength Resonance-Raman Detector (DEWRRED) to address this need. In our previous work, we discussed various components designed at WVHTCF for a DEWRRED sensor. In this work, we show a completely assembled laboratory prototype of a DEWRRED sensor and utilize it to detect explosives from two standoff distances. The sensor system includes two novel, compact CW deep-Ultraviolet (DUV) lasers, a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. We choose DUV excitation because Raman intensities from explosive traces are enhanced and fluorescence and solar background are not present. The DEWRRED technique exploits the excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show measurements from >10 explosives/pre-cursor materials at different standoff distances. The sensor showed high sensitivity in explosive detection even when the signalto- noise ratio was close to one (~1.6). We measured receiver-operating-characteristics, which show a clear benefit in using the dual-excitation-wavelength technique as compared to a single-excitation-wavelength technique. Our measurements also show improved specificity using the amplitude variation information in the dual-excitation spectra.
Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness.
Biswas, Sayantan; Lin, Chen; Leung, Christopher K S
2016-09-01
Analysis of retinal nerve fiber layer (RNFL) abnormalities with optical coherence tomography in eyes with high myopia has been complicated by high rates of false-positive errors. An understanding of whether the application of a myopic normative database can improve the specificity for detection of RNFL abnormalities in eyes with high myopia is relevant. To evaluate the diagnostic performance of a myopic normative database for detection of RNFL abnormalities in eyes with high myopia (spherical equivalent, -6.0 diopters [D] or less). In this cross-sectional study, 180 eyes with high myopia (mean [SD] spherical equivalent, -8.0 [1.8] D) from 180 healthy individuals were included in the myopic normative database. Another 46 eyes with high myopia from healthy individuals (mean [SD] spherical equivalent, -8.1 [1.8] D) and 74 eyes from patients with high myopia and glaucoma (mean [SD] spherical equivalent, -8.3 [1.9] D) were included for evaluation of specificity and sensitivity. The 95th and 99th percentiles of the mean and clock-hour circumpapillary RNFL thicknesses and the individual superpixel thicknesses of the RNFL thickness map measured by spectral-domain optical coherence tomography were calculated from the 180 eyes with high myopia. Participants were recruited from January 2, 2013, to December 30, 2015. The following 6 criteria of RNFL abnormalities were examined: (1) mean circumpapillary RNFL thickness below the lower 95th or (2) the lower 99th percentile; (3) one clock-hour or more for RNFL thickness below the lower 95th or (4) the lower 99th percentile; and (5) twenty contiguous superpixels or more of RNFL thickness in the RNFL thickness map below the lower 95th or (6) the lower 99th percentile. Specificities and sensitivities for detection of RNFL abnormalities. Of the 46 healthy eyes and 74 eyes with glaucoma studied (from 39 men and 38 women), the myopic normative database showed a higher specificity (63.0%-100%) than did the built-in normative database of the optical coherence tomography instrument (8.7%-87.0%) for detection of RNFL abnormalities across all the criteria examined (differences in specificities between 13.0% [95% CI, 1.1%-24.9%; P = .01] and 54.3% [95% CI, 37.8%-70.9%; P < .001]) except for the criterion of mean RNFL thickness below the lower 99th percentile, in which both normative databases had the same specificities (100%) but the myopic normative database exhibited a higher sensitivity (71.6% vs 86.5%; difference in sensitivities, 14.9% [95% CI, 4.6%-25.1%; P = .002]). The application of a myopic normative database improved the specificity without compromising the sensitivity compared with the optical coherence tomography instrument's built-in normative database for detection of RNFL abnormalities in eyes with high myopia. Inclusion of myopic normative databases should be considered in optical coherence tomography instruments.
Antón, Alfonso; Pazos, Marta; Martín, Belén; Navero, José Manuel; Ayala, Miriam Eleonora; Castany, Marta; Martínez, Patricia; Bardavío, Javier
2013-01-01
To assess sensitivity, specificity, and agreement among automated event analysis, automated trend analysis, and expert evaluation to detect glaucoma progression. This was a prospective study that included 37 eyes with a follow-up of 36 months. All had glaucomatous disks and fields and performed reliable visual fields every 6 months. Each series of fields was assessed with 3 different methods: subjective assessment by 2 independent teams of glaucoma experts, glaucoma/guided progression analysis (GPA) event analysis, and GPA (visual field index-based) trend analysis. Kappa agreement coefficient between methods and sensitivity and specificity for each method using expert opinion as gold standard were calculated. The incidence of glaucoma progression was 16% to 18% in 3 years but only 3 cases showed progression with all 3 methods. Kappa agreement coefficient was high (k=0.82) between subjective expert assessment and GPA event analysis, and only moderate between these two and GPA trend analysis (k=0.57). Sensitivity and specificity for GPA event and GPA trend analysis were 71% and 96%, and 57% and 93%, respectively. The 3 methods detected similar numbers of progressing cases. The GPA event analysis and expert subjective assessment showed high agreement between them and moderate agreement with GPA trend analysis. In a period of 3 years, both methods of GPA analysis offered high specificity, event analysis showed 83% sensitivity, and trend analysis had a 66% sensitivity.
2012-09-01
as potential tools for large area detection coverage while being moderately inexpensive (Wettergren, Performance of Search via Track - Before - Detect for...via Track - Before - Detect for Distribute 34 Sensor Networks, 2008). These statements highlight three specific needs to further sensor network research...Bay hydrography. Journal of Marine Systems, 12, 221–236. Wettergren, T. A. (2008). Performance of search via track - before - detect for distributed
Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong
2018-02-15
Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Bo-Yun; Liu, Xiao-Lu; Wei, Yu-Mei; Wang, Jing-Qi; He, Xiao-Qing; Jin, Yi; Wang, Zi-Jian
2014-02-14
The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. The detection limit of LAMP using in vitro RNA transcripts was 3.6 × 10 copies·μL⁻¹, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test.
Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan
2016-01-01
Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130
Hanna, Amanda; Banks, Jill; Marston, Denise A; Ellis, Richard J; Brookes, Sharon M; Brown, Ian H
2015-05-01
Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread.
Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash
2016-12-15
The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.
Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar
2018-05-02
Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.
Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram
2003-01-01
Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we strongly suggest that the final interpretation of the results from this assay be viewed in light of the other features of the case, including clinical history, histology, and immunohistochemistry, by the diagnostic pathologist. Additional studies such as FISH may be useful in clarifying the nature of equivocal or unexpected results.
Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe
2012-01-01
Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.
Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young
2012-01-01
Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778
Application of immuno-PCR assay for the detection of serum IgE specific to Bermuda allergen.
Rahmatpour, Samine; Khan, Amjad Hayat; Nasiri Kalmarzi, Rasoul; Rajabibazl, Masoumeh; Tavoosidana, Gholamreza; Motevaseli, Elahe; Zarghami, Nosratollah; Sadroddiny, Esmaeil
2017-04-01
In vivo and in vitro tests are the two major ways of identifying the triggering allergens in sensitized individuals with allergic symptoms. Both methods are equally significant in terms of sensitivity and specificity. However, in certain circumstances, in vitro methods are highly preferred because they circumvent the use of sensitizing drugs in patients. In current study, we described a highly sensitive immuno-PCR (iPCR) assay for serum IgE specific to Bermuda allergens. Using oligonucleotide-labelled antibody, we used iPCR for the sensitive detection of serum IgE. The nucleotide sequence was amplified using conventional PCR and the bands were visualized on 2.5% agarose gel. Results demonstrated a 100-fold enhancement in sensitivity of iPCR over commercially available enzyme-linked immunosorbent assay (ELISA) kit. Our iPCR method was highly sensitive for Bermuda-specific serum IgE and could be beneficial in allergy clinics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Yun-Tzu; Chang, Chia-Yu; Chen, Wei; Su, Chien-Hao; Hsu, Guo-Cheng; Chang, Chia-Ching
HER2 (human epidermal growth factor receptor 2) is one of the significant surface antigens of breast cancer Trace amount of HER2 protein in human serum is highly correlated to the tumor progression in breast cancers especially in the cases of recurrence. Therefore, HER2 detection of human serum is significant for early detection of cancer recurrence. Conventional HER2 detection approaches may not be sensitive enough or contain highly false positive rate or time consuming for accurate detection. Therefore, a rapid, highly sensitive and specific sensing is highly desired. By using HER2 specific binding peptide functionalized palladium thin film electrochemical electrode the HER2 protein concentration can be determined at sub-nanogram level by electrochemical impedance spectroscopy (EIS) within 10 mins. The Pd nano-film is sputtered on the flexible plastics substrate and reduces the cost of this electrode. Due to the low cost of the electrode, it is designed as a disposable biosensing probe which may reduce the concern of human sample contamination. The self-management after breast cancer operation may be feasible in the near future. Keywords: Electrochemical impedance spectroscopy(EIS), breast cancer, biosensor Corresponding author: ccchang01@faculty.nctu.edu.tw; Cheeshin Technology Co. Collaboration.
Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco
2015-05-15
Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu
2017-08-01
Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Schistosoma real-time PCR as diagnostic tool for international travellers and migrants.
Cnops, Lieselotte; Tannich, Egbert; Polman, Katja; Clerinx, Jan; Van Esbroeck, Marjan
2012-10-01
To evaluate the use of a genus-specific PCR that combines high sensitivity with the detection of different Schistosoma species for diagnosis in international travellers and migrants in comparison to standard microscopy. The genus-specific real-time PCR was developed to target the 28S ribosomal RNA gene of the major human Schistosoma species. It was validated for analytical specificity and reproducibility and demonstrated an analytical sensitivity of 0.2 eggs per gram of faeces. Its diagnostic performance was further evaluated on 152 faecal, 32 urine and 38 serum samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine in Antwerp (Belgium). We detected Schistosoma DNA in 76 faecal (50.0%) and five urine (15.6%) samples of which, respectively, nine and one were not detected by standard microscopy. Only two of the 38 serum samples of patients with confirmed schistosomiasis were positive with the presently developed PCR. Sequence analysis on positive faecal samples allowed identification of the Schistosoma species complex. The real-time PCR is highly sensitive and may offer added value in diagnosing imported schistosomiasis. The genus-specific PCR can detect all schistosome species that are infectious to humans and performs very well with faeces and urine, but not in serum. © 2012 Blackwell Publishing Ltd.
Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening.
Choi, Gihoon; Prince, Theodore; Miao, Jun; Cui, Liwang; Guan, Weihua
2018-05-19
The effectiveness of malaria screening and treatment highly depends on the low-cost access to the highly sensitive and specific malaria test. We report a real-time fluorescence nucleic acid testing device for malaria field detection with automated and scalable sample preparation capability. The device consists a compact analyzer and a disposable microfluidic reagent compact disc. The parasite DNA sample preparation and subsequent real-time LAMP detection were seamlessly integrated on a single microfluidic compact disc, driven by energy efficient non-centrifuge based magnetic field interactions. Each disc contains four parallel testing units which could be configured either as four identical tests or as four species-specific tests. When configured as species-specific tests, it could identify two of the most life-threatening malaria species (P. falciparum and P. vivax). The NAT device is capable of processing four samples simultaneously within 50 min turnaround time. It achieves a detection limit of ~0.5 parasites/µl for whole blood, sufficient for detecting asymptomatic parasite carriers. The combination of the sensitivity, specificity, cost, and scalable sample preparation suggests the real-time fluorescence LAMP device could be particularly useful for malaria screening in the field settings. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical tool that boasts the feature of high detection sensitivity and molecular fingerprint specificity attracting increased attention and showing promise in applications including detecting residues of veterinary drugs. In practice, spec...
Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung
2013-07-01
Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.
Dummitt, Benjamin; Chang, Yie-Hwa
2006-06-01
Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.
PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.
Prevost, S; Andre, S; Remize, F
2010-12-01
Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.
Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, UA
2014-01-01
Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and Impact of the Study Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. PMID:24935714
Memon, Atta Muhammad; Bhuyan, Anjuman Ara; Chen, Fangzhou; Guo, Xiaozhen; Menghwar, Harish; Zhu, Yinxing; Ku, Xugang; Chen, Shuhua; Li, Zhonghua; He, Qigai
2017-05-01
Porcine rotavirus-A (PoRVA) is one of the common causes of mild to severe dehydrating diarrhea, leading to losses in weaning and postweaning piglets. A rapid, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of PoRVA, by using VP6 (a highly conserved and antigenic protein of group-A rotavirus)-directed rabbit polyclonal antibodies (capture antibody) and murine monoclonal antibodies (detector antibody). The detection limit of AC-ELISA was found to be equal to that of conventional reverse transcription-polymerase chain reaction (RT-PCR; about 10 2.5 TCID 50 /mL). For validation of the in-house AC-ELISA, 295 porcine fecal/diarrhea samples, collected from different provinces of China, were evaluated and compared with conventional RT-PCR and TaqMan RT-quantitative PCR (qPCR). The sensitivity and specificity of this in-house AC-ELISA relative to RT-qPCR were found to be 91.67% and 100%, respectively, with the strong agreement (kappa = 0.972) between these two techniques. Total detection rate with AC-ELISA, conventional RT-PCR, and RT-qPCR were found to be 11.2%, 11.5%, and 12.2%, respectively, without any statistical significant difference. Moreover, AC-ELISA failed to detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastroenteritis virus, pseudorabies virus, and porcine circovirus-2. These results suggested that our developed method was rapid, highly specific, and sensitive, which may help in large-scale surveillance, timely detection, and preventive control of rotavirus infection in porcine farms.
NASA Astrophysics Data System (ADS)
Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi
2017-01-01
The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.
Plagnol, Vincent; Woodhouse, Samuel; Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg; Forshew, Tim
2018-01-01
Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.
Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg
2018-01-01
Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications. PMID:29543828
Attallah, Abdelfattah M.; Bughdadi, Faisal A.; El-Shazly, Atef M.
2013-01-01
Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis. PMID:23945158
Attallah, Abdelfattah M; Bughdadi, Faisal A; El-Shazly, Atef M; Ismail, Hisham
2013-10-01
Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis.
Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.
Law, Yan Nei; Jian, Hanbin; Lo, Norman W S; Ip, Margaret; Chan, Mia Mei Yuk; Kam, Kai Man; Wu, Xiaohua
2018-01-01
In countries with high tuberculosis (TB) burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB) from respiratory specimens. To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO) staining, as well as direct smears with AO and Ziehl-Neelsen (ZN) staining, using mycobacterial culture results as gold standard. Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated. Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5%) and slight improvement in sensitivity while requiring only limited manual workload. Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement in specificity was obtained when uncertain results were confirmed by manual smear grading. This approach had potential to substantially reduce workload of microscopists in high burden countries.
NASA Astrophysics Data System (ADS)
Yu, Ping; Ma, Lixin
2012-02-01
In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.
Wang, Yuling; Rauf, Sakandar; Grewal, Yadveer S; Spadafora, Lauren J; Shiddiky, Muhammad J A; Cangelosi, Gerard A; Schlücker, Sebastian; Trau, Matt
2014-10-07
Quantitative and accurate detection of multiple biomarkers would allow for the rapid diagnosis and treatment of diseases induced by pathogens. Monoclonal antibodies are standard affinity reagents applied for biomarkers detection; however, their production is expensive and labor-intensive. Herein, we report on newly developed nanoyeast single-chain variable fragments (NYscFv) as an attractive alternative to monoclonal antibodies, which offers the unique advantage of a cost-effective production, stability in solution, and target-specificity. By combination of surface-enhanced Raman scattering (SERS) microspectroscopy using glass-coated, highly purified SERS nanoparticle clusters as labels, with a microfluidic device comprising multiple channels, a robust platform for the sensitive duplex detection of pathogen antigens has been developed. Highly sensitive detection for individual Entamoeba histolytica antigen EHI_115350 (limit of detection = 1 pg/mL, corresponding to 58.8 fM) and EHI_182030 (10 pg/mL, corresponding 453 fM) with high specificity has been achieved, employing the newly developed corresponding NYscFv as probe in combination with SERS microspectroscopy at a single laser excitation wavelength. Our first report on SERS-based immunoassays using the novel NYscFv affinity reagent demonstrates the flexibility of NYscFv fragments as viable alternatives to monoclonal antibodies in a range of bioassay platforms and paves the way for further applications.
Singh, Ruchi; Singh, Dhirendra Pratap; Savargaonkar, Deepali; Singh, Om P; Bhatt, Rajendra M; Valecha, Neena
2017-01-01
Loop-mediated isothermal amplification (LAMP) is an emerging nucleic acid based diag- nostic approach that is easily adaptable to the field settings with limited technical resources. This study was aimed to evaluate the LAMP assay for the detection and identification of Plasmodium falciparum and P. vivax infection in malaria suspected cases using genus and species-specific assay. The 18S rRNA-based LAMP assay was evaluated for diagnosis of genus Plasmodium, and species- specific diagnosis of P. falciparum and P. vivax, infection employing 317 malaria suspected cases, and the results were compared with those obtained by 18S nested PCR (n-PCR). All the samples were confirmed by microscopy for the presence of Plasmodium parasite. The n-PCR was positive in all Plasmodium-infected cases (n=257; P. falciparum=133; P. vivax=124) and negative in microscopy negative cases (n=58) except for two cases which were positive for P. vivax, giving a sen- sitivity of 100% (95% CI: 97.04-100%) and a specificity of 100% (95% CI: 88.45-99.5%). Genus-specific LAMP assay missed 11 (3.2%) microscopy and n-PCR confirmed vivax malaria cases. Considering PCR results as a refer- ence, LAMP was 100% sensitive and specific for P. falciparum, whereas it exhibited 95.16% sensitivity and 96.7% specificity for P. vivax. The n-PCR assay detected 10 mixed infection cases while species-specific LAMP detected five mixed infection cases of P. vivax and P. falciparum, which were not detected by microscopy. Genus-specific LAMP assay displayed low sensitivity. Falciparum specific LAMP assay displayed high sensitivity whereas vivax specific LAMP assay displayed low sensitivity. Failed detection of vivax cases otherwise confirmed by the n-PCR assay indicates exploitation of new targets and improved detection methods to attain 100% results for P. vivax detection.
Multiplexed detection of anthrax-related toxin genes.
Moser, Michael J; Christensen, Deanna R; Norwood, David; Prudent, James R
2006-02-01
Simultaneous analysis of three targets in three colors on any real-time polymerase chain reaction (PCR) instrument would increase the flexibility of real-time PCR. For the detection of Bacillus strains that can cause inhalation anthrax-related illness, this ability would be valuable because two plasmids confer virulence, and internal positive controls are needed to monitor the testing in cases lacking target-specific signals. Using a real-time PCR platform called MultiCode-RTx, multiple assays were developed that specifically monitor the presence of Bacillus anthracis-specific virulence plasmid-associated genes. In particular for use on LightCycler-1, two triplex RTx systems demonstrated high sensitivity with limits of detection nearing single-copy levels for both plasmids. Specificity was established using a combination of Ct values and correct amplicon melting temperatures. All reactions were further verified by detection of an internal positive control. For these two triplex RTx assays, the analytical detection limit was one to nine plasmid copy equivalents, 100% analytical specificity with a 95% confidence interval (CI) of 9%, and 100% analytical sensitivity with a CI of 2%. Although further testing using clinical or environmental samples will be required to assess diagnostic sensitivity and specificity, the RTx platform achieves similar results to those of probe-based real-time systems.
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B
2018-01-01
To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p < .001; specificity remained high (>.90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.
Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard
2005-01-01
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166
Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S
2015-10-12
Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.
Yin, Honghong; Kuang, Hua; Liu, Liqiang; Xu, Liguang; Ma, Wei; Wang, Libing; Xu, Chuanlai
2014-04-09
A novel biosensor for ultrasensitive detection of copper (Cu(2+)) was established based on the assembly of magnetic nanoparticles induced by the Cu(2+)-dependent ligation DNAzyme. With a low limit of detection of 2.8 nM and high specificity, this method has the potential to serve as a general platform for the detection of heavy metal ions.
Röder, Martin; Vieths, Stefan; Holzhauser, Thomas
2011-01-24
Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and potentially quantitative almond detection. This PCR method detects almond at a level where severe allergic reactions should not be expected for the majority of the almond allergic individuals. Copyright © 2010 Elsevier B.V. All rights reserved.
Pinto, Joar; Odongo, Steven; Lee, Felicity; Gaspariunaite, Vaiva; Muyldermans, Serge; Magez, Stefan; Sterckx, Yann G-J
2017-09-01
Animal African trypanosomosis (AAT) is a neglected tropical disease which imposes a heavy burden on the livestock industry in Sub-Saharan Africa. Its causative agents are Trypanosoma parasites, with T. congolense and T. vivax being responsible for the majority of the cases. Recently, we identified a Nanobody (Nb474) that was employed to develop a homologous sandwich ELISA targeting T. congolense fructose-1,6-bisphosphate aldolase (TcoALD). Despite the high sequence identity between trypanosomatid aldolases, the Nb474-based immunoassay is highly specific for T. congolense detection. The results presented in this paper yield insights into the molecular principles underlying the assay's high specificity. The structure of the Nb474-TcoALD complex was determined via X-ray crystallography. Together with analytical gel filtration, the structure reveals that a single TcoALD tetramer contains four binding sites for Nb474. Through a comparison with the crystal structures of two other trypanosomatid aldolases, TcoALD residues Ala77 and Leu106 were identified as hot spots for specificity. Via ELISA and surface plasmon resonance (SPR), we demonstrate that mutation of these residues does not abolish TcoALD recognition by Nb474, but does lead to a lack of detection in the Nb474-based homologous sandwich immunoassay. The results show that the high specificity of the Nb474-based immunoassay is not determined by the initial recognition event between Nb474 and TcoALD, but rather by its homologous sandwich design. This (i) provides insights into the optimal set-up of the assay, (ii) may be of great significance for field applications as it could explain the potential detection escape of certain T. congolense strains, and (iii) may be of general interest to those developing similar assays.
Singh, Urvashi B.; Pandey, Pooja; Mehta, Girija; Bhatnagar, Anuj K.; Mohan, Anant; Goyal, Vinay; Ahuja, Vineet; Ramachandran, Ranjani; Sachdeva, Kuldeep S.; Samantaray, Jyotish C.
2016-01-01
Background Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency. Methods The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS]. Results Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance. Conclusions Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early diagnosis of TB and MDR-TB, in difficult to diagnose pauci-bacillary TB. PMID:26894283
Timms, Mark; Hall, Nikki; Levina, Vita; Vine, John; Steel, Rohan
2014-10-01
The growth hormone releasing peptides (GHRPs) hexarelin, ipamorelin, alexamorelin, GHRP-1, GHRP-2, GHRP-4, GHRP-5, and GHRP-6 are all synthetic met-enkephalin analogues that include unnatural D-amino acids. They were designed specifically for their ability to stimulate growth hormone release and may serve as performance enhancing drugs. To regulate the use of these peptides within the horse racing industry and by human athletes, a method is presented for the extraction, derivatization, and detection of GHRPs from equine and human urine. This method takes advantage of a highly specific solid-phase extraction combined with a novel derivatization method to improve the chromatography of basic peptides. The method was validated with respect to linearity, repeatability, intermediate precision, specificity, limits of detection, limits of confirmation, ion suppression, and stability. As proof of principle, all eight GHRPs or their metabolites could be detected in urine collected from rats after intravenous administration. Copyright © 2014 John Wiley & Sons, Ltd.
Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L.; Tsimikas, Sotirios
2014-01-01
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to noninvasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940
Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnel.
Sargsyan, Ashot E; Dulchavsky, Alexandria G; Adams, James; Melton, Shannon; Hamilton, Douglas R; Dulchavsky, Scott A
2008-01-01
To test the ability of non-expert ultrasound operators of divergent backgrounds to detect the presence, size, location, and composition of foreign bodies in an ocular model. High school students (N = 10) and NASA astronauts (N = 4) completed a brief ultrasound training session which focused on basic ultrasound principles and the detection of foreign bodies. The operators used portable ultrasound devices to detect foreign objects of varying location, size (0.5-2 mm), and material (glass, plastic, metal) in a gelatinous ocular model. Operator findings were compared to known foreign object parameters and ultrasound experts (N = 2) to determine accuracy across and between groups. Ultrasound had high sensitivity (astronauts 85%, students 87%, and experts 100%) and specificity (astronauts 81%, students 83%, and experts 95%) for the detection of foreign bodies. All user groups were able to accurately detect the presence of foreign bodies in this model (astronauts 84%, students 81%, and experts 97%). Astronaut and student sensitivity results for material (64% vs. 48%), size (60% vs. 46%), and position (77% vs. 64%) were not statistically different. Experts' results for material (85%), size (90%), and position (98%) were higher; however, the small sample size precluded statistical conclusions. Ultrasound can be used by operators with varying training to detect the presence, location, and composition of intraocular foreign bodies with high sensitivity, specificity, and accuracy.
Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays
Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A.; Lu, Karen; Witkin, Steven S.; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K.; Shirley, Natalie N.; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A.
2008-01-01
A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057
Koizumi, N; Harada, Y; Beika, M; Minamikawa, T; Yamaoka, Y; Dai, P; Murayama, Y; Yanagisawa, A; Otsuji, E; Tanaka, H; Takamatsu, T
2016-08-01
The establishment of a precise and rapid method to detect metastatic lymph nodes (LNs) is essential to perform less invasive surgery with reduced gastrectomy along with reduced lymph node dissection. We herein describe a novel imaging strategy to detect 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence in excised LNs specifically with reduced effects of tissue autofluorescence based on photo-oxidation of PpIX. We applied the method in a clinical setting, and evaluated its feasibility. To reduce the unfavorable effect of autofluorescence, we focused on photo-oxidation of PpIX: Following light irradiation, PpIX changes into another substance, photo-protoporphyrin, via an oxidative process, which has a different spectral peak, at 675 nm, whereas PpIX has its spectral peak at 635 nm. Based on the unique spectral alteration, fluorescence spectral imaging before and after light irradiation and subsequent originally-developed image processing was performed. Following in vitro study, we applied this method to a total of 662 excised LNs obtained from 30 gastric cancer patients administered 5-ALA preoperatively. Specific visualization of PpIX was achieved in in vitro study. The method allowed highly sensitive detection of metastatic LNs, with sensitivity of 91.9% and specificity of 90.8% in the in vivo clinical trial. Receiver operating characteristic analysis indicated high diagnostic accuracy, with the area under the curve of 0.926. We established a highly sensitive and specific 5-ALA-induced fluorescence imaging method applicable in clinical settings. The novel method has a potential to become a useful tool for intraoperative rapid diagnosis of LN metastasis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spering, Cynthia C; Hobson, Valerie; Lucas, John A; Menon, Chloe V; Hall, James R; O'Bryant, Sid E
2012-08-01
To validate and extend the findings of a raised cut score of O'Bryant and colleagues (O'Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963-967.) for the Mini-Mental State Examination in detecting cognitive dysfunction in a bilingual sample of highly educated ethnically diverse individuals. Archival data were reviewed from participants enrolled in the National Alzheimer's Coordinating Center minimum data set. Data on 7,093 individuals with 16 or more years of education were analyzed, including 2,337 cases with probable and possible Alzheimer's disease, 1,418 mild cognitive impairment patients, and 3,088 nondemented controls. Ethnic composition was characterized as follows: 6,296 Caucasians, 581 African Americans, 4 American Indians or Alaska natives, 2 native Hawaiians or Pacific Islanders, 149 Asians, 43 "Other," and 18 of unknown origin. Diagnostic accuracy estimates (sensitivity, specificity, and likelihood ratio) of Mini-Mental State Examination cut scores in detecting probable and possible Alzheimer's disease were examined. A standard Mini-Mental State Examination cut score of 24 (≤23) yielded a sensitivity of 0.58 and a specificity of 0.98 in detecting probable and possible Alzheimer's disease across ethnicities. A cut score of 27 (≤26) resulted in an improved balance of sensitivity and specificity (0.79 and 0.90, respectively). In the cognitively impaired group (mild cognitive impairment and probable and possible Alzheimer's disease), the standard cut score yielded a sensitivity of 0.38 and a specificity of 1.00 while raising the cut score to 27 resulted in an improved balance of 0.59 and 0.96 of sensitivity and specificity, respectively. These findings cross-validate our previous work and extend them to an ethnically diverse cohort. A higher cut score is needed to maximize diagnostic accuracy of the Mini-Mental State Examination in individuals with college degrees.
2011-01-01
Background Simian Immunodeficiency Viruses (SIVs) are the precursors of Human Immunodeficiency Viruses (HIVs) which have lead to the worldwide HIV/AIDS pandemic. By studying SIVs in wild primates we can better understand the circulation of these viruses in their natural hosts and habitat, and perhaps identify factors that influence susceptibility and transmission within and between various host species. We investigated the SIV status of wild West African chimpanzees (Pan troglodytes verus) which frequently hunt and consume the western red colobus monkey (Piliocolobus badius badius), a species known to be infected to a high percentage with its specific SIV strain (SIVwrc). Results Blood and plasma samples from 32 wild chimpanzees were tested with INNO-LIA HIV I/II Score kit to detect cross-reactive antibodies to HIV antigens. Twenty-three of the samples were also tested for antibodies to 43 specific SIV and HIV lineages, including SIVwrc. Tissue samples from all but two chimpanzees were tested for SIV by PCRs using generic SIV primers that detect all known primate lentiviruses as well as primers designed to specifically detect SIVwrc. Seventeen of the chimpanzees showed varying degrees of cross-reactivity to the HIV specific antigens in the INNO-LIA test; however no sample had antibodies to SIV or HIV strain - and lineage specific antigens in the Luminex test. No SIV DNA was found in any of the samples. Conclusions We could not detect any conclusive trace of SIV infection from the red colobus monkeys in the chimpanzees, despite high exposure to this virus through frequent hunting. The results of our study raise interesting questions regarding the host-parasite relationship of SIVwrc and wild chimpanzees in their natural habitat. PMID:21284842
Jiang, Sha-Yi; Yang, Jing-Wei; Shao, Jing-Bo; Liao, Xue-Lian; Lu, Zheng-Hua; Jiang, Hui
2016-05-01
In this meta-analysis, we evaluated the diagnostic role of Epstein-Barr virus deoxyribonucleic acid detection and quantitation in the serum of pediatric and young adult patients with infectious mononucleosis. The primary outcome of this meta-analysis was the sensitivity and specificity of Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA) detection and quantitation using polymerase chain reaction (PCR). A systematic review and meta-analysis was performed by searching for articles that were published through September 24, 2014 in the following databases: Medline, Cochrane, EMBASE, and Google Scholar. The following keywords were used for the search: "Epstein-Barr virus," "infectious mononucleosis," "children/young adults/infant/pediatric," and "polymerase chain reaction or PCR." Three were included in this analysis. We found that for detection by PCR, the pooled sensitivity for detecting EBV DNA was 77% (95%CI, 66-86%) and the pooled specificity for was 98% (95%CI, 93-100%). Our findings indicate that this PCR-based assay has high specificity and good sensitivity for detecting of EBV DNA, indicating it may useful for identifying patients with infectious mononucleosis. This assay may also be helpful to identify young athletic patients or highly physically active pediatric patients who are at risk for a splenic rupture due to acute infectious mononucleosis. © 2015 Wiley Periodicals, Inc.
Gaykalova, Daria A; Vatapalli, Rajita; Wei, Yingying; Tsai, Hua-Ling; Wang, Hao; Zhang, Chi; Hennessey, Patrick T; Guo, Theresa; Tan, Marietta; Li, Ryan; Ahn, Julie; Khan, Zubair; Westra, William H; Bishop, Justin A; Zaboli, David; Koch, Wayne M; Khan, Tanbir; Ochs, Michael F; Califano, Joseph A
2015-01-01
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.
Vickers, Andrew J; Wolters, Tineke; Savage, Caroline J; Cronin, Angel M; O'Brien, M Frank; Roobol, Monique J; Aus, Gunnar; Scardino, Peter T; Hugosson, Jonas; Schröder, Fritz H; Lilja, Hans
2010-09-01
Prostate specific antigen velocity has been proposed as a marker to aid in prostate cancer detection. We determined whether prostate specific antigen velocity could predict repeat biopsy results in men with persistently increased prostate specific antigen after initial negative biopsy. We identified 1,837 men who participated in the Göteborg or Rotterdam section of the European Randomized Screening study of Prostate Cancer and who underwent 1 or more subsequent prostate biopsies after an initial negative finding. We evaluated whether prostate specific antigen velocity improved predictive accuracy beyond that of prostate specific antigen alone. Of the 2,579 repeat biopsies 363 (14%) were positive for prostate cancer, of which 44 (1.7%) were high grade (Gleason score 7 or greater). Prostate specific antigen velocity was statistically associated with cancer risk but had low predictive accuracy (AUC 0.55, p <0.001). There was some evidence that prostate specific antigen velocity improved AUC compared to prostate specific antigen for high grade cancer. However, the small increase in risk associated with high prostate specific antigen velocity (from 1.7% to 2.8% as velocity increased from 0 to 1 ng/ml per year) had questionable clinical relevance. Men with prior negative biopsy are at lower risk for prostate cancer at subsequent biopsies with high grade disease particularly rare. We found little evidence to support prostate specific antigen velocity to aid in decisions about repeat biopsy for prostate cancer. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Banks, Jill; Marston, Denise A.; Ellis, Richard J.; Brookes, Sharon M.; Brown, Ian H.
2015-01-01
Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread. PMID:25898126
Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo
2005-05-18
To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.
Manyari, D. E.; Milliken, J. A.; Colwell, B. T.; Burggraf, G. W.
1978-01-01
To determine the sensitivity and specificity of chest roentgenography and electrocardiography in the detection of pericardial effusion, echocardiography was used as the diagnostic standard. Chest roentgenograms and electrocardiograms of 124 patients, 57 of whom had pericardial effusion, were read without knowledge of the echocardiographic interpretation. The sensitivity of roentgenographic diagnosis was low (20%), as was that of diagnosis from decreased voltage on the electrocardiogram (26%). The specificity of the chest roentgenogram was 89% and that of the low-voltage electrocardiogram 97%. The high specificity of the low-voltage electrocardiogram may have been due in part to the exclusion of obese and emphysematous subjects from the study. When cardiomegaly detected roentgenographically or a low-voltage electrocardiogram or both were considered as evidence of pericardial effusion, sensitivity improved to 82% but specificity declined to 29%. It is concluded the chest roentgenography and electrocardiography are unsatisfactory as screening investigations for the detection of pericardial effusion. Images FIG. 1 FIG. 2 FIG. 3 PMID:688146
Liu, Xiao; Zhu, Ling; Shi, Xiaohong; Xu, Zhiwen; Mei, Miao; Xu, Weiwei; Zhou, Yuancheng; Guo, Wanzhu; Wang, Xiaoyu
2012-12-01
The major epitope region of the glycoprotein B (gB) gene of the porcine cytomegalovirus (PCMV), with a length of 270 bp, was cloned and expressed in Escherichia coli Rosetta (DE3). The major gB epitope was detected using an agar gel precipitation and Western blot analysis with the polyclonal antibodies specific for the major epitope. An indirect-blocking enzyme-linked immunosorbent assay (ELISA) was developed using the expressed major gB epitope as a coating antigen for the detection of PCMV antibodies. The results of the tests show that the indirect-blocking ELISA has 98% specificity and 97.8% sensitivity. No cross-reactions were observed between the major gB epitope and the antibodies against other virus, which indicates that the gB epitope is specific for PCMV antibodies. The indirect-blocking ELISA is a highly specific, sensitive method for detecting anti-PCMV gB antibodies. Copyright © 2012 Elsevier B.V. All rights reserved.
Detection of Entamoeba histolytica by Recombinase Polymerase Amplification.
Nair, Gayatri; Rebolledo, Mauricio; White, A Clinton; Crannell, Zachary; Richards-Kortum, R Rebecca; Pinilla, A Elizabeth; Ramírez, Juan David; López, M Consuelo; Castellanos-Gonzalez, Alejandro
2015-09-01
Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions. © The American Society of Tropical Medicine and Hygiene.
Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis
Surti, Suleman
2013-01-01
Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989
Gadkar, Vijay J; Goldfarb, David M; Gantt, Soren; Tilley, Peter A G
2018-04-03
Loop-mediated isothermal amplification (LAMP) is an isothermal nucleic acid amplification (iNAAT) technique known for its simplicity, sensitivity and speed. Its low-cost feature has resulted in its wide scale application, especially in low resource settings. The major disadvantage of LAMP is its heavy reliance on indirect detection methods like turbidity and non-specific dyes, which often leads to the detection of false positive results. In the present work, we have developed a direct detection approach, whereby a labelled loop probe quenched in its unbound state, fluoresces only when bound to its target (amplicon). Henceforth, referred to as Fluorescence of Loop Primer Upon Self Dequenching-LAMP (FLOS-LAMP), it allows for the sequence-specific detection of LAMP amplicons. The FLOS-LAMP concept was validated for rapid detection of the human pathogen, Varicella-zoster virus, from clinical samples. The FLOS-LAMP had a limit of detection of 500 copies of the target with a clinical sensitivity and specificity of 96.8% and 100%, respectively. The high level of specificity is a major advance and solves one of the main shortcomings of the LAMP technology, i.e. false positives. Self-quenching/de-quenching probes were further used with other LAMP primer sets and different fluorophores, thereby demonstrating its versatility and adaptability.
Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao
2017-05-15
Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of species- and tissue-specific proteins using proteomic strategy
NASA Astrophysics Data System (ADS)
Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.
2017-09-01
Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.
Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens
NASA Astrophysics Data System (ADS)
Cox, Christopher R.; Voorhees, Kent J.
Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.
A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.
Liu, Feng; Ding, Ailing; Zheng, Jiushang; Chen, Jiucun; Wang, Bin
2018-06-01
A label-free sensing platform is developed based on switching the structure of aptamer for highly sensitive and selective fluorescence detection of ochratoxin A (OTA). OTA induces the structure of aptamer, transforms into G-quadruplex and produces strong fluorescence in the presence of zinc(II)-protoporphyrin IX probe due to the specific bind to G-quadruplex. The simple method exhibits high sensitivity towards OTA with a detection limit of 0.03 nM and excellent selectivity over other mycotoxins. In addition, the successful detection of OTA in real samples represents a promising application in food safety.
Sensitive detection of unlabeled oligonucleotides using a paired surface plasma waves biosensor.
Li, Ying-Chang; Chiou, Chiuan-Chian; Luo, Ji-Dung; Chen, Wei-Ju; Su, Li-Chen; Chang, Ying-Feng; Chang, Yu-Sun; Lai, Chao-Sung; Lee, Cheng-Chung; Chou, Chien
2012-05-15
Detection of unlabeled oligonucleotides using surface plasmon resonance (SPR) is difficult because of the oligonucleotides' relatively lower molecular weight compared with proteins. In this paper, we describe a method for detecting unlabeled oligonucleotides at low concentration using a paired surface plasma waves biosensor (PSPWB). The biosensor uses a sensor chip with an immobilized probe to detect a target oligonucleotide via sequence-specific hybridization. PSPWB measures the demodulated amplitude of the heterodyne signal in real time. In the meantime, the ratio of the amplitudes between the detected output signal and reference can reduce the excess noise from the laser intensity fluctuation. Also, the common-path propagation of p and s waves cancels the common phase noise induced by temperature variation. Thus, a high signal-to-noise ratio (SNR) of the heterodyne signal is detected. The sequence specificity of oligonucleotide hybridization ensures that the platform is precisely discriminating between target and non-target oligonucleotides. Under optimized experimental conditions, the detected heterodyne signal increases linearly with the logarithm of the concentration of target oligonucleotide over the range 0.5-500 pM. The detection limit is 0.5 pM in this experiment. In addition, the non-target oligonucleotide at concentrations of 10 pM and 10nM generated signals only slightly higher than background, indicating the high selectivity and specificity of this method. Different length of perfectly matched oligonucleotide targets at 10-mer, 15-mer and 20-mer were identified at the concentration of 150 pM. Copyright © 2012 Elsevier B.V. All rights reserved.
Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl
2015-12-01
To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Arita, Minetaro; Kilpatrick, David R; Nakamura, Tomofumi; Burns, Cara C; Bukbuk, David; Oderinde, Soji B; Oberste, M Steven; Kew, Olen M; Pallansch, Mark A; Shimizu, Hiroyuki
2015-01-01
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A microRNA detection system based on padlock probes and rolling circle amplification
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-01-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321
A microRNA detection system based on padlock probes and rolling circle amplification.
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-09-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.
Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity
Wilcox, Taylor M.; McKelvey, Kevin S.; Young, Michael K.; Jane, Stephen F.; Lowe, Winsor H.; Whiteley, Andrew R.; Schwartz, Michael K.
2013-01-01
Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design. PMID:23555689
Robust detection of rare species using environmental DNA: the importance of primer specificity.
Wilcox, Taylor M; McKelvey, Kevin S; Young, Michael K; Jane, Stephen F; Lowe, Winsor H; Whiteley, Andrew R; Schwartz, Michael K
2013-01-01
Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method's sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.
Janvier, Monique; Regnault, Béatrice; Grimont, Patrick
2003-09-01
Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.
Highly specific and reversible fluoride sensor based on an organic semiconductor.
Aboubakr, Hecham; Brisset, Hugues; Siri, Olivier; Raimundo, Jean-Manuel
2013-10-15
A novel sulfonamide-conjugated benzo-[2,1-b:3,4-b']bithiophene semiconductor has been designed and synthetized in order to develop a probe for specific detection of anions both in the homogeneous (solution) and heterogeneous phase. Its photophysical and electrochemical data were reported in this study. On the basis of the optical and NMR titrations analysis, the chelator was found to be highly selective for fluoride compared to others anions (Ka = 1.6 × 10(4) M(-1) in dimethyl sulfoxide (DMSO)). In addition, from an intricate sample, the novel chelator shows exceptional specificity toward fluoride and reveals a complete reversibility after addition of trifluoroacetic acid (TFA). Sensing films were obtained by electrochemical polymerization of the probe on an electrode surface, which clearly show effective detection of fluoride.
Whispering-Gallery Mode Resonators for Detecting Cancer
Pongruengkiat, Weeratouch; Pechprasarn, Suejit
2017-01-01
Optical resonators are sensors well known for their high sensitivity and fast response time. These sensors have a wide range of applications, including in the biomedical fields, and cancer detection is one such promising application. Sensor diagnosis currently has many limitations, such as being expensive, highly invasive, and time-consuming. New developments are welcomed to overcome these limitations. Optical resonators have high sensitivity, which enable medical testing to detect disease in the early stage. Herein, we describe the principle of whispering-gallery mode and ring optical resonators. We also add to the knowledge of cancer biomarker diagnosis, where we discuss the application of optical resonators for specific biomarkers. Lastly, we discuss advancements in optical resonators for detecting cancer in terms of their ability to detect small amounts of cancer biomarkers. PMID:28902169
Trace detection of specific viable bacteria using tetracysteine-tagged bacteriophages.
Wu, Lina; Luan, Tian; Yang, Xiaoting; Wang, Shuo; Zheng, Yan; Huang, Tianxun; Zhu, Shaobin; Yan, Xiaomei
2014-01-07
Advanced methods are urgently needed to determine the identity and viability of trace amounts of pathogenic bacteria in a short time. Existing approaches either fall short in the accurate assessment of microbial viability or lack specificity in bacterial identification. Bacteriophages (or phages for short) are viruses that exclusively infect bacterial host cells with high specificity. As phages infect and replicate only in living bacterial hosts, here we exploit the strategy of using tetracysteine (TC)-tagged phage in combination with biarsenical dye to the discriminative detection of viable target bacteria from dead target cells and other viable but nontarget bacterial cells. Using recombinant M13KE-TC phage and Escherichia coli ER2738 as a model system, distinct differentiation between individual viable target cells from dead target cells was demonstrated by flow cytometry and fluorescence microscopy. As few as 1% viable E. coli ER2738 can be accurately quantified in a mix with dead E. coli ER2738 by flow cytometry. With fluorescence microscopic measurement, specific detection of as rare as 1 cfu/mL original viable target bacteria was achieved in the presence of a large excess of dead target cells and other viable but nontarget bacterial cells in 40 mL artificially contaminated drinking water sample in less than 3 h. This TC-phage-FlAsH approach is sensitive, specific, rapid, and simple, and thus shows great potential in water safety monitoring, health surveillance, and clinical diagnosis of which trace detection and identification of viable bacterial pathogens is highly demanded.
Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui
2017-02-01
Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.
Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging.
Luo, Yi; Kim, Eric H; Flask, Chris A; Clark, Heather A
2018-06-06
A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T 1 relaxation rate (1/ T 1 ). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T 1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T 1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.
de Juan-Franco, Elena; Rodríguez-Frade, J M; Mellado, M; Lechuga, Laura M
2013-09-30
We have implemented a Surface Plasmon Resonance (SPR) immunosensor based on a sandwich assay for the simultaneous detection of the two main hGH isoforms, of 22 kDa (22K) and 20 kDa (20K). An oriented-antibody sensor surface specific for both hormone isoforms was assembled by using the biotin-streptavidin system. The immunosensor functionality was checked for the direct detection of the 22K hGH isoform in buffer, which gave high specificity and reproducibility (intra and inter-assay mean coefficients of variation of 8.23% and 9% respectively). The selective determination of the 22K and 20K hGH isoforms in human serum samples in a single assay was possible by using two specific anti-hGH monoclonal antibodies. The detection limit for both hormone isoforms was 0.9 ng mL(-1) and the mean coefficient of variation was below 7.2%. The excellent reproducibility and sensitivity obtained indicate the high performance of this immunosensor for implementing an anti-doping test. Copyright © 2013 Elsevier B.V. All rights reserved.
Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker.
Ronald, John A; Chuang, Hui-Yen; Dragulescu-Andrasi, Anca; Hori, Sharon S; Gambhir, Sanjiv S
2015-03-10
Earlier detection of cancers can dramatically improve the efficacy of available treatment strategies. However, despite decades of effort on blood-based biomarker cancer detection, many promising endogenous biomarkers have failed clinically because of intractable problems such as highly variable background expression from nonmalignant tissues and tumor heterogeneity. In this work we present a tumor-detection strategy based on systemic administration of tumor-activatable minicircles that use the pan-tumor-specific Survivin promoter to drive expression of a secretable reporter that is detectable in the blood nearly exclusively in tumor-bearing subjects. After systemic administration we demonstrate a robust ability to differentiate mice bearing human melanoma metastases from tumor-free subjects for up to 2 wk simply by measuring blood reporter levels. Cumulative change in reporter levels also identified tumor-bearing subjects, and a receiver operator-characteristic curve analysis highlighted this test's performance with an area of 0.918 ± 0.084. Lung tumor burden additionally correlated (r(2) = 0.714; P < 0.05) with cumulative reporter levels, indicating that determination of disease extent was possible. Continued development of our system could improve tumor detectability dramatically because of the temporally controlled, high reporter expression in tumors and nearly zero background from healthy tissues. Our strategy's highly modular nature also allows it to be iteratively optimized over time to improve the test's sensitivity and specificity. We envision this system could be used first in patients at high risk for tumor recurrence, followed by screening high-risk populations before tumor diagnosis, and, if proven safe and effective, eventually may have potential as a powerful cancer-screening tool for the general population.
NASA Astrophysics Data System (ADS)
Nima, Zeid A.; Mahmood, Meena; Xu, Yang; Mustafa, Thikra; Watanabe, Fumiya; Nedosekin, Dmitry A.; Juratli, Mazen A.; Fahmi, Tariq; Galanzha, Ekaterina I.; Nolan, John P.; Basnakian, Alexei G.; Zharov, Vladimir P.; Biris, Alexandru S.
2014-05-01
Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface-enhanced Raman scattering (SERS) and high photothermal contrast. The silver-gold nanorods were functionalized with four Raman-active molecules and four antibodies specific to breast cancer markers and with leukocyte-specific CD45 marker. More than two orders of magnitude of SERS signal enhancement was observed from these hybrid nanosystems compared to conventional gold nanorods. Using an antibody rainbow cocktail, we demonstrated highly specific detection of single breast cancer cells in unprocessed human blood. By integrating multiplex targeting, multicolor coding, and multimodal detection, our approach has the potential to improve multispectral imaging of individual tumor cells in complex biological environments.
Kobayashi, Tsuneo
2018-03-01
Diagnosis using a specific tumor marker is difficult because the sensitivity of this detection method is under 20%. Herein, a tumor marker combination assay, combining growth-related tumor marker and associated tumor marker (Cancer, 73(7), 1994), was employed. This double-blind tumor marker combination assay (TMCA) showed 87.5% sensitivity as the results, but a low specificity, ranging from 30 to 76%. To overcome this low specificity, we exploited complex markers, a multivariate analysis and serum fractionation by biochemical biopsy. Thus, in this study, a combination of new techniques was used to re-evaluate these serum samples. Three serum panels, containing 90, 120, and 97 samples were obtained from the Mayo Clinic. The final results showed 80-90% sensitivity, 84-85% specificity, and 83-88% accuracy. We demonstrated a notable tumor marker combination assay with high accuracy. This TMCA should be applicable for primary cancer detection and recurrence prevention. © 2018 The Author. Cancer Medicine published by John Wiley & Sons Ltd.
Identification of hare meat by a species-specific marker of mitochondrial origin.
Santos, Cristina G; Melo, Vitor S; Amaral, Joana S; Estevinho, Letícia; Oliveira, M Beatriz P P; Mafra, Isabel
2012-03-01
Meat species identification in food has gained increasing interest in recent years due to public health, economic and legal concerns. Following the consumer trend towards high quality products, game meat has earned much attention. The aim of the present work was to develop a DNA-based technique able to identify hare meat. Mitochondrial cytochrome b gene was used to design species-specific primers for hare detection. The new primers proved to be highly specific to Lepus species, allowing the detection of 0.01% of hare meat in pork meat by polymerase chain reaction (PCR). A real-time PCR assay with the new intercalating EvaGreen dye was further proposed as a specific and fast tool for hare identification with increased sensitivity (1pg) compared to end-point PCR (10pg). It can be concluded that the proposed new primers can be used by both species-specific end-point PCR or real-time PCR to accurately authenticate hare meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
Portable SERS sensor for malachite green and other small dye molecules
NASA Astrophysics Data System (ADS)
Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.
Patel, Pranav; Landt, Olfert; Kaiser, Marco; Faye, Oumar; Koppe, Tanja; Lass, Ulrich; Sall, Amadou A; Niedrig, Matthias
2013-02-14
The genus Flavivirus includes several pathogenic agents that cause severe illness in humans. Re-emergence of West Nile virus in Europe and continuous spread of certain flaviviruses such as dengue, yellow fever and Japanese encephalitis viruses represent a global danger to public health. Therefore, a rapid and accurate molecular method is required for diagnostics and epidemiological surveillance of flaviviruses. A Pan-Flavi quantitative RT-PCR assay using a Locked-Nucleic Acid probe targeting the flavivirus NS5 gene was developed and optimized to detect a wide range of flaviviruses simultaneously. The specificity and sensitivity of the Pan-Flavi assay were tested using RNA of different flaviviruses and non-flaviviruses. Furthermore, the assay was compared directly to flavivirus species-specific assays for the ability to detect flaviviruses sensitively. Two degenerate primers and one Locked-Nucleic Acids probe were designed to amplify most of the flaviviruses. To increase the specificity and fluorescence signal of the Pan-Flavi assay for detection of yellow fever virus and dengue virus 4, additional primers and probes were included. Viral RNA of thirty different flaviviruses was detected, verifying the broad range specificity. The testing of this assay was successful, using standard plasmid and RNA dilutions of yellow fever virus vaccine strain, dengue virus 1 and tick-borne encephalitis virus, with a sensitivity limit of 10-100 genome copies/reaction. Also comparatively good results were achieved for detecting different flaviviruses by the Pan-Flavi assay when compared to the flavivirus species-specific assays. The assay is rapid, broad-range flavivirus-specific and highly sensitive making it a valuable tool for rapid detection of flaviviruses in livestock samples, epidemiological studies or as useful complement to single flavivirus-specific assays for clinical diagnosis.
Wong, Y-P; Othman, S; Lau, Y-L; Radu, S; Chee, H-Y
2018-03-01
Loop-mediated isothermal amplification (LAMP) amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions by using a DNA polymerase with high displacement strand activity and a set of specifically designed primers to amplify targeted DNA strands. Following its first discovery by Notomi et al. ( Nucleic Acids Res 28: E63), LAMP was further developed over the years which involved the combination of this technique with other molecular approaches, such as reverse transcription and multiplex amplification for the detection of infectious diseases caused by micro-organisms in humans, livestock and plants. In this review, available types of LAMP techniques will be discussed together with their applications in detection of various micro-organisms. Up to date, there are varieties of LAMP detection methods available including colorimetric and fluorescent detection, real-time monitoring using turbidity metre and detection using lateral flow device which will also be highlighted in this review. Apart from that, commercialization of LAMP technique had also been reported such as lyophilized form of LAMP reagents kit and LAMP primer sets for detection of pathogenic micro-organisms. On top of that, advantages and limitations of this molecular detection method are also described together with its future potential as a diagnostic method for infectious disease. © 2017 The Society for Applied Microbiology.
Tamboli, Vibha K; Bhalla, Nikhil; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Bowen, Jenna L; Allender, Chris J; Estrela, Pedro
2016-12-06
The study reports the use of extended gate field-effect transistors (FET) for the label-free and sensitive detection of prostate cancer (PCa) biomarkers in human plasma. The approach integrates for the first time hybrid synthetic receptors comprising of highly selective aptamer-lined pockets (apta-MIP) with FETs for sensitive detection of prostate specific antigen (PSA) at clinically relevant concentrations. The hybrid synthetic receptors were constructed by immobilizing an aptamer-PSA complex on gold and subjecting it to 13 cycles of dopamine electropolymerization. The polymerization resulted in the creation of highly selective polymeric cavities that retained the ability to recognize PSA post removal of the protein. The hybrid synthetic receptors were subsequently used in an extended gate FET setup for electrochemical detection of PSA. The sensor was reported to have a limit of detection of 0.1 pg/mL with a linear detection range from 0.1 pg/mL to 1 ng/mL PSA. Detection of 1-10 pg/mL PSA was also achieved in diluted human plasma. The present apta-MIP sensor developed in conjunction with FET devices demonstrates the potential for clinical application of synthetic hybrid receptors for the detection of clinically relevant biomarkers in complex samples.
Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L
2016-09-01
Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.
Greater sensitivity of the cortical face processing system to perceptually-equated face detection
Maher, S.; Ekstrom, T.; Tong, Y.; Nickerson, L.D.; Frederick, B.; Chen, Y.
2015-01-01
Face detection, the perceptual capacity to identify a visual stimulus as a face before probing deeper into specific attributes (such as its identity or emotion), is essential for social functioning. Despite the importance of this functional capacity, face detection and its underlying brain mechanisms are not well understood. This study evaluated the roles that the cortical face processing system, which is identified largely through studying other aspects of face perception, play in face detection. Specifically, we used functional magnetic resonance imaging (fMRI) to examine the activations of the fusifom face area (FFA), occipital face area (OFA) and superior temporal sulcus (STS) when face detection was isolated from other aspects of face perception and when face detection was perceptually-equated across individual human participants (n=20). During face detection, FFA and OFA were significantly activated, even for stimuli presented at perceptual-threshold levels, whereas STS was not. During tree detection, however, FFA and OFA were responsive only for highly salient (i.e., high contrast) stimuli. Moreover, activation of FFA during face detection predicted a significant portion of the perceptual performance levels that were determined psychophysically for each participant. This pattern of result indicates that FFA and OFA have a greater sensitivity to face detection signals and selectively support the initial process of face vs. non-face object perception. PMID:26592952
Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity.
Fang, Yun; Zhu, Chunjie; Chen, Xingjuan; Wang, Yan; Xu, Meiying; Sun, Guoping; Guo, Jun; Yoo, Jinnon; Tie, Cuijuan; Jiang, Xin; Li, Xianqiang
2018-05-16
The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.
Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; ...
2015-08-04
Silicon pillar structures filled with a neutron converter material ( 10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 10 6 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 10 9 photons/cm 2s.
New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria
Wang, Yixian; Ye, Zunzhong; Ying, Yibin
2012-01-01
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018
Gao, Shunxiang; Zheng, Xin; Wu, Jihong
2018-04-15
Accurate, fast and sensitive detection of disease-specific protein biomarkers, especially in blood, urine, or other bodily fluids, is an important approach to achieve early disease diagnosis. Platelet-derived growth factor-BB (PDGF-BB), a widely used biomarker, is involved in a substantial number of serious diseases, such as hepatic fibrosis, atherosclerosis, age-related macular degeneration and diabetic eye disease and is often over-expressed in human malignant tumors. Therefore, the development of sensitive and specific detection methods for PDGF-BB is of great importance for the early diagnosis of disease and assessments of patient recovery. In the current study, a biolayer interferometry-based enzyme-linked aptamer sorbent assay (BLI-ELASA) was successfully established for rapid (20-25min), high-throughput (8 or 16 samples) and real-time monitoring of PDGF-BB in clinical samples. The method exhibited a broad detection range from 0.5 to 1000ng/mL of PDGF-BB (good linear range from 0.5 to 10ng/mL), with a low detection limit of 0.08ng/mL. Moreover, BLI-ELASA was applied to the detection of PDGF-BB in spiked serum and urine samples and showed a high degree of selectivity for PDGF-BB, good reproducibility, and stability. We believe that the methodology in this work can be easily adapted to detect other biomolecules in clinical samples, including viruses, pathogens and toxins, in a rapid, sensitive, high-throughput and real-time manner. Copyright © 2017 Elsevier B.V. All rights reserved.
Lodh, Nilanjan; Mikita, Kei; Bosompem, Kwabena M; Anyan, William K; Quartey, Joseph K; Otchere, Joseph; Shiff, Clive J
2017-09-01
Schistosomes are easily transmitted and high chance of repeat infection, so if control strategies based on targeted mass drug administration (MDA) are to succeed it is essential to have a test that is sensitive, accurate and simple to use. It is known and regularly demonstrated that praziquantel does not always eliminate an infection so in spite of the successes of control programs a residual of the reservoir survives to re-infect snails. The issue of diagnostic sensitivity becomes more critical in the assessment of program effectiveness. While serology, such as antigen capture tests might improve sensitivity, it has been shown that the presence of species-specific DNA fragments will indicate, most effectively, the presence of active parasites. Polymerase chain reaction (PCR) can amplify and detect DNA from urine residue captured on Whatman No. 3 filter paper that is dried after filtration. Previously we have detected S. mansoni and S. haematobium parasite-specific small repeat DNA fragment from filtered urine on filter paper by PCR. In the current study, we assessed the efficacy of detection of 86 urine samples for either or both schistosome parasites by PCR and loop-mediated isothermal amplification (LAMP) that were collected from a low to moderate transmission area in Ghana. Two different DNA extraction methods, standard extraction kit and field usable LAMP-PURE kit were also evaluated by PCR and LAMP amplification. With S. haematobium LAMP amplification for both extractions showed similar sensitivity and specificity when compared with PCR amplification (100%) verified by gel electrophoresis. For S. mansoni sensitivity was highest for LAMP amplification (100%) for standard extraction than PCR and LAMP with LAMP-PURE (99% and 94%). The LAMP-PURE extraction produced false negatives, which require further investigation for this field usable extraction kit. Overall high positive and negative predictive values (90% - 100%) for both species demonstrated a highly robust approach. The LAMP approach is close to point of care use and equally sensitive and specific to detection of species-specific DNA by PCR. LAMP can be an effective means to detect low intensity infection due to its simplicity and minimal DNA extraction requirement. This will enhance the effectiveness of surveillance and MDA control programs of schistosomiasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Generalized platform for antibody detection using the antibody catalyzed water oxidation pathway.
Welch, M Elizabeth; Ritzert, Nicole L; Chen, Hongjun; Smith, Norah L; Tague, Michele E; Xu, Youyong; Baird, Barbara A; Abruña, Héctor D; Ober, Christopher K
2014-02-05
Infectious diseases, such as influenza, present a prominent global problem including the constant threat of pandemics that initiate in avian or other species and then pass to humans. We report a new sensor that can be specifically functionalized to detect antibodies associated with a wide range of infectious diseases in multiple species. This biosensor is based on electrochemical detection of hydrogen peroxide generated through the intrinsic catalytic activity of all antibodies: the antibody catalyzed water oxidation pathway (ACWOP). Our platform includes a polymer brush-modified surface where specific antibodies bind to conjugated haptens with high affinity and specificity. Hydrogen peroxide provides an electrochemical signal that is mediated by Resorufin/Amplex Red. We characterize the biosensor platform, using model anti-DNP antibodies, with the ultimate goal of designing a versatile device that is inexpensive, portable, reliable, and fast. We demonstrate detection of antibodies at concentrations that fall well within clinically relevant levels.
Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki
2015-01-01
The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.
Prabakaran, Mookkan; Ho, Hui-Ting; Prabhu, Nayana; Velumani, Sumathy; Szyporta, Milene; He, Fang; Chan, Kwai-Peng; Chen, Li-Mei; Matsuoka, Yumiko; Donis, Ruben O; Kwang, Jimmy
2009-01-01
Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available. Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274-281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization. The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.
Chooi, Kar Mun; Cohen, Daniel; Pearson, Michael N
2013-04-01
Grapevine leafroll-associated virus 3 (GLRaV-3) is an economically important virus, which is found in all grapevine growing regions worldwide. Its accurate detection in nursery and field samples is of high importance for certification schemes and disease management programmes. To reduce false negatives that can be caused by sequence variability, a new universal primer pair was designed against a divergent sequence data set, targeting the open reading frame 4 (heat shock protein 70 homologue gene), and optimised for conventional one-step RT-PCR and one-step SYBR Green real-time RT-PCR assays. In addition, primer pairs for the simultaneous detection of specific GLRaV-3 variants from groups 1, 2, 6 (specifically NZ-1) and the outlier NZ2 variant, and the generic detection of variants from groups 1 to 5 were designed and optimised as a conventional one-step multiplex RT-PCR assay using the plant nad5 gene as an internal control (i.e. one-step hexaplex RT-PCR). Results showed that the generic and variant specific assays detected in vitro RNA transcripts from a range of 1×10(1)-1×10(8) copies of amplicon per μl diluted in healthy total RNA from Vitis vinifera cv. Cabernet Sauvignon. Furthermore, the assays were employed effectively to screen 157 germplasm and 159 commercial field samples. Thus results demonstrate that the GLRaV-3 generic and variant-specific assays are prospective tools that will be beneficial for certification schemes and disease management programmes, as well as biological and epidemiological studies of the divergent GLRaV-3 populations. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei
2013-03-15
Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A
2014-10-01
Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.
Rice, Jason P; Seifert, Marva; Moser, Kathleen S; Rodwell, Timothy C
2017-01-01
Performance of the Xpert MTB/RIF assay, designed to simultaneously detect Mycobacterium tuberculosis complex (MTBC) and rifampin (RIF) resistance, has been well documented in low-resource settings with high TB-incidence. However, few studies have assessed its accuracy in low TB incidence settings. We evaluated the performance of Xpert MTB/RIF using clinical sputum specimens routinely collected from suspect pulmonary TB patients over a 4-year time period in San Diego County, California. Xpert MTB/RIF results were compared to acid-fast bacilli (AFB) smear microscopy, mycobacterial culture, and phenotypic drug susceptibility testing (DST). Of 751 sputum specimens, 134 (17.8%) were MTBC culture-positive and 2 (1.5%) were multidrug-resistant (MDR). For the detection of MTBC, Xpert MTB/RIF sensitivity was 89.6% (97.7% and 74.5% in smear-positive and -negative sputa, respectively) and specificity was 97.2%; while AFB smear sensitivity and specificity were 64.9% and 77.8%, respectively. Xpert MTB/RIF detected 35 of 47 smear-negative culture-positive specimens, and excluded 124 of 137 smear-positive culture-negative specimens. Xpert MTB/RIF also correctly excluded 99.2% (121/122) of nontuberculous mycobacteria (NTM) specimens, including all 33 NTM false-positives by smear microscopy. For the detection of RIF resistance, Xpert MTB/RIF sensitivity and specificity were 100% and 98.3%, respectively. Our findings demonstrate that Xpert MTB/RIF is able to accurately detect MTBC and RIF resistance in routinely collected respiratory specimens in a low TB-incidence setting, with comparable performance to that achieved in high-incidence settings; and suggest that under these conditions the assay has particular utility in detecting smear-negative TB cases, excluding smear-positive patients without MTBC disease, and differentiating MTBC from NTM.
Rice, Jason P.; Moser, Kathleen S.; Rodwell, Timothy C.
2017-01-01
Performance of the Xpert MTB/RIF assay, designed to simultaneously detect Mycobacterium tuberculosis complex (MTBC) and rifampin (RIF) resistance, has been well documented in low-resource settings with high TB-incidence. However, few studies have assessed its accuracy in low TB incidence settings. We evaluated the performance of Xpert MTB/RIF using clinical sputum specimens routinely collected from suspect pulmonary TB patients over a 4-year time period in San Diego County, California. Xpert MTB/RIF results were compared to acid-fast bacilli (AFB) smear microscopy, mycobacterial culture, and phenotypic drug susceptibility testing (DST). Of 751 sputum specimens, 134 (17.8%) were MTBC culture-positive and 2 (1.5%) were multidrug-resistant (MDR). For the detection of MTBC, Xpert MTB/RIF sensitivity was 89.6% (97.7% and 74.5% in smear-positive and -negative sputa, respectively) and specificity was 97.2%; while AFB smear sensitivity and specificity were 64.9% and 77.8%, respectively. Xpert MTB/RIF detected 35 of 47 smear-negative culture-positive specimens, and excluded 124 of 137 smear-positive culture-negative specimens. Xpert MTB/RIF also correctly excluded 99.2% (121/122) of nontuberculous mycobacteria (NTM) specimens, including all 33 NTM false-positives by smear microscopy. For the detection of RIF resistance, Xpert MTB/RIF sensitivity and specificity were 100% and 98.3%, respectively. Our findings demonstrate that Xpert MTB/RIF is able to accurately detect MTBC and RIF resistance in routinely collected respiratory specimens in a low TB-incidence setting, with comparable performance to that achieved in high-incidence settings; and suggest that under these conditions the assay has particular utility in detecting smear-negative TB cases, excluding smear-positive patients without MTBC disease, and differentiating MTBC from NTM. PMID:29016684
Allahdina, Ali M; Stetson, Paul F; Vitale, Susan; Wong, Wai T; Chew, Emily Y; Ferris, Fredrick L; Sieving, Paul A; Cukras, Catherine
2018-04-01
As optical coherence tomography (OCT) minimum intensity (MI) analysis provides a quantitative assessment of changes in the outer nuclear layer (ONL), we evaluated the ability of OCT-MI analysis to detect hydroxychloroquine toxicity. Fifty-seven predominantly female participants (91.2% female; mean age, 55.7 ± 10.4 years; mean time on hydroxychloroquine, 15.0 ± 7.5 years) were enrolled in a case-control study and categorized into affected (i.e., with toxicity, n = 19) and unaffected (n = 38) groups using objective multifocal electroretinographic (mfERG) criteria. Spectral-domain OCT scans of the macula were analyzed and OCT-MI values quantitated for each subfield of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. A two-sample U-test and a cross-validation approach were used to assess the sensitivity and specificity of toxicity detection according to OCT-MI criteria. The medians of the OCT-MI values in all nine of the ETDRS subfields were significantly elevated in the affected group relative to the unaffected group (P < 0.005 for all comparisons), with the largest difference found for the inner inferior subfield (P < 0.0001). The receiver operating characteristic analysis of median MI values of the inner inferior subfields showed high sensitivity and high specificity in the detection of toxicity with area under the curve = 0.99. Retinal changes secondary to hydroxychloroquine toxicity result in increased OCT reflectivity in the ONL that can be detected and quantitated using OCT-MI analysis. Analysis of OCT-MI values demonstrates high sensitivity and specificity for detecting the presence of hydroxychloroquine toxicity in this cohort and may contribute additionally to current screening practices.
Allahdina, Ali M.; Stetson, Paul F.; Vitale, Susan; Wong, Wai T.; Chew, Emily Y.; Ferris, Fredrick L.; Sieving, Paul A.
2018-01-01
Purpose As optical coherence tomography (OCT) minimum intensity (MI) analysis provides a quantitative assessment of changes in the outer nuclear layer (ONL), we evaluated the ability of OCT-MI analysis to detect hydroxychloroquine toxicity. Methods Fifty-seven predominantly female participants (91.2% female; mean age, 55.7 ± 10.4 years; mean time on hydroxychloroquine, 15.0 ± 7.5 years) were enrolled in a case-control study and categorized into affected (i.e., with toxicity, n = 19) and unaffected (n = 38) groups using objective multifocal electroretinographic (mfERG) criteria. Spectral-domain OCT scans of the macula were analyzed and OCT-MI values quantitated for each subfield of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. A two-sample U-test and a cross-validation approach were used to assess the sensitivity and specificity of toxicity detection according to OCT-MI criteria. Results The medians of the OCT-MI values in all nine of the ETDRS subfields were significantly elevated in the affected group relative to the unaffected group (P < 0.005 for all comparisons), with the largest difference found for the inner inferior subfield (P < 0.0001). The receiver operating characteristic analysis of median MI values of the inner inferior subfields showed high sensitivity and high specificity in the detection of toxicity with area under the curve = 0.99. Conclusions Retinal changes secondary to hydroxychloroquine toxicity result in increased OCT reflectivity in the ONL that can be detected and quantitated using OCT-MI analysis. Analysis of OCT-MI values demonstrates high sensitivity and specificity for detecting the presence of hydroxychloroquine toxicity in this cohort and may contribute additionally to current screening practices. PMID:29677357
NASA Astrophysics Data System (ADS)
Sopharak, Akara; Uyyanonvara, Bunyarit; Barman, Sarah; Williamson, Thomas
To prevent blindness from diabetic retinopathy, periodic screening and early diagnosis are neccessary. Due to lack of expert ophthalmologists in rural area, automated early exudate (one of visible sign of diabetic retinopathy) detection could help to reduce the number of blindness in diabetic patients. Traditional automatic exudate detection methods are based on specific parameter configuration, while the machine learning approaches which seems more flexible may be computationally high cost. A comparative analysis of traditional and machine learning of exudates detection, namely, mathematical morphology, fuzzy c-means clustering, naive Bayesian classifier, Support Vector Machine and Nearest Neighbor classifier are presented. Detected exudates are validated with expert ophthalmologists' hand-drawn ground-truths. The sensitivity, specificity, precision, accuracy and time complexity of each method are also compared.
Forsey, T; Darougar, S
1980-02-01
A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.
Padilla-España, Laura; Repiso-Jiménez, Juan Bosco; Fernández-Sánchez, Fernando; Pereda, Teresa; Rivas-Ruiz, Francisco; Fernández-Morano, Teresa; de la Torre-Lima, Javier; Palma, Fermín; Redondo, Maximino; de Troya-Martín, Magdalena
2016-01-01
The incidence of high-grade anal intraepithelial neoplasia (HGAIN) -with an aetiological based on high-risk types of human papillomavirus- is increasing in some high-risk groups. Screening for HGAIN includes routine anal cytology and, more recently, HPV genotyping. The main objective of this study was to determine the sensitivity and specificity of anal cytology and HPV genotyping for the detection of HGAIN. This is a study to determine the correlation of cytological and microbiological findings with anal biopsy findings in a cohort of patients at high risk of developing AIN referred to the department of sexually transmitted infections of the Hospital Costa del Sol, Spain, between January 2008 and December 2014. Of the 151 patients subjected to screening, a total of 92 patients, all of them with the result of three screening test (anal cytology, genotyping and biopsy) were included in the study. Just under two-thirds (62%) of them were HIV-positive. The sensitivity and specificity of anal cytology to detect HGAIN were 52.8 and 85.7%, respectively (k: 0.328), and 78 and 62.8% to detect two or more HPV oncogenic genotypes (k: 0.417). The detection of oncogenic HPV genotypes allowed the identification of 23 new cases of HGAIN that had been underdiagnosed with anal cytology, with 14 cases containing at least three high-risk genotypes. Anal cytology did not show enough sensitivity in HGAIN screening. HPV genotyping has shown to be a useful tool to detect HGAIN cases, although it could lead to an over-diagnosis as a solitary screening procedure. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Xue, Shuyan; Jing, Pei; Xu, Wenju
2016-12-15
Herein, integrated with DNAzyme highly specific to metal ions, hemin@reduced graphene oxide (hemin@rGO) functionalized with flower-like MnO2 and hollow AuPd (hAuPd-fMnO2-hemin@rGO) was used as electroactive probe and electrocatalyst to construct a universal platform for metal ion detection (lead ion Pb(2+) as the model). The proposed strategy with generality was mainly based on two aspects. Firstly, the designed probe not only showed high stability and excellent peroxidase-like activity originating from hemin, fMnO2 and hAuPd, but also possessed intrinsic redox performance from hemin, which resulted in the promotion of electron transfer and the enhancement of the response signal readout. Secondly, due to the introduction of Pb(2+), Pb(2+)-dependent DNAzyme bound in the electrode surface could be specifically identified and cleaved by Pb(2+), and the remained fragment (its supplementary sequence is a single-strand DNA S3) captured the nanocomposites S3-hAuPd-fMnO2-hemin@rGO by the hybridization reaction. Therefore, combined the cooperative catalysis of fMnO2, hAuPd and hemin to H2O2 reduction with highly specific interaction of Pb(2+)-dependent DNAzyme, the proposed Pb(2+) biosensor showed significant improvement of electrochemical analytical performance, which was involved in wide dynamic response in the range of 0.1pM-200nM, low detection limit of 0.034pM, high sensitivity and high specificity. This could facilitate the universal strategy to be a promising method for detection of other metal ions, only changing the corresponding DNAzyme specific to them. Copyright © 2016 Elsevier B.V. All rights reserved.
Pornruseetriratn, Siritavee; Maipanich, Wanna; Sa-nguankiat, Surapol; Pubampen, Somchit; Poodeepiyasawat, Akkarin; Thaenkham, Urusa
2017-01-01
Taenia solium, T. saginata, and T. asiatica are cestode pathogens causing taeniasis in humans. Houseflies can transfer Taenia eggs to food. However, houseflies are thought to carry only small numbers of Taenia eggs, sometimes fewer than 10. Although several PCR-based methods have been developed to detect Taenia DNA, these require more than 10 eggs for adequate detection. We developed a multiplex PCR method with high specificity for the discrimination among the eggs of the three Taenia species, T. solium, T. saginata, and T. asiatica, using 18S ribosomal DNA (rDNA) as a genetic marker. This technique was found to be highly sensitive, capable of identifying the Taenia species from only one egg. This multiplex PCR technique using 18S rDNA specific primers should be suitable to diagnose Taenia eggs.
Black, Jonathan D.; Lopez, Salvatore; Cocco, Emiliano; Schwab, Carlton L.; English, Diana P.; Santin, Alessandro D.
2015-01-01
Clostridium perfringens enterotoxin (CPE) is a three-domain polypeptide, which binds to Claudin-3 and Claudin-4 with high affinity. Because these receptors are highly differentially expressed in many human tumors, claudin-3 and claudin-4 may provide an efficient molecular tool to specifically identify and target biologically aggressive human cancer cells for CPE-specific binding and cytolysis. In this review we will discuss these surface proteins as targets for the detection and treatment of chemotherapy-resistant gynecologic malignancies overexpressing claudin-3 and -4 using CPE-based theranostic agents. We will also discuss the use of fluorescent c-CPE peptide in the operative setting for real time detection of micro-metastatic tumors during surgery and review the potential role of CPE in other medical applications. PMID:25835384
Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics
Kocevar, Nina; Komel, Radovan
2014-01-01
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang
2016-12-01
It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.
2014-01-01
Background The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. Results The detection limit of LAMP using in vitro RNA transcripts was 3.6×10 copies·μL-1, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. Conclusions The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test. PMID:24524254
Sorel, N; Guillot, E; Thellier, M; Accoceberry, I; Datry, A; Mesnard-Rouiller, L; Miégeville, M
2003-01-01
Microsporidia have become widely recognized as important human pathogens. Among Microsporidia, Enterocytozoon bieneusi is responsible for severe gastrointestinal disease. To date, no current therapy has been proven effective. Their mode of transmission and environmental occurrence are poorly documented because of the lack of detection methods that are both species-specific and sensitive. In this study, we developed a sensitive and specific molecular method to detect E. bieneusi spores in water samples. The molecular assay combined immunomagnetic separation (IMS) and polymerase chain reaction (PCR) amplification to detect E. bieneusi spores. A comparison was made of IMS magnetic beads coated with two different monoclonal antibodies, one specific for the Encephalitozoon genus that cross-reacts with E. bieneusi and the other specific only for the E. bieneusi species itself. Immunotech beads coated with the antibody specific for E. bieneusi were found to be the most effective combination. The highly specific IMS-PCR assay developed in this study provides a rapid and sensitive means of screening water samples for the presence of E. bieneusi spores.
Statistical algorithms improve accuracy of gene fusion detection
Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro
2017-01-01
Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529
Su, Li; Fong, Chi-Chun; Cheung, Pik-Yuan; Yang, Mengsu
2017-01-01
A novel biosensor based on piezoelectric ceramic resonator was developed for direct detection of cancer markers in the study. For the first time, a commercially available PZT ceramic resonator with high resonance frequency was utilized as transducer for a piezoelectric biosensor. A dual ceramic resonators scheme was designed wherein two ceramic resonators were connected in parallel: one resonator was used as the sensing unit and the other as the control unit. This arrangement minimizes environmental influences including temperature fluctuation, while achieving the required frequency stability for biosensing applications. The detection of the cancer markers Prostate Specific Antigen (PSA) and α-Fetoprotein (AFP) was carried out through frequency change measurement. The device showed high sensitivity (0.25 ng/ml) and fast detection (within 30 min) with small samples (1 μl), which is compatible with the requirements of clinical measurements. The results also showed that the ceramic resonator-based piezoelectric biosensor platform could be utilized with different chemical interfaces, and had the potential to be further developed into biosensor arrays with different specificities for simultaneous detection of multiple analytes.
Nucleic acid in-situ hybridization detection of infectious agents
NASA Astrophysics Data System (ADS)
Thompson, Curtis T.
2000-04-01
Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.
Simple detection of residual enrofloxacin in meat products using microparticles and biochips.
Ha, Mi-Sun; Chung, Myung-Sub; Bae, Dong-Ho
2016-05-01
A simple and sensitive method for detecting enrofloxacin, a major veterinary fluoroquinolone, was developed. Monoclonal antibody specific for enrofloxacin was immobilised on a chip and fluorescent dye-labelled microparticles were covalently bound to the enrofloxacin molecules. Enrofloxacin in solution competes with the microparticle-immobilised enrofloxacin (enroMPs) to bind to the antibody on the chip. The presence of enrofloxacin was verified by detecting the fluorescence of enrofloxacin-bound microparticles. Under optimum conditions, a high dynamic range was achieved at enrofloxacin concentrations ranging from 1 to 1000 μg kg(-1). The limits of detection and quantification for standard solutions were 5 and 20 μg kg(-1) respectively, which are markedly lower than the maximum residue limit. Using simple extraction methods, recoveries from fortified beef, pork and chicken samples were 43.4-62.3%. This novel method also enabled approximate quantification of enrofloxacin concentration: the enroMP signal intensity decreased with increasing enrofloxacin concentration. Because of its sensitivity, specificity, simplicity and rapidity, the method described herein will facilitate the detection and approximate quantification of enrofloxacin residues in foods in a high-throughput manner.
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary,; Bruce, R; Stubben, Christopher J
The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.
Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene.
Wang, Jiashun; Li, Yi; Chen, Jia; Hua, Deping; Li, Yi; Deng, Hui; Li, Ying; Liang, Zhixuan; Huang, Jinhai
Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1mg IMBs for Salmonella tended to be stable at the range of 70-74% corresponding to the concentrations between 10 1 and 10 4 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10h, which is a promising rapid method to detect Salmonella in emergency. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S
2012-02-01
Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications. Published by Elsevier Inc.
Development of an algorithm for automatic detection and rating of squeak and rattle events
NASA Astrophysics Data System (ADS)
Chandrika, Unnikrishnan Kuttan; Kim, Jay H.
2010-10-01
A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.
Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.
Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina
2018-02-15
Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ono, Takao; Oe, Takeshi; Kanai, Yasushi; Ikuta, Takashi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Watanabe, Yohei; Nakakita, Shin-ichi; Suzuki, Yasuo; Kawahara, Toshio; Matsumoto, Kazuhiko
2017-03-01
There are global concerns about threat of pandemic caused by the human-infectious avian influenza virus. To prevent the oncoming pandemic, it is crucial to analyze the viral affinity to human-type or avian-type sialoglycans with high sensitivity at high speed. Graphene-FET (G-FET) realizes such high-sensitive electrical detection of the targets, owing to graphene’s high carrier mobility. In the present study, G-FET was functionalized using sialoglycans and employed for the selective detection of lectins from Sambucus sieboldiana and Maackia amurensis as alternatives of the human and avian influenza viruses. Glycan-functionalized G-FET selectively monitored the sialoglycan-specific binding reactions at subnanomolar sensitivity.
Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da
2018-02-06
A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.
Single-protein detection in crowded molecular environments in cryo-EM images
Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried
2017-01-01
We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302
The role of nanotechnology in single-cell detection: a review.
Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming
2014-10-01
Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.
Are We Good at Detecting Conflict during Reasoning?
ERIC Educational Resources Information Center
Pennycook, Gordon; Fugelsang, Jonathan A.; Koehler, Derek J.
2012-01-01
Recent evidence suggests that people are highly efficient at detecting conflicting outputs produced by competing intuitive and analytic reasoning processes. Specifically, De Neys and Glumicic (2008) demonstrated that participants reason longer about problems that are characterized by conflict (as opposed to agreement) between stereotypical…
Microtiter plate-based antibody microarrays for bacteria and toxins
USDA-ARS?s Scientific Manuscript database
Research has focused on the development of rapid biosensor-based, high-throughput, and multiplexed detection of pathogenic bacteria in foods. Specifically, antibody microarrays in 96-well microtiter plates have been generated for the purpose of selective detection of Shiga toxin-producing E. coli (...
Li, Zhu-Nan; Weber, Kimberly M; Limmer, Rebecca A; Horne, Bobbi J; Stevens, James; Schwerzmann, Joy; Wrammert, Jens; McCausland, Megan; Phipps, Andrew J; Hancock, Kathy; Jernigan, Daniel B; Levine, Min; Katz, Jacqueline M; Miller, Joseph D
2017-05-01
Influenza hemagglutination inhibition (HI) and virus microneutralization assays (MN) are widely used for seroprevalence studies. However, these assays have limited field portability and are difficult to fully automate for high throughput laboratory testing. To address these issues, three multiplex influenza subtype-specific antibody detection assays were developed using recombinant hemagglutinin antigens in combination with Chembio, Luminex ® , and ForteBio ® platforms. Assay sensitivity, specificity, and subtype cross-reactivity were evaluated using a panel of well characterized human sera. Compared to the traditional HI, assay sensitivity ranged from 87% to 92% and assay specificity in sera collected from unexposed persons ranged from 65% to 100% across the platforms. High assay specificity (86-100%) for A(H5N1) rHA was achieved for sera from exposed or unexposed to hetorosubtype influenza HAs. In contrast, assay specificity for A(H1N1)pdm09 rHA using sera collected from A/Vietnam/1204/2004 (H5N1) vaccinees in 2008 was low (22-30%) in all platforms. Although cross-reactivity against rHA subtype proteins was observed in each assay platform, the correct subtype specific responses were identified 78%-94% of the time when paired samples were available for analysis. These results show that high throughput and portable multiplex assays that incorporate rHA can be used to identify influenza subtype specific infections. Published by Elsevier B.V.
Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor.
Chen, Xuejuan; Pan, Yangang; Liu, Huiqing; Bai, Xiaojing; Wang, Nan; Zhang, Bailin
2016-05-15
Liver cancer is one of the most common and highly malignant cancers in the world. There are no effective therapeutic options if an early liver cancer diagnosis is not achieved. In this work, detection of HepG2 cells by label-free microcantilever array aptasensor was developed. The sensing microcantilevers were functionalized by HepG2 cells-specific aptamers. Meanwhile, to eliminate the interferences induced by the environment, the reference microcantilevers were modified with 6-mercapto-1-hexanol self-assembled monolayers. The aptasensor exhibits high specificity over not only human liver normal cells, but also other cancer cells of breast, bladder, and cervix tumors. The linear relation ranges from 1×10(3) to 1×10(5)cells/mL, with a detection limit of 300 cells/mL (S/N=3). Our work provides a simple method for detection of liver cancer cells with advantages in terms of simplicity and stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Horsington, Jacquelyn; Hartley, Carol A; Gilkerson, James R
2013-09-01
Respiratory infections are a major burden in the performance horse industry. Equine rhinitis B virus (ERBV) has been isolated from horses displaying clinical respiratory disease, and ERBV-neutralizing antibodies have been detected in 50-80% of horses in reported surveys. Current ERBV isolation and detection methods may underestimate the number of ERBV-positive animals and do not identify multiple serotype infections. The aim of the current study was to develop a serotyping ERBV antibody-detection enzyme-linked immunosorbent assay (ELISA) and examine the seroprevalence of ERBV in a group of Australian weanling horses. ELISAs with high sensitivity and specificity were developed. The seroprevalence of ERBV in the weanling horses was high (74-86%); ERBV-3 antibodies were most prevalent (58-62%) and ERBV-2 antibodies were least prevalent (10-16%). Many horses were seropositive to 2 or more serotypes. All 3 serotypes of ERBV were detected, and concurrent positivity to multiple serotypes was common.
NASA Astrophysics Data System (ADS)
Treado, Patrick J.; Stewart, Shona D.; Smith, Aaron; Kirschner, Heather; Post, Christopher; Overholt, Bergein F.
2016-03-01
Colorectal cancer (CRC) is the third most common cancer in men and women in the United States. Raman Molecular Imaging (RMI) is an effective technique to evaluate human tissue, cells and bodily fluids, including blood serum for disease diagnosis. ChemImage Corporation, in collaboration with clinicians, has been engaged in development of an in vitro diagnostic Raman assay focused on CRC detection. The Raman Assay for Colorectal Cancer (RACC) exploits the high specificity of Raman imaging to distinguish diseased from normal dried blood serum droplets without additional reagents. Pilot Study results from testing of hundreds of biobank patient samples have demonstrated that RACC detects CRC with high sensitivity and specificity. However, expanded clinical trials, which are ongoing, are revealing a host of important preanalytical considerations associated with sample collection, sample storage and stability, sample shipping, sample preparation and sample interferents, which impact detection performance. Results from recent clinical studies will be presented.
Luminescent Quantum Dots as Ultrasensitive Biological Labels
NASA Astrophysics Data System (ADS)
Nie, Shuming
2000-03-01
Highly luminescent semiconductor quantum dots have been covalently coupled to biological molecules for use in ultrasensitive biological detection. This new class of luminescent labels is considerably brighter and more resistant againt photobleaching in comparison with organic dyes. Quantum dots labeled with the protein transferrin undergo receptor-mediated endocytosis (RME) in cultured HeLa cells, and those dots that were conjugated to immunomolecules recognize specific antibodies or antigens. In addition, we show that DNA functionalized quantum dots can be used to target specific genes by hybridization. We expect that quantum dot bioconjugates will have a broad range of biological applications, such as ligand-receptor interactions, real-time monitoring of molecular trafficking inside living cells, multicolor fluorescence in-situ hybridization (FISH), high-sensitivity detection in miniaturized devices (e.g., DNA chips), and fluorescent tagging of combinatorial chemical libraries. A potential clinical application is the use of quantum dots for ultrasensitive viral RNA detection, in which as low as 100 copies of hepatitis C and HIV viruses per ml blood should be detected.
Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki
2016-03-01
Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...
Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and power to detect disease association is low. A novel use of Mhc population surveys is that they map allelic substituti...
GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection
Chopard, Tony; Lacour, Vivien; Leblois, Therese
2014-01-01
This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375
Sun, Zhongyue; Liao, Tangbin; Zhang, Yulin; Shu, Jing; Zhang, Hong; Zhang, Guo-Jun
2016-12-15
A very simple sensing device based on biomimetic nanochannels has been developed for label-free, ultrasensitive and highly sequence-specific detection of DNA. Probe DNA was modified on the inner wall of the nanochannel surface by layer-by-layer (LBL) assembly. After probe DNA immobilization, DNA detection was realized by monitoring the rectified ion current when hybridization occurred. Due to three dimensional (3D) nanoscale environment of the nanochannel, this special geometry dramatically increased the surface area of the nanochannel for immobilization of probe molecules on the inner-surface and enlarged contact area between probes and target-molecules. Thus, the unique sensor reached a reliable detection limit of 10 fM for target DNA. In addition, this DNA sensor could discriminate complementary DNA (c-DNA) from non-complementary DNA (nc-DNA), two-base mismatched DNA (2bm-DNA) and one-base mismatched DNA (1bm-DNA) with high specificity. Moreover, the nanochannel-based biosensor was also able to detect target DNA even in an interfering environment and serum samples. This approach will provide a novel biosensing platform for detection and discrimination of disease-related molecular targets and unknown sequence DNA. Copyright © 2016 Elsevier B.V. All rights reserved.
Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research.
Perez-Guaita, David; Marzec, Katarzyna M; Hudson, Andrew; Evans, Corey; Chernenko, Tatyana; Matthäus, Christian; Miljkovic, Milos; Diem, Max; Heraud, Philip; Richards, Jack S; Andrew, Dean; Anderson, David A; Doerig, Christian; Garcia-Bustos, Jose; McNaughton, Don; Wood, Bayden R
2018-04-20
New technologies to diagnose malaria at high sensitivity and specificity are urgently needed in the developing world where the disease continues to pose a huge burden on society. Infrared and Raman spectroscopy-based diagnostic methods have a number of advantages compared with other diagnostic tests currently on the market. These include high sensitivity and specificity for detecting low levels of parasitemia along with ease of use and portability. Here, we review the application of vibrational spectroscopic techniques for monitoring and detecting malaria infection. We discuss the role of vibrational (infrared and Raman) spectroscopy in understanding the processes of parasite biology and its application to the study of interactions with antimalarial drugs. The distinct molecular phenotype that characterizes malaria infection and the high sensitivity enabling detection of low parasite densities provides a genuine opportunity for vibrational spectroscopy to become a front-line tool in the elimination of this deadly disease and provide molecular insights into the chemistry of this unique organism.
NASA Astrophysics Data System (ADS)
Iwasaki, Ryosuke; Nagaoka, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro
2018-07-01
Acoustic cavitation bubbles are known to enhance the heating effect in high-intensity focused ultrasound (HIFU) treatment. The detection of cavitation bubbles with high sensitivity and selectivity is required to predict the therapeutic and side effects of cavitation, and ensure the efficacy and safety of the treatment. A pulse inversion (PI) technique has been widely used for imaging microbubbles through enhancing the second-harmonic component of echo signals. However, it has difficulty in separating the nonlinear response of microbubbles from that due to nonlinear propagation. In this study, a triplet pulse (3P) method was investigated to specifically image cavitation bubbles by extracting the 1.5th fractional harmonic component. The proposed 3P method depicted cavitation bubbles with a contrast ratio significantly higher than those in conventional imaging methods with and without PI. The results suggest that the 3P method is effective for specifically detecting microbubbles in cavitation-enhanced HIFU treatment.
Gulshan, Varun; Peng, Lily; Coram, Marc; Stumpe, Martin C; Wu, Derek; Narayanaswamy, Arunachalam; Venugopalan, Subhashini; Widner, Kasumi; Madams, Tom; Cuadros, Jorge; Kim, Ramasamy; Raman, Rajiv; Nelson, Philip C; Mega, Jessica L; Webster, Dale R
2016-12-13
Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. Deep learning-trained algorithm. The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%. In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
Zhu, Yezi; Sharp, Adam; Anderson, Courtney M; Silberstein, John L; Taylor, Maritza; Lu, Changxue; Zhao, Pei; De Marzo, Angelo M; Antonarakis, Emmanuel S; Wang, Mindy; Wu, Xingyong; Luo, Yuling; Su, Nan; Nava Rodrigues, Daniel; Figueiredo, Ines; Welti, Jonathan; Park, Emily; Ma, Xiao-Jun; Coleman, Ilsa; Morrissey, Colm; Plymate, Stephen R; Nelson, Peter S; de Bono, Johann S; Luo, Jun
2018-05-01
Androgen receptor splice variant 7 (AR-V7) has been implicated in resistance to abiraterone and enzalutamide treatment in men with metastatic castration-resistant prostate cancer (mCRPC). Tissue- or cell-based in situ detection of AR-V7, however, has been limited by lack of specificity. To address current limitations in precision measurement of AR-V7 by developing a novel junction-specific AR-V7 RNA in situ hybridization (RISH) assay compatible with automated quantification. We designed a RISH method to visualize single splice junctions in cells and tissue. Using the validated assay for junction-specific detection of the full-length AR (AR-FL) and AR-V7, we generated quantitative data, blinded to clinical data, for 63 prostate tumor biopsies. We evaluated clinical correlates of AR-FL/AR-V7 measurements, including association with prostate-specific antigen progression-free survival (PSA-PFS) and clinical and radiographic progression-free survival (PFS), in a subset of patients starting treatment with abiraterone or enzalutamide following biopsy. Quantitative AR-FL/AR-V7 data were generated from 56 of the 63 (88.9%) biopsy specimens examined, of which 44 were mCRPC biopsies. Positive AR-V7 signals were detected in 34.1% (15/44) mCRPC specimens, all of which also co-expressed AR-FL. The median AR-V7/AR-FL ratio was 11.9% (range 2.7-30.3%). Positive detection of AR-V7 was correlated with indicators of high disease burden at baseline. Among the 25 CRPC biopsies collected before treatment with abiraterone or enzalutamide, positive AR-V7 detection, but not higher AR-FL, was significantly associated with shorter PSA-PFS (hazard ratio 2.789, 95% confidence interval 1.12-6.95; p=0.0081). We report for the first time a RISH method for highly specific and quantifiable detection of splice junctions, allowing further characterization of AR-V7 and its clinical significance. Higher AR-V7 levels detected and quantified using a novel method were associated with poorer response to abiraterone or enzalutamide in prostate cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Moshina, Nataliia; Sebuødegård, Sofie; Hofvind, Solveig
2017-06-01
We aimed to investigate early performance measures in a population-based breast cancer screening program stratified by compression force and pressure at the time of mammographic screening examination. Early performance measures included recall rate, rates of screen-detected and interval breast cancers, positive predictive value of recall (PPV), sensitivity, specificity, and histopathologic characteristics of screen-detected and interval breast cancers. Information on 261,641 mammographic examinations from 93,444 subsequently screened women was used for analyses. The study period was 2007-2015. Compression force and pressure were categorized using tertiles as low, medium, or high. χ 2 test, t tests, and test for trend were used to examine differences between early performance measures across categories of compression force and pressure. We applied generalized estimating equations to identify the odds ratios (OR) of screen-detected or interval breast cancer associated with compression force and pressure, adjusting for fibroglandular and/or breast volume and age. The recall rate decreased, while PPV and specificity increased with increasing compression force (p for trend <0.05 for all). The recall rate increased, while rate of screen-detected cancer, PPV, sensitivity, and specificity decreased with increasing compression pressure (p for trend <0.05 for all). High compression pressure was associated with higher odds of interval breast cancer compared with low compression pressure (1.89; 95% CI 1.43-2.48). High compression force and low compression pressure were associated with more favorable early performance measures in the screening program.
Ritari, Jarmo; Hultman, Jenni; Fingerroos, Rita; Tarkkanen, Jussi; Pullat, Janne; Paulin, Lars; Kivi, Niina; Auvinen, Petri; Auvinen, Eeva
2012-01-01
Sensitive and specific detection of human papillomaviruses (HPV) in cervical samples is a useful tool for the early diagnosis of epithelial neoplasia and anogenital lesions. Recent studies support the feasibility of HPV DNA testing instead of cytology (Pap smear) as a primary test in population screening for cervical cancer. This is likely to be an option in the near future in many countries, and it would increase the efficiency of screening for cervical abnormalities. We present here a microarray test for the detection and typing of 15 most important high-risk HPV types and two low risk types. The method is based on type specific multiplex PCR amplification of the L1 viral genomic region followed by ligation detection reaction where two specific ssDNA probes, one containing a fluorescent label and the other a flanking ZipCode sequence, are joined by enzymatic ligation in the presence of the correct HPV PCR product. Human beta-globin is amplified in the same reaction to control for sample quality and adequacy. The genotyping capacity of our approach was evaluated against Linear Array test using cervical samples collected in transport medium. Altogether 14 out of 15 valid samples (93%) gave concordant results between our test and Linear Array. One sample was HPV56 positive in our test and high-risk positive in Hybrid Capture 2 but remained negative in Linear Array. The preliminary results suggest that our test has accurate multiple HPV genotyping capability with the additional advantages of generic detection format, and potential for high-throughput screening.
Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection
Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi
2017-01-01
Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689
NASA Astrophysics Data System (ADS)
Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha
2016-05-01
Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.
Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan; Wang, Jiasheng
2016-11-14
Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
Sensitivity and specificity of scanning laser polarimetry using the GDx.
Munkwitz, S; Funk, J; Loeffler, K U; Harbarth, U; Kremmer, S
2004-09-01
To determine the sensitivity and the specificity of the GDx in the detection of (1) advanced glaucoma, (2) early glaucoma, and (3) nerve fibre bundle defects (NFBD). Group A comprised 20 eyes with reproducible glaucomatous visual field defects confirmed by octopus perimetry, group B consisted of 10 eyes with normal visual fields but either glaucomatous NFBD or deterioration of the disc over time clearly visible upon flicker comparison, and group C included 16 eyes with glaucomatous or non-glaucomatous NFBD clearly visible on red free photographs. Forty four eyes of 22 healthy volunteers served as controls. The GDx printouts of all subjects were evaluated by three independent observers in a masked fashion and without the clinical picture of the optic disc. Two of the three observers (SK, UH) were GDx experts, one (KUL) was an untrained GDx user. Among the GDx experts, sensitivity/specificity was 100%/100% (SK) and 90%/100% (UH) in detecting advanced glaucoma, and 100%/100% (SK) and 90%/100% (UH) in detecting early glaucoma. The sensitivity in detecting NFBD was only 37.5% (SK and UH). For the untrained GDx user the corresponding values were 50%/100% (group A), 20%/100% (group B), and 12.5%/91% (group C). Detection of (early) glaucoma damage by the GDx, evaluated by trained experts, can be extremely high. To optimise its benefit in clinical routine training in interpreting GDx printouts is highly recommended. Detection of localised NFBD is crucial, even for experts.
UroMark-a urinary biomarker assay for the detection of bladder cancer.
Feber, Andrew; Dhami, Pawan; Dong, Liqin; de Winter, Patricia; Tan, Wei Shen; Martínez-Fernández, Mónica; Paul, Dirk S; Hynes-Allen, Antony; Rezaee, Sheida; Gurung, Pratik; Rodney, Simon; Mehmood, Ahmed; Villacampa, Felipe; de la Rosa, Federico; Jameson, Charles; Cheng, Kar Keung; Zeegers, Maurice P; Bryan, Richard T; James, Nicholas D; Paramio, Jesus M; Freeman, Alex; Beck, Stephan; Kelly, John D
2017-01-01
Bladder cancer (BC) is one of the most common cancers in the western world and ranks as the most expensive to manage, due to the need for cystoscopic examination. BC shows frequent changes in DNA methylation, and several studies have shown the potential utility of urinary biomarkers by detecting epigenetic alterations in voided urine. The aim of this study is to develop a targeted bisulfite next-generation sequencing assay to diagnose BC from urine with high sensitivity and specificity. We defined a 150 CpG loci biomarker panel from a cohort of 86 muscle-invasive bladder cancers and 30 normal urothelium. Based on this panel, we developed the UroMark assay, a next-generation bisulphite sequencing assay and analysis pipeline for the detection of bladder cancer from urinary sediment DNA. The 150 loci UroMark assay was validated in an independent cohort ( n = 274, non-cancer ( n = 167) and bladder cancer ( n = 107)) voided urine samples with an AUC of 97%. The UroMark classifier sensitivity of 98%, specificity of 97% and NPV of 97% for the detection of primary BC was compared to non-BC urine. Epigenetic urinary biomarkers for detection of BC have the potential to revolutionise the management of this disease. In this proof of concept study, we show the development and utility of a novel high-throughput, next-generation sequencing-based biomarker for the detection of BC-specific epigenetic alterations in urine.
Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping
2015-12-15
Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins
Bai, Jaewoo; Kim, You-Tae; Ryu, Sangryeol; Lee, Ju-Hoon
2016-01-01
Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs) from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods. PMID:27092128
Chung, Chungwon J; Clavijo, Alfonso; Bounpheng, Mangkey A; Uddowla, Sabena; Sayed, Abu; Dancho, Brooke; Olesen, Ian C; Pacheco, Juan; Kamicker, Barbara J; Brake, David A; Bandaranayaka-Mudiyanselage, Carey L; Lee, Stephen S; Rai, Devendra K; Rieder, Elizabeth
2018-06-01
The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20-25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent-free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.
Morgan, Catherine; Crowle, Cathryn; Goyen, Traci-Anne; Hardman, Caroline; Jackman, Michelle; Novak, Iona; Badawi, Nadia
2016-01-01
The aim of this study was to calculate the sensitivity and specificity of the General Movements Assessment (GMA) for estimating diagnostic accuracy in detecting cerebral palsy (CP) in an Australian context by a newly established NSW rater network. A prospective longitudinal cross-sectional study was conducted. The GMA was blind-rated from conventional video by two independent certified raters, blinded to medical history. A third rater resolved disagreements. High-risk population screening for CP using the GMA during the fidgety period (12-20 weeks) was carried out in four neonatal intensive care units and one CP service over a 30-month period (2012-2013). Participants were 259 high-risk infants. Sensitivity and specificity values were calculated with true positives defined as a confirmed diagnosis of CP from a medical doctor. Of the 259 infants assessed, 1-year follow-up data were available for 187. Of these, n = 48 had absent fidgety (high risk for CP), n = 138 had normal fidgety (low risk for CP), and n = 1 had abnormal fidgety (high risk for a neurological disorder). Of the 48 with absent fidgety movements, 39 had received a diagnosis of CP by 18 months and another 6 had an abnormal outcome. Of the n = 138 normal fidgety cases, n = 99 cases had a normal outcome, n = 38 had an abnormal outcome but not CP, and n = 1 had CP. For detecting CP, we had a sensitivity of 98% and specificity of 94%. GMA was feasible in an Australian context and accurately identified CP with a sensitivity and specificity comparable with European standards and published neuroimaging data. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.
Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester
2015-07-07
A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.
[Development of a universal primers PCR-coupled liquid bead array to detect biothreat bacteria].
Wen, Hai-yan; Wang, Jing; Liu, Heng-chuan; Sun, Xiao-hong; Yang, Yu; Hu, Kong-xin; Shan, Lin-jun
2009-10-01
To develop a fast, high-throughput screening method with suspension array technique for simultaneous detection of biothreat bacteria. 16 S rDNA universal primers for Bacillus anthracis, Francisella tularensis, Yersinia pestis, Brucella spp.and Burkholderia pseudomallei were selected to amplify corresponding regions and the genus-specific or species-specific probes were designed. After amplification of chromosomal DNA by 16 S rDNA primers 341A and 519B, the PCR products were detected by suspension array technique. The sensitivity, specificity, reproducibility and detection power were also analyzed. After PCR amplification by 16 S rDNA primers and specific probe hybridization, the target microorganisms could be identified at genus level, cross reaction was recognized in the same genus. The detection sensitivity of the assay was 1.5 pg/microl (Burkholderia pseudomallei), 20 pg/microl (Brucella spp.), 7 pg/microl (Bacillus anthracis), 0.1 pg/microl (Francisella tularensis), and 1.1 pg/microl (Yersinia pestis), respectively. The coefficient of variation for 15 test of different probes was ranged from 5.18% to 17.88%, it showed good reproducibility. The assay could correctly identify Bacillus anthracis and Yersinia pestis strains in simulated white powder samples. The suspension array technique could be served as an opening screening method for biothreat bacteria rapid detection.
Galel, Susan A; Simon, Toby L; Williamson, Phillip C; AuBuchon, James P; Waxman, Dan A; Erickson, Yasuko; Bertuzis, Rasa; Duncan, John R; Malhotra, Khushbeer; Vaks, Jeffrey; Huynh, Nancy; Pate, Lisa Lee
2018-03-01
Use of nucleic acid testing (NAT) in donor infectious disease screening improves transfusion safety. Advances in NAT technology include improvements in assay sensitivity and system automation, and real-time viral target discrimination in multiplex assays. This article describes the sensitivity and specificity of cobas MPX, a multiplex assay for detection of human immunodeficiency virus (HIV)-1 Group M, HIV-2 and HIV-1 Group O RNA, HCV RNA, and HBV DNA, for use on the cobas 6800/8800 Systems. The specificity of cobas MPX was evaluated in samples from donors of blood and source plasma in the United States. Analytic sensitivity was determined with reference standards. Infectious window periods (WPs) before NAT detectability were calculated for current donor screening assays. The specificity of cobas MPX was 99.946% (99.883%-99.980%) in 11,203 blood donor samples tested individually (IDT), 100% (99.994%-100%) in 63,012 donor samples tested in pools of 6, and 99.994% (99.988%-99.998%) in 108,306 source plasma donations tested in pools of 96. Seven HCV NAT-yield donations and one seronegative occult HBV infection were detected. Ninety-five percent and 50% detection limits in plasma (IU/mL) were 25.7 and 3.8 for HIV-1M, 7.0 and 1.3 for HCV, and 1.4 and 0.3 for HBV. The HBV WP was 1 to 4 days shorter than other donor screening assays by IDT. cobas MPX demonstrated high specificity in blood and source plasma donations tested individually and in pools. High sensitivity, in particular for HBV, shortens the WP and may enhance detection of occult HBV. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
Hsieh, Shuchen; Hsieh, Shu-Ling; Hsieh, Chiung-Wen; Lin, Po-Chiao; Wu, Chun-Hsin
2013-01-01
Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.
NASA Astrophysics Data System (ADS)
Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang
2016-10-01
Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.
NASA Astrophysics Data System (ADS)
Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.
2012-10-01
Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.
Barreda-García, Susana; González-Álvarez, María José; de-Los-Santos-Álvarez, Noemí; Palacios-Gutiérrez, Juan José; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús
2015-06-15
A highly sensitive and robust method for the quantification of specific DNA sequences based on coupling asymmetric helicase-dependent DNA amplification to electrochemical detection is described. This method relies on the entrapment of the amplified ssDNA sequences on magnetic beads followed by a post-amplification hybridization assay to provide an added degree of specificity. As a proof-of-concept a 84-bases long sequence specific of Mycobacterium tuberculosis is amplified at 65°C, providing 3×10(6) amplification after 90 min. Using this system 0.5 aM, corresponding to 15 copies of the target gene in 50 µL of sample, can be successfully detected and reliably quantified under isothermal conditions in less than 4h. The assay has been applied to the detection of M. tuberculosis in sputum, pleural fluid and urine samples. Besides this application, the proposed assays is a powerful and general tool for molecular diagnostic that can be applied to the detection of other specific DNA sequences, taking full advantage of the plethora of genomic information now available. Copyright © 2014 Elsevier B.V. All rights reserved.
Effective PCR detection of animal species in highly processed animal byproducts and compound feeds.
Fumière, Olivier; Dubois, Marc; Baeten, Vincent; von Holst, Christoph; Berben, Gilbert
2006-07-01
In this paper we present a polymerase chain reaction (PCR)-based method for detecting meat and bone meal (MBM) in compound feedingstuffs. By choosing adequate DNA targets from an appropriate localisation in the genome, the real-time PCR method developed here proved to be robust to severe heat treatment of the MBM, showing high sensitivity in the detection of MBM. The method developed here permits the specific detection of processed pig and cattle materials treated at 134 degrees C in various feed matrices down to a limit of detection of about 0.1%. This technique has also been successfully applied to well-characterised MBM samples heated to as high as 141 degrees C, as well as to various blind feed samples with very low MBM contents. Finally, the method also passed several official European ring trials.
Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Chen, Ting; Zhang, Zhidong
2016-12-01
A novel fluorescent probe-based real-time reverse transcription recombinase polymerase amplification (real-time RT-RPA) assay was developed for rapid detection of highly pathogenic type 2 porcine reproductive and respiratory syndrome virus (HP-PRRSV). The sensitivity analysis showed that the detection limit of RPA was 70 copies of HP-PRRSV RNA/reaction. The real-time RT-RPA highly specific amplified HP-PRRSV with no cross-reaction with classic PRRSV, classic swine fever virus, pseudorabies virus, and foot-and-mouth disease virus. Assessment with 125 clinical samples showed that the developed real-time RT-RPA assay was well correlated with real-time RT-qPCR assays for detection of HP-PRRSV. These results suggest that the developed real-time RT-RPA assay is suitable for rapid detection of HP-PRRSV.
Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G
2017-02-01
To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.
Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko
2013-01-01
A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.
Irenge, Léonid M; Walravens, Karl; Govaerts, Marc; Godfroid, Jacques; Rosseels, Valérie; Huygen, Kris; Gala, Jean-Luc
2009-04-14
A triplex real-time (TRT-PCR) assay was developed to ensure a rapid and reliable detection of Mycobacterium avium subsp. paratuberculosis (Map) in faecal samples and to allow routine detection of Map in farmed livestock and wildlife species. The TRT-PCR assay was designed using IS900, ISMAP02 and f57 molecular targets. Specificity of TRT-PCR was first confirmed on a panel of control mycobacterial Map and non-Map strains and on faecal samples from Map-negative cows (n=35) and from Map-positive cows (n=20). The TRT-PCR assay was compared to direct examination after Ziehl-Neelsen (ZN) staining and to culture on 197 faecal samples collected serially from five calves experimentally exposed to Map over a 3-year period during the sub-clinical phase of the disease. The data showed a good agreement between culture and TRT-PCR (kappa score=0.63), with the TRT-PCR limit of detection of 2.5 x 10(2)microorganisms/g of faeces spiked with Map. ZN agreement with TRT-PCR was not good (kappa=0.02). Sequence analysis of IS900 amplicons from three single IS900 positive samples confirmed the true Map positivity of the samples. Highly specific IS900 amplification suggests therefore that each single IS900 positive sample from experimentally exposed animals was a true Map-positive specimen. In this controlled experimental setting, the TRT-PCT was rapid, specific and displayed a very high sensitivity for Map detection in faecal samples compared to conventional methods.
Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua
2012-01-01
There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903
Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania
2017-05-31
C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.
Ramlal, Shylaja; Mondal, Bhairab; Lavu, Padma Sudharani; N, Bhavanashri; Kingston, Joseph
2018-01-16
In the present study, a high throughput whole cell SELEX method has been applied successfully in selecting specific aptamers against whole cells of Staphylococcus aureus, a potent food poisoning bacterium. A total ten rounds of SELEX and three rounds of intermittent counter SELEX, was performed to obtain specific aptamers. Obtained oligonucleotide pool were cloned, sequenced and then grouped into different families based on their primary sequence homology and secondary structure similarity. FITC labeled sequences from different families were selected for further characterization via flow cytometry analysis. The dissociation constant (K d ) values of specific and higher binders ranged from 34 to 128nM. Binding assays to assess the selectivity of aptamer RAB10, RAB 20, RAB 28 and RAB 35 demonstrated high affinity against S. aureus and low binding affinity for other bacteria. To demonstrate the potential use of the aptamer a sensitive dual labeled sandwich detection system was developed using aptamer RAB10 and RAB 35 with a detection limit of 10 2 CFU/mL. Furthermore detection from mixed cell population and spiked sample emphasized the robustness as well as applicability of the developed method. Altogether, the established assay could be a reliable detection tool for the routine investigation of Staphylococcus aureus in samples from food and clinical sources. Copyright © 2017. Published by Elsevier B.V.
González, Liliana A; Vázquez, Yaneisi; Mora, Jorge E; Palavecino, Christian E; Bertrand, Pablo; Ferrés, Marcela; Contreras, Ana M; Beckhaus, Andrea A; Riedel, Claudia A; Bueno, Susan M
2018-04-01
Human Respiratory Syncytial Virus (hRSV), human Metapneumovirus (hMPV) and Adenovirus (ADV), are three of the most prevalent viruses responsible for pneumonia and bronchiolitis in children and elderly worldwide, accounting for a high number of hospitalizations annually. Diagnosis of these viruses is required to take clinical actions that allow an appropriate patient management. Thereby, new strategies to design fast diagnostic methods are highly required. In the present work, six monoclonal antibodies (mAbs, two for each virus) specific for conserved proteins from hRSV, hMPV and ADV were generated and evaluated through different immunological techniques, based on detection of purified protein, viral particles and human samples. In vitro evaluation of these antibodies showed higher specificity and sensitivity than commercial antibodies tested in this study. These antibodies were used to design a sandwich ELISA tests that allowed the detection of hRSV, hMPV, and ADV in human nasopharyngeal swabs. We observed that hRSV and ADV were detected with sensitivity and specificity equivalent to a current Direct Fluorescence Assay (DFA) methodology. However, hMPV was detected with more sensitivity than DFA. Our data suggest that these new mAbs can efficiently identify infected samples and discriminate from patients infected with other respiratory pathogens. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Near-Patient Sampling to Assist Infection Control—A Case Report and Discussion
Tang, Julian W.; Hoyle, Elizabeth; Moran, Sammy; Pareek, Manish
2018-01-01
Air sampling as an aid to infection control is still in an experimental stage, as there is no consensus about which air samplers and pathogen detection methods should be used, and what thresholds of specific pathogens in specific exposed populations (staff, patients, or visitors) constitutes a true clinical risk. This case report used a button sampler, worn or held by staff or left free-standing in a fixed location, for environmental sampling around a child who was chronically infected by a respiratory adenovirus, to determine whether there was any risk of secondary adenovirus infection to the staff managing the patient. Despite multiple air samples taken on difference days, coinciding with high levels of adenovirus detectable in the child’s nasopharyngeal aspirates (NPAs), none of the air samples contained any detectable adenovirus DNA using a clinically validated diagnostic polymerase chain reaction (PCR) assay. Although highly sensitive, in-house PCR assays have been developed to detect airborne pathogen RNA/DNA, it is still unclear what level of specific pathogen RNA/DNA constitutes a true clinical risk. In this case, the absence of detectable airborne adenovirus DNA using a conventional diagnostic assay removed the requirement for staff to wear surgical masks and face visors when they entered the child’s room. No subsequent staff infections or outbreaks of adenovirus have so far been identified. PMID:29385031
Carrera, P; Barbieri, A M; Ferrari, M; Righetti, P G; Perego, M; Gelfi, C
1997-11-01
A quick diagnosis of the classic form of 21-hydroxylase deficiency (simple virilizing and salt wasting) is of great importance, especially for prenatal diagnosis and treatment in pregnancies at risk. A method for simultaneous detection of common point mutations in the P450c21 B gene is here proposed by combining a nested PCR amplification refractory mutation system (ARMS) with capillary zone electrophoresis (CZE) in sieving liquid polymers. In the first PCR, B genes are selectively amplified. In the nested reaction, ARMS-detected wild-type and mutated alleles are separately pooled and resolved by CZE. CZE is performed in coated capillaries in the presence of 30 g/L hydroxyethyl cellulose in the background electrolyte for size separation of the DNA analytes. For high-sensitivity detection the electrophoresis buffer contains the fluorescent dye SYBR Green I. Laser-induced fluorescence detection is obtained by excitation at 488 nm and signal collection at 520 nm. Specificity and reproducibility of the protocols were established by using samples from 75 Italian families with 21-hydroxylase deficiency already genotyped by allele-specific oligonucleotide hybridization or direct sequencing. Whereas dot-blot is time consuming because of the high number of hybridizations with radioactive probes, this present protocol is more rapid, giving sufficient separation on CZE after PCR reactions without preconcentration or desalting of samples.
Liu, Wanli; Li, Jianpei; Wu, Yixian; Xing, Shan; Lai, Yanzhen; Zhang, Ge
2018-04-15
Tumor-derived exosomes (TEXs) are extracellular vesicles that are continuously released into the blood by tumor cells and carry specific surface markers of the original tumor cells. Substantial evidence has implicated TEXs as attractive diagnostic markers for cancer. However, the detection of TEXs in blood at an early tumor stage is challenging due to their very low concentration. Here, we established a method called PLA-RPA-TMA assay that allows TEXs to be detected with high sensitivity and specificity. Based on two proximity ligation assay (PLA) probes that recognize a biomarker on a TEX, we generated a unique surrogate DNA signal for the specific biomarker, which was synchronously amplified twice by recombinase polymerase amplification (RPA) coupled with transcription-mediated amplification (TMA), and then the products of the RPA-TMA reaction were quantitatively detected using a gold nanoparticle-based colorimetric assay. We established proof-of-concept evidence for this approach using TEXs from nasopharyngeal carcinoma (NPC) cells, with a detection limit of 10 2 particles/mL, and reported the measurement of plasma Epstein-Barr virus latent membrane protein 1 (LPM1)-positive (LMP1 + , accuracy: 0.956) and epidermal growth factor receptor (EGFR)-positive (EGFR + , accuracy: 0.906) TEXs as potent early diagnostic biomarkers for NPC. Copyright © 2017 Elsevier B.V. All rights reserved.
A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA.
Jung, Ulrike; Jiang, Xiaoou; Kaufmann, Stefan H E; Patzel, Volker
2013-12-01
Several methods for the detection of RNA have been developed over time. For small RNA detection, a stem-loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples. We describe a universal TaqMan-based probe protocol which can be used to detect any target sequence and demonstrate its applicability for the detection of endogenous as well as artificial eukaryotic and bacterial small RNAs. While the specific and the universal probe-based protocol showed the same sensitivity, the absolute sensitivity of detection was found to be more than 100-fold lower for both than previously reported. In subsequent experiments, we found previously unknown limitations intrinsic to the method affecting its feasibility in determination of mature template RISC incorporation as well as in multiplexing. Both protocols were equally specific in discriminating between correct and incorrect small RNA targets or between mature miRNA and its unprocessed RNA precursor, indicating the stem-loop RT-primer, but not the TaqMan probe, triggers target specificity. The presented universal TaqMan-based RT-PCR protocol represents a cost-efficient method for the detection of small RNAs.
Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang
2015-01-01
Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916
Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang
2015-08-04
Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.
Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7–3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno. PMID:29444148
Shahin, Khalid; Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7-3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno.
Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping
2015-06-15
A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua
2017-08-25
As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.
A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers.
Sun, Liping; Zhong, Yong; Gui, Jie; Wang, Xianwu; Zhuang, Xiaorong; Weng, Jian
2018-01-01
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive and memory impairment. It is the most common neurological disease that causes dementia. Soluble amyloid-beta oligomers (AβO) in blood or cerebrospinal fluid (CSF) are the pathogenic biomarker correlated with AD. A simple electrochemical biosensor using graphene oxide/gold nanoparticles (GNPs) hydrogel electrode was developed in this study. Thiolated cellular prion protein (PrP C ) peptide probe was immobilized on GNPs of the hydrogel electrode to construct an AβO biosensor. Electrochemical impedance spectroscopy was utilized for AβO analysis. The specific binding between AβO and PrP C probes on the hydrogel electrode resulted in an increase in the electron-transfer resistance. The biosensor showed high specificity and sensitivity for AβO detection. It could selectively differentiate AβO from amyloid-beta (Aβ) monomers or fibrils. Meanwhile, it was highly sensitive to detect as low as 0.1 pM AβO in artificial CSF or blood plasma. The linear range for AβO detection is from 0.1 pM to 10 nM. This biosensor could be used as a cost-effective tool for early diagnosis of AD due to its high electrochemical performance and bionic structure.
Ji, Yuhang; Zhang, Lei; Zhu, Longyi; Lei, Jianping; Wu, Jie; Ju, Huangxian
2017-10-15
A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Zhang, Z; Jain, V
2010-01-01
The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for thismore » kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.« less
Lee, Ro Woon; Choi, Soo-Jung; Lee, Man Ho; Ahn, Jae Hong; Shin, Dong Rock; Kang, Chae Hoon; Lee, Ki Won
2016-12-01
To evaluate the diagnostic performance (DP) of 3T (3 Tesla field strength) conventional shoulder magnetic resonance imaging (MRI) in detecting the long head of the biceps tendon (LHBT) tears in association with rotator cuff tendon tears. This study included 80 consecutive patients who underwent arthroscopic surgery for rotator cuff tendon tears. Two radiologists independently evaluated the preoperative 3T shoulder MRI for the presence of LHBT tears. The DP of MRI was evaluated using the results of arthroscopy as the reference standard. We also evaluated the DP of several MR signs of LHBT in detection of partial LHBT tears. Arthroscopic examination revealed 35 partial and 5 complete tears. According to the results of evaluation by reviewers 1 and 2, shoulder MRI exhibited sensitivities of 77.14 and 80 % and specificities of 71.11 and 73.33 % in detection of partial LHBT tears and sensitivities of 80 and 100 % and a specificity of 100% (both) in detection of complete LHBT tears. In detecting partial LHBT tears, increased T2 signal intensity of the LHBT exhibited high sensitivities (reviewers 1 and 2; 82.85 and 80 %, respectively) and the presence of intratendinous defects or C-signs exhibited the highest specificities (reviewers 1 and 2; 95.55 and 93.33 %, respectively), followed by abnormalities in shape and outer margins of the LHBT (reviewers 1 and 2; 91.11 and 82 %; 91.11 and 86.66 %, respectively). Non-contrast-enhanced 3T shoulder MRI is potentially highly accurate in detection of complete LHBT tears, but moderately accurate in detection of partial LHBT tears.
Pseudomonas species are plant, animal, and human pathogens; exhibit plant pathogen-suppressing properties useful in biological control; or express metabolic versatilities valued in biotechnology and bioremediation. Specific detection of Pseudomonas species in the environment may ...
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang
2016-10-01
In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.
Systematic review: Tumor-associated antigen autoantibodies and ovarian cancer early detection.
Fortner, Renée Turzanski; Damms-Machado, Antje; Kaaks, Rudolf
2017-11-01
Tumor-associated autoantibodies (AAbs), produced as an immune response to tumor-associated antigens (TAAs), are a novel pathway of early detection markers. We conducted a systematic review on AAbs and ovarian cancer to summarize the diagnostic performance of individual AAbs and AAb panels. A total of 29 studies including 85 AAbs were included; 27 of the studies were conducted in prevalent cases and cancer-free controls and 2 investigations included pre-diagnosis samples. The majority of studies were hypothesis-driven, evaluating AAbs to target TAAs; 10 studies used screening approaches such as serological expression cloning (SEREX) and nucleic acid-programmable protein arrays (NAPPA). The highest sensitivities for individual AAbs were reported for RhoGDI-AAbs (89.5%) and TUBA1C-AAbs (89%); however, specificity levels were relatively low (80% and 75%, respectively). High sensitivities at high specificities were reported for HOXA7-AAbs for detection of moderately differentiated ovarian tumors (66.7% sensitivity at 100% specificity) and IL8-AAbs in stage I-II ovarian cancer (65.5% sensitivity at 98% specificity). A panel of 11 AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) provided 45% sensitivity at 98% specificity for serous ovarian cancer, when at least 2 AAbs were above a threshold of 95% specificity. Twelve of the AAbs identified in this review were investigated in more than one study. Data on diagnostic discrimination by tumor histology and stage at diagnosis are sparse. Limited data suggest select AAb markers improve diagnostic discrimination when combined with markers such as CA125 and HE4. AAbs for ovarian cancer early detection is an emerging area, and large-scale, prospective investigations considering histology and stage are required for discovery and validation. However, data to date suggests panels of AAbs may eventually reach sufficient diagnostic discrimination to allow earlier detection of disease as a complement to existing markers and transvaginal ultrasound. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Nehal, Kishwer S.; Rajadhyaksha, Milind
2016-02-01
Latest advances in confocal microscopy of skin cancers toward guiding patient care: a Mohs surgeon's review and perspective About 350 publications worldwide have reported the ability of reflectance confocal microscopy (RCM) imaging to detect melanocytic skin lesions in vivo with specificity of 84-88% and sensitivity of 71-92%, and non-melanocytic skin lesions with specificity of 85-97% and sensitivity 100-92%. Lentigo maligna melanoma can be detected with sensitivity of 93% and specificity 82%. While the sensitivity is comparable to that of dermoscopy, the specificity is 2X superior, especially for lightly- and non-pigmented lesions. Dermoscopy combined with RCM imaging is proving to be both highly sensitive and highly specific. Recent studies have reported that the ratio of equivocal (i.e., would have been biopsied) lesions to detected melanomas dropped by ~2X when guided by dermoscopy and RCM imaging, compared to that with dermoscopy alone. Dermoscopy combined with RCM imaging is now being implemented to guide noninvasive diagnosis (to rule out malignancy and biopsy) and to also guide treatment, with promising initial impact: thus far, about 3,000 patients have been saved from biopsies of benign lesions. These are currently under follow-up monitoring. With fluorescence confocal microscopy (FCM) mosaicing, residual basal cell carcinomas can be detected in Mohs surgically excised fresh tissue ex vivo, with sensitivity of 94-97% and specificity 89-94%. FCM mosaicing is now being implemented for guiding Mohs surgery. To date, about 600 Mohs procedures have been performed, guided with mosaicing, and with pathology being performed in parallel to confirm the final outcome. These latest advances demonstrate the promising ability of RCM and FCM to guide patient care.
Lantos, Joshua E; Levine, Marc S; Rubesin, Stephen E; Lau, Charles T; Torigian, Drew A
2013-03-01
To assess the diagnostic performance of esophagography and chest computed tomography (CT) for detecting leaks after esophagectomy and gastric pull-through. Our database revealed 29 patients who had undergone esophagography and chest CT after esophagectomy. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for postoperative leaks were determined for esophagography and CT, separately and combined, on the basis of a retrospective image review. Patients were also stratified for esophagograms with water-soluble contrast alone versus water-soluble contrast and high-density barium and for CT with and without oral contrast. Our findings were retrospectively compared with those reported at initial image interpretation. Clinically relevant leaks were present in 14 (48%) of 29 patients after esophagectomy. Esophagography had a sensitivity of 79%, specificity of 73%, PPV of 73%, and NPV of 79% for detecting leaks, whereas CT had a sensitivity of 86%, specificity of 33%, PPV of 55%, and NPV of 71% and esophagography and CT combined had a sensitivity of 100%, specificity of 27%, PPV of 56%, and NPV of 100%. The sensitivity of esophagography increased with high-density barium, whereas the sensitivity of CT was the same with and without oral contrast agent. Finally, esophagography and CT were seen to have a higher sensitivity and lower specificity on retrospective review compared with the results reported at initial image interpretation. Esophagography had a slightly lower sensitivity and substantially higher specificity compared with CT for detecting leaks after esophagectomy, whereas esophagography and CT combined had a sensitivity of 100% for detecting leaks. Therefore, postoperative leaks can be excluded with confidence after esophagectomy when both tests are negative.
Computer aided detection of surgical retained foreign object for prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Marentis, Theodore C.; Rondon, Lucas
2015-03-15
Purpose: Surgical retained foreign objects (RFOs) have significant morbidity and mortality. They are associated with approximately $1.5 × 10{sup 9} annually in preventable medical costs. The detection accuracy of radiographs for RFOs is a mediocre 59%. The authors address the RFO problem with two complementary technologies: a three-dimensional (3D) gossypiboma micro tag, the μTag that improves the visibility of RFOs on radiographs, and a computer aided detection (CAD) system that detects the μTag. It is desirable for the CAD system to operate in a high specificity mode in the operating room (OR) and function as a first reader for themore » surgeon. This allows for fast point of care results and seamless workflow integration. The CAD system can also operate in a high sensitivity mode as a second reader for the radiologist to ensure the highest possible detection accuracy. Methods: The 3D geometry of the μTag produces a similar two dimensional (2D) depiction on radiographs regardless of its orientation in the human body and ensures accurate detection by a radiologist and the CAD. The authors created a data set of 1800 cadaver images with the 3D μTag and other common man-made surgical objects positioned randomly. A total of 1061 cadaver images contained a single μTag and the remaining 739 were without μTag. A radiologist marked the location of the μTag using an in-house developed graphical user interface. The data set was partitioned into three independent subsets: a training set, a validation set, and a test set, consisting of 540, 560, and 700 images, respectively. A CAD system with modules that included preprocessing μTag enhancement, labeling, segmentation, feature analysis, classification, and detection was developed. The CAD system was developed using the training and the validation sets. Results: On the training set, the CAD achieved 81.5% sensitivity with 0.014 false positives (FPs) per image in a high specificity mode for the surgeons in the OR and 96.1% sensitivity with 0.81 FPs per image in a high sensitivity mode for the radiologists. On the independent test set, the CAD achieved 79.5% sensitivity with 0.003 FPs per image in a high specificity mode for the surgeons and 90.2% sensitivity with 0.23 FPs per image in a high sensitivity mode for the radiologists. Conclusions: To the best of the authors’ knowledge, this is the first time a 3D μTag is used to produce a recognizable, substantially similar 2D projection on radiographs regardless of orientation in space. It is the first time a CAD system is used to search for man-made objects over anatomic background. The CAD system for the μTags achieved reasonable performance in both the high specificity and the high sensitivity modes.« less
Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid
2016-12-14
A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.
Directed evolution of PDZ variants to generate high-affinity detection reagents.
Ferrer, Marc; Maiolo, Jim; Kratz, Patricia; Jackowski, Jessica L; Murphy, Dennis J; Delagrave, Simon; Inglese, James
2005-04-01
High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.
Bogestam, Katja; Vondracek, Martin; Karlsson, Mattias; Fang, Hong; Giske, Christian G
2018-01-01
Many countries using sensitive screening methods for detection of carriage of methicillin-resistant Staphylococcus aureus (MRSA) have a sustained low incidence of MRSA infections. For diagnostic laboratories with high sample volumes, MRSA screening requires stability, low maintenance and high performance at a low cost. Herein we designed oligonucleotides for a new nuc targeted hydrolysis probe PCR to replace the standard in-house nuc SybrGreen PCR assay. This new, more time-efficient, PCR assay resulted in a 40% increase in daily sample capacity, with maintained high specificity and sensitivity. The assay was also able to detect Staphylococcus aureus clonal cluster 75 (CC75) lineage strains, recently re-classified as Staphylococcus argenteus, with a sensitivity considerably increased compared to our previous assay. While awaiting consensus if the CC75 lineage of S. aureus should be considered as S. argenteus, and whether methicillin-resistant S. argenteus should be included in the MRSA definition, many diagnostic laboratories need to update their MRSA assay sensitivity/specificity towards this lineage/species. The MRSA screening assay presented in this manuscript is comprised of nuc oligonucleotides separately targeting S. aureus and CC75 lineage strains/S. argenteus, thus providing high user flexibility for the detection of CC75 lineage strains/S. argenteus.
NASA Astrophysics Data System (ADS)
Gallwas, Julia; Jalilova, Aydan; Ladurner, Roland; Kolben, Theresa Maria; Kolben, Thomas; Ditsch, Nina; Homann, Christian; Lankenau, Eva; Dannecker, Christian
2017-01-01
Optical coherence tomography (OCT) is a noninvasive high-resolution imaging technique that permits the detection of cancerous and precancerous lesions of the uterine cervix. The purpose of this study was to evaluate a new system that integrates an OCT device into a microscope. OCT images were taken from loop electrosurgical excision procedure (LEEP) specimens under microscopic guidance. The images were blinded with respect to their origin within the microscopic image and analyzed independently by two investigators using initially defined criteria and later compared to the corresponding histology. Sensitivity and specificity were calculated with respect to the correct identification of high-grade squamous intraepithelial lesions (HSIL). The interinvestigator agreement was assessed by using Cohen's kappa statistics. About 160 OCT images were obtained from 20 LEEP specimens. Sixty randomly chosen images were used to define reproducible criteria for evaluation. The assessment of the remaining 100 images showed a sensitivity of 88% (second investigator 84%) and a specificity of 69% (65%) in detecting HSIL. Surgical microscopy-guided OCT appears to be a promising technique for immediate assessment of microanatomical changes. In the gynecological setting, the combination of OCT with a colposcope may improve the detection of high-grade squamous intraepithelial lesions.
A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide.
Reinhardt, Christopher J; Zhou, Effie Y; Jorgensen, Michael D; Partipilo, Gina; Chan, Jefferson
2018-01-24
Photoacoustic (PA) imaging is an emerging imaging modality that utilizes optical excitation and acoustic detection to enable high resolution at centimeter depths. The development of activatable PA probes can expand the utility of this technology to allow for detection of specific stimuli within live-animal models. Herein, we report the design, development, and evaluation of a series of Acoustogenic Probe(s) for Nitric Oxide (APNO) for the ratiometric, analyte-specific detection of nitric oxide (NO) in vivo. The best probe in the series, APNO-5, rapidly responds to NO to form an N-nitroso product with a concomitant 91 nm hypsochromic shift. This property enables ratiometric PA imaging upon selective irradiation of APNO-5 and the corresponding product, tAPNO-5. Moreover, APNO-5 displays the requisite photophysical characteristics for in vivo PA imaging (e.g., high absorptivity, low quantum yield) as well as high biocompatibility, stability, and selectivity for NO over a variety of biologically relevant analytes. APNO-5 was successfully applied to the detection of endogenous NO in a murine lipopolysaccharide-induced inflammation model. Our studies show a 1.9-fold increase in PA signal at 680 nm and a 1.3-fold ratiometric turn-on relative to a saline control.
Denomme, Ryan C; Lu, Zhao; Martel, Sylvain
2007-01-01
The proposed Magnetotactic Bacteria (MTB) based bio-carrier has the potential to greatly improve pathogenic bacteria detection time, specificity, and sensitivity. Microbeads are attached to the MTB and are modified with a coating of an antibody or phage that is specific to the target pathogenic bacteria. Using magnetic fields, the modified MTB are swept through a solution and the target bacteria present become attached to the microbeads (due to the coating). Then, the MTB are brought to the detection region and the number of pathogenic bacteria is determined. The high swimming speed and controllability of the MTB make this method ideal for the fast detection of small concentrations of specific bacteria. This paper focuses on an impedimetric detection system that will be used to identify if a target bacterium is attached to the microbead. The proposed detection system measures changes in electrical impedance as objects (MTB, microbeads, and pathogenic bacteria) pass through a set of microelectrodes embedded in a microfluidic device. FEM simulation is used to acquire the optimized parameters for the design of such a system. Specifically, factors such as electrode/detection channel geometry, object size and position, which have direct effects on the detection sensitivity for a single bacterium or microparticle, are investigated. Polymer microbeads and the MTB system with an E. coli bacterium are considered to investigate their impedance variations. Furthermore, preliminary experimental data using a microfabricated microfluidic device connected to an impedance analyzer are presented.
Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis.
Weng, Xuan; Zhao, Wenting; Neethirajan, Suresh; Duffield, Todd
2015-02-12
Determination of β-hydroxybutyrate (βHBA) is a gold standard for diagnosis of Subclinical Ketosis (SCK), a common disease in dairy cows that causes significant economic loss. Early detection of SCK can help reduce the risk of the disease progressing into clinical stage, thus minimizing economic losses on dairy cattle. Conventional laboratory methods are time consuming and labor-intensive, requiring expensive and bulky equipment. Development of portable and robust devices for rapid on-site SCK diagnosis is an effective way to prevent and control ketosis and can significantly aid in the management of dairy animal health. Microfluidic technology provides a rapid, cost-effective way to develop handheld devices for on-farm detection of sub-clinical ketosis. In this study, a highly sensitive microfluidics-based biosensor for on-site SCK diagnosis has been developed. A rapid, low-cost microfluidic biosensor with high sensitivity and specificity was developed for SCK diagnosis. Determination of βHBA was employed as the indicator in the diagnosis of SCK. On-chip detection using miniaturized and cost-effective optical sensor can be finished in 1 minute with a detection limit of 0.05 mM concentration. Developed microfluidic biosensor was successfully tested with the serum samples from dairy cows affected by SCK. The results of the developed biosensor agreed well with two other laboratory methods. The biosensor was characterized by high sensitivity and specificity towards βHBA with a detection limit of 0.05 mM. The developed microfluidic biosensor provides a promising prototype for a cost-effective handheld meter for on-site SCK diagnosis. By using microfluidic method, the detection time is significantly decreased compared to other laboratory methods. Here, we demonstrate a field-deployable device to precisely identify and measure subclinical ketosis by specific labeling and quantification of β-hydroxybutyate in cow blood samples. A real-time on-site detection system will maximize convenience for the farmers.
Do, Hongdo; Molania, Ramyar
2017-01-01
The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. PMID:29097403
NASA Astrophysics Data System (ADS)
Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke
2007-04-01
Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.
Detection of collaborative activity with Kinect depth cameras.
Sevrin, Loic; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques
2016-08-01
The health status of elderly subjects is highly correlated to their activities together with their social interactions. Thus, the long term monitoring in home of their health status, shall also address the analysis of collaborative activities. This paper proposes a preliminary approach of such a system which can detect the simultaneous presence of several subjects in a common area using Kinect depth cameras. Most areas in home being dedicated to specific tasks, the localization enables the classification of tasks, whether collaborative or not. A scenario of a 24 hours day shrunk into 24 minutes was used to validate our approach. It pointed out the need of artifacts removal to reach high specificity and good sensitivity.
Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.
He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie
2014-01-01
Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.
A printed electronic platform for the specific detection of biomolecules
NASA Astrophysics Data System (ADS)
Doumbia, A.; Webb, M.; Turner, M. L.; Behrendt, J. M.; Wilson, R.
2017-08-01
The rapid detection of disease specific biomarkers in a clinically relevant range using a low-cost sensor can facilitate the development of individual treatment plans for a given patient, known as precision, personalized or genomic medicine. In the recent decade Electrolyte-Gated Organic Field Effect Transistors (EGOFETs), a subtype of OFETs where the dielectric is replaced by an electrolyte, have attracted a great deal of attention for sensing applications. This is due to their capacity to operate at low voltage (< 1 volt) in physiological like media. Although EGOFET based biosensors have been shown to specifically detect biomolecules with high sensitivity and selectivity; the stability, reproducibility, and performance required to reach the desired market are not yet achieved. In this contribution, we describe the development of a stable and reproducible EGOFET sensor that is able to detect biomolecules selectively in real-time. Facile and scalable techniques are used to prepare arrays of these devices. The selectivity of individual EGOFETs is investigated by immobilization of specific ligands to the target molecule of interest on the gate electrode within a microfluidic flow cell.
Rohatensky, Mitchell G; Livingstone, Devon M; Mintchev, Paul; Barnes, Heather K; Nakoneshny, Steven C; Demetrick, Douglas J; Dort, Joseph C; van Marle, Guido
2018-02-08
Oropharyngeal Squamous Cell Carcinoma (OPSCC) is increasing in incidence despite a decline in traditional risk factors. Human Papilloma Virus (HPV), specifically subtypes 16, 18, 31 and 35, has been implicated as the high-risk etiologic agent. HPV positive cancers have a significantly better prognosis than HPV negative cancers of comparable stage, and may benefit from different treatment regimens. Currently, HPV related carcinogenesis is established indirectly through Immunohistochemistry (IHC) staining for p16, a tumour suppressor gene, or polymerase chain reaction (PCR) that directly tests for HPV DNA in biopsied tissue. Loop mediated isothermal amplification (LAMP) is more accurate than IHC, more rapid than PCR and is significantly less costly. In previous work we showed that a subtype specific HPV LAMP assay performed similar to PCR on purified DNA. In this study we examined the performance of this LAMP assay without DNA purification. We used LAMP assays using established primers for HPV 16 and 18, and new primers for HPV 31 and 35. LAMP reaction conditions were tested on serial dilutions of plasmid HPV DNA to confirm minimum viral copy number detection thresholds. LAMP was then performed directly on different human cell line samples without DNA purification. Our LAMP assays could detect 10 5 , 10 3 , 10 4 , and 10 5 copies of plasmid DNA for HPV 16, 18, 31, and 35, respectively. All primer sets were subtype specific, with no cross-amplification. Our LAMP assays also reliably amplified subtype specific HPV DNA from samples without requiring DNA isolation and purification. The high risk OPSCC HPV subtype specific LAMP primer sets demonstrated, excellent clinically relevant, minimum copy number detection thresholds with an easy readout system. Amplification directly from samples without purification illustrated the robust nature of the assay, and the primers used. This lends further support HPV type specific LAMP assays, and these specific primer sets and assays can be further developed to test for HPV in OPSCC in resource and lab limited settings, or even bedside testing.
Allele-specific copy-number discovery from whole-genome and whole-exome sequencing
Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.
2015-01-01
Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151
Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji
2018-06-01
Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV, and NPV of whole-body DWIBS for detecting bone metastasis from pediatric neuroblastoma were 94.7, 24.0, 53.0, 46.4 and 86.7%, respectively, whereas those for detecting lymph node metastasis were 94.7, 85.3, 87.2, 62.1, and 98.5%, respectively. The low specificity, overall accuracy, and PPV of whole-body DWIBS for detecting bone metastasis were due to a high incidence of false-positive findings (82/108, 75.9%). The specificity, overall accuracy, and PPV of whole-body DWIBS for detecting lymph node metastasis were also significantly lower than those of 18 F-FDG PET/CT for detecting lymph node metastasis, although the difference between these 2 modalities was less than that for detecting bone metastasis. The specificity, overall accuracy, and PPV of whole-body DWIBS are significantly lower than those of 18 F-FDG PET/CT because of a high incidence of false-positive findings particularly for detecting bone metastasis, whereas whole-body DWIBS shows a similar level of sensitivities for detecting lymph node and bone metastases to those of 18 F-FDG PET/CT. DWIBS should be carefully used for cancer staging in children because of its high incidence of false-positive findings in skeletons.
Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407
Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.
Turner, Andrew; Sasse, Jurgen; Varadi, Aniko
2016-10-19
Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.
Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Xu, Wei; Guo, Yuna; Huang, Jiadong
2015-05-14
A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported. This work is the first time that target-aptamer binding triggered quadratic recycling amplification has been utilized for electrochemical detection of antibiotics.
USDA-ARS?s Scientific Manuscript database
Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety and quality assurance in the beef industry. The Biocontrol GDS and the DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on...
GaN-based sensor nodes for in situ detection of gases
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah (Inventor); Prokopuk, Nicholas (Inventor); Moon, Jeong-Sun (Inventor)
2008-01-01
A system for detecting chemical/biological substances and a detection method. The system comprises a plurality of sensing units or nodes and a radiofrequency link. Each unit has several sensors with different sensing curves. Each sensor is able to transmit information related to the sensed substance on a specific frequency. The sensors preferably comprise AlGaN/GaN high electron mobility transistors.
Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence
NASA Astrophysics Data System (ADS)
Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen
2016-05-01
Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.
Comparison of routine urinalysis and urine Gram stain for detection of bacteriuria in dogs.
Way, Leilani Ireland; Sullivan, Lauren A; Johnson, Valerie; Morley, Paul S
2013-01-01
To determine the utility of performing urine Gram stain for detection of bacteriuria compared to routine urine sediment examination and bacterial aerobic urine culture. Prospective, observational study. University teaching hospital. Urine samples acquired via cystocentesis through convenience sampling from 103 dogs presenting to a tertiary referral institution. All samples underwent routine urinalysis, including sediment examination, as well as urine Gram stain and quantitative bacterial aerobic urine culture. The urine Gram stain demonstrated improved sensitivity (96% versus 76%), specificity (100% versus 77%), positive predictive value (100% versus 83%), and negative predictive value (93% versus 69%) when identifying bacteriuria, compared to routine urine sediment examination. The urine Gram stain is highly sensitive and specific when detecting the presence of bacteria in canine urine samples. Gram staining should be considered when bacteriuria is highly suspected and requires rapid identification while bacterial culture is pending. © Veterinary Emergency and Critical Care Society 2013.
[Primary cervical cancer screening].
Vargas-Hernández, Víctor Manuel; Vargas-Aguilar, Víctor Manuel; Tovar-Rodríguez, José María
2015-01-01
Cervico-uterine cancer screening with cytology decrease incidence by more than 50%. The cause of this cancer is the human papilloma virus high risk, and requires a sensitive test to provide sufficient sensitivity and specificity for early detection and greater interval period when the results are negative. The test of the human papilloma virus high risk, is effective and safe because of its excellent sensitivity, negative predictive value and optimal reproducibility, especially when combined with liquid-based cytology or biomarkers with viral load, with higher sensitivity and specificity, by reducing false positives for the detection of cervical intraepithelial neoplasia grade 2 or greater injury, with excellent clinical benefits to cervical cancer screening and related infection of human papilloma virus diseases, is currently the best test for early detection infection of human papillomavirus and the risk of carcinogenesis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Oloniniyi, Olamide K; Kurosaki, Yohei; Miyamoto, Hiroko; Takada, Ayato; Yasuda, Jiro
2017-08-01
Ebola virus disease (EVD), a highly virulent infectious disease caused by ebolaviruses, has a fatality rate of 25-90%. Without a licensed chemotherapeutic agent or vaccine for the treatment and prevention of EVD, control of outbreaks requires accurate and rapid diagnosis of cases. In this study, five sets of six oligonucleotide primers targeting the nucleoprotein gene were designed for specific identification of each of the five ebolavirus species using reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay. The detection limits of the ebolavirus species-specific primer sets were evaluated using in vitro transcribed RNAs. The detection limit of species-specific RT-LAMP assays for Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, and Bundibugyo ebolavirus was 256 copies/reaction, while the detection limit for Reston ebolavirus was 64 copies/reaction, and the detection time for each of the RT-LAMP assays was 13.3±3.0, 19.8±4.6, 14.3±0.6, 16.1±4.7, and 19.8±2.4min (mean±SD), respectively. The sensitivity of the species-specific RT-LAMP assays were similar to that of the established RT-PCR and quantitative RT-PCR assays for diagnosis of EVD and are suitable for field or point-of-care diagnosis. The RT-LAMP assays were specific for the detection of the respective species of ebolavirus with no cross reaction with other species of ebolavirus and other viral hemorrhagic fever viruses such as Marburg virus, Lassa fever virus, and Dengue virus. The species-specific RT-LAMP assays developed in this study are rapid, sensitive, and specific and could be useful in case of an EVD outbreak. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of Bacteriuria by Canine Olfaction
Maurer, Maureen; McCulloch, Michael; Willey, Angel M.; Hirsch, Wendi; Dewey, Danielle
2016-01-01
Background. Urinary tract infections (UTIs) are a significant medical problem , particularly for patients with neurological conditions and the elderly. Detection is often difficult in these patients, resulting in delayed diagnoses and more serious infections such as pyelonephritis and life-threatening sepsis. Many patients have a higher risk of UTIs because of impaired bladder function, catheterization, and lack of symptoms. Urinary tract infections are the most common nosocomial infection; however, better strategies are needed to improve early detection of the disease. Methods. In this double-blinded, case-control, validation study, we obtained fresh urine samples daily in a consecutive case series over a period of 16 weeks. Dogs were trained to distinguish urine samples that were culture-positive for bacteriuria from those of culture-negative controls, using reward-based clicker and treat methods. Results. Samples were obtained from 687 individuals (from 3 months to 92 years of age; 86% female and 14% male; 34% culture-positive and 66% culture-negative controls). Dogs detected urine samples positive for 100 000 colony-forming units/mL Escherichia coli (N = 250 trials; sensitivity 99.6%, specificity 91.5%). Dilution of E coli urine with distilled water did not affect accuracy at 1% (sensitivity 100%, specificity 91.1%) or 0.1% (sensitivity 100%, specificity 93.6%) concentration. Diagnostic accuracy was similar to Enterococcus (n = 50; sensitivity 100%, specificity 93.9%), Klebsiella (n = 50; sensitivity 100%, specificity 95.1%), and Staphylococcus aureus (n = 50; sensitivity 100%, specificity 96.3%). All dogs performed with similarly high accuracy: overall sensitivity was at or near 100%, and specificity was above 90%. Conclusions. Canine scent detection is an accurate and feasible method for detection of bacteriuria. PMID:27186578
USDA-ARS?s Scientific Manuscript database
Three assays were developed for molecular differentiation of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildew, respectively, for detection of airborne sporangia and diagnosis of symptomatic leaf tissue. The assays were based on previously identified single nuc...
Recombinant antibodies and their use in biosensors.
Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray
2012-04-01
Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.
Niessen, Ludwig; Bechtner, Julia; Fodil, Sihem; Taniwaki, Marta H; Vogel, Rudi F
2018-02-02
Aflatoxins can be produced by 21 species within sections Flavi (16 species), Ochraceorosei (2), and Nidulantes (3) of the fungal genus Aspergillus. They pose risks to human and animal health due to high toxicity and carcinogenicity. Detecting aflatoxin producers can help to assess toxicological risks associated with contaminated commodities. Species specific molecular assays (PCR and LAMP) are available for detection of major producers, but fail to detect species of minor importance. To enable rapid and sensitive detection of several aflatoxin producing species in a single analysis, a nor1 gene-specific LAMP assay was developed. Specificity testing showed that among 128 fungal species from 28 genera, 15 aflatoxigenic species in section Flavi were detected, including synonyms of A. flavus and A. parasiticus. No cross reactions were found with other tested species. The detection limit of the assay was 9.03pg of A. parasiticus genomic DNA per reaction. Visual detection of positive LAMP reactions under daylight conditions was facilitated using neutral red to allow unambiguous distinction between positive and negative assay results. Application of the assay to the detection of A. parasiticus conidia revealed a detection limit of 211 conidia per reaction after minimal sample preparation. The usefulness of the assay was demonstrated in the analysis of aflatoxinogenic species in samples of rice, nuts, raisins, dried figs, as well as powdered spices. Comparison of LAMP results with presence/absence of aflatoxins and aflatoxin producing fungi in 50 rice samples showed good correlation between these parameters. Our study suggests that the developed LAMP assay is a rapid, sensitive and user-friendly tool for surveillance and quality control in our food industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
Yu, Lu-Lu; Chen, Wen; Lei, Xiao-Qin; Qin, Yu; Wu, Ze-Ni; Pan, Qin-Jing; Zhang, Xun; Chang, Bai-Feng; Zhang, Shao-Kai; Guo, Hui-Qin; Qiao, You-Lin
2016-01-01
Purpose To analyze the clinical performance of p16/Ki-67 dual-stained cytology identifying high-grade cervical intraepithelial neoplasia (CIN2+) in Chinese women. Methods 1079 women attending ongoing cervical cancer screening and 211 “enriched” women aged ≥30yrs with biopsy-confirmed CIN2+ from five Chinese hospitals were enrolled during year 2014-2015. Cervical specimens were collected for high-risk human papillomavirus (HR-HPV) DNA analysis, Liquid-based cytology (LBC) and p16/Ki-67 dual staining. Colposcopy and biopsy were performed on women with any abnormal result. Results p16/Ki-67 positivity increased with histologic severity. It was 18.4%(183/996) in normal histology, 54.0%(34/63) in CIN1, 81.0%(34/42) in CIN2, 93.3%(111/119) in CIN3, 71.4% (5/7) in adenocarcinoma and 95.2%(60/63) in squamous cell carcinoma. Compared with the HR-HPV negatives, p16/Ki-67 expression was significantly higher in the HPV16/18 positive (OR: 35.45(95%CI: 23.35-53.84)) and other 12 HR-HPV types positive group (OR: 8.01(95%CI: 5.81-11.05). The sensitivity and specificity of p16/Ki-67 to detect CIN2+ in the entire population were 90.9% and 79.5%, respectively. In women with ASC-US and LSIL, sensitivity and specificity for detection of CIN2+ were 87.5% and 66.4%, respectively, with a referral rate of 43.8%. In women who tested positive for HR-HPV, sensitivity and specificity of dual-staining for detection of CIN2+ were 92.7% and 52.7%, respectively, and the referral rate was 68.7%. Conclusions p16/Ki-67 dual-stained cytology provided a high sensitivity and moderate specificity to detect underlying cervical precancer and cancers in various settings, and might be considered as an efficient screening tool in China. PMID:27029033
Nakayasu, Miki; Hirano, Minato; Muto, Memi; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro
2018-06-23
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. IgM antibody detection is useful for the serological diagnosis of TBEV infection, because IgM has high specificity for each flavivirus and indicates a recent infection. Commercial IgM-ELISA kits are somewhat expensive and difficulties in their sensitivity have been suggested due to their format and formalin-inactivated antigens. Therefore, the development of an inexpensive IgM-ELISA with high specificity and sensitivity is needed. In this study, a μ-capture ELISA was developed to detect TBEV-specific IgM antibodies using subviral particles (SPs) with strep-tag (strep-SP-IgM-ELISA). The results of our strep-SP-IgM-ELISA were highly correlated with diagnoses made by the neutralization test (sensitivity: 94.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in patients who could not be diagnosed with the neutralization test. Besides, 51 of 52 positive samples by a commercial IgM-ELISA were also diagnosed as positive by our strep-SP-IgM-ELISA (98.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in all samples that were inconclusive based on the commercial IgM-ELISA. Our strep-SP-IgM-ELISA will be useful for diagnoses in TBE-endemic areas. Copyright © 2018 Elsevier GmbH. All rights reserved.
Detecting atrial fibrillation by deep convolutional neural networks.
Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui
2018-02-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su, Yachun; Yang, Yuting; Peng, Qiong; Zhou, Dinggang; Chen, Yun; Wang, Zhuqing; Xu, Liping; Que, Youxiong
2016-01-01
Smut is a fungal disease with widespread prevalence in sugarcane planting areas. Early detection and proper identification of Sporisorium scitamineum are essential in smut management practices. In the present study, four specific primers targeting the core effector Pep1 gene of S. scitamineum were designed. Optimal concentrations of Mg2+, primer and Bst DNA polymerase, the three important components of the loop-mediated isothermal amplification (LAMP) reaction system, were screened using a single factor experiment method and the L16(45) orthogonal experimental design. Hence, a LAMP system suitable for detection of S. scitamineum was established. High specificity of the LAMP method was confirmed by the assay of S. scitamineum, Fusarium moniliforme, Pestalotia ginkgo, Helminthospcrium sacchari, Fusarium oxysporum and endophytes of Yacheng05-179 and ROC22. The sensitivity of the LAMP method was equal to that of the conventional PCR targeting Pep1 gene and was 100 times higher than that of the conventional PCR assay targeting bE gene in S. scitamineum. The results suggest that this novel LAMP system has strong specificity and high sensitivity. This method not only provides technological support for the epidemic monitoring of sugarcane smut, but also provides a good case for development of similar detection technology for other plant pathogens. PMID:27035751
Wang, Yulong; Su, Zhenhe; Wang, Limin; Dong, Jinbo; Xue, Juanjuan; Yu, Jiao; Wang, Yuan; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan
2017-06-20
We have developed a rapid and ultrasensitive surface-enhanced Raman scattering (SERS) assay for Cu 2+ detection using the multiple antibiotic resistance regulator (MarR) as specific bridging molecules in a SERS hot-spot model. In the assay, Cu 2+ induces formation of MarR tetramers, which provide Au nanoparticle (NP)-AuNP bridges, resulting in the formation of SERS hot spots. 4-Mercaptobenzoic acid (4-MBA) was used as a Raman reporter. The addition of Cu 2+ increased the Raman intensity of 4-MBA. Use of a dual hot-spot signal-amplification strategy based on AuNP-AgNP heterodimers combined through antigen-antibody reactions increased the sensitivity of the sensing platform by 50-fold. The proposed method gave a linear response for Cu 2+ detection in the range of 0.5-1000 nM, with a detection limit of 0.18 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu 2+ in drinking water (20 μM). In addition, all analyses can be completed in less than 15 min. The high sensitivity, high specificity, and rapid detection capacity of the SERS assay therefore provide a combined advantage over current assays.
A novel shape similarity based elastography system for prostate cancer assessment
NASA Astrophysics Data System (ADS)
Wang, Haisu; Mousavi, Seyed Reza; Samani, Abbas
2012-03-01
Prostate cancer is the second common cancer among men worldwide and remains the second leading cancer-related cause of death in mature men. The disease can be cured if it is detected at early stage. This implies that prostate cancer detection at early stage is very critical for desirable treatment outcome. Conventional techniques of prostate cancer screening and detection, such as Digital Rectal Examination (DRE), Prostate-Specific Antigen (PSA) and Trans Rectal Ultra-Sonography (TRUS), are known to have low sensitivity and specificity. Elastography is an imaging technique that uses tissue stiffness as contrast mechanism. As the association between the degree of prostate tissue stiffness alteration and its pathology is well established, elastography can potentially detect prostate cancer with a high degree of sensitivity and specificity. In this paper, we present a novel elastography technique which, unlike other elastography techniques, does not require displacement data acquisition system. This technique requires the prostate's pre-compression and postcompression transrectal ultrasound images. The conceptual foundation of reconstructing the prostate's normal and pathological tissues elastic moduli is to determine these moduli such that the similarity between calculated and observed shape features of the post compression prostate image is maximized. Results indicate that this technique is highly accurate and robust.
Detecting Biological Warfare Agents
Song, Linan; Ahn, Soohyoun
2005-01-01
We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712
Pasquinelli, Rosa; Pignata, Sandro; Greggi, Stefano; Vuttariello, Emilia; Bello, Anna Maria; Calise, Celeste; Scaffa, Cono; Pisano, Carmela; Losito, Nunzia Simona; Fusco, Alfredo; Califano, Daniela; Chiappetta, Gennaro
2015-01-01
Ovarian cancer is the most lethal gynecological malignancy and the high mortality rate is associated with advanced-stage disease at the time of the diagnosis. In order to find new tools to make diagnosis of Epithelial Ovarian Cancer (EOC) at early stages we have analyzed the presence of specific HMGA2 mRNA in the plasma of patients affected by this neoplasm. HMGA2 overexpression represents a feature of several malignances including ovarian carcinomas. Notably, we detected HMGA2 specific mRNA in the plasma of 40 out 47 patients with EOC, but not in the plasma of healthy donors. All cases found positive for HMGA2 mRNA in the plasma showed HMGA2 protein expression in EOC tissues. Therefore, on the basis of these results, the analysis of circulating HMGA2 specific mRNA might be considered a very promising tool for the early diagnosis of EOC. PMID:25749380
High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors.
Amin, Kazi Rafsanjani; Bid, Aveek
2015-09-09
One of the most interesting predicted applications of graphene-monolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of low-frequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-density-fluctuation-based model to explain the superior characteristics of a noise-measurement-based detection scheme presented in this article.
Pai, Madhukar; Kalantri, Shriprakash; Pascopella, Lisa; Riley, Lee W; Reingold, Arthur L
2005-10-01
To summarize, using meta-analysis, the accuracy of bacteriophage-based assays for the detection of rifampicin resistance in Mycobacterium tuberculosis. By searching multiple databases and sources we identified a total of 21 studies eligible for meta-analysis. Of these, 14 studies used phage amplification assays (including eight studies on the commercial FASTPlaque-TB kits), and seven used luciferase reporter phage (LRP) assays. Sensitivity, specificity, and agreement between phage assay and reference standard (e.g. agar proportion method or BACTEC 460) results were the main outcomes of interest. When performed on culture isolates (N=19 studies), phage assays appear to have relatively high sensitivity and specificity. Eleven of 19 (58%) studies reported sensitivity and specificity estimates > or =95%, and 13 of 19 (68%) studies reported > or =95% agreement with reference standard results. Specificity estimates were slightly lower and more variable than sensitivity; 5 of 19 (26%) studies reported specificity <90%. Only two studies performed phage assays directly on sputum specimens; although one study reported sensitivity and specificity of 100 and 99%, respectively, another reported sensitivity of 86% and specificity of 73%. Current evidence is largely restricted to the use of phage assays for the detection of rifampicin resistance in culture isolates. When used on culture isolates, these assays appear to have high sensitivity, but variable and slightly lower specificity. In contrast, evidence is lacking on the accuracy of these assays when they are directly applied to sputum specimens. If phage-based assays can be directly used on clinical specimens and if they are shown to have high accuracy, they have the potential to improve the diagnosis of MDR-TB. However, before phage assays can be successfully used in routine practice, several concerns have to be addressed, including unexplained false positives in some studies, potential for contamination and indeterminate results.
Esfandiary, Lida; Gupta, Nirupama; Voigt, Alexandria; Wanchoo, Arun; Chan, Edward K L; Sukumaran, Sukesh; Nguyen, Cuong Q
2016-05-17
Anti-SSA/Ro60 and anti-SSB/La are essential serological biomarkers for rheumatic diseases, specifically Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). Currently, laboratory detection technology and platforms are designed with an emphasis on high-throughput methodology; therefore, the relationship of sensitivity with specificity remains a significant area for improvement. In this study, we used single-cell antibody nanowells (SCAN) technology to directly profile individual B cells producing antibodies against specific autoantigens such as SSA/Ro60 and SSB/La. Peripheral blood mononuclear cells were isolated using Ficoll gradient. Fluorescently labeled cells were added to fabricated nanowells and imaged using a high-speed epifluorescence microscope. The microengraving process was conducted using printed slides coated with immunoglobulins. Printed slides were hybridized with fluorescence-conjugated immunoglobulin G (IgG), SSA/Ro60, and SSB/La antigens. Microarray spots were analyzed for nanowells with single live B cells that produced antigen-specific autoantibodies. Our results indicate that SCAN can simultaneously detect high frequencies of anti-SSA/Ro60 and anti-SSB/La with a specific IgG isotype in peripheral blood mononuclear cells of patients, as well as measure their individual secretion levels. The data showed that patients with SS and SLE exhibited higher frequency and greater concentration of anti-SSA/Ro60- and anti-SSB/La-producing B cells in the IgG isotype. Furthermore, individual B cells of patients produced higher levels of IgG-specific anti-SSA/Ro60 autoantibody, but not IgG-specific anti-SSB/La autoantibody, compared with healthy control subjects. These results support the application of SCAN as a robust multiparametric analytical bioassay that can directly measure secretion of autoantibody and accurately report antigen-specific, autoantibody-producing cells.
Spering, Cynthia C.; Hobson, Valerie; Lucas, John A.; Menon, Chloe V.; Hall, James R.
2012-01-01
Background. To validate and extend the findings of a raised cut score of O’Bryant and colleagues (O’Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963–967.) for the Mini-Mental State Examination in detecting cognitive dysfunction in a bilingual sample of highly educated ethnically diverse individuals. Methods. Archival data were reviewed from participants enrolled in the National Alzheimer's Coordinating Center minimum data set. Data on 7,093 individuals with 16 or more years of education were analyzed, including 2,337 cases with probable and possible Alzheimer's disease, 1,418 mild cognitive impairment patients, and 3,088 nondemented controls. Ethnic composition was characterized as follows: 6,296 Caucasians, 581 African Americans, 4 American Indians or Alaska natives, 2 native Hawaiians or Pacific Islanders, 149 Asians, 43 “Other,” and 18 of unknown origin. Results. Diagnostic accuracy estimates (sensitivity, specificity, and likelihood ratio) of Mini-Mental State Examination cut scores in detecting probable and possible Alzheimer's disease were examined. A standard Mini-Mental State Examination cut score of 24 (≤23) yielded a sensitivity of 0.58 and a specificity of 0.98 in detecting probable and possible Alzheimer's disease across ethnicities. A cut score of 27 (≤26) resulted in an improved balance of sensitivity and specificity (0.79 and 0.90, respectively). In the cognitively impaired group (mild cognitive impairment and probable and possible Alzheimer's disease), the standard cut score yielded a sensitivity of 0.38 and a specificity of 1.00 while raising the cut score to 27 resulted in an improved balance of 0.59 and 0.96 of sensitivity and specificity, respectively. Conclusions. These findings cross-validate our previous work and extend them to an ethnically diverse cohort. A higher cut score is needed to maximize diagnostic accuracy of the Mini-Mental State Examination in individuals with college degrees. PMID:22396476
Detection of artifacts from high energy bursts in neonatal EEG.
Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar
2013-11-01
Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the feature subset producing highest classification accuracy. The suggested feature based classification method is executed using our recorded neonatal EEG dataset, consisting of burst and artifact segments. We obtain 78% sensitivity and 72% specificity as the accuracy measures. The accuracy obtained using the proposed method is found to be about 20% higher than that of the reference approaches. Joint use of the proposed method with our previous work on burst detection outperforms reference methods on simultaneous burst and artifact detection. As the proposed method supports detection of a wide range of artifact patterns, it can be improved to incorporate the detection of artifacts within other seizure patterns and background EEG information as well. © 2013 Elsevier Ltd. All rights reserved.
A silicon-based peptide biosensor for label-free detection of cancer cells
NASA Astrophysics Data System (ADS)
Martucci, Nicola M.; Rea, Ilaria; Ruggiero, Immacolata; Terracciano, Monica; De Stefano, Luca; Migliaccio, Nunzia; Dardano, Principia; Arcari, Paolo; Rendina, Ivo; Lamberti, Annalisa
2015-05-01
Sensitive and accurate detection of cancer cells plays a crucial role in diagnosis of cancer and minimal residual disease, so being one of the most hopeful approaches to reduce cancer death rates. In this paper, a strategy for highly selective and sensitive detection of lymphoma cells on planar silicon-based biosensor has been evaluated. In this setting an Idiotype peptide, able to specifically bind the B-cell receptor (BCR) of A20 cells in mice engrafted with A20 lymphoma, has been covalently linked to the sensor active surface and used as molecular probe. The biochip here presented showed a coverage efficiency of 85% with a detection efficiency of 8.5×10-3 cells/μm2. The results obtained suggested an efficient way for specific label-free cell detection by using a silicon-based peptide biosensor. In addition, the present recognition strategy, besides being useful for the development of sensing devices capable of monitoring minimal residual disease, could be used to find and characterize new specific receptor-ligand interactions through the screening of a recombinant phage library.
A computational imaging target specific detectivity metric
NASA Astrophysics Data System (ADS)
Preece, Bradley L.; Nehmetallah, George
2017-05-01
Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.
Trier, Nicole Hartwig; Holm, Bettina Eide; Heiden, Julie; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar
2018-02-27
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Anti-citrullinated protein antibodies (ACPA) are crucial for the serological diagnosis of RA, where Epstein-Barr virus (EBV) has been suggested to be an environmental agent in triggering the onset of the disease. This study aimed to analyse antibody reactivity to citrullinated EBV nuclear antigen-2 (EBNA-2) peptides from three different EBV strains (B95-8, GD1 and AG876) using streptavidin capture enzyme-linked immunosorbent assay. One peptide, only found in a single strain (AG876), obtained a sensitivity and specificity of 77% and 95%, respectively and showed high sequence similarity to the filaggrin peptide originally used for ACPA detection. Comparison of antibody reactivity to commercial assays found that the citrullinated peptide was as effective in detecting ACPA as highly sensitive and specific commercial assays. The data presented demonstrate that the citrullinated EBNA-2 peptide indeed is recognised specifically by RA sera and that the single peptide is able to compete with assays containing multiple peptides. Furthermore, it could be hypothesized that RA may be caused by (a) specific strain(s) of EBV.
He, Fang; Kiener, Tanja K; Lim, Xiao Fang; Tan, Yunrui; Raj, Kattur Venkatachalam Ashok; Tang, Manli; Chow, Vincent T K; Chen, Qingfeng; Kwang, Jimmy
2013-01-01
Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6) that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.
Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim
2015-01-01
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273
Mandappa, I M; Joglekar, Prasanna; Manonmani, H K
2015-07-01
A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.
Parčina, Marijo; Reiter-Owona, Ingrid; Mockenhaupt, Frank P; Vojvoda, Valerija; Gahutu, Jean Bosco; Hoerauf, Achim; Ignatius, Ralf
2018-02-01
Detection of intestinal protozoan parasites by light microscopy is cumbersome, needs experienced personnel, and may lack sensitivity and/or specificity as compared with molecular-based stool assays. Here, we evaluated the BD MAX™ Enteric Parasite Panel, i.e., a multiplex real-time PCR assay for simultaneous detection of Giardia duodenalis, Entamoeba histolytica, and cryptosporidia (Cryptosporidium parvum and C. hominis), by examining 200 positive human stool samples (138 × G. duodenalis, 27 × E. histolytica, 35 × Cryptosporidium spp.) and 119 controls including 18 samples with E. dispar. The majority of the samples, i.e., 153/200 (76.5%) positive samples and 66/119 (55.5%) controls, were confirmed by multiplex in-house PCR detecting the same parasites as the BD MAX™ Enteric Parasite Panel. The BD MAX™ assay did not yield false-positive results. Sensitivity and specificity were 97.8% (95% CI, 93.3-99.4%) and 100% (95% CI, 97.4-100%) for G. duodenalis, 100% (95% CI, 84.5-100%) and 100% (95% CI, 98.4-100%) for E. histolytica, and 100% (95% CI, 87.7-100%) and 100% (95% CI, 98.3-100%) for cryptosporidia, and similar data were obtained when only the 219 PCR-confirmed samples were analyzed. Thus, the BD MAX™ Enteric Parasite Panel provides a highly sensitive and specific tool for the laboratory diagnosis of three predominant protozoan parasites causing enteritis.
Luo, Xiaoteng; Hsing, I-Ming
2009-10-01
Nucleic acid based analysis provides accurate differentiation among closely affiliated species and this species- and sequence-specific detection technique would be particularly useful for point-of-care (POC) testing for prevention and early detection of highly infectious and damaging diseases. Electrochemical (EC) detection and polymerase chain reaction (PCR) are two indispensable steps, in our view, in a nucleic acid based point-of-care testing device as the former, in comparison with the fluorescence counterpart, provides inherent advantages of detection sensitivity, device miniaturization and operation simplicity, and the latter offers an effective way to boost the amount of targets to a detectable quantity. In this mini-review, we will highlight some of the interesting investigations using the combined EC detection and PCR amplification approaches for end-point detection and real-time monitoring. The promise of current approaches and the direction for future investigations will be discussed. It would be our view that the synergistic effect of the combined EC-PCR steps in a portable device provides a promising detection technology platform that will be ready for point-of-care applications in the near future.
A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.
Govan, V A; Brözel, V; Allsopp, M H; Davison, S
1998-05-01
Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.
A PCR Detection Method for Rapid Identification of Melissococcus pluton in Honeybee Larvae
Govan, V. A.; Brözel, V.; Allsopp, M. H.; Davison, S.
1998-01-01
Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae. PMID:9572987
A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat
2010-01-01
Background Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions. Results To facilitate the screening for specific homoeologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homoeologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference) amongst homoeologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homoeologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from 4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homoeologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homoeologous deletions of three additional wheat genes putatively involved in plant disease resistance. Conclusions We have developed a method for automated, high-throughput screening to identify deletions of individual homoeologues of a wheat gene. This method is also potentially applicable to other polyploidy plants. PMID:21114819
Dunham, Jason B.; Chelgren, Nathan D.; Heck, Michael P.; Clark, Steven M.
2013-01-01
We evaluated the probability of detecting larval lampreys using different methods of backpack electrofishing in wadeable streams in the U.S. Pacific Northwest. Our primary objective was to compare capture of lampreys using electrofishing with standard settings for salmon and trout to settings specifically adapted for capture of lampreys. Field work consisted of removal sampling by means of backpack electrofishing in 19 sites in streams representing a broad range of conditions in the region. Captures of lampreys at these sites were analyzed with a modified removal-sampling model and Bayesian estimation to measure the relative odds of capture using the lamprey-specific settings compared with the standard salmonid settings. We found that the odds of capture were 2.66 (95% credible interval, 0.87–78.18) times greater for the lamprey-specific settings relative to standard salmonid settings. When estimates of capture probability were applied to estimating the probabilities of detection, we found high (>0.80) detectability when the actual number of lampreys in a site was greater than 10 individuals and effort was at least two passes of electrofishing, regardless of the settings used. Further work is needed to evaluate key assumptions in our approach, including the evaluation of individual-specific capture probabilities and population closure. For now our results suggest comparable results are possible for detection of lampreys by using backpack electrofishing with salmonid- or lamprey-specific settings.
[Screening interview for early detection of high-functioning autism spectrum disorders].
Hoffmann, Wiebke; Heinzel-Gutenbrunner, Monika; Becker, Katja; Kamp-Becker, Inge
2015-05-01
Various different questionnaires are available for the screening of autism spectrum disorders (ASD). These screening instruments show high sensitivity and are able to identify a large number of individuals with ASD, but they lack the specificity to differentiate individuals with ASD from those children and adolescents with other complex neurobehavioural disorders (such as attention-deficit/hyperactivity disorder, emotional disorders, and others), especially for those without intellectual disabilities. The present study evaluates the data of 309 individuals (153 with high-functioning ASD, 156 with other psychiatric disorders, IQ > 70) to find out whether selected items of the ADI-R can be used for an economic and sensitive screening of high-functioning ASD. The results show that 8 items of the ADI-R can be used to discriminate high-functioning ASD and other psychiatric disorders. A cutoff of 5 led to a sensitivity of 0.93 and a cutoff of 6 to a specificity of 0.74. The combination of early onset, serious abnormalities in social contact with stereotyped or compulsive-ritualized behaviour or interests can be detected with few interview questions for screening of ASD. Nevertheless, a more detailed and specific assessment in an expert setting should follow the screening process.
Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.
Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A
2018-01-01
Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
Reynaud, Yann; Saulnier, Denis; Mazel, Didier; Goarant, Cyrille; Le Roux, Frédérique
2008-01-01
Vibrio nigripulchritudo, the etiological agent of Litopenaeus stylirostris summer syndrome, is responsible for mass mortalities of shrimp in New Caledonia. Epidemiological studies led to the suggestion that this disease is caused by an emergent group of pathogenic strains. Genomic subtractive hybridization was carried out between two isolates exhibiting low and high virulence. Our subtraction library was constituted of 521 specific fragments; 55 of these were detected in all virulent isolates from our collection (n = 32), and 13 were detected only in the isolates demonstrating the highest pathogenicity (n = 19), suggesting that they could be used as genetic markers for high virulence capacity. Interestingly, 10 of these markers are carried by a replicon of 11.2 kbp that contains sequences highly similar to those of a plasmid detected in Vibrio shilonii, a coral pathogen. The detection of this plasmid was correlated with the highest pathogenicity status of the isolates from our collection. The origin and consequence of this plasmid acquisition are discussed. PMID:18359828
Jiang, Fan; Fu, Wei; Clarke, Anthony R; Schutze, Mark Kurt; Susanto, Agus; Zhu, Shuifang; Li, Zhihong
2016-11-01
Invasive species can be detrimental to a nation's ecology, economy and human health. Rapid and accurate diagnostics are critical to limit the establishment and spread of exotic organisms. The increasing rate of biological invasions relative to the taxonomic expertise available generates a demand for high-throughput, DNA-based diagnostics methods for identification. We designed species-specific qPCR primer and probe combinations for 27 economically important tephritidae species in six genera (Anastrepha, Bactrocera, Carpomya, Ceratitis, Dacus and Rhagoletis) based on 935 COI DNA barcode haplotypes from 181 fruit fly species publically available in BOLD, and then tested the specificity for each primer pair and probe through qPCR of 35 of those species. We then developed a standardization reaction system for detecting the 27 target species based on a microfluidic dynamic array and also applied the method to identify unknown immature samples from port interceptions and field monitoring. This method led to a specific and simultaneous detection for all 27 species in 7.5 h, using only 0.2 μL of reaction system in each reaction chamber. The approach successfully discriminated among species within complexes that had genetic similarities of up to 98.48%, while it also identified all immature samples consistent with the subsequent results of morphological examination of adults which were reared from larvae of cohorts from the same samples. We present an accurate, rapid and high-throughput innovative approach for detecting fruit flies of quarantine concern. This is a new method which has broad potential to be one of international standards for plant quarantine and invasive species detection. © 2016 John Wiley & Sons Ltd.
Development and Validation of a Protein Based Signature for the Detection of Ovarian Cancer
Kim, Kyongjin; Visintin, Irene; Alvero, Ayesha B.; Mor, Gil
2009-01-01
In order to overcome the significant mortality associated with ovarian cancer, a highly sensitive and specific screening test is urgently needed. CA125 is used to monitor response to chemotherapy, detect recurrence and detect late stage ovarian cancer. However, CA-125 alone or in combination with ultrasonography has not been adequate for early detection of ovarian cancer. Here we discuss our recent report of a novel multiplex assay that uses a panel of six serum biomarkers:Leptin, Prolactin, Osteopontin, Insulin-Like Growth Factor II, Macrophage Inhibitory Factor and CA-125. The combination of these six proteins yielded 95.3 % sensitivity and 99.4% specificity. The application of this test in the clinical context and the most appropriate population which could benefit of the test is discussed. PMID:19389550
[Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].
Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I
2009-01-01
The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.
Leknoi, Yuranan; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee
2017-04-01
We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.
Prigenzi, Karla Calaça Kabbach; Heinke, Thaís; Salim, Rafael Calil; Focchi, Gustavo Rubino de Azevedo
2018-01-01
Our objective was to verify the sensitivity and specificity of dual immunocytochemistry staining for p16 and Ki-67 in liquid-based samples (the "dual" assay) for cervical lesion screening, compared to biopsy findings and human papillomavirus (HPV) DNA molecular detection. Sensitivity, specificity, and positive (PPV) and negative (NPV) predictive values for the "dual immunocytochemistry assay" were calculated and compared to histopathological results and to high-risk HPV DNA detection in adult women or teenagers submitted to cervical cancer screening. A total of 151 women were included. The majority (96.2%) of those with negative dual assay results had lower biopsy grades (p < 0.001). Women with cytology results suggestive of cervical cancer had positive dual immunocytochemistry assay results more frequently (p < 0.001), and these positive results were also significantly associated with biopsy findings (p < 0.001) and with high-risk genotype HPV infection (p = 0.007). Specificity and PPV for the dual assay were 0.972 (0.855-0.999) and 0.800 (0.284-0.995), respectively, and 1.000 (0.590-1.000) and 1.000 (0.631-1.000) for HPV detection. The dual immunocytochemistry assay had high specificity and PPV. It reveals a persistent HPV infection, avoiding the need for new tissue collections for biopsies or hybrid capture. © 2018 S. Karger AG, Basel.
Cao, Biyun; Yang, Hong; Song, Juan; Chang, Huafang; Li, Shuqun; Deng, Anping
2013-11-15
The adulteration of food products with melamine has led to an urgent requirement for sensitive, specific, rapid and reliable quantitative/screening methods. To enhance the sensitivity and specificity of the enzyme-linked immunosorbent assay (ELISA) for the detection of melamine in milk, milk powder and feed samples, rational hapten modification and heterogeneous antibody/coating antigen combinations were adopted. Three melamine derivatives with different length of carboxylic spacer at the end were synthesized and linked to carrier proteins for the production of immunogens and coating antigens. Monoclonal antibody against melamine was produced by hybridoma technology. Under optimal experimental conditions, the standard curves of the ELISAs for melamine were constructed in range of 0.1-100 ng mL(-1). The sensitivity was 10-300 times enhanced compared to those in the published literatures. The cross-reactivity values of the ELISAs also demonstrated the assays exhibited high specificity. Five samples were spiked with melamine at different concentrations and detected by the ELISA. The recovery rates of 72.8-123.0% and intra-assay coefficients of variation of 0.8-18.9% (n=3) were obtained. The ELISA for milk sample was confirmed by high-performance liquid chromatography with a high correlation coefficient of 0.9902 (n=6). The proposed ELISA was proven to be a feasible quantitative/screening method for melamine analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
CPAD: Cyber-Physical Attack Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferragut, Erik M; Laska, Jason A
The CPAD technology relates to anomaly detection and more specifically to cyber physical attack detection. It infers underlying physical relationships between components by analyzing the sensor measurements of a system. It then uses these measurements to detect signs of a non-physically realizable state, which is indicative of an integrity attack on the system. CPAD can be used on any highly-instrumented cyber-physical system to detect integrity attacks and identify the component or components compromised. It has applications to power transmission and distribution, nuclear and industrial plants, and complex vehicles.
Bonnot, Karine; Cuesta-Soto, Francisco; Rodrigo, Manuel; Varriale, Antonio; Sanchez, Nuria; D'Auria, Sabato; Spitzer, Denis; Lopez-Royo, Francisco
2014-05-20
Combining photonic integrated circuits with a biologically based sensing approach has the ability to provide a new generation of portable and low-cost sensor devices with a high specificity and sensitivity for a number of applications in environmental monitoring, defense, and homeland security. We report herein on the specific biosensing under continuous air flow of DMMP, which is commonly used as a simulant and a precursor for the synthesis of Sarin. The proposed technology is based on the selective recognition of the targeted DMMP molecule by specifically modified proteins immobilized on photonic structures. The response of the biophotonic structures shows a high stability and accuracy over 3 months, allowing for the detection in diluted air of DMMP at concentration as low as 35 μg/m(3) (6.8 ppb) in less than 15 min. The performance of the developed technology satisfies most current homeland and military security requirements.
Intracellular magnesium detection by fluorescent indicators.
Trapani, Valentina; Schweigel-Röntgen, Monika; Cittadini, Achille; Wolf, Federica I
2012-01-01
Magnesium is essential for a wide variety of biochemical reactions and physiological functions, but its regulatory mechanisms (both at the cellular and at the systemic level) are still poorly characterized. Not least among the reasons for this gap are the technical difficulties in sensing minor changes occurring over a high background concentration. Specific fluorescent indicators are highly sensitive tools for dynamic evaluation of intracellular magnesium concentration. We herein discuss the main criteria to consider when choosing a magnesium-specific fluorescent indicator and provide examples among commercial as well as developmental sensors. We focus on spectrofluorimetric approaches to quantify Mg(2+) concentration in cell or mitochondria suspensions, and on imaging techniques to detect intracellular magnesium distribution and fluxes by live microscopy, reporting a detailed description of standard protocols for each method. The general guidelines we provide should be applicable to specific issues by any researcher in the field. Copyright © 2012 Elsevier Inc. All rights reserved.
Nampally, Malathi; Moerschbacher, Bruno Maria
2012-01-01
Chitin is the second most abundant polysaccharide, present, e.g., in insect and arthropod exoskeletons and fungal cell walls. In some species or under specific conditions, chitin appears to be enzymatically de-N-acetylated to chitosan—e.g., when pathogenic fungi invade their host tissues. Here, the deacetylation of chitin is assumed to represent a pathogenicity mechanism protecting the fungus from the host's chitin-driven immune response. While highly specific chitin binding lectins are well known and easily available, this is not the case for chitosan-specific probes. This is partly due to the poor antigenicity of chitosan so that producing high-affinity, specific antibodies is difficult. Also, lectins with specificity to chitosan have been described but are not commercially available, and our attempts to reproduce the findings were not successful. We have, therefore, generated a fusion protein between a chitosanase inactivated by site-directed mutagenesis, the green fluorescent protein (GFP), and StrepII, as well as His6 tags for purification and detection. The recombinant chitosan affinity protein (CAP) expressed in Escherichia coli was shown to specifically bind to chitosan, but not to chitin, and the affinity increased with decreasing degree of acetylation. In vitro, CAP detection was possible either based on GFP fluorescence or using Strep-Tactin conjugates or anti-His5 antibodies. CAP fluorescence microscopy revealed binding to the chitosan exposing endophytic infection structures of the wheat stem rust fungus, but not the chitin exposing ectophytic infection structures, verifying its suitability for in situ chitosan staining. PMID:22367086