Science.gov

Sample records for highly specific detection

  1. Heterodyne method for high specificity gas detection.

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.

  2. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis.

  3. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  4. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  5. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    PubMed

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus.

  6. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop.

    PubMed

    Karabasanavar, Nagappa S; Singh, S P; Kumar, Deepak; Shebannavar, Sunil N

    2014-02-15

    We describe a highly specific PCR assay for the authentic identification of pork. Accurate detection of tissues derived from pig (Sus scrofa) was accomplished by using newly designed primers targeting porcine mitochondrial displacement (D-loop) region that yielded an unique amplicon of 712 base pairs (bp). Possibility of cross-amplification was precluded by testing as many as 24 animal species (mammals, birds, rodent and fish). Suitability of PCR assay was confirmed in raw (n = 20), cooked (60, 80 and 100 °C), autoclaved (121 °C) and micro-oven processed pork. Sensitivity of detection of pork in other species meat using unique pig-specific PCR was established to be at 0.1%; limit of detection (LOD) of pig DNA was 10 pg (pico grams). The technique can be used for the authentication of raw, processed and adulterated pork and products under the circumstances of food adulteration related disputes or forensic detection of origin of pig species.

  7. Highly Sensitive, Highly Specific Whole-Cell Bioreporters for the Detection of Chromate in Environmental Samples

    PubMed Central

    Branco, Rita; Cristóvão, Armando; Morais, Paula V.

    2013-01-01

    Microbial bioreporters offer excellent potentialities for the detection of the bioavailable portion of pollutants in contaminated environments, which currently cannot be easily measured. This paper describes the construction and evaluation of two microbial bioreporters designed to detect the bioavailable chromate in contaminated water samples. The developed bioreporters are based on the expression of gfp under the control of the chr promoter and the chrB regulator gene of TnOtChr determinant from Ochrobactrum tritici 5bvl1. pCHRGFP1 Escherichia coli reporter proved to be specific and sensitive, with minimum detectable concentration of 100 nM chromate and did not react with other heavy metals or chemical compounds analysed. In order to have a bioreporter able to be used under different environmental toxics, O. tritici type strain was also engineered to fluoresce in the presence of micromolar levels of chromate and showed to be as specific as the first reporter. Their applicability on environmental samples (spiked Portuguese river water) was also demonstrated using either freshly grown or cryo-preserved cells, a treatment which constitutes an operational advantage. These reporter strains can provide on-demand usability in the field and in a near future may become a powerful tool in identification of chromate-contaminated sites. PMID:23326558

  8. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection.

    PubMed

    Huang, Yong; Zhang, Yan-Li; Xu, Xiangmin; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2009-02-25

    This paper developed a novel electrochemical genotyping strategy based on gap ligation reaction with surface hybridization detection. This strategy utilized homogeneous enzymatic reactions to generate molecular beacon-structured allele-specific products that could be cooperatively annealed to capture probes stably immobilized on the surface via disulfide anchors, thus allowing ultrasensitive surface hybridization detection of the allele-specific products through redox tags in close proximity to the electrode. Such a unique biphasic architecture provided a universal methodology for incorporating enzymatic discrimination reactions in electrochemical genotyping with desirable reproducibility, high efficiency and no interferences from interficial steric hindrance. The developed technique was demonstrated to show intrinsic high sensitivity for direct genomic analysis, and excellent specificity with discriminativity of single nucleotide variations.

  9. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    PubMed

    Lau, Han Yih; Palanisamy, Ramkumar; Trau, Matt; Botella, Jose R

    2014-01-01

    Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  10. Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yamazaki, Yoji; Ebina, Keiichi

    2014-10-01

    The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.

  11. Fast and highly specific DNA-based multiplex detection on a solid support.

    PubMed

    Barišić, Ivan; Kamleithner, Verena; Schönthaler, Silvia; Wiesinger-Mayr, Herbert

    2015-01-01

    Highly specific and fast multiplex detection methods are essential to conduct reasonable DNA-based diagnostics and are especially important to characterise infectious diseases. More than 1000 genetic targets such as antibiotic resistance genes, virulence factors and phylogenetic markers have to be identified as fast as possible to facilitate the correct treatment of a patient. In the present work, we developed a novel ligation-based DNA probe concept that was combined with the microarray technology and used it for the detection of bacterial pathogens. The novel linear chain (LNC) probes identified all tested species correctly within 1 h based on their 16S rRNA gene in a 25-multiplex reaction. Genomic DNA was used directly as template in the ligation reaction identifying as little as 10(7) cells without any pre-amplification. The high specificity was further demonstrated characterising a single nucleotide polymorphism leading to no false positive fluorescence signals of the untargeted single nucleotide polymorphism (SNP) variants. In comparison to conventional microarray probes, the sensitivity of the novel LNC3 probes was higher by a factor of 10 or more. In summary, we present a fast, simple, highly specific and sensitive multiplex detection method adaptable for a wide range of applications.

  12. Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

    PubMed Central

    Choi, Hoseong; Cho, Won Kyong; Yu, Jisuk; Lee, Jong-Seung; Kim, Kook-Hyung

    2013-01-01

    To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus) for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was 51.9°C. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea. PMID:25288934

  13. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Ning, Xinghai; Lee, Seungjun; Wang, Zhirui; Kim, Dongin; Stubblefield, Bryan; Gilbert, Eric; Murthy, Niren

    2011-08-01

    The diagnosis of bacterial infections remains a major challenge in medicine. Although numerous contrast agents have been developed to image bacteria, their clinical impact has been minimal because they are unable to detect small numbers of bacteria in vivo, and cannot distinguish infections from other pathologies such as cancer and inflammation. Here, we present a family of contrast agents, termed maltodextrin-based imaging probes (MDPs), which can detect bacteria in vivo with a sensitivity two orders of magnitude higher than previously reported, and can detect bacteria using a bacteria-specific mechanism that is independent of host response and secondary pathologies. MDPs are composed of a fluorescent dye conjugated to maltohexaose, and are rapidly internalized through the bacteria-specific maltodextrin transport pathway, endowing the MDPs with a unique combination of high sensitivity and specificity for bacteria. Here, we show that MDPs selectively accumulate within bacteria at millimolar concentrations, and are a thousand-fold more specific for bacteria than mammalian cells. Furthermore, we demonstrate that MDPs can image as few as 105 colony-forming units in vivo and can discriminate between active bacteria and inflammation induced by either lipopolysaccharides or metabolically inactive bacteria.

  14. A Rapid In-Clinic Test Detects Acute Leptospirosis in Dogs with High Sensitivity and Specificity

    PubMed Central

    Kodjo, Angeli; Calleja, Christophe; Loenser, Michael; Lin, Dan; Lizer, Joshua

    2016-01-01

    A rapid IgM-detection immunochromatographic test (WITNESS® Lepto, Zoetis) has recently become available to identify acute canine leptospirosis at the point of care. Diagnostic sensitivity and specificity of the test were evaluated by comparison with the microscopic agglutination assay (MAT), using a positive cut-off titer of ≥800. Banked serum samples from dogs exhibiting clinical signs and suspected leptospirosis were selected to form three groups based on MAT titer: (1) positive (n = 50); (2) borderline (n = 35); and (3) negative (n = 50). Using an analysis to weight group sizes to reflect French prevalence, the sensitivity and specificity were 98% and 93.5% (88.2% unweighted), respectively. This test rapidly identifies cases of acute canine leptospirosis with high levels of sensitivity and specificity with no interference from previous vaccination. PMID:27110562

  15. A Rapid In-Clinic Test Detects Acute Leptospirosis in Dogs with High Sensitivity and Specificity.

    PubMed

    Kodjo, Angeli; Calleja, Christophe; Loenser, Michael; Lin, Dan; Lizer, Joshua

    2016-01-01

    A rapid IgM-detection immunochromatographic test (WITNESS® Lepto, Zoetis) has recently become available to identify acute canine leptospirosis at the point of care. Diagnostic sensitivity and specificity of the test were evaluated by comparison with the microscopic agglutination assay (MAT), using a positive cut-off titer of ≥800. Banked serum samples from dogs exhibiting clinical signs and suspected leptospirosis were selected to form three groups based on MAT titer: (1) positive (n = 50); (2) borderline (n = 35); and (3) negative (n = 50). Using an analysis to weight group sizes to reflect French prevalence, the sensitivity and specificity were 98% and 93.5% (88.2% unweighted), respectively. This test rapidly identifies cases of acute canine leptospirosis with high levels of sensitivity and specificity with no interference from previous vaccination.

  16. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    PubMed

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  17. Highly specific detection of IL-8 protein using combination tapered fiber-optic biosensor dip-probe

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Wei; Kapoor, Rakesh

    2010-02-01

    We are reporting detection of IL-8 in a mixed protein solution, using combination tapered fiber-optic biosensor (CTFOB) dip-probe. Sandwich immunoassay was used as the detection technique. The specificity of the sensor was established by using two types of negative control probes. It is demonstrated that with the help of these CTFOB dipprobe we could successfully detect IL-8 with high specificity in protein mixture. The lowest detected concentration of IL-8 was 150 pM.

  18. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma

    PubMed Central

    Kalinich, Mark; Bhan, Irun; Kwan, Tanya T.; Miyamoto, David T.; Javaid, Sarah; LiCausi, Joseph A.; Milner, John D.; Hong, Xin; Goyal, Lipika; Sil, Srinjoy; Choz, Melissa; Ho, Uyen; Kapur, Ravi; Muzikansky, Alona; Zhang, Huidan; Weitz, David A.; Sequist, Lecia V.; Ryan, David P.; Chung, Raymond T.; Zhu, Andrew X.; Isselbacher, Kurt J.; Ting, David T.; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A.

    2017-01-01

    Circulating tumor cells (CTCs) are shed into the bloodstream by invasive cancers, but the difficulty inherent in identifying these rare cells by microscopy has precluded their routine use in monitoring or screening for cancer. We recently described a high-throughput microfluidic CTC-iChip, which efficiently depletes hematopoietic cells from blood specimens and enriches for CTCs with well-preserved RNA. Application of RNA-based digital PCR to detect CTC-derived signatures may thus enable highly accurate tissue lineage-based cancer detection in blood specimens. As proof of principle, we examined hepatocellular carcinoma (HCC), a cancer that is derived from liver cells bearing a unique gene expression profile. After identifying a digital signature of 10 liver-specific transcripts, we used a cross-validated logistic regression model to identify the presence of HCC-derived CTCs in nine of 16 (56%) untreated patients with HCC versus one of 31 (3%) patients with nonmalignant liver disease at risk for developing HCC (P < 0.0001). Positive CTC scores declined in treated patients: Nine of 32 (28%) patients receiving therapy and only one of 15 (7%) patients who had undergone curative-intent ablation, surgery, or liver transplantation were positive. RNA-based digital CTC scoring was not correlated with the standard HCC serum protein marker alpha fetoprotein (P = 0.57). Modeling the sequential use of these two orthogonal markers for liver cancer screening in patients with high-risk cirrhosis generates positive and negative predictive values of 80% and 86%, respectively. Thus, digital RNA quantitation constitutes a sensitive and specific CTC readout, enabling high-throughput clinical applications, such as noninvasive screening for HCC in populations where viral hepatitis and cirrhosis are prevalent. PMID:28096363

  19. In situ detection of basic fibroblast growth factor by highly specific antibodies.

    PubMed Central

    Schulze-Osthoff, K.; Risau, W.; Vollmer, E.; Sorg, C.

    1990-01-01

    Basic fibroblast growth factor (bFGF) is thought to be of major importance for fibrosis and angiogenesis. Despite intensive studies dealing with the biochemistry and multiple biologic effects of bFGF, the cellular distribution is virtually unknown. Therefore, using the indirect immunoperoxidase technique, we examined the effect of bFGF on a large pattern of normal, inflammatory, and tumorous human tissues. Staining was performed on cryostat sections with a highly specific affinity-purified antiserum. In normal tissues, especially those of the thymus and placenta, mainly dendritic cells contained the growth factor. High levels of bFGF were also detected in basal cells and gland epithelial cells of skin biopsies. A conspicuous expression was observed in chronic inflammatory tissues corresponding to a generally pronounced proliferation of fibroblasts and endothelial cells in these situations. Tumors revealed a very heterogenous staining pattern. In some lesions, bFGF was predominantly present in infiltrating and endothelial cells. In several, neoplasms tumor cells exhibited an intensive staining. In some, especially vascular tumors, bFGF could not be detected. From the staining results it is concluded that angiogenesis is not simply controlled by the presence of bFGF but is mediated by a balance of several angiogenic inducers and inhibitors. Images Figure 1 Figure 2 PMID:1695484

  20. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists.

    PubMed

    Bovee, Toine F H; Helsdingen, Richard J R; Hamers, Astrid R M; van Duursen, Majorie B M; Nielen, Michel W F; Hoogenboom, Ron L A P

    2007-11-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two decades, a panel of different in vitro assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the development of an androgen transcription activation assay that is easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. Compared with other reporters, the yEGFP reporter protein is very convenient because it is directly measurable in intact living cells, i.e., cell wall disruption and the addition of a substrate are not needed. When yeast was exposed to 17beta-testosterone, the concentration where half-maximal activation is reached (EC(50)) was 50 nM. The relative androgenic potencies, defined as the ratio between the EC(50) of 17beta-testosterone and the EC(50) of the compound, of 5alpha-dihydrotestosterone, methyltrienolone, and 17beta-boldenone are 2.3, 1.4, and 0.15 respectively. The results presented in this paper demonstrate that this new yeast androgen bioassay is fast, sensitive, and very specific and also suited to detect compounds that have an antiandrogenic mode of action.

  1. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists

    PubMed Central

    Helsdingen, Richard J. R.; Hamers, Astrid R. M.; van Duursen, Majorie B. M.; Nielen, Michel W. F.; Hoogenboom, Ron L. A. P.

    2007-01-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two decades, a panel of different in vitro assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the development of an androgen transcription activation assay that is easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. Compared with other reporters, the yEGFP reporter protein is very convenient because it is directly measurable in intact living cells, i.e., cell wall disruption and the addition of a substrate are not needed. When yeast was exposed to 17β-testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM. The relative androgenic potencies, defined as the ratio between the EC50 of 17β-testosterone and the EC50 of the compound, of 5α-dihydrotestosterone, methyltrienolone, and 17β-boldenone are 2.3, 1.4, and 0.15 respectively. The results presented in this paper demonstrate that this new yeast androgen bioassay is fast, sensitive, and very specific and also suited to detect compounds that have an antiandrogenic mode of action. PMID:17849102

  2. Label-Free Isothermal Amplification Assay for Specific and Highly Sensitive Colorimetric miRNA Detection

    PubMed Central

    2016-01-01

    We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer. PMID:27713932

  3. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    PubMed Central

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  4. High-resolution and specific detection of bacteria on complex surfaces using nanoparticle probes and electron microscopy.

    PubMed

    Ye, Jun; Nielsen, Shaun; Joseph, Stephen; Thomas, Torsten

    2015-01-01

    The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale.

  5. High-Resolution and Specific Detection of Bacteria on Complex Surfaces Using Nanoparticle Probes and Electron Microscopy

    PubMed Central

    Ye, Jun; Nielsen, Shaun; Joseph, Stephen; Thomas, Torsten

    2015-01-01

    The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale. PMID:26018431

  6. 4H-SiC UV Photo Detector with Large Area and Very High Specific Detectivity

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Shahid, Aslam; Franz, David; Xin, Xiaobin; Zhao, Jian H.; Zhao, Yuegang; Winer, Maurice

    2004-01-01

    Pt/4H-SiC Schottky photodiodes have been fabricated with the device areas up to 1 sq cm. The I-V characteristics and photo-response spectra have been measured and analyzed. For a 5 mm x 5 mm area device leakage current of 1 x 10(exp 15)A at zero bias and 1.2 x 10(exp 14)A at -IV have been established. The quantum efficiency is over 30% from 240nm to 320nm. The specific detectivity, D(sup *), has been calculated from the directly measured leakage current and quantum efficiency data and are shown to be higher than 10(exp 15) cmHz(sup 1/2)/W from 210nm to 350nm with a peak D(sup *) of 3.6 x 10(exp 15)cmH(sup 1/2)/W at 300nm.

  7. High Resolution X Chromosome-Specific Array-CGH Detects New CNVs in Infertile Males

    PubMed Central

    Krausz, Csilla; Giachini, Claudia; Lo Giacco, Deborah; Daguin, Fabrice; Chianese, Chiara; Ars, Elisabet; Ruiz-Castane, Eduard; Forti, Gianni; Rossi, Elena

    2012-01-01

    Context The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. Objectives In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. Results We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785×10−6) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435×10−4). Conclusions By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations. PMID:23056185

  8. Label free and high specific detection of mercury ions based on silver nano-liposome

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K.; Pradhan, Pallavi

    2016-06-01

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag+ ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg2 + ions. Interaction with Hg2 + ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg2 + ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R2 value of 0.97 was observed in the range of 20 to 100 ppm Hg2 + concentration. Hg2 + ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg2 + detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  9. Label free and high specific detection of mercury ions based on silver nano-liposome.

    PubMed

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K; Pradhan, Pallavi

    2016-06-15

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag(+) ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg(2+) ions. Interaction with Hg(2+) ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg(2+) ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R(2) value of 0.97 was observed in the range of 20 to 100ppm Hg(2+) concentration. Hg(2+) ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg(2+) detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  10. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning.

    PubMed

    Love, Tracey E; Redmond, Caroline; Mayers, Carl N

    2008-05-20

    We describe a targeted approach for the production of biological recognition elements capable of fast, specific detection of anthrax spores on biosensor surfaces. The aim was to produce single chain antibodies (scFvs) to EA1, a Bacillus anthracis S-layer protein that is also present, although not identical, in related to Bacillus species. The aim of the work was to produce antibodies that would detect B. anthracis EA1 protein and intact spores with a high degree of specificity, but would not detect other Bacillus species. Existing monoclonal antibodies were evaluated and found to recognise B. anthracis EA1 and S-layer proteins from other closely related Bacillus species. Recombinant anti-EA1 scFvs were isolated from B. anthracis immune library that contained antibody genes raised against B. anthracis spores and purified exosporium. Two approaches for scFv selection were used; standard (non-competitive) panning, and competitive panning. The non-competitive biopanning strategy isolated scFvs that recognised EA1 from B. anthracis, but also cross-reacted with other Bacillus species. In contrast, the competitive panning approach used S-layer proteins from other Bacillus species to generate scFvs that were highly specific to B. anthracis EA1 and demonstrated apparent nanomolar binding affinities. Specific, real time detection of B. anthracis spores was demonstrated with these scFvs using an evanescent wave biosensor, the Resonant Mirror. The approach described can be used to generate specific antibodies to any desired target where homologous proteins also exist in closely related species, and demonstrates clear advantages to using recombinant technology to produce biological recognition elements for detection of biological threat agents.

  11. Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry.

    PubMed

    Hansbauer, Eva-Maria; Skiba, Martin; Endermann, Tanja; Weisemann, Jasmin; Stern, Daniel; Dorner, Martin B; Finkenwirth, Friedrich; Wolf, Jessica; Luginbühl, Werner; Messelhäußer, Ute; Bellanger, Laurent; Woudstra, Cédric; Rummel, Andreas; Fach, Patrick; Dorner, Brigitte G

    2016-09-21

    Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL(-1) was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data.

  12. Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis.

    PubMed

    Liu, Yanan; Liu, Nan; Ma, Xinhua; Li, Xiaoli; Ma, Jia; Li, Ya; Zhou, Zhijiang; Gao, Zhixian

    2015-04-21

    A novel aptamer-based suspension array detection platform was designed for the sensitive, specific and rapid detection of human α-thrombin as a model. Thrombin was first recognized by a 29-mer biotinylated thrombin-binding aptamer (TBA) in solution. Then 15-mer TBA modified magnetic beads (MBs) captured the former TBA-thrombin to form an aptamer-thrombin-aptamer sandwich complex. The median fluorescence intensity obtained via suspension array technology was positively correlated with the thrombin concentration. The interactions between TBAs and thrombin were analyzed using microscale thermophoresis (MST). The dissociation constants could be respectively achieved to be 44.2 ± 1.36 nM (TBA1-thrombin) and 15.5 ± 0.637 nM (TBA2-thrombin), which demonstrated the high affinities of TBA-thrombin and greatly coincided with previous reports. Interaction conditions such as temperature, reaction time, and coupling protocol were optimized. The dynamic quantitative working range of the aptamer-based suspension array was 18.37-554.31 nM, and the coefficients of determination R(2) were greater than 0.9975. The lowest detection limit of thrombin was 5.4 nM. This method was highly specific for thrombin without being affected by other analogs and interfering proteins. The recoveries of thrombin spiked in diluted human serum were in the range 82.6-114.2%. This innovative aptamer-based suspension array detection platform not only exhibits good sensitivity based on MBs facilitating highly efficient separation and amplification, but also suggests high specificity by the selective aptamer binding, thereby suggesting the expansive application prospects in research and clinical fields.

  13. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chengyan; Zhang, Yang; Guan, Min; Cui, Lijie; Ding, Kai; Zhang, Bintian; Lin, Zhang; Huang, Feng; Zeng, Yiping

    2015-09-01

    As one of the most environmentally important cations, mercury(II) iron has the biological toxicity which impacts wild life ecology and human health heavily. A Hg2+ biosensor based on AlGaAs/InGaAs high electron mobility transistors with high sensitivity and short response time is demonstrated experimentally. To achieve highly specific detection of Hg2+, an one-end thiol-modified ssDNA with lots of T thymine is immobilized to the Au-coated gate area of the high electron mobility transistors by a covalent modification method. The introduction of Hg2+ to the gate of the high electron mobility transistors affects surface charges, which leads to a change in the concentration of the two-dimensional electron gas in the AlGaAs/InGaAs high electron mobility transistors. Thus, the saturation current curves can be shifted with the modification of the gate areas and varied concentrations of Hg2+. Under the bias of 100 mV, a detection limit for the Hg2+ as low as10 nM is achieved. Successful detection with minute quantity of the sample indicates that the sensor has great potential in practical screening for a wide population. In addition, the dimension of the active area of the sensor is 20×50 μm2 and that of the entire sensor chip is 1×2 mm2, which make the Hg2+ biosensor portable.

  14. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  15. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection.

    PubMed

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; Huang, Qing; Fan, Chunhai; He, Yao

    2013-11-08

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1-10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications.

  16. Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films.

    PubMed

    Srivastava, Sachin K; Hamo, Hilla Ben; Kushmaro, Ariel; Marks, Robert S; Grüner, Christoph; Rauschenbach, Bernd; Abdulhalim, Ibrahim

    2015-05-07

    A nanobiosensor chip, utilizing surface enhanced Raman spectroscopy (SERS) on nanosculptured thin films (nSTFs) of silver, was shown to detect Escherichia coli (E. coli) bacteria down to the concentration level of a single bacterium. The sensor utilizes highly enhanced plasmonic nSTFs of silver on a silicon platform for the enhancement of Raman bands as checked with adsorbed 4-aminothiophenol molecules. T-4 bacteriophages were immobilized on the aforementioned surface of the chip for the specific capture of target E. coli bacteria. To demonstrate that no significant non-specific immobilization of other bacteria occurs, three different, additional bacterial strains, Chromobacterium violaceum, Paracoccus denitrificans and Pseudomonas aeruginosa were used. Furthermore, experiments performed on an additional strain of E. coli to address the specificity and reusability of the sensor showed that the sensor operates for different strains of E. coli and is reusable. Time resolved phase contrast microscopy of the E. coli-T4 bacteriophage chip was performed to study its interaction with bacteria over time. Results showed that the present sensor performs a fast, accurate and stable detection of E. coli with ultra-small concentrations of bacteria down to the level of a single bacterium in 10 μl volume of the sample.

  17. Specific detection of Flt3 point mutations by highly sensitive real-time polymerase chain reaction in acute myeloid leukemia.

    PubMed

    Scholl, Sebastian; Krause, Claudia; Loncarevic, Ivan F; Müller, Rouven; Kunert, Christa; Wedding, Ulrich; Sayer, Herbert G; Clement, Joachim H; Höffken, Klaus

    2005-06-01

    Among activating class III receptor tyrosine kinase (Flt3) mutations, internal tandem duplications of Flt3 (Flt3-ITD) are detected in about 25% of patients with acute myeloid leukemia (AML). In contrast, mutations within the tyrosine kinase domain of Flt3 (Flt3-TKD mutations) are less frequent (approximately 7%), and there are only limited data on the frequency of recently demonstrated activating Flt3 point mutation at codon 592 (Flt3-V592A mutation). We evaluated a new approach for rapid screening of Flt3-TKD and Flt3-V592A mutations using the fluorescence resonance energy transfer (FRET) principle in a group of 122 patients. Based on individual Flt3-TKD mutations, we designed patient-specific primers to perform a highly sensitive polymerase chain reaction (PCR) assay for rapid detection of minimal residual disease (MRD). We also used a model system with MonoMac-6 cells carrying the Flt3-V592A mutation to establish a mutation-specific real-time PCR approach also for this molecular aberration. We identified 9 cases (8%) of Flt3-TKD mutations (5 cases of mutation D835Y, 3 cases of mutation D835H, and 1 case of mutation Del836), and no cases of Flt3-V592A mutation. Screening for Flt3-TKD mutations with fluorescent probes is equivalent to conventional screening using standard PCR followed by EcoRV restriction. We present a real-time PCR protocol that can be used for MRD analyses based on individual Flt3-TKD mutations. Examples of MRD analyses are presented for all 3 subtypes of Flt3-TKD mutation identified in this study. In summary, we demonstrate new methodological approaches for rapid screening of Flt3 point mutations and for detection of MRD based on patient-specific Flt3-TKD mutations.

  18. Highly Specific Detection of Myostatin Prodomain by an Immunoradiometric Sandwich Assay in Serum of Healthy Individuals and Patients

    PubMed Central

    Widera, Christian; Gottlieb, Jens; Vogel, Arndt; Schmidt, Sebastian; Brandes, Gudrun; Heuft, Hans-Gert; Lichtinghagen, Ralf; Kempf, Tibor; Wollert, Kai C.; Bauersachs, Johann; Heineke, Joerg

    2013-01-01

    Background Myostatin is a muscle derived factor that functions as a negative regulator of skeletal muscle growth. Induction of myostatin expression was observed in rodent models of muscle wasting and in cachectic patients with cancer or pulmonary disease. Therefore, there is an increasing interest to use serum myostatin as a biomarker. Methods We established an immunoradiometric sandwich assay (IRMA), which uses a commercially available chicken polyclonal, affinity purified antibody directed against human myostatin prodomain. We determined the serum concentrations of myostatin prodomain in 249 healthy individuals as well as 169 patients with heart failure, 53 patients with cancer and 44 patients with chronic pulmonary disease. Results The IRMA had a detection limit of 0.7ng/ml, an intraassay imprecision of ≤14.1% and an interassay imprecision of ≤ 18.9%. The specificity of our assay was demonstrated by size exclusion chromatography, detection of myostatin by Western-blotting and a SMAD-dependent transcriptional-reporter assay in the signal-rich serum fractions, as well as lack of interference by unspecific substances like albumin, hemoglobin or lipids. Myostatin prodomain was stable at room temperature and resistant to freeze-thaw cycles. Apparently healthy individuals over the age of 55 had a median myostatin prodomain serum concentration of 3.9ng/ml (25th-75th percentiles, 2-7ng/ml) and we could not detect increased levels in patients with stable chronic heart failure or cancer related weight loss. In contrast, we found strongly elevated concentrations of myostatin prodomain (median 26.9ng/ml, 25th-75th percentiles, 7-100ng/ml) in the serum of underweight patients with chronic pulmonary disease. Conclusions We established a highly specific IRMA for the quantification of myostatin prodomain concentration in human serum. Our assay could be useful to study myostatin as a biomarker for example in patients with chronic pulmonary disease, as we detected highly

  19. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  20. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment

    PubMed Central

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-01-01

    Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916

  1. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.

    PubMed

    Nchimi-Nono, Katia; Wegner, K David; Lindén, Stina; Lecointre, Alexandre; Ehret-Sabatier, Laurence; Shakir, Shakir; Hildebrandt, Niko; Charbonnière, Loïc J

    2013-10-14

    The first example of an activated phosphonated trifunctional chelate (TFC) is presented, which combines a non-macrocyclic coordination site for lanthanide coordination based on two aminobis-methylphosphonate coordinating arms, a central bispyrazolylpyridyl antenna and an N-hydroxysuccinimide ester in para position of the central pyridine as an activated function for the labeling of biomaterial. The synthesis of the TFC is presented together with photo-physical studies of the related Tb and Eu complexes. Excited state lifetime measurements in H2O and D2O confirmed an excellent shielding of the cation from water molecules with a hydration number of zero. The Tb complex provides a high photoluminescence (PL) quantum yield of 24% in aqueous solutions (0.01 M Tris-HCl, pH 7.4) and a very long luminescence lifetime of 2.6 ms. The activated ligand was conjugated to different biological compounds such as streptavidin, and a monoclonal antibody against total prostate specific antigen (TPSA). In combination with AlexaFluor647 (AF647) and crosslinked allophycocyanin (XL665) antibody (ABs) conjugates, homogeneous time-resolved Fluorescence Resonance Energy Transfer (FRET) immunoassays of TPSA were performed in serum samples. The Tb donor-dye acceptor FRET pairs provided large Förster distances of 5.3 nm (AF647) and 7.1 nm (XL665). A detailed time-resolved FRET analysis of Tb donor and dye acceptor PL decays revealed average donor-acceptor distances of 4.2 nm (AF647) and 6.3 nm (XL665) within the sandwich immunocomplex and FRET efficiencies of 0.79 and 0.68, respectively. Very low detection limits of 1.4 ng mL(-1) (43 pM) and 2.4 ng mL(-1) (74 pM) TPSA were determined using a KRYPTOR fluorescence immunoanalyzer. These results demonstrate the applicability of our novel Tb-bioconjugates for highly sensitive clinical diagnostics.

  2. Silicon photonic crystal microarrays for high throughput label-free detection of lung cancer cell line lysates with sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Gemmill, Robert M.; Chen, Ray T.

    2013-03-01

    Detection of biomolecules on microarrays based on label-free on-chip optical biosensors is very attractive since this format avoids complex chemistries caused by steric hindrance of labels. Application areas include the detection of cancers and allergens, and food-borne pathogens to name a few. We have demonstrated photonic crystal microcavity biosensors with high sensitivity down to 1pM concentrations (67pg/ml). High sensitivities were achieved by slow light engineering which reduced the radiation loss and increased the stored energy in the photonic crystal microcavity resonance mode. Resonances with high quality factor Q~26,760 in liquid ambient, coupled with larger optical mode volumes allowed enhanced interaction with the analyte biomolecules which resulted in sensitivities down to 10 cells per micro-liter to lung cancer cell lysates. The specificity of detection was ensured by multiplexed detections from multiple photonic crystal microcavities arrayed on the arms of a multimode interference power splitter. Specific binding interactions and control experiments were performed simultaneously at the same instant of time with the same 60 microliter sample volume. Specificity is further ensured by sandwich assay methods in the multiplexed experiment. Sandwich assay based amplification increased the sensitivity further resulting in the detection of lung cancer cell lysates down to concentrations of 2 cells per micro-liter. The miniaturization enabled by photonic crystal biosensors coupled with waveguide interconnected layout thus offers the potential of high throughput proteomics with high sensitivity and specificity.

  3. High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles

    PubMed Central

    Baiu, Dana C.; Artz, Nathan S.; McElreath, Meghan R.; Menapace, Bryan D.; Hernando, Diego; Reeder, Scott B.; Grüttner, Cordula; Otto, Mario

    2015-01-01

    Aim To develop biocompatible, tumor-specific multifunctional iron oxide nanoconstructs targeting neuroblastoma, an aggressive pediatric malignancy. Materials & methods Clinical-grade humanized monoclonal antibody (hu14.18K322A), designed to target GD2 antigen on neuroblastoma with reduced non-specific immune interactions, was conjugated to hydroxyethyl starch-coated iron oxide nanoparticles. Targeting capability in vitro and in vivo was assessed by immunofluorescence, electron microscopy, analytical spectrophotometry, histochemistry and magnetic resonance R2* relaxometry. Results The biocompatible nanoconstructs demonstrated high tumor-specificity in vitro and in vivo, and low background uptake in a mouse flank xenograft model. Specific accumulation in tumors enabled particle visualization and quantification by magnetic resonance R2* mapping. Conclusions Our findings support the further development towards clinical application of this anti-GD2 iron-oxide nanoconstruct as diagnostic and therapeutic scaffold for neuroblastoma and potentially other GD2 positive malignancies. PMID:26420448

  4. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity.

  5. Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma.

    PubMed

    Sun, Jian; Zhang, Jing; Lu, Junliang; Gao, Jie; Lu, Tao; Ren, Xinyu; Duan, Huanli; Liang, Zhiyong

    2015-01-01

    The V600E mutation in the B-type Raf kinase (BRAF) gene is a common genetic change in cases of papillary thyroid carcinoma (PTC) that appears to play a key role in the development and progression of this disease. We sought to assess the sensitivity and specificity of immunohistochemical detection of this mutation with a V600E mutated BRAF antibody in a Chinese PTC cohort. In this study, we used fully automated immunohistochemistry (IHC) assay with a BRAF V600E (VE1) mouse monoclonal primary antibody to screen for the BRAF V600E mutation in 556 cases of PTC. Moreover, to verify the IHC staining results, real-time PCR was applied to detect this mutation in the same patient cohort. Among the 556 cases in the examined primary PTC cohort, 414 (74.5%) cases and 419 (75.4%) cases were positive for the BRAF V600E mutation by IHC staining and by real-time PCR, respectively. The real-time PCR results indicated that the sensitivity and specificity of IHC staining for the BRAF V600E mutation were 98.8% and 100%, respectively. The BRAF V600E mutation was common among Chinese patients with primary PTC, and was strongly correlated with older patient age and the conventional subtype of PTC but was not associated with parameters of clinicopathological aggressiveness. The fully automated IHC is a reliable technique that can serve as an alternative to molecular biological approaches for the routine detection of the BRAF V600E mutation in PTC patients.

  6. High Temporal Resolution Detection of Patient-Specific Glucose Uptake from Human ex Vivo Adipose Tissue On-Chip.

    PubMed

    Zambon, Alessandro; Zoso, Alice; Gagliano, Onelia; Magrofuoco, Enrico; Fadini, Gian Paolo; Avogaro, Angelo; Foletto, Mirto; Quake, Stephen; Elvassore, Nicola

    2015-07-07

    Human tissue in vitro models on-chip are highly desirable to dissect the complexity of a physio-pathological in vivo response because of their advantages compared to traditional static culture systems in terms of high control of microenvironmental conditions, including accurate perturbations and high temporal resolution analyses of medium outflow. Human adipose tissue (hAT) is a key player in metabolic disorders, such as Type 2 Diabetes Mellitus (T2DM). It is involved in the overall energy homeostasis not only as passive energy storage but also as an important metabolic regulator. Here, we aim at developing a large scale microfluidic platform for generating high temporal resolution of glucose uptake profiles, and consequently insulin sensitivity, under physio-pathological stimulations in ex vivo adipose tissues from nondiabetic and T2DM individuals. A multiscale mathematical model that integrates fluid dynamics and an intracellular insulin signaling pathway description was used for assisting microfluidic design in order to maximize measurement accuracy of tissue metabolic activity in response to perturbations. An automated microfluidic injection system was included on-chip for performing precise dynamic biochemical stimulations. The temporal evolution of culture conditions could be monitored for days, before and after perturbation, measuring glucose concentration in the outflow with high temporal resolution. As a proof of concept for detection of insulin resistance, we measured insulin-dependent glucose uptake by hAT from nondiabetic and T2DM subjects, mimicking the postprandial response. The system presented thus represents an important tool in dissecting the role of single tissues, such as hAT, in the complex interwoven picture of metabolic diseases.

  7. Multi-primer qPCR assay capable of highly efficient and specific detection of the vast majority of all known Mycoplasma.

    PubMed

    Salling, H K; Bang-Christensen, S R

    2016-05-01

    Mycoplasma bacteria are able to pass through sterilizing grade filters due to their small size and lack of a cell wall, making them a common contaminant of biopharmaceutical productions. The classical method for detecting Mycoplasma is described in the European Pharmacopeia (Ph.Eur) 2.6.7. The method takes 28 days to perform, due to the slow growing nature of some Mycoplasma species. The Ph.Eur has described Nucleic Acid Testing (NAT) as a rapid alternative to the classical method. Here we present the development of a quantitative polymerase chain reaction (qPCR) assay capable of unambiguous detection of Mycoplasma with high sensitivity and specificity. The broadness of detection and the specificity towards Mycoplasma has been investigated by in silico analysis of the primer sequences followed by testing on purified Mycoplasma DNA as well as DNA from closely related genera. The assay will in all probability detect at least 356 species and strains of Mycoplasma, Spiroplasma and Acholeplasma with high sensitivity. To our knowledge this assay has the most uniform amplification efficiency over the broadest range of species and it is extremely specific towards Mycoplasma. With appropriate validation, the assay can be applied as a powerful tool for rapid Mycoplasma detection in the biopharmaceutical industry.

  8. Carbapenem inactivation: a very affordable and highly specific method for phenotypic detection of carbapenemase-producing Pseudomonas aeruginosa isolates compared with other methods.

    PubMed

    Akhi, Mohammad Taghi; Khalili, Younes; Ghotaslou, Reza; Kafil, Hossein Samadi; Yousefi, Saber; Nagili, Behroz; Goli, Hamid Reza

    2016-07-22

    This investigation was undertaken to compare phenotypic and molecular methods for detection of carbapenemase-producing Pseudomonas aeruginosa. A total of 245 non-duplicated isolates of P. aeruginosa were collected from hospitalized patients. Disc diffusion method was used to identify carbapenem-resistant bacteria. Three phenotypic methods, including Modified Hodge Test (MHT), Modified Carba NP (MCNP) test and Carbapenem Inactivation Method (CIM) were used for investigation of carbapenemase production. In addition, polymerase chain reaction (PCR) was used to detect carbapenemase encoding genes. Of 245 P. aeruginosa isolates investigated, 121 isolates were carbapenem-resistant. Among carbapenem-resistant isolates, 40, 39 and 35 isolates exhibited positive results using MHT, MCNP test and CIM, respectively. PCR indicated the presence of carbapenemase genes in 35 of carbapenem-resistant isolates. MHT showed low sensitivity and specificity for carbapenemase detection among P. aeruginosa isolates in comparison to PCR. CIM was most affordable and highly specific than MCNP test compared with the molecular method.

  9. Highly specific and efficient primers for in-house multiplex PCR detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum

    PubMed Central

    2014-01-01

    Background Although sophisticated methodologies are available, the use of endpoint polymerase chain reaction (PCR) to detect 16S rDNA genes remains a good approach for estimating the incidence and prevalence of specific infections and for monitoring infections. Considering the importance of the early diagnosis of sexually transmitted infections (STIs), the development of a sensitive and affordable method for identifying pathogens in clinical samples is needed. Highly specific and efficient primers for a multiplex polymerase chain reaction (m-PCR) system were designed in silico to detect the 16S rDNA genes of four bacteria that cause genital infections, and the PCR method was developed. Methods The Genosensor Probe Designer (GPD) (version 1.0a) software was initially used to design highly specific and efficient primers for in-house m-PCR. Single-locus PCR reactions were performed and standardised, and then primers for each locus in turn were added individually in subsequent amplifications until m-PCR was achieved. Amplicons of the expected size were obtained from each of the four bacterial gene fragments. Finally, the analytical specificity and limits of detection were tested. Results Because they did not amplify any product from non-STI tested species, the primers were specific. The detection limits for the Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum primer sets were 5.12 × 105, 3.9 × 103, 61.19 × 106 and 6.37 × 105 copies of a DNA template, respectively. Conclusions The methodology designed and standardised here could be applied satisfactorily for the simultaneous or individual detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis and Ureaplasma urealyticum. This method is at least as efficient as other previously described methods; however, this method is more affordable for low-income countries. PMID:24997675

  10. High throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry

    PubMed Central

    Porichis, Filippos; Hart, Meghan G.; Griesbeck, Morgane; Everett, Holly L.; Hassan, Muska; Baxter, Amy E.; Lindqvist, Madelene; Miller, Sara M.; Soghoian, Damien Z.; Kavanagh, Daniel G.; Reynolds, Susan; Norris, Brett; Mordecai, Scott K.; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E.

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to addressa variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by Image Stream technology. PMID:25472703

  11. Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Saraswathi; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke M.; Padmanabhan, Parasuraman

    2010-01-01

    A simple optical method using hollow-core photonic crystal fiber for protein detection has been described. In this study, estrogen receptor (ER) from a MCF-7 breast carcinoma cell lysates immobilized inside a hollow-core photonic crystal fiber was detected using anti-ER primary antibody with either Alexa™ Fluor 488 (green fluorescent dye) or 555 (red Fluorescent dye) labeled Goat anti-rabbit IgG as the secondary antibody. The fluorescence fingerprints of the ERα protein were observed under fluorescence microscope, and its optical characteristics were analyzed. The ERα protein detection by this proposed method is based on immuno binding from sample volume as low as 50 nL. This method is expected to offer great potential as a biosensor for medical diagnostics and therapeutics applications.

  12. Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma.

    PubMed

    Sato, Akira; Yamanaka, Hikaru; Oe, Keitaro; Yokoyama, Izumi; Yamazaki, Yoji; Ebina, Keiichi

    2015-03-01

    Probes that can detect oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques can be useful for the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that two heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled to fluorescein isothiocyanate (FITC) through the ε-amino group of N-terminus Lys in the absence/presence of 6-amino-n-caproic acid (AC) linker to FITC-(FITC)KP6 and (FITC-AC)KP6-can be useful as fluorescent probes for the specific detection of ox-LDL. In this study, to develop the fluorescent peptides with high plasma stability for the specific detection of ox-LDL, we investigated the interaction of (FITC)KP6 and (FITC-AC)KP6 substituted with D-Lys at the N-terminus-(FITC)dKP6 and (FITC-AC)dKP6-with ox-LDL, and the in vitro stability of these peptides in mouse plasma. (FITC)dKP6 and (FITC-AC)dKP6 bound with high specificity to ox-LDL in a dose-dependent manner, and also to ox-LDL in the mouse plasma. Furthermore, (FITC)dKP6 was more stable than (FITC)KP6 in mouse plasma (102.1% versus 69.0% remained after 1 h). These findings strongly suggest that (FITC)dKP6 and (FITC-AC)dKP6 may be effective fluorescent probes with higher plasma stability than (FITC)KP6 and (FITC-AC)KP6 for the specific detection of ox-LDL.

  13. Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three assays were developed for molecular differentiation of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildew, respectively, for detection of airborne sporangia and diagnosis of symptomatic leaf tissue. The assays were based on previously identified single nuc...

  14. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples.

  15. A New Restriction Endonuclease-Based Method for Highly-Specific Detection of DNA Targets from Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Smith, Maria W.; Ghindilis, Andrei L.; Seoudi, Ihab A.; Smith, Kenneth; Billharz, Rosalind; Simon, Holly M.

    2014-01-01

    PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP). At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA) pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i) any mutation of the restriction site reduced the signal to zero; (ii) double and triple point mutations of sequences flanking the restriction site reduced restriction to 50–80% of the positive control; and (iii) a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same unpurified

  16. Prostatic cancer surveillance following whole-gland high-intensity focused ultrasound: comparison of MRI and prostate-specific antigen for detection of residual or recurrent disease

    PubMed Central

    Punwani, S; Emberton, M; Walkden, M; Sohaib, A; Freeman, A; Ahmed, H; Allen, C; Kirkham, A

    2012-01-01

    Objective This retrospective study compares dynamic contrast-enhanced (DCE) MRI with the serial prostate-specific antigen (PSA) measurement for detection of residual disease following whole-gland high-intensity focused ultrasound (HIFU) therapy of prostate cancer. Methods Patients in whom post-HIFU DCE-MRI was followed within 3 months by ultrasound-guided transrectal biopsy were selected from a local database. 26 patients met the study inclusion criteria. Serial PSA levels following HIFU and post-HIFU follow-up MRI were retrieved for each patient. Three radiologists unaware of other investigative results independently assessed post-HIFU MRI studies for the presence of cancer, scoring on a four-point scale (1, no disease; 2, probably no disease; 3, probably residual disease; and 4, residual disease). Sensitivity, specificity and receiver operating characteristic (ROC) analysis were performed for each reader, post-HIFU PSA nadir and pre-biopsy PSA level thresholds of >0.2 and >0.5 ng ml−1. Results The sensitivity of DCE-MRI for detection of residual disease for the three readers ranged between 73% and 87%, and the specificity between 73% and 82%. There was good agreement between readers (κ=0.69–0.77). The sensitivity and specificity of PSA thresholds was 60–87% and 73–100%, respectively. The area under the ROC curve was greatest for pre-biopsy PSA (0.95). Conclusion DCE-MRI performed following whole-gland HIFU has similar sensitivity and specificity and ROC performance to serial PSA measurements for detection of residual or recurrent disease. PMID:22253342

  17. Highly sensitive and specific detection of histamine via the formation of a self-assembled magic number cluster with thymine by mass spectrometry.

    PubMed

    Sun, Jiamu; Qin, Zhen; Liu, Jia; Zhang, Chengsen; Luo, Hai

    2014-06-21

    A novel method for the detection of histamine (HIM) via the formation of a self-assembled magic number cluster with thymine (T) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is described. The formation of the magic number cluster [T17 + HIM + 2H](2+) shifts the MS signal of histamine to the interference-free higher mass range and the signal intensity is increased by four orders of magnitude. In addition, the formation of [T17 + HIM + 2H](2+) is highly specific to histamine compared with its metabolite and other similar biogenic amines, which may be attributed to both of its amino and imidazole groups. The linear dynamic range of the method is in the range of 1 nM-20 μM, and the limit of detection can be as low as 0.1 nM. The feasibility of this method is further demonstrated by the quantitative analysis of histamine in a red wine sample. Since little sample preparation or separation is required before the analysis, this method provides a rapid new way for the sensitive and specific detection of histamine by MS.

  18. Use of high-resolution melting and melting temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination.

    PubMed

    Derzelle, Sylviane; Mendy, Christiane; Laroche, Séverine; Madani, Nora

    2011-11-01

    Single nucleotide polymorphisms (SNPs) are important diagnostic markers for the detection and differentiation of Bacillus anthracis. High-Resolution Melting (HRM) and Melting Temperature (Tm)-shift methods are two approaches that enable SNP detection without the need for expensive labeled probes. We evaluated the potential diagnostic capability of those methods to discriminate B. anthracis from the other members of the B. cereus group. Two assays targeting B. anthracis-specific SNPs in the plcR and gyrA genes were designed for each method and used to genotype a panel of 155 Bacilli strains. All B. anthracis isolates (n=65) were correctly and unambiguously identified. Assays also proved to be appropriate for the direct genotyping of biological samples. They could reliably detect B. anthracis in contaminated organs containing as little as 10(3)CFU/ml, corresponding to a few genome equivalents per reaction. The HRM and Tm-shift applications described here represent valuable tools for specific identification of B. anthracis at reduced cost.

  19. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses.

    PubMed

    Almeida, Coral-Ann M; Roberts, Steven G; Laird, Rebecca; McKinnon, Elizabeth; Ahmed, Imran; Pfafferott, Katja; Turley, Joanne; Keane, Niamh M; Lucas, Andrew; Rushton, Ben; Chopra, Abha; Mallal, Simon; John, Mina

    2009-05-15

    The enzyme linked immunospot (ELISpot) assay is a fundamental tool in cellular immunology, providing both quantitative and qualitative information on cellular cytokine responses to defined antigens. It enables the comprehensive screening of patient derived peripheral blood mononuclear cells to reveal the antigenic restriction of T-cell responses and is an emerging technique in clinical laboratory investigation of certain infectious diseases. As with all cellular-based assays, the final results of the assay are dependent on a number of technical variables that may impact precision if not highly standardised between operators. When studies that are large scale or using multiple antigens are set up manually, these assays may be labour intensive, have many manual handling steps, are subject to data and sample integrity failure and may show large inter-operator variability. Here we describe the successful automated performance of the interferon (IFN)-gamma ELISpot assay from cell counting through to electronic capture of cytokine quantitation and present the results of a comparison between automated and manual performance of the ELISpot assay. The mean number of spot forming units enumerated by both methods for limiting dilutions of CMV, EBV and influenza (CEF)-derived peptides in six healthy individuals were highly correlated (r>0.83, p<0.05). The precision results from the automated system compared favourably with the manual ELISpot and further ensured electronic tracking, increased through-put and reduced turnaround time.

  20. Development of a highly sensitive and robust Cor a 9 specific enzyme-linked immunosorbent assay for the detection of hazelnut traces.

    PubMed

    Trashin, Stanislav A; Cucu, Tatiana; Devreese, Bart; Adriaens, Annemie; De Meulenaer, Bruno

    2011-12-05

    Allergy to tree nuts represents an acute health problem. Sensitized people can be inadvertently exposed to hidden allergens resulting from cross-contamination of foods. For this reason, reliable and highly sensitive analytical methods are needed to be developed for control and labeling of food ingredients and products. In the present paper we have proposed a new allergen specific sandwich-ELISA for hazelnut operated in optical and electrochemical modes. The ELISA was based on chicken egg yolk antibodies raised against a major hazelnut allergen, Cor a 9. The developed ELISA has a limit of detection in phosphate buffer of 4 ng mL(-1). No significant cross-reactivity with peanut, wheat or other food ingredients has been detected. Extracts of blank control cookies did not show any false positive response and the limit of detection in cookies was estimated to be 0.1 μg of hazelnut protein per g of food (0.1 ppm). The ELISA protocol was successfully adapted to operate in electrochemical mode and it was applied for the detection of hazelnut traces in cookies.

  1. High Concentrations of Angiopoietin-Like Protein 4 Detected in Serum from Patients with Rheumatoid Arthritis Can Be Explained by Non-Specific Antibody Reactivity

    PubMed Central

    Makoveichuk, Elena; Ruge, Toralph; Nilsson, Solveig; Södergren, Anna

    2017-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is suggested to be a master regulator of plasma triglyceride metabolism. Our aim was to study whether the previously reported high levels of ANGPTL4 detected in serum from patients with rheumatoid arthritis (RA) by ELISA was due to any specific molecular form of this protein (oligomers, monomers or fragments). ANGPTL4 levels were first determined in serum from 68 RA patients and 43 age and sex matched control subjects and the mean values differed by a factor of 5.0. Then, ANGPTL4 was analyzed after size exclusion chromatography (SEC) of serum samples. With serum from one of the RA patients with high levels of ANGPTL4, the dominant reactivity was found in fractions corresponding to high-molecular weight proteins. In addition, a minor peak of reactivity eluting late from the column was found both in the patient and in controls. By the use of HeteroBlock®, and by careful selection of antibodies, we documented non-specific reactions for ANGPTL4 in 39% of samples from the RA patients, most likely due to cross-reactivity of the antibodies with rheumatoid factor (RF). The corresponding figure for control subjects was 6.3%. After corrections for non-specific reactions, the mean level of ANGPTL4 in serum from RA patients was still significantly higher than in control individuals (mean levels were 101±62 and 67±39 ng/ml respectively, P = 0.02). We re-analyzed samples from our previously published studies on ANGPL4 levels in patients on hemodialysis and patients with diabetes type 2. These samples did not show false positive reactions. The levels of ANGPTL4 were comparable to those detected previously. PMID:28107351

  2. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1).

  3. Fast specific field detection of RHDVb.

    PubMed

    Dalton, K P; Nicieza, I; Podadera, A; de Llano, D; Martin Alonso, J M; de Los Toyos, J R; García Ocaña, M; Vázquez-Villa, F; Velasco, B; Landeta, O; Parra, F

    2017-02-28

    This work describes a simple and rapid test for field detection of the emerging rabbit pathogen RHDVb. The assay is specific for RHDVb, showing no cross-reactivity with other RHDV types giving a specific result in under 10 min using rabbit liquid exudates or liver homogenate samples taken at necropsy.

  4. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7.

    PubMed

    Ravan, Hadi; Amandadi, Mojdeh; Sanadgol, Nima

    2016-02-01

    E. coli O157:H7 is one of the most important foodborne pathogen that causes some human illnesses such as bloody diarrhea, hemolytic-uremic syndrome, and kidney failure. We developed a loop-mediated isothermal amplification (LAMP) assay with six special primers that target a highly specific 299-bp region of the Z3276 gene for the detection of E. coli O157:H7. Among 117 bacterial strains tested in this study, positive results were only obtained from E. coli O157:H7 strains. The sensitivity level of the Z3276-LAMP assay was determined to be 5 CFU/reaction tube in pure bacterial culture. Moreover, the LAMP assay was successfully applied to artificially contaminated ground beef with a sensitivity level of 10(3) CFU/mL without pre-enrichment and 10 CFU/mL after a 4-h pre-enrichment. In conclusion, the present LAMP assay would be a useful and powerful tool for the rapid, sensitive, and specific diagnosis of E. coli O157:H7 strains in resource limited laboratories.

  5. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Brito, N M; Navickiene, S; Polese, L; Jardim, E F G; Abakerli, R B; Ribeiro, M L

    2002-05-31

    Two simple methods were developed to determine 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described.

  6. High specific heat superconducting composite

    DOEpatents

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  7. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol.

    PubMed

    Noe, Franziska; Polster, Johannes; Geithe, Christiane; Kotthoff, Matthias; Schieberle, Peter; Krautwurst, Dietmar

    2016-12-04

    The detection of key food odorants appears to be an important capability of odorant receptors. Here, thiols occupy an outstanding position among the 230 known key food odorants because of their very low odor thresholds. Members of the homologous series of 3-mercapto-2-methylalkan-1-ols have been described as onion key food odorants or food constituents and are detected at logarithmically different thresholds. 3-Mercapto-2-methylpentan-1-ol being the only key food odorant within this series also has the lowest odor threshold. Most odorants typically activate combinations of odorant receptors, which may be narrowly or broadly tuned. Consequently, a specific receptor activation pattern will define an odor quality. In contrast, here we show that just 1 of the 391 human odorant receptors, OR2M3, responded exclusively to 3-mercapto-2-methylpentan-1-ol of the 190 key food odorants tested, with a half maximal effective concentration at submicromolar concentration. Moreover, neither the Denisovan OR2M3 nor the closest OR2M3 homologs from five species did respond to this compound. This outstanding specificity of extremely narrowly tuned human OR2M3 can explain both odor qualities and odor threshold trend within a homologous series of 3-mercapto-2-methylalkan-1-ols and suggests a modern human-specific, food-related function of OR2M3 in detecting a single onion key food odorant.

  8. Specific detection by PCR of Streptococcus agalactiae in milk.

    PubMed

    Martinez, G; Harel, J; Gottschalk, M

    2001-01-01

    The aim of this study was to develop a simple and specific method for direct detection of Streptococcus agalactiae from cow's milk. The method was based on polymerase chain reaction (PCR) using species-specific and universal primers derived from the 16S rRNA gene. The amplification product was verified by restriction endonuclease digest and sequencing. Specific identification was proven on a collection of 147 S. agalactiae isolates of bovine and human origin. In addition, 17 strains belonging to different bacterial species that potentially can be found in milk samples also tested negative. The PCR developed was used for direct detection of S. agalactiae in milk, using for the first time with gram-positive bacteria the nucleic acid-binding properties of diatomaceous earth. The test, which has high specificity, high sensitivity (100 cfu/mL), and can be carried out in less than 24 h, represents an innovative diagnostic tool for the detection of S. agalactiae in milk.

  9. Molecules for Fluorescence Detection of Specific Chemicals

    NASA Technical Reports Server (NTRS)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  10. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification.

    PubMed

    Sun, Duanping; Lu, Jing; Zhong, Yuwen; Yu, Yanyan; Wang, Yu; Zhang, Beibei; Chen, Zuanguang

    2016-01-15

    Human cancer is becoming a leading cause of death in the world and the development of a straightforward strategy for early detection of cancer is urgently required. Herein, a sandwich-type electrochemical aptamer cytosensor was developed for detection of human liver hepatocellular carcinoma cells (HepG2) based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. The thiolated TLS11a aptamers were used as a selective bio-recognition element, attached to the gold nanoparticles (AuNPs) modified the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the G-quadruplex/hemin/aptamer complexes and horseradish peroxidase (HRP) immobilized on the surfaces of Au@Pd core-shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). After the target cells were captured, the hybrid nanoprobes were further assembled to form an aptamer-cell-nanoprobes sandwich-like system on the electrode surface. Then, hybrid Fe3O4/MnO2/Au@Pd nanoelectrocatalysts, G-quadruplex/hemin HRP-mimicking DNAzymes and the natural HRP enzyme efficiently catalyzed the oxidation of hydroquinone (HQ) with H2O2, amplifying the electrochemical signals and improving the detection sensitivity. This electrochemical cytosensor delivered a wide detection range of 1×10(2)-1×10(7)cellsmL(-1), high sensitivity with a low detection limit of 15cellsmL(-1), good selectivity and repeatability. Finally, an electrochemical reductive desorption method was performed to break gold-thiol bond and desorb the components on the AuNPs/GCE for regenerating the cytosensor. These results have demonstrated that the electrochemical cytosensor has the potential to be a feasible tool for cost-effective cancer cell detection in early cancer diagnosis.

  11. High specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  12. High specific activity silicon-32

    DOEpatents

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  13. Mumps virus infection in vaccinated patients can be detected by an increase in specific IgG antibodies to high titres: a retrospective study.

    PubMed

    Borgmann, S; Schwab, F; Santibanez, S; Mankertz, A

    2014-11-01

    Mumps outbreaks in highly vaccinated populations with genotype G have been reported repeatedly. Detection of these outbreaks can be difficult in a setting with relatively high vaccination coverage when acute cases of mumps are routinely diagnosed by IgM serology since this marker is not reliable for diagnosis of mumps re-infection. To learn whether diagnostic tests performed in a large private laboratory may be useful to detect mumps outbreaks retrospectively, we reviewed the results of almost 7000 mumps tests. Two groups were compared: group 1 comprised of 3438 samples from patients submitted by physicians and clinicians (it was assumed that these patients visited their doctor due to acute disease). Group 2 comprised of 3398 samples submitted from company medical officers and occupational physicians. Since these patients usually attend for routine check-ups and certification of immunity to vaccine-preventable diseases, these samples comprised a control group. From July 2010 to May 2011, a mumps virus outbreak with more than 300 cases occurred in Bavaria, Southeast Germany. Our study includes samples received for serological mumps tests from January 2009 until December 2011 (36 months). The two groups were analysed with regard to the number of IgM-positive cases per month and the level of IgG titre. We found a marked increase for both parameters in group 1 during the time of the outbreak, while the samples submitted by the occupational medical physicians did not display significant alterations. These parameters reflect the outbreak with high accuracy, indicating that a retrospective analysis of IgG titres may be a useful tool for detection of mumps outbreaks when, as was the case in Germany, (i) a nationwide notification system has not been implemented and (ii) a highly vaccinated population is affected.

  14. Soft Salt-Mannitol Agar–Cloxacillin Test: a Highly Specific Bedside Screening Test for Detection of Colonization with Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Mir, Nuria; Sánchez, Miguel; Baquero, Fernando; López, Blanca; Calderón, Celia; Cantón, Rafael

    1998-01-01

    The early detection of colonization with methicillin-resistant Staphylococcus aureus (MRSA) of patients in intensive-care units is an essential step in the strategy for preventing MRSA epidemics. In this study, tubes containing soft salt-mannitol agar with cloxacillin (6 μg/ml) (SSMAC) were prepared for inoculation of clinical samples at patients’ bedsides by personnel of an intensive-care unit. A total of 1,914 swabs from different sample sites of 81 patients were dipped into SSMAC tubes, and after 24 h of incubation (in an incubator located near the intensive-care unit), an evident color change was considered by the intensive-care-unit personnel to be an MRSA alarm. Sixty-three (3.3%) SSMAC tubes were considered positive for MRSA, 1,827 (95.4%) were considered negative, and 24 (1.2%) were considered intermediate. Compared with values for parallel conventional surveillance cultures for MRSA, excluding tubes with intermediate results, the SSMAC test had a sensitivity of 72.7%, a specificity of 99.2%, a positive predictive value of 76.2%, and a negative predictive value of 99.0%. When intermediate tubes were considered positive, the corresponding values were 75.3, 98.2, 63.2, and 99.0%, respectively. The sensitivity and specificity values of the test to identify MRSA-colonized patients were 89.4 and 100%, respectively. Oropharyngeal and naris specimens were the most reliable samples for MRSA detection. False-negative results were frequent in bronchial aspirates with low (<103 to 106 CFU/ml) MRSA counts. False-positive results were mainly due to methicillin-resistant Staphylococcus haemolyticus. The SSMAC tube is a useful, rapid, and inexpensive tool for the early identification of MRSA-colonized patients and, consequently, for the implementation of measures to prevent the spread of MRSA. PMID:9542922

  15. Detection of RNA from a Novel West Nile-like Virus and High Prevalence of an Insect-specific Flavivirus in Mosquitoes in the Yucatan Peninsula of Mexico

    PubMed Central

    Farfan-Ale, Jose A.; Loroño-Pino, Maria A.; Garcia-Rejon, Julian E.; Hovav, Einat; Powers, Ann M.; Lin, Ming; Dorman, Karin S.; Platt, Kenneth B.; Bartholomay, Lyric C.; Soto, Victor; Beaty, Barry J.; Lanciotti, Robert S.; Blitvich, Bradley J.

    2009-01-01

    As part of our ongoing surveillance efforts for West Nile virus (WNV) in the Yucatan Peninsula of Mexico, 96,687 mosquitoes collected from January through December 2007 were assayed by virus isolation in mammalian cells. Three mosquito pools caused cytopathic effect. Two isolates were orthobunyaviruses (Cache Valley virus and Kairi virus) and the identity of the third infectious agent was not determined. A subset of mosquitoes was also tested by reverse transcription–polymerase chain reaction (RT-PCR) using WNV-, flavivirus-, alphavirus-, and orthobunyavirus-specific primers. A total of 7,009 Culex quinquefasciatus in 210 pools were analyzed. Flavivirus RNA was detected in 146 (70%) pools, and all PCR products were sequenced. The nucleotide sequence of one PCR product was most closely related (71–73% identity) with homologous regions of several other flaviviruses, including WNV, St. Louis encephalitis virus, and Ilheus virus. These data suggest that a novel flavivirus (tentatively named T’Ho virus) is present in Mexico. The other 145 PCR products correspond to Culex flavivirus, an insect-specific flavivirus first isolated in Japan in 2003. Culex flavivirus was isolated in mosquito cells from approximately one in four homogenates tested. The genomic sequence of one isolate was determined. Surprisingly, heterogeneous sequences were identified at the distal end of the 5′ untranslated region. PMID:19141845

  16. Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control.

    PubMed

    Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won

    2017-04-13

    In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily.

  17. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  18. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  19. MassARRAY Spectrometry Is More Sensitive than PreTect HPV-Proofer and Consensus PCR for Type-Specific Detection of High-Risk Oncogenic Human Papillomavirus Genotypes in Cervical Cancer▿

    PubMed Central

    Basu, Partha; Chandna, Puneet; Bamezai, R. N. K.; Siddiqi, Maqsood; Saranath, Dhananjaya; Lear, Adrian; Ratnam, Sam

    2011-01-01

    Type-specific detection of human papillomavirus (HPV) is indicated for better risk stratification and clinical management of women testing positive for HPV and for epidemiologic surveillance. MassARRAY spectrometry (MassARRAY; Sequenom) is a novel method for type-specific detection of 15 high-risk oncogenic HPV types: HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, -66, -68, and -73. PreTect HPV-Proofer (Proofer; Norchip) is a type-specific assay that detects E6/E7 mRNA from five high-risk oncogenic HPV types: HPV-16, -18, -31, -33, and -45. The performance of these tests for type-specific identification of HPV was assessed with cervical specimens from 192 cases of cervical cancer in comparison with consensus MY09/MY11 PCR followed by nucleotide sequencing (consensus PCR). The overall HPV detection rates were 94.8% (95% confidence interval [CI], 91.7, 97.9), 83.3% (95% CI, 78.1, 88.5), and 86.5% (95% CI, 81.7, 91.3) for MassARRAY, Proofer, and consensus PCR, respectively. All tests were negative in six (3.1%) of the 192 cases. Considering only the specimens that contained at least one of the five types targeted by Proofer, the detection rates were 96.6%, 91.4%, and 86.9% for MassARRAY, Proofer, and consensus PCR, respectively. MassARRAY detected multiple infections in 14.1%, Proofer detected multiple infections in 3.6%, and consensus PCR failed to detect any multiple infections. The agreement was highest at 86.0% (kappa = 0.76) between MassARRAY and Proofer and lowest at 81.8% (kappa = 0.69) between Proofer and consensus PCR. In conclusion, MassARRAY is a highly sensitive and accurate method for type-specific detection of oncogenic HPV in cervical cancer, with Proofer showing impressive performance. PMID:21813716

  20. MassARRAY spectrometry is more sensitive than PreTect HPV-Proofer and consensus PCR for type-specific detection of high-risk oncogenic human papillomavirus genotypes in cervical cancer.

    PubMed

    Basu, Partha; Chandna, Puneet; Bamezai, R N K; Siddiqi, Maqsood; Saranath, Dhananjaya; Lear, Adrian; Ratnam, Sam

    2011-10-01

    Type-specific detection of human papillomavirus (HPV) is indicated for better risk stratification and clinical management of women testing positive for HPV and for epidemiologic surveillance. MassARRAY spectrometry (MassARRAY; Sequenom) is a novel method for type-specific detection of 15 high-risk oncogenic HPV types: HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, -66, -68, and -73. PreTect HPV-Proofer (Proofer; Norchip) is a type-specific assay that detects E6/E7 mRNA from five high-risk oncogenic HPV types: HPV-16, -18, -31, -33, and -45. The performance of these tests for type-specific identification of HPV was assessed with cervical specimens from 192 cases of cervical cancer in comparison with consensus MY09/MY11 PCR followed by nucleotide sequencing (consensus PCR). The overall HPV detection rates were 94.8% (95% confidence interval [CI], 91.7, 97.9), 83.3% (95% CI, 78.1, 88.5), and 86.5% (95% CI, 81.7, 91.3) for MassARRAY, Proofer, and consensus PCR, respectively. All tests were negative in six (3.1%) of the 192 cases. Considering only the specimens that contained at least one of the five types targeted by Proofer, the detection rates were 96.6%, 91.4%, and 86.9% for MassARRAY, Proofer, and consensus PCR, respectively. MassARRAY detected multiple infections in 14.1%, Proofer detected multiple infections in 3.6%, and consensus PCR failed to detect any multiple infections. The agreement was highest at 86.0% (kappa = 0.76) between MassARRAY and Proofer and lowest at 81.8% (kappa = 0.69) between Proofer and consensus PCR. In conclusion, MassARRAY is a highly sensitive and accurate method for type-specific detection of oncogenic HPV in cervical cancer, with Proofer showing impressive performance.

  1. [Detecting high risk pregnancy].

    PubMed

    Doret, Muriel; Gaucherand, Pascal

    2009-12-20

    Antenatal care is aiming to reduce maternal land foetal mortality and morbidity. Maternal and foetal mortality can be due to different causes. Their knowledge allows identifying pregnancy (high risk pregnancy) with factors associated with an increased risk for maternal and/or foetal mortality and serious morbidity. Identification of high risk pregnancies and initiation of appropriate treatment and/or surveillance should improve maternal and/or foetal outcome. New risk factors are continuously described thanks to improvement in antenatal care and development in biology and cytopathology, increasing complexity in identifying high risk pregnancies. Level of risk can change all over the pregnancy. Ideally, it should be evaluated prior to the pregnancy and at each antenatal visit. Clinical examination is able to screen for intra-uterin growth restriction, pre-eclampsia, threatened for preterm labour; ultrasounds help in the diagnosis of foetal morphological anomalies, foetal chromosomal anomalies, placenta praevia and abnormal foetal growth; biological exams are used to screen for pre-eclampsia, gestational diabetes, trisomy 21 (for which screening method just changed), rhesus immunisation, seroconversion for toxoplasmosis or rubeola, unknown infectious disease (syphilis, hepatitis B, VIH). During pregnancy, most of the preventive strategies have to be initiated during the first trimester or even before conception. Prevention for neural-tube defects, neonatal hypocalcemia and listeriosis should be performed for all women. On the opposite, some measures are concerning only women with risk factors such as prevention for toxoplasmosis, rhesus immunization (which recently changed), tobacco complications and pre-eclampsia and intra-uterine growth factor restriction.

  2. Sensitive, fast, and specific immunoassays for methyltestosterone detection.

    PubMed

    Kong, Na; Song, Shanshan; Peng, Juan; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai

    2015-04-29

    An indirect competitive enzyme-linked immunosorbent assay (icELISA) and an immunochromatographic strip assay using a highly specific monoclonal antibody, were developed to detect methyltestosterone (MT) residues in animal feed. The optimized icELISA had a half-inhibition concentration value of 0.26 ng/mL and a limit of detection value of 0.045 ng/mL. There was no cross-reactivity with eight analogues, revealing high specificity for MT. Based on icELISA results, the recovery rate of MT in animal feed was 82.4%-100.6%. The results were in accordance with those obtained by gas chromatography-mass spectrometry. The developed immunochromatographic strip assay, as the first report for MT detection, had a visual cut-off value of 1 ng/mL in PBS, 2.5 ng/g in fish feed, and 2.5 ng/g in pig feed. Therefore, these immunoassays are useful and fast tools for MT residue detection in animal feed.

  3. Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection

    PubMed Central

    Kong, Na; Song, Shanshan; Peng, Juan; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai

    2015-01-01

    An indirect competitive enzyme-linked immunosorbent assay (icELISA) and an immunochromatographic strip assay using a highly specific monoclonal antibody, were developed to detect methyltestosterone (MT) residues in animal feed. The optimized icELISA had a half-inhibition concentration value of 0.26 ng/mL and a limit of detection value of 0.045 ng/mL. There was no cross-reactivity with eight analogues, revealing high specificity for MT. Based on icELISA results, the recovery rate of MT in animal feed was 82.4%–100.6%. The results were in accordance with those obtained by gas chromatography-mass spectrometry. The developed immunochromatographic strip assay, as the first report for MT detection, had a visual cut-off value of 1 ng/mL in PBS, 2.5 ng/g in fish feed, and 2.5 ng/g in pig feed. Therefore, these immunoassays are useful and fast tools for MT residue detection in animal feed. PMID:25938198

  4. [Prostate histopathology of NIH category IV prostatitis detected by sextant prostate needle biopsy from the patients with high prostatic specific antigen].

    PubMed

    Shimomura, Tatsuya; Kiyota, Hiroshi; Takahashi, Hiroyuki; Madarame, Jun; Kimura, Takahiro; Onodera, Shouichi

    2003-08-01

    Asymptomatic prostatitis is classified as category IV in NIH classification of prostatitis syndrome (1999). No report concerning this category has been present. We investigated this category histopathologically and clinically, in order to clarify the histopathological distribution and its correlation to the clinical features, in this study. Among 785 patients who were suspected prostate cancer because of their high prostatic specific antigen (PSA) values and to have a sextant prostate needle biopsy was performed between January, 1996 and December, 2000, 88 patients (11.2%) were diagnosed as NIH category IV prostatitis (asymptomatic prostatitis). We observed all pathological specimens stained with Hematoxylin-Eosine, and classified them into subtypes according to the classification criteria for prostatitis defined by True et al. (1999). We also investigated the relationship between histopathological distribution and clinical features such as PSA values, PSA density, the incidence of pyuria or bacteriuria. In the histopathological study, grade distributions were 12.5% (11/88) in mild, 71.6% (63/88) in moderate, and 15.9% (14/88) in severe. Location distributions were 2.3% (2/88) in glandular, 68.2% (60/88) in periglandular, and 29.5% (26/88) in stromal. No relationship between these subtypes and clinical features was recognized statistically. However, 7 patients (7.95%) were diagnosed as prostate cancers, later. Pyuria was found in 29.1% (23/79). Bacteriuria was present in 14.3% (11/77). Isolated bacteria were 4 strains of Enterococcus faccalis, 2 strains of each of Pseudomonas aeruginosa and Staphylococcus aureus, and one strain of each of Escherichia coli, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Staphylococcus haemolyticus, and Staphylococcus epidermidis. Gram positive rod, and Candida sp. No relationship between these subtypes and bacterial species was recognized. These results indicated that the incidence of NIII category IV prostatits

  5. Pyrosequencing-based validation of a simple cell-suspension polymerase chain reaction assay for Campylobacter with application of high-processivity polymerase and novel internal amplification controls for rapid and specific detection.

    PubMed

    Oakley, Brian B; Line, J Eric; Berrang, Mark E; Johnson, Jessica M; Buhr, R Jeff; Cox, Nelson A; Hiett, Kelli L; Seal, Bruce S

    2012-02-01

    Although Campylobacter is an important food-borne human pathogen, there remains a lack of molecular diagnostic assays that are simple to use, cost-effective, and provide rapid results in research, clinical, or regulatory laboratories. Of the numerous Campylobacter assays that do exist, to our knowledge none has been empirically tested for specificity using high-throughput sequencing. Here we demonstrate the power of next-generation sequencing to determine the specificity of a widely cited Campylobacter-specific polymerase chain reaction (PCR) assay and describe a rapid method for direct cell suspension PCR to quickly and easily screen samples for Campylobacter. We present a specific protocol which eliminates the need for time-consuming and expensive genomic DNA extractions and, using a high-processivity polymerase, demonstrate conclusive screening of samples in <1 h. Pyrosequencing results show the assay to be extremely (>99%) sensitive, and spike-back experiments demonstrated a detection threshold of <10(2) CFU mL(-1). Additionally, we present 2 newly designed broad-range bacterial primer sets targeting the 23S rRNA gene that have wide applicability as internal amplification controls. Empirical testing of putative taxon-specific assays using high-throughput sequencing is an important validation step that is now financially feasible for research, regulatory, or clinical applications.

  6. Linear-After-The-Exponential (LATE)-PCR: Primer design criteria for high yields of specific single-stranded DNA and improved real-time detection

    PubMed Central

    Pierce, Kenneth E.; Sanchez, J. Aquiles; Rice, John E.; Wangh, Lawrence J.

    2005-01-01

    Traditional asymmetric PCR uses conventional PCR primers at unequal concentrations to generate single-stranded DNA. This method, however, is difficult to optimize, often inefficient, and tends to promote nonspecific amplification. An alternative approach, Linear-After-The-Exponential (LATE)-PCR, solves these problems by using primer pairs deliberately designed for use at unequal concentrations. The present report systematically examines the primer design parameters that affect the exponential and linear phases of LATE-PCR amplification. In particular, we investigated how altering the concentration-adjusted melting temperature (Tm) of the limiting primer (TmL) relative to that of the excess primer (TmX) affects both amplification efficiency and specificity during the exponential phase of LATE-PCR. The highest reaction efficiency and specificity were observed when TmL - TmX ≥ 5°C. We also investigated how altering TmX relative to the higher Tm of the double-stranded amplicon (TmA) affects the rate and extent of linear amplification. Excess primers with TmX closer to TmA yielded higher rates of linear amplification and stronger signals from a hybridization probe. These design criteria maximize the yield of specific single-stranded DNA products and make LATE-PCR more robust and easier to implement. The conclusions were validated by using primer pairs that amplify sequences within the cystic fibrosis transmembrane regulator (CFTR) gene, mutations of which are responsible for cystic fibrosis. PMID:15937116

  7. Monodispersed nanoparticles of conjugated polyelectrolyte brush with high charge density for rapid, specific and label-free detection of tumor marker.

    PubMed

    Liu, Xingfen; Shi, Lin; Zhang, Zhiyong; Fan, Quli; Huang, Yanqin; Su, Shao; Fan, Chunhai; Wang, Lianhui; Huang, Wei

    2015-03-21

    Highly charged nanoparticles of a conjugated polyelectrolyte brush were used to sense the human α-fetoprotein (AFP) by observing selective superquenching in several minutes. The unique property of nanoparticles that the self-aggregation causes an unchanged or enhanced fluorescence can reduce the interference from non-target substance significantly.

  8. Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS).

    PubMed

    Cao, Biyun; He, Guangzhao; Yang, Hong; Chang, Huafang; Li, Shuqun; Deng, Anping

    2013-10-15

    Phenylethanolamine A (PA) is a new emerged β-adrenergic agonist illegally used as feed additives for growth promotion. In this study, a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of PA in tissue and feed samples was developed and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). By reduction of nitryl group to amino group, the PA derivative was synthesized and coupled to carrier proteins with diazobenzidine method. The antisera obtained from four immunized rabbits were characterized in terms of sensitivity and specificity. All antisera displayed high sensitivity with IC50 values lower than 0.48 ng mL(-1). The most sensitive ELISA was established with IC50 and limit of detection (LOD) values of 0.049 ng mL(-1) and 0.003 ng mL(-1), respectively. The cross-reactivity (CR) values of the antisera with three frequently used β-adrenergic agonists (clenbuterol, salbutamol and ractopamine) were lesser than 0.39%; there was no CR of the antisera with other six compounds including two structurally related substances (isoproterenol, phenylephrine). To investigate the accuracy and precision of the assay, swine kidney, liver, meat and feed samples were fortified with PA at different content and analyzed by ELISA. Acceptable recovery rates of 92.2-113.7% and intra-assay coefficients of variation of 3.8-10.9% (n=3) were achieved. Seven spiked samples were simultaneously analyzed by ELISA and LC-MS/MS. There was a high correlation coefficient of 0.9956 (n=7) between the two methods. The proposed ELISA proven to be a feasible quantitative/screening method for PA analysis in tissue and feed samples with the properties of high sensitivity and specificity, high sample throughput and low expensive.

  9. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells.

    PubMed

    Wu, Ping; Gao, Yang; Zhang, Hui; Cai, Chenxin

    2012-09-18

    The aptamer (S2.2)-guided Ag-Au nanostructures (aptamer-Ag-Au) have been synthesized by photoreduction and validated by ultraviolet-visible light (UV-vis) spectra and transmission electron microscopy (TEM) images. Differential interference contrast (DIC), fluorescence, and TEM images, and surface-enhanced Raman scattering (SERS) spectra indicated that the aptamer-Ag-Au nanostructures can target the surface of human breast cancer cells (MCF-7) with high affinity and specificity. This targeting is completed via the specific interaction between S2.2 aptamer (a 25-base oligonucleotide) and MUC1 mucin (a large transmembrane glycoprotein, whose expression increased at least 10-fold at MCF-7 cells in primary and metastatic breast cancers). However, the nanostructures cannot target HepG2 (human liver cancer cells) or MCF-10A cells (human normal breast epithelial cells), because these cells are MUC1-negative expressed. Moreover, the synthesized nanostructures exhibited a high SERS activity. Based on these results, a new assay for specifically detecting MCF-7 cells has been proposed. This assay can also discriminate MCF-7 cells from MCF-10A cells and different cancer cell lines, such as HepG2 cells. In addition, the aptamer-Ag-Au nanostructures have a high capability of adsorpting near-infrared (NIR) irradiation and are able to perform photothermal therapy of MCF-7 cells at a very low irradiation power density (0.25 W/cm(2)) without destroying the healthy cells and the surrounding normal tissue. Therefore, the proposed assay is significant for the diagnosis of tumors in their nascent stage. The synthesized nanostructures could offer a protocol to specifically recognize and sensitively detect the cancer cells, and would have great potential for application in the photothermal therapy of the cancers.

  10. Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor.

    PubMed

    Zhang, Rong; Wang, Yong; Yu, Li-Ping

    2014-09-15

    A new approach for specific and ultrasensitive measurement of ciprofloxacin has been developed by integrating ternary complexes into responsive photonic crystal (RPC). Tryptophan was first immobilized within the polyacrylamide hydrogel substrates of RPC. The determination of ciprofloxacin was via the existence of zinc(II) ions that function as a 'bridge' to form specific tryptophan-zinc(II)-ciprofloxacin complexes step by step, which resulted in a stepwise red-shift of the diffraction wavelength. A maximum wavelength shift from 798 to 870 nm for ciprofloxacin was observed when the RPC film was immersed in 10(-4)M ciprofloxacin. A linear relationship has been obtained between the Δλ of diffraction peak and logarithm of ciprofloxacin concentration at pH 5.0 in the range of 10(-10) to 10(-4)M. And the least detectable concentration in present work is about 5 × 10(-11)M. The results demonstrated that the as-designed ternary complexes-based RPC sensor exhibited high sensitivity, satisfactory specificity and excellent recoverability for sensing of ciprofloxacin in aqueous media and were validated by detecting ciprofloxacin in the eye-drop sample.

  11. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres.

    PubMed

    Dong, Yu-Xiang; Cao, Jun-Tao; Liu, Yan-Ming; Ma, Shu-Hui

    2017-05-15

    Herein, a novel photoelectrochemical (PEC) immunosensing platform for highly sensitive detection of prostate specific antigen (PSA) was constructed based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated dopamine-melanin nanospheres (AuNPs-Dpa-melanin CNSs). In this proposal, CdSe sensitized TiO2 was used as photoelectrochemical matrix and the functional AuNPs-Dpa-melanin CNSs were used as signal quenching element. The dual quenching of the gold nanoparticles decorated Dpa-melanin CNSs to the CdSe sensitized TiO2 was achieved as follows: (i) the strong energy transfer between the CdSe quantum dots (QDs) and Au NPs diminishes the photocurrent signal of CdSe QDs; (ii) the steric hindrance of AuNPs-Dpa-melanin CNSs partly obstructs the diffusion of the electron donor, i.e. ascorbic acid, to the surface of photoelectrode, which make the depleting efficiency of the photogenerated holes decrease, leading to a declined photocurrent intensity. On the basis of the dual quenching effect of AuNPs-Dpa-melanin CNSs, a competitive immunosensing platform for PSA was designed upon the specific binding of anti-PSA to PSA and PSA functionalized AuNPs-Dpa-melanin CNSs conjugates. This proposed immunosensor possesses wide linear range from 1.0×10(-11)gmL(-1) to 1.0×10(-7)gmL(-1) with the detection limit of 2.7pgmL(-1). Moreover, the applicability of the present method was demonstrated in the determination of PSA in human serum. The strategy creates new paradigms for PSA and other tumor markers detection and demonstrates high sensitivity, good specificity, and satisfied applicability in complex biological samples.

  12. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    PubMed

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  13. The establishment of a highly sensitive ELISA for detecting bovine serum albumin (BSA) based on a specific pair of monoclonal antibodies (mAb) and its application in vaccine quality control.

    PubMed

    Zhang, Kui; Song, Chaojun; Li, Qi; Li, Yongming; Sun, Yuanjie; Yang, Kun; Jin, Boquan

    2010-08-01

    A highly sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for quantifying BSA was established, based on two mAbs that recognize different epitopes on a BSA molecule. Our ELISA system was used to detect BSA concentrations in several vaccines, such as the MMR (measles, mumps and rubella) vaccine, hepatitis A vaccine, and hepatitis B vaccine. Moreover, we compared the mAb ELISA and the present pAb ELISA by detecting BSA standards and bovine serum samples. The results showed that our ELISA system was in good accordance with the pAb ELISA system. A pair of mAbs (FMU-BSA NO.6 and FMU-BSA NO.11) from 11 murine hybridomas secreting BSA-specific mAbs was selected for the development of the sandwich ELISA. The detection limit of this quantitative assay reaches 0.38 μg/L, which is 10-fold more sensitive than those previously reported. The quantitative range of BSA concentration is from 0.5 to 40 μg/L, which is comparable to the currently used polyclonal antibody (pAb) ELISA. Intra-assay and inter-assay coefficient variations are both lower than 10% at the three concentrations used (10, 20, and 40 μg/L). Thus, the mAb sandwich ELISA developed herein may provide a stable, precise, and highly sensitive method for quantifying BSA, which is very useful in the quality control of some vaccines.

  14. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    PubMed

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  15. SPECIES-SPECIFIC DETECTION OF HYDROCARBON UTILIZING BACTERIA. (R825810)

    EPA Science Inventory

    Rapid detection and quantitative assessment of specific microbial species in environmental samples is desirable for monitoring changes in ecosystems and for tracking natural or introduced microbial species during bioremediation of contaminated sites. In the interests of develo...

  16. Detection of specific immunoglobulin E in patients with toxoplasmosis.

    PubMed Central

    Pinon, J M; Toubas, D; Marx, C; Mougeot, G; Bonnin, A; Bonhomme, A; Villaume, M; Foudrinier, F; Lepan, H

    1990-01-01

    An immunocapture assay was developed to detect Toxoplasma gondii-specific immunoglobulin E (IgE) in sera from adults with acute acquired infection or reactivation and from babies with congenital toxoplasmosis. The components of this assay were monoclonal antibody to human IgE, samples from patients, and T. gondii tachyzoites treated with Formalin. When T. gondii-specific IgE antibodies were present, visually detectable agglutination occurred. Sera, umbilical cord blood, fetal blood, cerebrospinal fluid, and amniotic fluid were tested by this method. Specific IgE antibodies were detected in sera from 25 (86%) of 29 adults who developed specific IgG antibody during pregnancy or had specific IgA and IgM antibodies. Specific IgE was present early during infection, at the time that IgM antibodies were present, and slightly preceding the presence of specific IgA antibodies. In 23 patients tested serially, IgE antibodies never persisted for longer than 4 months. No nonspecific anti-T. gondii IgE was detected in sera from uninfected individuals. Maternal IgE antibodies did not cross the placenta. In sera of patients with congenital toxoplasmosis, specific IgE antibodies were found at birth, during the first year of life, and during immunologic recrudescence following discontinuation of pyrimethamine-sulfonamide therapy. The IgE immunocapture assay is simple to perform. It is especially useful for determining when T. gondii was acquired by recently infected pregnant women. PMID:2203811

  17. Ferrocene-graphene sheets for high-efficiency quenching of electrochemiluminescence from Au nanoparticles functionalized cadmium sulfide flower-like three dimensional assemblies and sensitive detection of prostate specific antigen.

    PubMed

    Yang, Jiu-Jun; Cao, Jun-Tao; Wang, Hui; Liu, Yan-Ming; Ren, Shu-Wei

    2017-05-15

    A signal-switchable electrochemiluminescence (ECL) aptasensor was presented for sensitive prostate specific antigen (PSA) assay using ferrocene-graphene sheets (Fc-GNs) for high-efficiency quenching of ECL from Au nanoparticles functionalized cadmium sulfide flower-like three dimensional (3D) assemblies (Au-CdS flower-like 3D assemblies). Au-CdS flower-like 3D assemblies were synthesized and employed as luminophore, exhibiting strong and stable ECL intensity, and followed by assembling captured DNA (cDNA) and hybridizing it with half of base sequence of PSA aptamer on the Au-CdS flower-like 3D assemblies modified electrode. The remaining part of the non-complementary base of the aptamer could preferentially adsorb GN with the signal switched "off" state. While in the presence of the PSA, the binding of PSA with aptamer caused desorption of aptamer from the surface of Fc-GNs and was then released from electrode surface, thus allowing the ECL signal enhancement. With the transformation of luminescence signal from "off" to "on", the aptasensor displays high sensitivity for PSA detection with a linear range from 1pgmL(-1) to 25ngmL(-1) and a detection limit of 0.38pgmL(-1)S/N=3). Moreover, this developed method could be successfully applied to the determination of PSA in human serum samples with recoveries of 85.8-104.0%, suggesting great potential applications in biochemical analysis.

  18. Design of a New Fluorescent Oligonucleotide-Based Assay for a Highly Specific Real-Time Detection of Apurinic/Apyrimidinic Site Cleavage by Tyrosyl-DNA Phosphodiesterase 1.

    PubMed

    Lebedeva, Natalia A; Anarbaev, Rashid O; Kupryushkin, Maxim S; Rechkunova, Nadejda I; Pyshnyi, Dmitrii V; Stetsenko, Dmitry A; Lavrik, Olga I

    2015-10-21

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) promotes catalytic scission of a phosphodiester bond between the 3'-end of DNA and the hydroxyl group of a tyrosine residue, as well as cleaving off a variety of other 3'-terminal phosphate-linked DNA substituents. We have shown recently that Tdp1 can initiate an apurinic/apyrimidinic (AP) site repair pathway that is independent from the one mediated by AP endonuclease 1 (APE1). Until recently, there was no method available of tracking the AP-site cleaving activity of Tdp1 by real-time fluorescence assay. In the present study we demonstrate a highly specific real-time detection of the AP-site cleaving activity of Tdp1 which allows one to distinguish it from the activity of APE1 by using a short hairpin oligonucleotide with a 1,12-dodecanediol loop, a 5'-fluorophore, and a 3'-quencher. Specific phosphodiesterase activity of Tdp1, which is usually able to remove quencher from the 3'-end of DNA, was suppressed in our approach by introducing a noncleavable phosphate group mimic between the 3'-end and the quencher. As a nondigestible 3'-phosphate analogue, we have used a new uncharged tetramethyl phosphoryl guanidine (Tmg) group, which is resistant to 3'-phosphodiesterase cleavage.

  19. Development and characterization of a highly specific and sensitive SYBR green reverse transcriptase PCR assay for detection of the 2009 pandemic H1N1 influenza virus on the basis of sequence signatures.

    PubMed

    Medina, Rafael A; Rojas, Mark; Tuin, Astrid; Huff, Stephen; Ferres, Marcela; Martinez-Valdebenito, Constanza; Godoy, Paula; García-Sastre, Adolfo; Fofanov, Yuriy; SantaLucia, John

    2011-01-01

    The emergence and rapid spread of the 2009 H1N1 pandemic influenza virus showed that many diagnostic tests were unsuitable for detecting the novel virus isolates. In most countries the probe-based TaqMan assay developed by the U.S. Centers for Disease Control and Prevention was used for diagnostic purposes. The substantial sequence data that became available during the course of the pandemic created the opportunity to utilize bioinformatics tools to evaluate the unique sequence properties of this virus for the development of diagnostic tests. We used a comprehensive computational approach to examine conserved 2009 H1N1 sequence signatures that are at least 20 nucleotides long and contain at least two mismatches compared to any other known H1N1 genome. We found that the hemagglutinin (HA) and neuraminidase (NA) genes contained sequence signatures that are highly conserved among 2009 H1N1 isolates. Based on the NA gene signatures, we used Visual-OMP to design primers with optimal hybridization affinity and we used ThermoBLAST to minimize amplification artifacts. This procedure resulted in a highly sensitive and discriminatory 2009 H1N1 detection assay. Importantly, we found that the primer set can be used reliably in both a conventional TaqMan and a SYBR green reverse transcriptase (RT)-PCR assay with no loss of specificity or sensitivity. We validated the diagnostic accuracy of the NA SYBR green assay with 125 clinical specimens obtained between May and August 2009 in Chile, and we showed diagnostic efficacy comparable to the CDC assay. Our approach highlights the use of systematic computational approaches to develop robust diagnostic tests during a viral pandemic.

  20. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  1. Production of high specific activity silicon-32

    SciTech Connect

    Phillips, D.R.; Brzezinski, M.A.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  2. Research on High-Specific-Heat Dielectrics

    DTIC Science & Technology

    1990-01-31

    wellp as related thermodynamic properties , we infer the following conclusions: 1. The exceptionally high C peaks for ZnCr204 andp 2 CdCr204 in the 2...which determine the electric, magnetic, and thermodynamic properties of the system. In addition, we have found from this microscopic analysis that... properties of this lattice will therefore be dominated by the properties of the cluster. The 3 thermodynamic properties such as the energy, the specific

  3. Patient-Specific Early Seizure Detection from Scalp EEG

    PubMed Central

    Minasyan, Georgiy R.; Chatten, John B.; Chatten, Martha Jane; Harner, Richard N.

    2010-01-01

    Objective Develop a method for automatic detection of seizures prior to or immediately after clinical onset using features derived from scalp EEG. Methods This detection method is patient-specific. It uses recurrent neural networks and a variety of input features. For each patient we trained and optimized the detection algorithm for two cases: 1) during the period immediately preceding seizure onset, and 2) during the period immediately following seizure onset. Continuous scalp EEG recordings (duration 15 – 62 h, median 25 h) from 25 patients, including a total of 86 seizures, were used in this study. Results Pre-onset detection was successful in 14 of the 25 patients. For these 14 patients, all of the testing seizures were detected prior to seizure onset with a median pre-onset time of 51 sec and false positive rate was 0.06/h. Post-onset detection had 100% sensitivity, 0.023/hr false positive rate and median delay of 4 sec after onset. Conclusions The unique results of this study relate to pre-onset detection. Significance Our results suggest that reliable pre-onset seizure detection may be achievable for a significant subset of epilepsy patients without use of invasive electrodes. PMID:20461014

  4. Detection and Description of Soils with Specific Nematode Suppressiveness

    PubMed Central

    Westphal, Andreas

    2005-01-01

    Soils with specific suppressiveness to plant-parasitic nematodes are of interest to define the mechanisms that regulate population density. Suppressive soils prevent nematodes from establishing and from causing disease, and they diminish disease severity after initial nematode damage in continuous culturing of a host. A range of non-specific and specific soil treatments, followed by infestation with a target nematode, have been employed to identify nematode-suppressive soils. Biocidal treatments, soil transfer tests, and baiting approaches together with observations of the plant-parasitic nematode in the root zone of susceptible host plants have improved the understanding of nematode-suppressive soils. Techniques to demonstrate specific soil suppressiveness against plant-parasitic nematodes are compared in this review. The overlap of studies on soil suppressiveness with recent advances in soil health and quality is briefly discussed. The emphasis is on methods (or criteria) used to detect and identify soils that maintain specific soil suppressiveness to plant-parasitic nematodes. While biocidal treatments can detect general and specific soil suppressiveness, soil transfer studies, by definition, apply only to specific soil suppressiveness. Finally, potential strategies to exploit suppressive soils are presented. PMID:19262851

  5. Chromosome-specific staining to detect genetic rearrangements

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  6. Wp specific methylation of highly proliferated LCLs

    SciTech Connect

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman . E-mail: suman@cha.ac.kr

    2007-06-29

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

  7. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    SciTech Connect

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J

    2009-03-16

    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  8. Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?

    NASA Astrophysics Data System (ADS)

    Vanderbilt, V. C.; Daughtry, C. S.

    2011-12-01

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.

  9. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  10. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  11. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  12. Mechanisms of Visual Threat Detection in Specific Phobia

    PubMed Central

    Weierich, Mariann R.; Treat, Teresa A.

    2014-01-01

    People with anxiety or stress-related disorders attend differently to threat-relevant compared with non-threat stimuli, yet the temporal mechanisms of differential allocation of attention are not well-understood. We investigated two independent mechanisms of temporal processing of visual threat by comparing spider-phobic and non-fearful participants using a rapid serial visual presentation task. Consistent with prior literature, spider phobics, but not non-fearful controls, displayed threat-specific facilitated detection of spider stimuli relative to negative stimuli and neutral stimuli. Further, signal detection analyses revealed that facilitated threat detection in spider-phobic participants was driven by greater sensitivity to threat stimulus features and a trend toward a lower threshold for detecting spider stimuli. However, phobic participants did not display reliably slowed temporal disengagement from threat-relevant stimuli. These findings advance our understanding of threat feature processing that might contribute to the onset and maintenance of symptoms in specific phobia and disorders that involve visual threat information more generally. PMID:25251896

  13. Mechanisms of visual threat detection in specific phobia.

    PubMed

    Weierich, Mariann R; Treat, Teresa A

    2015-01-01

    People with anxiety or stress-related disorders attend differently to threat-relevant compared with non-threat stimuli, yet the temporal mechanisms of differential allocation of attention are not well understood. We investigated two independent mechanisms of temporal processing of visual threat by comparing spider-phobic and non-fearful participants using a rapid serial visual presentation task. Consistent with prior literature, spider phobics, but not non-fearful controls, displayed threat-specific facilitated detection of spider stimuli relative to negative stimuli and neutral stimuli. Further, signal detection analyses revealed that facilitated threat detection in spider-phobic participants was driven by greater sensitivity to threat stimulus features and a trend towards a lower threshold for detecting spider stimuli. However, phobic participants did not display reliably slowed temporal disengagement from threat-relevant stimuli. These findings advance our understanding of threat feature processing that might contribute to the onset and maintenance of symptoms in specific phobia and disorders that involve visual threat information more generally.

  14. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  15. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors

    NASA Astrophysics Data System (ADS)

    Chen, Robert J.; Bangsaruntip, Sarunya; Drouvalakis, Katerina A.; Wong Shi Kam, Nadine; Shim, Moonsub; Li, Yiming; Kim, Woong; Utz, Paul J.; Dai, Hongjie

    2003-04-01

    Novel nanomaterials for bioassay applications represent a rapidly progressing field of nanotechnology and nanobiotechnology. Here, we present an exploration of single-walled carbon nanotubes as a platform for investigating surface-protein and protein-protein binding and developing highly specific electronic biomolecule detectors. Nonspecific binding on nanotubes, a phenomenon found with a wide range of proteins, is overcome by immobilization of polyethylene oxide chains. A general approach is then advanced to enable the selective recognition and binding of target proteins by conjugation of their specific receptors to polyethylene oxide-functionalized nanotubes. This scheme, combined with the sensitivity of nanotube electronic devices, enables highly specific electronic sensors for detecting clinically important biomolecules such as antibodies associated with human autoimmune diseases.

  16. Production of high specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  17. Detection device for high explosives

    DOEpatents

    Grey, A.E.; Partin, J.K.; Stone, M.L.; Von Wandruszka, R.M.; Reagen, W.K.; Ingram, J.C.; Lancaster, G.D.

    1992-10-20

    A portable fiber optic detector is described that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator. 5 figs.

  18. Detection device for high explosives

    DOEpatents

    Grey, Alan E.; Partin, Judy K.; Stone, Mark L.; Von Wandruszka, Ray M.; Reagen, William K.; Ingram, Jani C.; Lancaster, Gregory D.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  19. Patient specific Parkinson's disease detection for adaptive deep brain stimulation.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2015-08-01

    Continuous deep brain stimulation for Parkinson's disease (PD) patients results in side effects and shortening of the pacemaker battery life. This can be remedied using adaptive stimulation. To achieve adaptive DBS, patient customized PD detection is required due to the inconsistency associated with biomarkers across patients and time. This paper proposes the use of patient specific feature extraction together with adaptive support vector machine (SVM) classifiers to create a patient customized detector for PD. The patient specific feature extraction is obtained using the extrema of the ratio between the PD and non-PD spectra bands of each patient as features, while the adaptive SVM classifier adjusts its decision boundary until a suitable model is obtained. This yields individualised features and classifier pairs for each patient. Datasets containing local field potentials of PD patients were used to validate the method. Six of the nine patient datasets tested achieved a classification accuracy greater than 98%. The adaptive detector is suitable for realization on chip.

  20. Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser.

    PubMed

    Hachuda, Shoji; Watanabe, Takumi; Takahashi, Daichi; Baba, Toshihiko

    2016-06-13

    The detection of low-concentration biomarkers is expected to facilitate the early diagnosis of severe diseases, including malignant tumors. Using photonic crystal nanolaser sensors, we detected prostate-specific antigen (PSA) from a concentration of 1 fM, which is difficult to detect by conventional enzyme-linked immunosorbent assay. The signal intensity and stability were improved by using a surfactant (i.e., ethanolamine). Even when a contaminant such as bovine serum albumin was mixed into the PSA sample, thereby increasing the concentration of the contaminant ten billion times, it was still possible to maintain a high level of detection.

  1. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  2. PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries.

    PubMed

    Arismendi, Nolberto; Bruna, Alex; Zapata, Nelson; Vargas, Marisol

    2016-02-01

    The recently described trypanosome Lotmaria passim is currently considered the most predominant trypanosomatid in honey bees worldwide and could be a factor in honey bee declines. For a specific and quick detection of this pathogen, we developed primers based on the SSU rRNA and gGAPDH genes for the detection of L. passim in Chilean honey beehives. PCR products amplified and sequenced for these primers shared 99-100% identity with other sequences of L. passim. The designed primers were specific and we were able to detect a high prevalence (40-90%) of L. passim in bee hives distributed throughout Chile. Our described PCR-based method offers a feasible and specific detection of L. passim in any honey bee samples.

  3. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  4. High flux isotope reactor technical specifications

    SciTech Connect

    Not Available

    1982-04-01

    Technical specifications are presented concerning safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and accidents and anticipated transients.

  5. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  6. Multi-Harmony: detecting functional specificity from sequence alignment.

    PubMed

    Brandt, Bernd W; Feenstra, K Anton; Heringa, Jaap

    2010-07-01

    Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein-protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww.

  7. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    PubMed Central

    Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT

    2009-01-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539

  8. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  9. Measuring Specific Heats at High Temperatures

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  10. Can Sample-Specific Simulations Help Detect Low Base-Rate Taxonicity?

    ERIC Educational Resources Information Center

    Beach, Steven R. H.; Amir, Nader; Bau, Jinn Jonp

    2005-01-01

    The authors examined the role of the sample-specific simulations (SSS; A. M. Ruscio & J. Ruscio, 2002; J. Ruscio & A. M. Ruscio, 2004) procedure in detecting low base-rate taxa that might otherwise prove elusive. The procedure preserved key distributional characteristics for moderate to high base-rate taxa, but it performed inadequately for low…

  11. Trajectories for High Specific Impulse High Specific Power Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, T.; Adams, R. B.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Preliminary results are presented for two methods to approximate the mission performance of high specific impulse high specific power vehicles. The first method is based on an analytical approximation derived by Williams and Shepherd and can be used to approximate mission performance to outer planets and interstellar space. The second method is based on a parametric analysis of trajectories created using the well known trajectory optimization code, VARITOP. This parametric analysis allows the reader to approximate payload ratios and optimal power requirements for both one-way and round-trip missions. While this second method only addresses missions to and from Jupiter, future work will encompass all of the outer planet destinations and some interstellar precursor missions.

  12. Immunological-based assays for specific detection of shrimp viruses

    PubMed Central

    Chaivisuthangkura, Parin; Longyant, Siwaporn; Sithigorngul, Paisarn

    2014-01-01

    Among shrimp viral pathogens, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal agents, causing serious problems for both the whiteleg shrimp, Penaeus (Litopenaeus) vannamei, and the black tiger shrimp, Penaeus (Penaeus) monodon. Another important virus that infects P. vannamei is infectious myonecrosis virus (IMNV), which induces the white discoloration of affected muscle. In the cases of taura syndrome virus and Penaeus stylirostris densovirus (PstDNV; formerly known as infectious hypodermal and hematopoietic necrosis virus), their impacts were greatly diminished after the introduction of tolerant stocks of P. vannamei. Less important viruses are Penaeus monodon densovirus (PmDNV; formerly called hepatopancreatic parvovirus), and Penaeus monodon nucleopolyhedrovirus (PemoNPV; previously called monodon baculovirus). For freshwater prawn, Macrobrachium rosenbergii nodavirus and extra small virus are considered important viral pathogens. Monoclonal antibodies (MAbs) specific to the shrimp viruses described above have been generated and used as an alternative tool in various immunoassays such as enzyme-linked immunosorbent assay, dot blotting, Western blotting and immunohistochemistry. Some of these MAbs were further developed into immunochromatographic strip tests for the detection of WSSV, YHV, IMNV and PemoNPV and into a dual strip test for the simultaneous detection of WSSV/YHV. The strip test has the advantages of speed, as the result can be obtained within 15 min, and simplicity, as laboratory equipment and specialized skills are not required. Therefore, strip tests can be used by shrimp farmers for the pond-side monitoring of viral infection. PMID:24567913

  13. Sensitivity and Specificity of Histoplasma Antigen Detection by Enzyme Immunoassay.

    PubMed

    Cunningham, Lauren; Cook, Audrey; Hanzlicek, Andrew; Harkin, Kenneth; Wheat, Joseph; Goad, Carla; Kirsch, Emily

    2015-01-01

    The objective of this study was to evaluate the sensitivity and specificity of an antigen enzyme immunoassay (EIA) on urine samples for the diagnosis of histoplasmosis in dogs. This retrospective medical records review included canine cases with urine samples submitted for Histoplasma EIA antigen assay between 2007 and 2011 from three veterinary institutions. Cases for which urine samples were submitted for Histoplasma antigen testing were reviewed and compared to the gold standard of finding Histoplasma organisms or an alternative diagnosis on cytology or histopathology. Sensitivity, specificity, negative predictive value, positive predictive value, and the kappa coefficient and associated confidence interval were calculated for the EIA-based Histoplasma antigen assay. Sixty cases met the inclusion criteria. Seventeen cases were considered true positives based on identification of the organism, and 41 cases were considered true negatives with an alternative definitive diagnosis. Two cases were considered false negatives, and there were no false positives. Sensitivity was 89.47% and the negative predictive value was 95.35%. Specificity and the positive predictive value were both 100%. The kappa coefficient was 0.9207 (95% confidence interval, 0.8131-1). The Histoplasma antigen EIA test demonstrated high specificity and sensitivity for the diagnosis of histoplasmosis in dogs.

  14. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences.

    PubMed

    Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong

    2013-05-07

    We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.

  15. Specific determination of benzene in urine using dynamic headspace and mass-selective detection.

    PubMed

    Ljungkvist, G; Lärstad, M; Mathiasson, L

    1999-01-08

    A method for the determination of benzene in urine was developed, based on dynamic headspace and preconcentration of the analyte on a solid sorbent. The subsequent analysis by thermal desorption of the sorbent, capillary gas chromatography and mass-selective detection ascertained a low limit of detection (6.5 ng/l) and a highly specific determination. The limit of detection is an order of magnitude lower than that reported earlier and allows reliable quantitation of occupational exposure and of most environmental exposures. Samples could be stored frozen for at least a month without significant loss.

  16. The detection of a precartilage, blastema-specific marker.

    PubMed

    Aulthouse, A L; Solursh, M

    1987-04-01

    Mesenchymal cell aggregates, termed blastema in vivo, precede cartilage differentiation in vivo and in high-density cell cultures. The galactose specific lectin, peanut agglutinin (PNA), has been shown to be blastema specific (B. Zimmermann and M. Thies, 1984, Histochemistry 81, 353-361). PNA appears to be a marker for precartilage cellular aggregates both in vivo and in vitro. Frozen sections of stage 24 chick wing buds were double stained with PNA-rhodamine and by indirect immunofluorescence with antibody directed against type II collagen. The PNA stained the humeral blastema intensely and extended distal to the level of type II collagen. High-density cultures of stage 24 chick wing buds were also evaluated for the distribution of PNA binding. Sixteen-hour cultures showed the earliest consistent appearance of PNA binding. The PNA-stained areas coincided with hematoxylin-stained cell aggregates. PNA staining was inhibited by 50 mM D(+)-galactose and was not sensitive to 1% testicular hyaluronidase pretreatment. No Alcian blue-staining nodules were present yet at 16 hr. The presence of a precartilage, blastema-specific marker in situ, as well as in precartilage aggregates in cultures, suggests the similarities in chondrogenesis between these two conditions. Stage 19 limb bud cultures did not form nodules but did form aggregates that were PNA positive. Furthermore, single cells that differentiated into chondrocytes on collagen gels or after cytochalasin D treatment lacked PNA-binding material. These results suggest that this material is specific to precartilage aggregates. The PNA-positive material was extracellular in distribution and was removed after brief extraction with 0.5 M guanidine hydrochloride.

  17. Characterization of Antibodies for Grain-Specific Gluten Detection.

    PubMed

    Sharma, Girdhari M; Rallabhandi, Prasad; Williams, Kristina M; Pahlavan, Autusa

    2016-03-01

    Gluten ingestion causes immunoglobulin E (IgE)-mediated allergy or celiac disease in sensitive individuals, and a strict gluten-free diet greatly limits food choices. Immunoassays such as enzyme-linked immunosorbent assay (ELISA) are used to quantify gluten to ensure labeling compliance of gluten-free foods. Anti-gluten antibodies may not exhibit equal affinity to gluten from wheat, rye, and barley. Moreover, because wheat gluten is commonly used as a calibrator in ELISA, accurate gluten quantitation from rye and barley contaminated foods may be compromised. Immunoassays utilizing grain-specific antibodies and calibrators may help improve gluten quantitation. In this study, polyclonal antibodies raised against gluten-containing grain-specific peptides were characterized for their immunoreactivity to gluten from different grain sources. Strong immunoreactivity to multiple gluten polypeptides from wheat, rye, and barley was observed in the range 34 to 43 kDa with anti-gliadin, 11 to 15 and 72 to 95 kDa with anti-secalin, and 30 to 43 kDa with anti-hordein peptide antibodies, respectively. Minimal or no cross-reactivity with gluten from other grains was observed among these antibodies. The anti-consensus peptide antibody raised against a repetitive amino acid sequence of proline and glutamine exhibited immunoreactivity to gluten from wheat, rye, barley, and oat. The antibodies exhibited similar immunoreactivity with most of the corresponding grain cultivars by ELISA. The high specificity and minimal cross-reactivity of grain-specific antibodies suggest their potential use in immunoassays for accurate gluten quantitation.

  18. High specific activity platinum-195m

    SciTech Connect

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.

    2004-10-12

    A new composition of matter includes .sup.195m Pt characterized by a specific activity of at least 30 mCi/mg Pt, generally made by method that includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.

  19. A highly specific test for periodicity

    SciTech Connect

    Ansmann, Gerrit

    2015-11-15

    We present a method that allows to distinguish between nearly periodic and strictly periodic time series. To this purpose, we employ a conservative criterion for periodicity, namely, that the time series can be interpolated by a periodic function whose local extrema are also present in the time series. Our method is intended for the analysis of time series generated by deterministic time-continuous dynamical systems, where it can help telling periodic dynamics from chaotic or transient ones. We empirically investigate our method's performance and compare it to an approach based on marker events (or Poincaré sections). We demonstrate that our method is capable of detecting small deviations from periodicity and outperforms the marker-event-based approach in typical situations. Our method requires no adjustment of parameters to the individual time series, yields the period length with a precision that exceeds the sampling rate, and its runtime grows asymptotically linear with the length of the time series.

  20. Specific detection of avidin-biotin binding using liquid crystal droplets.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-03-01

    Poly(acrylicacid-b-4-cynobiphenyl-4'-undecylacrylate) (PAA-b-LCP)-functionalized 4-cyano-4'-pentylbiphenyl (5CB) droplets were made by using microfluidic technique. The PAA chains on the 5CB droplets, were biotinylated, and used to specifically detect avidin-biotin binding at the 5CB/aqueous interface. The avidin-biotin binding was characterized by the configurational change (from radial to bipolar) of the 5CB droplets, as observed through a polarized optical microscope. The maximum biotinylation was obtained by injecting a >100 μg/mL biotin aqueous solution, which enabled a limit of detection of 0.5 μg/mL avidin. This droplet biosensor could specifically detect avidin against other proteins such as bovine serum albumin, lysozyme, hemoglobin, and chymotrypsinogen solutions. Avidin detection with 5CBPAA-biotin droplets having high sensitivity, specificity, and stability demonstrates new applications of the functionalized liquid crystal droplets that can detect specific proteins or other analytes through a ligand/receptor model.

  1. Colorimetric Immuno-Protein Phosphatase Inhibition Assay for Specific Detection of Microcystins and Nodularins of Cyanobacteria

    PubMed Central

    Metcalf, James S.; Bell, Steven G.; Codd, Geoffrey A.

    2001-01-01

    A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins. PMID:11157261

  2. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection.

    PubMed

    Ng, Elaine; Nadeau, Kari C; Wang, Shan X

    2016-06-15

    Current common allergen detection methods, including enzyme-linked immunosorbent assays (ELISAs) and dip-stick methods, do not provide adequate levels of sensitivity and specificity for at-risk allergic patients. A method for performing highly sensitive and specific detection of multiple food allergens is thus imperative as food allergies are becoming increasingly recognized as a major healthcare concern, affecting an estimated 4% of the total population. We demonstrate first instance of sensitive and specific multiplexed detection of major peanut allergens Ara h 1 and Ara h 2, and wheat allergen Gliadin using giant magnetoresistive (GMR) sensor arrays. Commercialized ELISA kits for Ara h 1 and Ara h 2 report limits of detection (LODs) at 31.5 ng/mL and 0.2 ng/mL, respectively. In addition, the 96-well-based ELISA developed in-house for Gliadin was found to have a LOD of 40 ng/mL. Our multiplexed GMR-based assay demonstrates the ability to perform all three assays on the same chip specifically and with sensitivities at LODs about an order of magnitude lower than those of 96-well-based ELISAs. LODs of GMR-based assays developed for Ara h 1, Ara h 2, and Gliadin were 7.0 ng/mL, 0.2 ng/mL, and 1.5 ng/mL, respectively, with little to no cross-reactivity. These LODs are clinically important as some patients could react strongly against such low allergen levels. Given the limitations of current industrial detection technology, multiplexed GMR-based assays provide a method for highly sensitive and specific simultaneous detection of any combination of food-product allergens, thus protecting allergic patients from life-threatening events, including anaphylaxis, by unintentional consumption.

  3. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection

    PubMed Central

    Bhaumik, Basabi

    2016-01-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm2. The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system. PMID:27284458

  4. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2016-03-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.

  5. High Density Jet Fuel Supply and Specifications

    DTIC Science & Technology

    1986-01-01

    same shortcomings. Perhaps different LAK blends using heavy reformate or heavy cat cracker naphtha (both high in aromatics and isoparaffins) could... catalytic cracking (FCC) process. Subsequent investigations funded by the U. S. Air Force concentrated on producing a similar fuel from the...cut (19% overhead) and adding heavy naphtha (320-440F) from a nearby paraffinic crude (40"API Wyoming Sweet) an excellent JP-8X can be created. Table 5

  6. High Sensitivity deflection detection of nanowires

    SciTech Connect

    Sanii, Babak; Ashby, Paul

    2009-10-28

    A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81{+-}9??nm radius Ag{sub 2}Ga nanowire cantilever in water at 6{+-}3??fN/{radical}Hz.

  7. Can hyperspectral remote sensing detect species specific biochemicals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds and invasive species. Detection of clandestinely grown Cannabis sativa L. is in many ways a special case of weed detection. Remote sensing technology provides an automated, computer based,...

  8. Specific PCR detection of tiger, leopard, and lion ingredients from test samples.

    PubMed

    Cao, Jijuan; Xu, Junyi; Liu, Ran; Yu, Ke; Wang, Changwen

    2011-01-01

    A PCR method was developed for specific detection of tiger, leopard, and lion DNA from test specimens for inspection and quarantine or for law-enforced animal protection. Three pairs of specific primers were designed based on the mitochondrial cytochrome b gene of tiger, leopard, and lion and used in the PCR testing. To mimic the effect of food processing on the sensitivity of the test, the tiger muscle and bovine bonemeal powder samples were treated at 133 degrees C for 30 min. At this processing condition, the method was sensitive enough to detect as low as 0.05% of tiger-derived ingredients from the mixed bonemeal powders. The data demonstrate that our PCR method is convenient and economic, with high sensitivity and repeatability, and can be used to detect and identify tiger, leopard, and lion ingredients from various test samples.

  9. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection

    PubMed Central

    KC, R.; Srivastava, A.; Wilkowski, J. M.; Richter, C. E.; Shavit, J. A.; Burke, D. T.; Bielas, S. L.

    2016-01-01

    CRISPR/Cas9 genome-editing has emerged as a powerful tool to create mutant alleles in model organisms. However, the precision with which these mutations are created has introduced a new set of complications for genotyping and colony management. Traditional gene-targeting approaches in many experimental organisms incorporated exogenous DNA and/or allele specific sequence that allow for genotyping strategies based on binary readout of PCR product amplification and size selection. In contrast, alleles created by non-homologous end-joining (NHEJ) repair of double-stranded DNA breaks generated by Cas9 are much less amenable to such strategies. Here we describe a novel genotyping strategy that is cost effective, sequence specific and allows for accurate and efficient multiplexing of small insertion-deletions and single-nucleotide variants characteristic of CRISPR/Cas9 edited alleles. We show that ligation detection reaction (LDR) can be used to generate products that are sequence specific and uniquely detected by product size and/or fluorescent tags. The method works independently of the model organism and will be useful for colony management as mutant alleles differing by a few nucleotides become more prevalent in experimental animal colonies. PMID:27557703

  10. Evaluation of Luminex xTAG Gastrointestinal Pathogen Analyte-Specific Reagents for High-Throughput, Simultaneous Detection of Bacteria, Viruses, and Parasites of Clinical and Public Health Importance

    PubMed Central

    Navidad, Jose F.; Griswold, David J.; Gradus, M. Stephen

    2013-01-01

    Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens

  11. Evaluation of Luminex xTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance.

    PubMed

    Navidad, Jose F; Griswold, David J; Gradus, M Stephen; Bhattacharyya, Sanjib

    2013-09-01

    Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.

  12. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  13. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  14. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  15. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reagents for detection of specific novel influenza... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  16. Cellulose antibody films for highly specific evanescent wave immunosensors

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Bock, Daniel; Jaworek, Thomas; Kaul, Sepp; Schulze, Matthais; Tebbe, H.; Wegner, Gerhard; Seeger, Stefan

    1996-01-01

    For the production of recognition elements for evanescent wave immunosensors optical waveguides have to be coated with ultrathin stable antibody films. In the present work non amphiphilic alkylated cellulose and copolyglutamate films are tested as monolayer matrices for the antibody immobilization using the Langmuir-Blodgett technique. These films are transferred onto optical waveguides and serve as excellent matrices for the immobilization of antibodies in high density and specificity. In addition to the multi-step immobilization of immunoglobulin G(IgG) on photochemically crosslinked and oxidized polymer films, the direct one-step transfer of mixed antibody-polymer films is performed. Both planar waveguides and optical fibers are suitable substrates for the immobilization. The activity and specificity of immobilized antibodies is controlled by the enzyme-linked immunosorbent assay (ELISA) technique. As a result reduced non-specific interactions between antigens and the substrate surface are observed if cinnamoylbutyether-cellulose is used as the film matrix for the antibody immobilization. Using the evanescent wave senor (EWS) technology immunosensor assays are performed in order to determine both the non-specific adsorption of different coated polymethylmethacrylat (PMMA) fibers and the long-term stability of the antibody films. Specificities of one-step transferred IgG-cellulose films are drastically enhanced compared to IgG-copolyglutamate films. Cellulose IgG films are used in enzymatic sandwich assays using mucine as a clinical relevant antigen that is recognized by the antibodies BM2 and BM7. A mucine calibration measurement is recorded. So far the observed detection limit for mucine is about 8 ng/ml.

  17. High Energy Polarization of Blazars: Detection Prospects

    NASA Astrophysics Data System (ADS)

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  18. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  19. Broad-spectrum protein biosensors for class-specific detection of antibiotics.

    PubMed

    Weber, Cornelia C; Link, Nils; Fux, Cornelia; Zisch, Andreas H; Weber, Wilfried; Fussenegger, Martin

    2005-01-05

    The dramatically increasing prevalence of multi-drug-resistant human pathogenic bacteria and related mortality requires two key actions: (i) decisive initiatives for the detection of novel antibiotics and (ii) a global ban for use of antibiotics as growth promotants in stock farming. Both key actions entail technology for precise, high-sensitive detection of antibiotic substances either to detect and validate novel anti-infective structures or to enforce the non-use of clinically relevant antibiotics. We have engineered prokaryotic antibiotic response regulators into a molecular biosensor configuration able to detect tetracycline, streptogramin, and macrolide antibiotics in spiked liquids including milk and serum at ng/mL concentrations and up to 2 orders of magnitude below current Swiss and EC threshold values. This broad-spectrum, class-specific, biosensor-based assay has been optimized for use in a storable ready-to-use and high-throughput-compatible ELISA-type format. At the center of the assay is an antibiotic sensor protein whose interaction with specific DNA fragments is responsive to a particular class of antibiotics. Binding of biosensor protein to the cognate DNA chemically linked to a solid surface is converted into an immuno-based colorimetric readout correlating with specific antibiotics concentrations.

  20. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber.

    PubMed

    Yang, Xuan; Zhang, Alissa Y; Wheeler, Damon A; Bond, Tiziana C; Gu, Claire; Li, Yat

    2012-01-01

    This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0-25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (~50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy.

  1. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  2. Methods for detection, identification and specification of listerias

    DOEpatents

    Bochner, Barry

    1992-01-01

    The present invention relates generally to differential carbon source metabolism in the genus Listeria, metabolic, biochemical, immunological and genetic procedures to measure said differential carbon source metabolism and the use of these produces to detect, isolate and/or distinguish species of the genus Listeria as well as detect, isolate and/or distinguish strains of species of Listeria. The present invention also contemplates test kits and enrichment media to facilitate these procedures.

  3. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  4. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.

    PubMed

    Gao, Ning; Gao, Teng; Yang, Xiao; Dai, Xiaochuan; Zhou, Wei; Zhang, Anqi; Lieber, Charles M

    2016-12-20

    Nanomaterial-based field-effect transistor (FET) sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although direct measurements in high-ionic-strength physiological solutions remain challenging due to the Debye screening effect. Recently, we demonstrated a general strategy to overcome this challenge by incorporating a biomolecule-permeable polymer layer on the surface of silicon nanowire FET sensors. The permeable polymer layer can increase the effective screening length immediately adjacent to the device surface and thereby enable real-time detection of biomolecules in high-ionic-strength solutions. Here, we describe studies demonstrating both the generality of this concept and application to specific protein detection using graphene FET sensors. Concentration-dependent measurements made with polyethylene glycol (PEG)-modified graphene devices exhibited real-time reversible detection of prostate specific antigen (PSA) from 1 to 1,000 nM in 100 mM phosphate buffer. In addition, comodification of graphene devices with PEG and DNA aptamers yielded specific irreversible binding and detection of PSA in pH 7.4 1x PBS solutions, whereas control experiments with proteins that do not bind to the aptamer showed smaller reversible signals. In addition, the active aptamer receptor of the modified graphene devices could be regenerated to yield multiuse selective PSA sensing under physiological conditions. The current work presents an important concept toward the application of nanomaterial-based FET sensors for biochemical sensing in physiological environments and thus could lead to powerful tools for basic research and healthcare.

  5. Highly sensitive terahertz sensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Suk; Lee, Dong-Kyu; Lee, Seok; Chung, Youngchul; Seo, Minah

    2015-07-01

    In this report, we present a new type of non-contact detection method for glucose molecule using nano antenna array based bio sensing chip that operates at terahertz frequency range (0.5 - 2.5 THz). Localized and hugely enhanced transmitted terahertz field by nano antenna array in the sensing chip induced enhancement of absorption coefficient of glucose molecule that enables us to detect even very small volume of molecules. Nano antenna based terahertz sensing chip can be expected to offer accurate identification of glucose level as a non-invasive and painless sensing tool with high sensitivity.

  6. Procedure for detecting underground utilities with specific shape

    NASA Astrophysics Data System (ADS)

    Ristic, Aleksandar; Vrtunski, Milan; Govedarica, Miro; Bugarinovic, Zeljko

    2016-04-01

    Nowadays GPR technology is acknowledged as a reliable, fast, non-destructive remote sensing technology whose area of applications is wider every day. One of its most common applications is underground utility detection. Not only it is possible to detect the utility in the field, but using certain algorithms utilities which haven't been detected in the field can be detected in radargrams. There is a number of procedures for automated detection of utility in the radargrams. Further, there are procedures that can estimate certain parameters such as propagation velocity, diameter or even characteristics of the material. However, the majority of these procedures is designed to detect cylindrical shape utilities, which, in a radargram, are represented with hyperbolic reflection. According to geometry of hyperbola, utility parameters can be estimated. In this paper we present a procedure that is designed to estimate characteristics of non-cylindrical utilities. It is worth mentioning that these utilities are not so rare. Some underground tanks and sewage collectors are among them. Heat line is consisted of two insulated pipes of the same diameter, often placed in a concrete channel and covered with plates made from reinforced concrete. Therefore, it can be considered as non-cylindrical utility and such structure has characteristic signature in a radargram. The main idea of the proposed procedure is to detect this signature, and then, based on standardized parameters for the heat lines, to estimate the diameter of the pipes. The proposed procedure is based on artificial neural network. As a training set we made a number of radargrams collected on different locations which contain heat lines of various dimensions. Pipe diameters were in a range from 65 to 250 mm. 400MHz antenna was used since the depth hasn't exceeded 2m. After the network is trained it is validated using radargrams that haven't been used in the training set. Further tests were done with radargrams that

  7. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy.

    PubMed

    Nöll, Gilbert; Su, Qiang; Heidel, Björn; Yu, Yaming

    2014-01-01

    The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.

  8. Rapid, sensitive, and specific detection of Clostridium tetani by loop-mediated isothermal amplification assay.

    PubMed

    Jiang, Dongneng; Pu, Xiaoyun; Wu, Jiehong; Li, Meng; Liu, Ping

    2013-01-01

    Tetanus is a specific infectious disease, which is often associated with catastrophic events such as earthquakes, traumas, and war wounds. The obligate anaerobe Clostridium tetani is the pathogen that causes tetanus. Once the infection of tetanus progresses to an advanced stage within the wounds of limbs, the rates of amputation and mortality increase manifold. Therefore, it is necessary to devise a rapid and sensitive point-of-care detection method for C. tetani so as to ensure an early diagnosis and clinical treatment of tetanus. In this study, we developed a detection method for C. tetani using loop-mediated isothermal amplification (LAMP) assay, wherein the C. tetani tetanus toxin gene was used as the target gene. The method was highly specific and sensitive, with a detection limit of 10 colony forming units (CFU)/ml, and allowed quantitative analysis. While detecting C. tetani in clinical samples, it was found that the LAMP results completely agreed with those of the traditional API 20A anaerobic bacteria identification test. As compared with the traditional API test and PCR assay, LAMP detection of C. tetani is simple and rapid, and the results can be identified through naked-eye observation. Therefore, it is an ideal and rapid point-of-care testing method for tetanus.

  9. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk.

    PubMed

    Tu, Zhui; Chen, Qi; Li, Yanping; Xiong, Yonghua; Xu, Yang; Hu, Na; Tao, Yong

    2016-01-15

    Listeria monocytogenes (LM), one of the eight species belonging to the genus Listeria, is pathogenic for both humans and animals. In this study, two novel LM-specific clones, designated L5-78 and L5-79, were isolated from a phage display antibody library that was derived from the variable domain of heavy-chain antibodies (VHHs) of non-immunized alpaca. These two clones were expressed, purified, and characterized. Results showed that both isolated VHHs recognize three serotypes (1/2a, 1/2b, and 4b), which are responsible for more than 95% of documented human listeriosis cases. The recombinant VHHs possess high thermal stability, pH tolerance, and urea resistance. A sandwich enzyme-linked immunosorbent assay (ELISA) based on the VHH clone L5-79 and a monoclonal antibody was developed to detect LM in pasteurized milk, with a detection limit of 1 × 10(4) colony-forming units (CFU)/ml. These findings indicated that the species-specific VHHs could be directly isolated from the non-immunized library with a properly designed panning strategy and VHH could be a new source for possible diagnosis/detection of foodborne pathogens in food because it was shown to be highly specific and stable.

  10. Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program

    NASA Astrophysics Data System (ADS)

    Paulter, Nicholas G.

    1998-12-01

    The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.

  11. High frequency of SLC22A12 variants causing renal hypouricemia 1 in the Czech and Slovak Roma population; simple and rapid detection method by allele-specific polymerase chain reaction.

    PubMed

    Gabrikova, Dana; Bernasovska, Jarmila; Sokolova, Jitka; Stiburkova, Blanka

    2015-10-01

    Renal hypouricemia is a rare heterogeneous inherited disorder characterized by impaired tubular uric acid transport with severe complications, such as acute kidney injury. Type 1 and 2 are caused by loss-of-function mutations in the SLC22A12 and SLC2A9 gene, respectively. A cohort of 881 randomly chosen ethnic Roma from two regions in Eastern Slovakia and two regions in the Czech Republic participated. Genomic DNA was isolated from buccal swabs and/or from blood samples. The c.1245_1253del and c.1400C>T genotypes were determined using polymerase chain reaction with allele-specific primers in a multiplex arrangement and/or direct sequencing of exon 7 and 9. Allele frequencies and genotypes were tested for Hardy-Weinberg equilibrium using the Chi-square test. 25 subjects were heterozygous and three were homozygous for the c.1245_1253del, while 92 subjects were heterozygous and two were homozygous for the c.1400C>T. Moreover, two participants were compound heterozygotes. Frequencies of the c.1245_1253del and c.1400C>T variants were 1.87 and 5.56 %, respectively. Our finding confirms an uneven geographical and ethnic distribution of SLC22A12 mutant variants. We found that the c.1245_1253del and c.1400C>T variants were present in the Czech and Slovak Roma population at unexpectedly high frequencies. Renal hypouricemia should be kept in mind during differential diagnostic on Roma patients with low serum uric acid concentrations.

  12. Method for detecting pathogens attached to specific antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2005-01-25

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  13. Investigations of Novel Sensor Technology for Explosive Specific Detection

    DTIC Science & Technology

    2009-12-01

    considered impractical due to oxidation , however, a zinc analogue was synthesized to improve the photostability. [67] They concluded that AcrH2 is...of 2,4-dinitrotoluene in a γ- CD/metal oxide matrix and its sensitive detection via a cyclic surface polarization impedance (cSPI) method”, Chemistry...sensor ........................................................................................... 40 6.3.13 Nanofibrous membranes

  14. Detection of Specific Antibodies to an Antigenic Mannoprotein for Diagnosis of Penicillium marneffei Penicilliosis

    PubMed Central

    Cao, Liang; Chen, Da-Liang; Lee, Cindy; Chan, Che-Man; Chan, King-Man; Vanittanakom, Nongnuch; Tsang, Dominic N. C.; Yuen, Kwok-Yung

    1998-01-01

    The disseminated and progressive fungal disease Penicillium marneffei penicilliosis is one of the most common infectious diseases in AIDS patients in Southeast Asia. To diagnose systemic penicilliosis, we developed an enzyme-linked immunosorbent assay (ELISA)-based antibody test with Mp1p, a purified recombinant antigenic mannoprotein of P. marneffei. Evaluation of the test with guinea pig sera against P. marneffei and other pathogenic fungi indicated that this assay was specific for P. marneffei. Clinical evaluation revealed that high levels of specific antibody were detected in two immunocompetent penicilliosis patients. Furthermore, approximately 80% (14 of 17) of the documented penicilliosis patients with human immunodeficiency virus tested positive for the specific antibody. No false-positive results were found for serum samples from 90 healthy blood donors, 20 patients with typhoid fever, and 55 patients with tuberculosis, indicating a high specificity of the test. Thus, this ELISA-based test for the detection of anti-Mp1p antibody can be of significant value as a diagnostic for penicilliosis. PMID:9738061

  15. High School Educational Specifications: Facilities Planning Standards. Edition I.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Colorado) has developed a manual of high school specifications for Design Advisory Groups and consultants to use for planning and designing the district's high school facilities. The specifications are provided to help build facilities that best meet the educational needs of the students to be served.…

  16. High-sensitivity detection of TNT.

    PubMed

    Pushkarsky, Michael B; Dunayevskiy, Ilya G; Prasanna, Manu; Tsekoun, Alexei G; Go, Rowel; Patel, C Kumar N

    2006-12-26

    We report high-sensitivity detection of 2,4,6-trinitrotoluene (TNT) by using laser photoacoustic spectroscopy where the laser radiation is obtained from a continuous-wave room temperature high-power quantum cascade laser in an external grating cavity geometry. The external grating cavity quantum cascade laser is continuously tunable over approximately 400 nm around 7.3 microm and produces a maximum continuous-wave power of approximately 200 mW. The IR spectroscopic signature of TNT is sufficiently different from that of nitroglycerine so that unambiguous detection of TNT without false positives from traces of nitroglycerine is possible. We also report the results of spectroscopy of acetylene in the 7.3-microm region to demonstrate continuous tunability of the IR source.

  17. An RNAi-Enhanced Logic Circuit for Cancer Specific Detection and Destruction

    DTIC Science & Technology

    2013-02-01

    cancer specific detection and destruction. PRINCIPAL INVESTIGATOR: Ron Weiss...2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An RNAi-enhanced logic circuit for cancer specific detection and destruction. 5b. GRANT NUMBER...ABSTRACT Modern breast cancer therapies utilize non-specific approaches to kill or remove cancerous cells, inflicting significant collateral damage to

  18. Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates.

    PubMed

    Rasoulinejad, Samaneh; Gargari, Seyed Latif Mousavi

    2016-08-10

    Acinetobacter baumannii has turned into an important threat in nosocomial outbreak infections and multidrug resistance leading to high mortality rates in the 21st century. In recent years its mortality has increased by 15% which in part could be due to lack of a rapid and sensitive diagnostic test. In this work we introduced a new detection test for A. baumannii with two highly specific aptamer and nanobody molecules. High binding affinity DNA oligonucleotide aptamers toward A. baumannii were selected through 12 rounds of whole cell System Evolution of Ligands by EXponential enrichment process (SELEX). The SELEX procedures was monitored by flow cytometry. The dissociation constant and binding efficiency of the selected aptamer Aci49 was 7.547±1:353pM and 47.50%, respectively. A sandwich enzyme linked aptamer sorbent assay (ELASA) was designed with the biotinylated Aci49 aptamer and our previously developed nanobody against biofilm associated protein (Bap). The assay system was optimized with A. baumannii (ATCC 19606) and 47 clinical isolates of A. baumannii were tested. The threshold of detection in sandwich ELASA process was10(3) CFU/ml. The sensitivity of test toward the clinical isolates was 95.47%. Our results reveal that the sandwich ELASA is sensitive and specific enough for the rapid detection of A. baumannii from clinical isolates.

  19. A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction.

    PubMed

    Yasui, T; Okamoto, T; Taguchi, H

    1997-02-01

    A polymerase chain reaction (PCR) method was developed for the rapid detection of the beer-spoilage heterofermentative lactic acid bacterium Lactobacillus lindneri. Three strains, the Chinese brewery isolate DA1, the Japanese commercial beer isolate BG2, and the Japanese brewery isolate SE3, which were serologically classified as belonging to L. lindneri, were used in this study. After sequencing the 16S rDNA of the isolates DA1 and BG2 and the typical beer-spoilage heterofermentative Lactobacillus brevis L63, these sequences were compared with published data. A L. lindneri specific PCR primer, DA-40, was then constructed based on the V1 variable region of 16S rDNA. The specificity of PCR using the L. lindneri specific primer DA-40 and the universal primer 907r was examined using five L. lidneri strains: the three isolates described above and two strains from culture collection, DSM 20690 and DSM 20692. A variety of beer-spoilage lactic acid bacteria, including 71 Lactobacillus strains and 13 Pediococcus strains, were also included in this examination. No PCR product was obtained from any DNA with the exception of the five L. lindneri strains, indicating that the L. lindneri specific primer DA-40 was highly specific. The detection limit for L. lindneri in beer was 63 CFU/100 mL of beer.

  20. Robust detection of rare species using environmental DNA: the importance of primer specificity.

    PubMed

    Wilcox, Taylor M; McKelvey, Kevin S; Young, Michael K; Jane, Stephen F; Lowe, Winsor H; Whiteley, Andrew R; Schwartz, Michael K

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method's sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.

  1. Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity

    PubMed Central

    Wilcox, Taylor M.; McKelvey, Kevin S.; Young, Michael K.; Jane, Stephen F.; Lowe, Winsor H.; Whiteley, Andrew R.; Schwartz, Michael K.

    2013-01-01

    Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design. PMID:23555689

  2. Improving Indel Detection Specificity of the Ion Torrent PGM Benchtop Sequencer

    PubMed Central

    Yeo, Zhen Xuan; Chan, Maurice; Yap, Yoon Sim; Ang, Peter; Rozen, Steve; Lee, Ann Siew Gek

    2012-01-01

    The emergence of benchtop sequencers has made clinical genetic testing using next-generation sequencing more feasible. Ion Torrent's PGMTM is one such benchtop sequencer that shows clinical promise in detecting single nucleotide variations (SNVs) and microindel variations (indels). However, the large number of false positive indels caused by the high frequency of homopolymer sequencing errors has impeded PGMTM's usage for clinical genetic testing. An extensive analysis of PGMTM data from the sequencing reads of the well-characterized genome of the Escherichia coli DH10B strain and sequences of the BRCA1 and BRCA2 genes from six germline samples was done. Three commonly used variant detection tools, SAMtools, Dindel, and GATK's Unified Genotyper, all had substantial false positive rates for indels. By incorporating filters on two major measures we could dramatically improve false positive rates without sacrificing sensitivity. The two measures were: B-Allele Frequency (BAF) and VARiation of the Width of gaps and inserts (VARW) per indel position. A BAF threshold applied to indels detected by UnifiedGenotyper removed ∼99% of the indel errors detected in both the DH10B and BRCA sequences. The optimum BAF threshold for BRCA sequences was determined by requiring 100% detection sensitivity and minimum false discovery rate, using variants detected from Sanger sequencing as reference. This resulted in 15 indel errors remaining, of which 7 indel errors were removed by selecting a VARW threshold of zero. VARW specific errors increased in frequency with higher read depth in the BRCA datasets, suggesting that homopolymer-associated indel errors cannot be reduced by increasing the depth of coverage. Thus, using a VARW threshold is likely to be important in reducing indel errors from data with higher coverage. In conclusion, BAF and VARW thresholds provide simple and effective filtering criteria that can improve the specificity of indel detection in PGMTM data without

  3. Detecting General and Specific Errors in Expository Texts.

    ERIC Educational Resources Information Center

    Yussen, Steven R.; Smith, M. Cecil

    1990-01-01

    In three experiments, a total of 148 college students read or listened to expository passages containing general or specific errors. In all 3 experiments, students were more likely to spot general errors. Results do not indicate that monitoring skills were substantially different for listening or reading. (SLD)

  4. Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection

    PubMed Central

    Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi

    2017-01-01

    Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689

  5. Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection.

    PubMed

    Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi

    2017-01-01

    Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay.

  6. Application of Food-specific IgG Antibody Detection in Allergy Dermatosis

    PubMed Central

    Yine, Hu; Shufang, Dai; Bin, Wang; Wei, Qu; Ashraf, Muhammad Aqeel; Junling, Gao

    2015-01-01

    The application of food-specific IgG antibody detection in allergy dermatoses was explored. 181 patients with allergy dermatoses were diagnosed from January to September 2014 and 20 healthy subjects were selected. Fourteen kinds of food-specific IgG antibodies were detected by ELISA method among all the subjects. The positive rates of IgG antibody of the patient group and the healthy group were respectively 65.2% and 5.0%. The positive rates of IgG antibody of egg, milk, shrimp and crab took a large proportion in three groups of patients with three kinds of allergy dermatoses of urticaria, eczema and allergic dermatitis, the proportion of which was respectively 70.2%, 77.8% and 71.7%. Among urticaria and allergic dermatitis patients with positive antibody, the positive rate of children was significantly higher than that of adults (p<0.05) while there was no significant difference between children and adults among eczema patients with positive antibody (p>0.05). Allergy dermatoses are closely related to food-specific IgG antibodies, and the allergy dermatoses patients have a high incidence rate of food intolerance; detecting IgG antibody in the serum of patients is of great significance for the diagnosis and treatment of allergy dermatoses.

  7. The Drosophila immune system detects bacteria through specific peptidoglycan recognition.

    PubMed

    Leulier, François; Parquet, Claudine; Pili-Floury, Sebastien; Ryu, Ji-Hwan; Caroff, Martine; Lee, Won-Jae; Mengin-Lecreulx, Dominique; Lemaitre, Bruno

    2003-05-01

    The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined. Here we report that Gram-negative diaminopimelic acid-type peptidoglycan is the most potent inducer of the Imd pathway and that the Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan. Thus, the ability of Drosophila to discriminate between Gram-positive and Gram-negative bacteria relies on the recognition of specific forms of peptidoglycan.

  8. A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid.

    PubMed

    Zhang, Yi; Bai, Jianhao; Ying, Jackie Y

    2015-03-21

    Paper-based immunoassays, usually in the form of lateral flow tests, are currently the standard platform for home diagnostics. However, conventional lateral tests are often complicated by severe non-specific adsorption of detector particles when applied to test samples containing salivary fluid. It is believed that a high concentration of proteinaceous substances in salivary fluid causes particle aggregation and adhesion. In this study, we developed a stacking flow platform for single-step detection of a target antibody in salivary fluid. Stacking flow circumvents the need for separate sample pre-treatments, such as filtration or centrifugation, which are often required prior to testing saliva samples using paper-based immunoassays. This is achieved by guiding the samples and reagents to the test strip through different paths. By doing so, salivary substances that interfere with the particle-based sensing system are removed before they come into contact with the detection reagents, which greatly reduces the background. In addition, the stacking flow configuration enables uniform flow with a unique flow regulator, which leads to even test lines with good quantification capability, enabling the detection of ~20 ng mL(-1) α-fetoprotein in the serum. We have successfully applied the stacking flow device to detect dengue-specific immunoglobulins that are present in salivary fluid.

  9. Improved Sensitivity and Specificity for Detection of Prostate Cancer

    DTIC Science & Technology

    2007-11-01

    SUBJECT TERMS Prostate, spectroscopy, MRI 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...assessment of the correlation between MRI /MRSI and histopathology. Specific Aim 2: The development of a tumor index based on individual MRI /MRSI...Overall Status of the Project: The goal of the study is to diagnose prostate cancer more effectively using various MRI techniques, with the ultimate

  10. Site-Specific Detection and Management of Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematode distribution varies significantly throughout a field and is highly correlated to soil texture and other edaphic factors. Field-wide application results in nematicides being applied to areas without nematodes and the application of sub-effective levels in areas with high nematode densities. ...

  11. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  12. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  13. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution

    SciTech Connect

    Kreader, C.A.

    1995-04-01

    Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers specific for 16S rRNA gene sequences of Bacteroides distasonis, B. thetaiotaomicron, and B. vulgatus were designed. Hybridization with species-specific internal probes was used to detect the intended PCR products. Extracts from 66 known Bacteroides strains, representing 10 related species, were used to confirm the specificity of these PCR-hybridization assays. To test for specificity in feces, procedures were developed to prepare DNA of sufficient purity for PCR. Extracts of feces from 9 humans and 70 nonhumans (cats, dogs, cattle, hogs, horses, sheep, goats, and chickens) were each analyzed with and without an internal positive control to verify that PCR amplification was not inhibited by substances in the extract. In addition, serial dilutions from each extract that tested positive were assayed to estimate the relative abundance of target Bacteroides spp. in the sample. Depending on the primer-probe set used, either 78 or 67% of the human fecal extracts tested had high levels of target DNA. On the other hand, only 7 to 11% of the nonhuman extracts tested had similarly high levels of target DNA. An additional 12 to 20% of the nonhuman extracts had levels of target DNA that were 100- to 1,000-fold lower than those found in humans. Although the B. vulgatus probes detected high levels of their target DNA in most of the house pets, similarly high levels of target DNA were found only in a few individuals from other groups of nonhumans. Therefore, the results indicate that these probes can distinguish human from non human feces in many cases. 50 refs., 5 figs., 2 tabs.

  14. Specific and sensitive detection of the conifer pathogen Gremmeniella abietina by nested PCR

    PubMed Central

    Zeng, Qing-Yin; Hansson, Per; Wang, Xiao-Ru

    2005-01-01

    Background Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed. Results We designed two pairs of specific primers for G. abietina based on the 18S rDNA sequence variation pattern. These primers were validated against a wide range of fungi and 14 potential conifer hosts. Based on these specific primers, two nested PCR systems were developed. The first system employed universal fungal primers to enrich the fungal DNA targets in the first round, followed by a second round selective amplification of the pathogen. The other system employed G. abietina-specific primers in both PCR steps. Both approaches can detect the presence of G. abietina in composite samples with high sensitivity, as little as 7.5 fg G. abietina DNA in the host genomic background. Conclusion The methods described here are rapid and can be applied directly to a wide range of conifer species, without the need for fungal isolation and cultivation. Therefore, it represents a promising alternative to disease inspection in forest nurseries, plantations and quarantine control facilities. PMID:16280082

  15. Diagnosis of typhoid fever: detection of Salmonella typhi porins-specific antibodies by inhibition ELISA.

    PubMed Central

    Nandakumar, K S; Palanivel, V; Muthukkaruppan, V

    1993-01-01

    Porins are highly immunogenic outer membrane proteins of Salmonella. Sera from typhoid patients contained a high level of IgG antibodies directed to porins of Salm. typhi. Since porins are highly conserved proteins, anti-porins antibodies both from typhoid patients and healthy normals reacted with porins from several Gram-negative bacteria. Therefore, in order to improve the specificity of detecting Salm. typhi porins-specific antibodies, an inhibition ELISA was developed using enzyme-conjugated MoAbs (MP1 and MPN4) specific to Salm. typhi porins. Sera from typhoid patients with positive haemoculture (16 out of 17) inhibited the binding of MP1 to porins, thus showing a positive test for typhoid, whereas sera from patients with other Gram-negative bacterial infections (n = 7) and from healthy volunteers (66 out of 67) were found to be negative. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of this assay were 94.1, 98.7, 97.8, 94.1 and 98.7% respectively. The validity of our inhibition ELISA for typhoid was higher than that of the Widal test. The diagnosis of typhoid fever as early as 3 days after the onset of fever, using a single specimen is possible. PMID:8222322

  16. [Comparative research into sensitivity and specificity of immune-enzyme analysis with chemiluminescence and colorimetric detection for detecting antigens and antibodies to avian influenza viruses and newcastle disease].

    PubMed

    Vitkova, O N; Kapustina, T P; Mikhailova, V V; Safonov, G A; Vlasova, N N; Belousova, R V

    2015-01-01

    The goal of this work was to demonstrate the results of the development of the enzyme-linked immunosorbent tests with chemiluminescence detection and colorimetric detection of specific viral antigens and antibodies for identifying the avian influenza and the Newcastle disease viruses: high sensitivity and specificity of the immuno- chemiluminescence assay, which are 10-50 times higher than those of the ELISA colorimetric method. The high effectiveness of the results and the automation of the process of laboratory testing (using a luminometer) allow these methods to be recommended for including in primary screening tests for these infectious diseases.

  17. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  18. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes.

  19. Strategy for Sensitive and Specific Detection of Yersinia pestis in Skeletons of the Black Death Pandemic

    PubMed Central

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C.; Riehm, Julia M.

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14th century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study. PMID:24069445

  20. Strategy for sensitive and specific detection of Yersinia pestis in skeletons of the black death pandemic.

    PubMed

    Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C; Riehm, Julia M

    2013-01-01

    Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14(th) century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study.

  1. Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey

    PubMed Central

    Sint, Daniela; Niederklapfer, Bettina; Kaufmann, Ruediger; Traugott, Michael

    2014-01-01

    The applicability of species-specific primers to study feeding interactions is restricted to those ecosystems where the targeted prey species occur. Therefore, group-specific primer pairs, targeting higher taxonomic levels, are often desired to investigate interactions in a range of habitats that do not share the same species but the same groups of prey. Such primers are also valuable to study the diet of generalist predators when next generation sequencing approaches cannot be applied beneficially. Moreover, due to the large range of prey consumed by generalists, it is impossible to investigate the breadth of their diet with species-specific primers, even if multiplexing them. However, only few group-specific primers are available to date and important groups of prey such as flying insects have rarely been targeted. Our aim was to fill this gap and develop group-specific primers suitable to detect and identify the DNA of common taxa of flying insects. The primers were combined in two multiplex PCR systems, which allow a time- and cost-effective screening of samples for DNA of the dipteran subsection Calyptratae (including Anthomyiidae, Calliphoridae, Muscidae), other common dipteran families (Phoridae, Syrphidae, Bibionidae, Chironomidae, Sciaridae, Tipulidae), three orders of flying insects (Hymenoptera, Lepidoptera, Plecoptera) and coniferous aphids within the genus Cinara. The two PCR assays were highly specific and sensitive and their suitability to detect prey was confirmed by testing field-collected dietary samples from arthropods and vertebrates. The PCR assays presented here allow targeting prey at higher taxonomic levels such as family or order and therefore improve our ability to assess (trophic) interactions with flying insects in terrestrial and aquatic habitats. PMID:25525799

  2. 21 CFR 866.3332 - Reagents for detection of specific novel influenza A viruses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... A viruses. 866.3332 Section 866.3332 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Reagents § 866.3332 Reagents for detection of specific novel influenza A viruses. (a) Identification. Reagents for detection of specific novel influenza A viruses are devices that are intended for use in...

  3. Comparison of the specificity of implantable dual chamber defibrillator detection algorithms.

    PubMed

    Hintringer, Florian; Deibl, Martina; Berger, Thomas; Pachinger, Otmar; Roithinger, Franz Xaver

    2004-07-01

    The aim of the study was to compare the specificity of dual chamber ICDs detection algorithms for correct classification of supraventricular tachyarrhythmias derived from clinical studies according to their size to detect an impact of sample size on the specificity. Furthermore, the study sought to compare the specificities of detection algorithms calculated from clinical data with the specificity calculated from simulations of tachyarrhythmias. A survey was conducted of all available sources providing data regarding the specificity of five dual chamber ICDs. The specificity was correlated with the number of patients included, number of episodes, and number of supraventricular tachyarrhythmias recorded. The simulation was performed using tachyarrhythmias recorded in the electrophysiology laboratory. The range of the number of patients included into the studies was 78-1,029, the range of the total number of episodes recorded was 362-5,788, and the range of the number of supraventricular tachyarrhythmias used for calculation of the specificity for correct detection of these arrhythmias was 100 (Biotronik) to 1662 (Medtronic). The specificity for correct detection of supraventricular tachyarrhythmias was 90% (Biotronik), 89% (ELA Medical), 89% (Guidant), 68% (Medtronic), and 76% (St. Jude Medical). There was an inverse correlation (r = -0.9, P = 0.037) between the specificity for correct classification of supraventricular tachyarrhythmias and the number of patients. The specificity for correct detection of supraventricular tachyarrhythmias calculated from the simulation after correction for the clinical prevalence of the simulated tachyarrhythmias was 95% (Biotronik), 99% (ELA Medical), 94% (Guidant), 93% (Medtronic), and 92% (St. Jude Medical). In conclusion, the specificity of ICD detection algorithms calculated from clinical studies or registries may depend on the number of patients studied. Therefore, a direct comparison between different detection algorithms

  4. Marking of specific sequences in double-stranded DNA molecules—SNP detection and direct observation

    PubMed Central

    Shigemori, Yasushi; Haruta, Hirotaka; Okada, Takao; Oishi, Michio

    2004-01-01

    In this study, we describe a simple method to mark specific sequences in double-stranded DNA molecules. For the marking, we used two specifically designed oligonucleotides, one of which is complementary to the sequence to be marked and the other, serving as a splint, to make the marking stable and detectable by subsequent various analytical means. In the presence of the two deoxyoligonucleotides, whereas RecA protein-mediated reaction converts the sequence to be marked to a regional triple-stranded structure with the complementary (probing) oligonucleotide, DNA ligase transforms it to a stable multi- (possibly quintuple) stranded structure with the splint oligonucleotide. The whole marking process is simple and completed in a single reaction mixture. Because RecA protein makes the marking to proceed with high fidelity, we were able to mark (detect) SNPs in complex genomes like human's. Furthermore, the structure of the marked sequence is stable and quite distinct enough to be readily detectable by biochemical means or direct observation by scanning probe microscopy. PMID:15574826

  5. Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer

    PubMed Central

    Huang, Jun; Zeng, Xun; Sigal, Natalia; Lund, Peder J.; Su, Laura F.; Huang, Huang; Chien, Yueh-hsiu; Davis, Mark M.

    2016-01-01

    Here we report a peptide-MHC (pMHC) dodecamer as a “next generation” technology that is a significantly more sensitive and versatile alternative to pMHC tetramers for the detection, isolation, and phenotypic analysis of antigen-specific T cells. In particular, dodecamers are able to detect two- to fivefold more antigen-specific T cells in both human and murine CD4+ and CD8+ αβ T-cell compartments compared with the equivalent tetramers. The low-affinity, tetramer-negative, dodecamer-positive T cells showed comparable effector cytokine responses as those of high-affinity, tetramer-positive T cells. Dodecamers are able to detect early stage CD4+CD8+ double-positive thymocytes on which T-cell receptors are 10- to 30-fold less dense than mature T cells. Dodecamers also show utility in the analysis of γδ T cells and in cytometry by time-of-flight applications. This construct has a simple structure with a central scaffold protein linked to four streptavidin molecules, each having three pMHC ligands or other molecules. The dodecamer is straightforward and inexpensive to produce and is compatible with current tetramer technology and commercially available streptavidin conjugates. PMID:26979955

  6. Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach.

    PubMed

    Tao, Tingting; Chen, Qiming; Bie, Xiaomei; Lu, Fengxia; Lu, Zhaoxin

    2015-12-01

    Listeria monocytogenes in contaminated food is considered as a serious health threat for consumers due to its high mortality rate. The objective of this study was to obtain novel species-specific target-genes and primers for the molecular detection of L. monocytogenes using a comparative genomic approach. By comparative analysis of L. monocytogenes and non-L. monocytogenes genome sequences in the GenBank database with BLAST program, 26 specific target sequences were used as candidates and the primers were designed for L. monocytogenes species-specificity verification by using PCR assay. Finally, the three genes LMOf2365_0970, LMOf2365_2721 and mpl were identified to have L. monocytogenes species-specificity and be unique as detection targets for diagnostic application. The species-specific primer Lm8 of gene LMOf2365_0970, Lm13 of gene LMOf2365_2721 and Lm20 of gene mpl showed better specificity and sensitivity than the primers described previously. The PCR detection limits of the three specific primer sets were 430, 43, 4.3 fg/μL for genomic DNA, and 5 × 10(3), 50, 5 cfu/mL for pure culture of L. monocytogenes. There was no interference in specificity of detecting L. monocytogenes by co-culture with other foodborne pathogens in high concentration. Moreover, after 6-8 h of enrichment, L. monocytogenes in the artificially contaminated milk samples at an inoculum dose of 38 cfu/10 mL milk could be detected successfully with the studied three primers. Therefore, the three specific genes and primers can be applied to establish a novel rapid and accurate method for detecting L. monocytogenes in food materials.

  7. FRET-based detection of isozyme-specific activities of transglutaminases.

    PubMed

    Tatsukawa, Hideki; Liu, Hong Hong; Oba, Shota; Kamiya, Noriho; Nakanishi, Yoichi; Hitomi, Kiyotaka

    2017-03-01

    Transglutaminases (TGs) comprise a protein family in which the members catalyze the formation of isopeptide bonds between glutamine and lysine residues in various proteins. Expression studies on its three major members, FXIII, TG1, and TG2, have been performed in a relatively large number of mammalian tissues in comparison with those on the other isozymes. We previously identified a highly reactive substrate peptide, including glutamine, for each isozyme from a phage display library and developed a method for detecting isozyme-specific activities by incorporating a labeled substrate peptide into lysine residues of proteins. Here, we describe genetically encoded Förster resonance energy transfer (FRET)-based probes composed of each fluorescence protein (Cerulean and EVenus) fused with substrate peptides. The probe pairs, designated as Trac-MTG (His-CerΔ11-LQ/EV-K-His) containing linker and substrate peptide sequence for microbial TG (MTG), increased the EVenus:Cerulean fluorescence intensity ratio by more than 1.5-fold. Furthermore, we demonstrated that Trac-TG1 (His-CerΔ11-K5) and Trac-TG2 (His-CerΔ11-T26) containing substrate peptide sequence for mammalian TGs successfully detected the isozyme-specific activity of TG1 and TG2, respectively. In this study, we developed a rapid and convenient experimental system for measuring the isozyme-specific activity of TGs. The application of these probes for analyses in cells and tissues will be helpful for elucidating the physiological and pathological functions of TGs.

  8. Detection of human papillomavirus types 45 and 51 by type-specific polymerase chain reaction.

    PubMed

    Weyn, Christine; Boulenouar, Selma; Mathys, Vanessa; Vanhoolandt, Julie; Bernis, Aurore; Fontaine, Véronique

    2007-12-01

    Human papillomavirus (HPV) types 45 and 51 are both considered as high risk types for the development of human cervical cancer. To optimize the detection of these two types in clinical samples, HPV-45 and HPV-51 specific primers were designed to amplify respectively a 141bp and a 266bp fragment from the L1 gene by polymerase chain reaction (PCR). The sensitivity and the specificity of these two PCR reactions were determined using varying amounts of HPV DNA containing plasmids and negative and positive controls. Overall, the sensitivity for the HPV-45 plasmid DNA is 10fg, while for HPV-51 the sensitivity is 1fg. This is equivalent to approximately 100 and 10 HPV genome copies per PCR reaction, respectively.

  9. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  10. Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics.

    PubMed

    Hu, Zonglin; Leppla, Stephen H; Li, Baoguang; Elkins, Christopher A

    2014-09-01

    Detection of nucleic acids using antibodies is uncommon. This is in part because nucleic acids are poor immunogens and it is difficult to elicit antibodies having high affinity to each type of nucleic acid while lacking cross-reactivity to others. We describe the origins and applications of a variety of anti-nucleic acid antibodies, including ones reacting with modified nucleosides and nucleotides, single-stranded DNA, double-stranded DNA, RNA, DNA:RNA hybrids, locked-nucleic acids or peptide nucleic acid:nucleic acid hybrids. Carefully selected antibodies can be excellent reagents for detecting bacteria, viruses, small RNAs, microRNAs, R-loops, cancer cells, stem cells, apoptotic cells and so on. The detection may be sensitive, simple, rapid, specific, reproducible, quantitative and cost-effective. Current microarray and diagnostic methods that depend on cDNA or cRNA can be replaced by using antibody detection of nucleic acids. Therefore, development should be encouraged to explore new utilities and create a robust arsenal of new anti-nucleic acid antibodies.

  11. Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers.

    PubMed

    Gryndler, Milan; Hršelová, Hana; Soukupová, Lucie; Streiblová, Eva; Valda, Slavomír; Borovička, Jan; Gryndlerová, Hana; Gažo, Ján; Miko, Marián

    2011-05-01

    Tuber aestivum is becoming an important commodity of great economical value in some European countries. At the same time, it is a highly protected organism in other countries, where it needs careful treatment. A reliable method of detection in roots and soil is thus needed for assessment of geographic distribution, ecological studies and inoculation efficiency testing in man-made experiments. A PCR-based method of detection of T. aestivum using specific primers was therefore developed. A pair of PCR primers Tu1sekvF/Tu2sekvR selective for T. aestivum and some genotypes of Tuber mesentericum was designed on the basis of the known internal transcribed spacer T. aestivum sequences. TaiI restriction cleavage was then used to distinguish the two species. The selectivity of the designed primer pair was evaluated using DNA extracted from specimens of a further 13 Tuber spp. Subsequently, the selectivity and robustness to false-positive results with nontarget DNA of the designed primers was compared with two other primer pairs (UncI/UncII and BTAE-F/BTAEMB-R). The occurrence of T. aestivum in soil and ectomycorrhizae collected in its native habitat has been successfully detected using the designed primers and nested PCR. The method is reliable and thus suitable for detection of T. aestivum in the field.

  12. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining

    PubMed Central

    Newell, Evan W.; Klein, Lawrence O.; Yu, Wong; Davis, Mark M.

    2009-01-01

    The direct detection of antigen-specific T cells using tetramers of soluble peptide-major histocompatibilty complex (pMHC) molecules is widely used in both basic and clinical immunology. However, the number of specificities that can be assessed simultaneously has been a major limitation. Here we describe and validate a method using combinations of fluorescent pMHC tetramers to simultaneously detect large numbers (≥ 15) of T cell specificities in a single human blood sample. PMID:19543286

  13. A generic real-time TaqMan assay for specific detection of lapinized Chinese vaccines against classical swine fever.

    PubMed

    Liu, Lihong; Xia, Hongyan; Everett, Helen; Sosan, Olubukola; Crooke, Helen; Meindl-Böhmer, Alexandra; Qiu, Hua-Ji; Moennig, Volker; Belák, Sándor; Widén, Frederik

    2011-08-01

    Classical swine fever (CSF) is a highly contagious disease, causing severe economic losses in the pig industry worldwide. Vaccination of pigs with lapinized Chinese vaccines is still practised in some regions of the world, where the virus is enzootic, in order to prevent and control the disease. However, a single real-time assay that can detect all lapinized Chinese vaccines used widely, namely, Lapinized Philippines Coronel (LPC), Hog Cholera Lapinized virus (HCLV) and the Riems C-strain is still lacking. This study describes a real-time RT-PCR assay, targeting the N(pro) gene region, for specific detection of these lapinized vaccine strains. The assay is highly sensitive, with a detection limit of 10 genome copies per reaction for HCLV and Riems C-strain and highly specific, as more than 100 strains of wild type CSFV representing all major genotypes were not detected. The assay is also highly repeatable: the coefficient of variation of Ct values in three runs was 2.77% for the detection of 10 copies of the vaccine viral RNA. This study provides a potentially useful tool for specific detection of the lapinized Chinese vaccines, HCLV and C-strain, and the differentiation of these vaccines from wild type CSFV.

  14. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth[OPEN

    PubMed Central

    Trevisan, Martine; Petrolati, Laure Allenbach

    2016-01-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana. PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. PMID:27923878

  15. Detection of Bovine viral diarrhea virus-specific neutralizing antibodies in fresh colostrum: a modification of the virus neutralization test.

    PubMed

    Bedekovic, Tomislav; Mihaljevic, Zeljko; Jungic, Andreja; Lemo, Nina; Lojkic, Ivana; Cvetnic, Zeljko; Cac, Zeljko

    2013-03-01

    To eliminate cytotoxic effects of colostrum on cells, a modified virus neutralization test (VNT) for the detection of Bovine viral diarrhea virus-specific neutralizing antibodies in colostrum was developed. The new test was compared to the World Organization for Animal Health-recommended VNT and the results evaluated. The agreement of the new test compared to the standard VNT was determined to be 98%, whereas sensitivity and specificity of the modified VNT compared to the standard VNT were 100%. Bovine viral diarrhea virus-specific antibodies were detected in 42 sera samples and 38 colostrum samples. The antibody titers in serum and colostrum showed a high correlation (n = 56, r = 0.9719, P < 0.001). The modified virus neutralization technique described herein succeeds in eliminating cytotoxic effects and can be readily applied for the detection of specific antibodies against other infectious agents in colostrum.

  16. B cells Using Calcium Signaling for Specific and Rapid Detection of Escherichia coli O157:H7

    PubMed Central

    Wang, Ling; Wang, Ronghui; Kong, Byung-Whi; Jin, Sha; Ye, Kaiming; Fang, Weihuan; Li, Yanbin

    2015-01-01

    A rapid and sensitive detection technology is highly desirable for specific detection of E. coli O157:H7, one of the leading bacterial pathogens causing foodborne illness. In this study, we reported the rapid detection of E. coli O157:H7 by using calcium signaling of the B cell upon cellular membrane anchors anti-E. coli O157:H7 IgM. The binding of E. coli O157:H7 to the IgM on B cell surface activates the B cell receptor (BCR)-induced Ca2+ signaling pathway and results in the release of Ca2+ within seconds. The elevated intracellular Ca2+ triggers Fura-2, a fluorescent Ca2+ indicator, for reporting the presence of pathogens. The Fura-2 is transferred to B cells before detection. The study demonstrated that the developed B cell based biosensor was able to specifically detect E. coli O157:H7 at the low concentration within 10 min in pure culture samples. Finally, the B cell based biosensor was used for the detection of E. coli O157:H7 in ground beef samples. With its short detection time and high sensitivity at the low concentration of the target bacteria, this B cell biosensor shows promise in future application of the high throughput and rapid food detection, biosafety and environmental monitoring. PMID:26034978

  17. Advanced Tribological Coatings for High Specific Strength Alloys

    DTIC Science & Technology

    1989-09-29

    Hard Anodised 4 HSSA12 (SHT) Plasma Nitrided 1 HSSA13 (H&G) Plasma Nitrided 2 HSSA14 (SHT) High Temperature Nitrocarburized 1 HSSA15 (H&G) Nitrox 1...HSSA26 ( High Temperature Plasma Nitriding) has recently arrived, and is currently undergoing metallographic examination. The remaining samples are still...Report No 3789/607 Advanced Tribological Coatings For High Specific Strength Alloys, R&D 5876-MS-01 Contract DAJ A45-87-C-0044 5th Interim Report

  18. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    PubMed

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR(+) T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+) tumor targets. This clone can be used to detect CD19-specific CAR(+) T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR(+) T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  19. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction

    SciTech Connect

    Day, D.J.; Barany, F.; Speiser, P.W.

    1995-09-01

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia, an inherited inability to synthesize cortisol that occurs in 1 in 10,000-15,000 births. Affected females are born with ambiguous genitalia, a condition that can be ameliorated by administering dexamethasone to the mother for most of gestation. Prenatal diagnosis is required for accurate treatment of affected females as well as for genetic counseling purposes. Approximately 95% of mutations causing this disorder result from recombinations between the gene encoding the 21-hydroxylase enzyme (CYP21) and a linked, highly homologous pseudogene (CYP21P). Approximately 20% of these mutations are gene deletions, and the remainder are gene conversions that transfer any of nine deleterious mutations from the CYP21P pseudogene to CYP21. We describe a methodology for genetic diagnosis of 21-hydroxylase deficiency that utilizes gene-specific PCR amplification in conjunction with thermostable DNA ligase to discriminate single nucleotide variations in a multiplexed ligation detection assay. The assay has been designed to be used with either fluorescent or radioactive detection of ligation products by electrophoresis on denaturing acrylamide gels and is readily adaptable for use in other disease systems. 30 refs., 5 figs.

  20. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA-RNA Hybrids.

    PubMed

    Fang, Chiew San; Kim, Kwang-Sun; Yu, Byeongjun; Jon, Sangyong; Kim, Moon-Soo; Yang, Haesik

    2017-02-07

    Both high sensitivity and high specificity are crucial for detection of miRNAs that have emerged as important clinical biomarkers. Just Another Zinc finger proteins (JAZ, ZNF346) bind preferably (but nonsequence-specifically) to DNA-RNA hybrids over single-stranded RNAs, single-stranded DNAs, and double-stranded DNAs. We present an ultrasensitive and highly specific electrochemical method for miRNA-21 detection based on the selective binding of JAZ to the DNA-RNA hybrid formed between a DNA capture probe and a target miRNA-21. This enables us to use chemically stable DNA as a capture probe instead of RNA as well as to apply a standard sandwich-type assay format to miRNA detection. High signal amplification is obtained by (i) enzymatic amplification by alkaline phosphatase (ALP) coupled with (ii) electrochemical-chemical-chemical (ECC) redox cycling involving an ALP product (hydroquinone). Low nonspecific adsorption of ALP-conjugated JAZ is obtained using a polymeric self-assembled-monolayer-modified and casein-treated indium-tin oxide electrode. The detection method can discriminate between target miRNA-21 and nontarget nucleic acids (DNA-DNA hybrid, single-stranded DNA, miRNA-125b, miRNA-155, single-base mismatched miRNA, and three-base mismatched miRNA). The detection limits for miRNA-21 in buffer and 10-fold diluted serum are approximately 2 and 30 fM, respectively, indicating that the detection method is ultrasensitive. This detection method can be readily extended to multiplex detection of miRNAs with only one ALP-conjugated JAZ probe due to its nonsequence-specific binding character. We also believe that the method could offer a promising solution for point-of-care testing of miRNAs in body fluids.

  1. Rapid and specific detection of the thermostable direct hemolysin gene in Vibrio parahaemolyticus by loop-mediated isothermal amplification.

    PubMed

    Nemoto, Jiro; Sugawara, Chiyo; Akahane, Kenji; Hashimoto, Keiji; Kojima, Tadashi; Ikedo, Masanari; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2009-04-01

    Several investigators have reported that thermostable direct hemolysin (TDH) and TDH-related hemolysin are important virulence factors of Vibrio parahaemolyticus, but it has been difficult to detect these factors rapidly in seafood and other environmental samples. A novel nucleic acid amplification method, termed the loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity and rapidity under isothermal conditions, was applied. In this study, we designed tdh gene-specific LAMP primers for detection of TDH-producing V. parahaemolyticus. The specificity of this assay was evaluated with 32 strains of TDH-producing V. parahaemolyticus, one strain of TDH-producing Grimontia hollisae, 10 strains of TDH-nonproducing V. parahaemolyticus, and 94 strains of TDH-nonproducing bacteria, and the sensitivity was high enough to detect one cell per test. Moreover, to investigate the detection of TDH-producing V. parahaemolyticus in oysters, the LAMP assay was performed with enrichment culture in alkaline peptone water of oyster samples inoculated with TDH-producing V. parahaemolyticus and TDH-nonproducing V. parahaemolyticus and V. alginolyticus after enrichment in alkaline peptone water. These results suggest that the LAMP assay targeting tdh gene has high sensitivity and specificity and is useful to detect TDH-producing V. parahaemolyticus in oyster after enrichment.

  2. Identification of two highly specific pollen promoters using transcriptomic data.

    PubMed

    Muñoz-Strale, Daniela; León, Gabriel

    2014-10-01

    The mature pollen grain displays a highly specialized function in angiosperms. Accordingly, the male gametophyte development involves many specific biological activities, making it a complex and unique process in plants. In order to accomplish this, during pollen development, a massive transcriptomic remodeling takes place, indicating the switch from a sporophytic to a gametophytic program and involving the expression of many pollen specific genes. Using microarray databases we selected genes showing pollen-specific accumulation of their mRNAs and confirmed this through RT-PCR. We selected five genes (POLLEN SPECIFIC GENE1-5) to investigate the pollen specificity of their expression. Transcriptional fusions between the putative promoters of these genes and the uidA reporter gene in Arabidopsis confirmed the pollen specific expression for at least two of these genes. The expression of the cytotoxin Barnase controlled by these promoters generated pollen specific ablation and male sterility. Through the selection of pollen specific genes from public datasets, we were able to identify promoter regions that confer pollen expression. The use of the cytotoxin Barnase allowed us to demonstrate its expression is exclusively limited to the pollen. These new promoters provide a powerful tool for the expression of genes exclusively in pollen.

  3. Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus

    NASA Astrophysics Data System (ADS)

    Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.

    2014-09-01

    An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.

  4. A Protocol Specification-Based Intrusion Detection System for VoIP and Its Evaluation

    NASA Astrophysics Data System (ADS)

    Phit, Thyda; Abe, Kôki

    We propose an architecture of Intrusion Detection System (IDS) for VoIP using a protocol specification-based detection method to monitor the network traffics and alert administrator for further analysis of and response to suspicious activities. The protocol behaviors and their interactions are described by state machines. Traffic that behaves differently from the standard specifications are considered to be suspicious. The IDS has been implemented and simulated using OPNET Modeler, and verified to detect attacks. It was found that our system can detect typical attacks within a reasonable amount of delay time.

  5. Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes

    PubMed Central

    Llop, Esther; Ferrer-Batallé, Montserrat; Barrabés, Sílvia; Guerrero, Pedro Enrique; Ramírez, Manel; Saldova, Radka; Rudd, Pauline M.; Aleixandre, Rosa N.; Comet, Josep; de Llorens, Rafael; Peracaula, Rosa

    2016-01-01

    New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic. PMID:27279911

  6. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody

    PubMed Central

    2012-01-01

    Background The form(s) of amyloid-β peptide (Aβ) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aβ accumulation is an issue of considerable controversy; even the existence of Aβ deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aβ. To further address this issue, an anti-Aβ antibody was developed (MOAB-2) that specifically detects Aβ, but not APP. This antibody allows for the further evaluation of the early accumulation of intraneuronal Aβ in transgenic mice with increased levels of human Aβ in 5xFAD and 3xTg mice. Results MOAB-2 (mouse IgG2b) is a pan-specific, high-titer antibody to Aβ residues 1-4 as demonstrated by biochemical and immunohistochemical analyses (IHC), particularly compared to 6E10 (a commonly used commercial antibody to Aβ residues 3-8). MOAB-2 did not detect APP or APP-CTFs in cell culture media/lysates (HEK-APPSwe or HEK-APPSwe/BACE1) or in brain homogenates from transgenic mice expressing 5 familial AD (FAD) mutation (5xFAD mice). Using IHC on 5xFAD brain tissue, MOAB-2 immunoreactivity co-localized with C-terminal antibodies specific for Aβ40 and Aβ42. MOAB-2 did not co-localize with either N- or C-terminal antibodies to APP. In addition, no MOAB-2-immunreactivity was observed in the brains of 5xFAD/BACE-/- mice, although significant amounts of APP were detected by N- and C-terminal antibodies to APP, as well as by 6E10. In both 5xFAD and 3xTg mouse brain tissue, MOAB-2 co-localized with cathepsin-D, a marker for acidic organelles, further evidence for intraneuronal Aβ, distinct from Aβ associated with the cell membrane. MOAB-2 demonstrated strong intraneuronal and extra-cellular immunoreactivity in 5xFAD and 3xTg mouse brain tissues. Conclusions Both intraneuronal Aβ accumulation and

  7. Phage-Based Fluorescent Biosensor Prototypes to Specifically Detect Enteric Bacteria Such as E. coli and Salmonella enterica Typhimurium

    PubMed Central

    Vinay, Manon; Franche, Nathalie; Grégori, Gérald; Fantino, Jean-Raphaël; Pouillot, Flavie; Ansaldi, Mireille

    2015-01-01

    Water safety is a major concern for public health and for natural environment preservation. We propose to use bacteriophages to develop biosensor tools able to detect human and animal pathogens present in water. For this purpose, we take advantage of the highly discriminating properties of the bacteriophages, which specifically infect their bacterial hosts. The challenge is to use a fluorescent reporter protein that will be synthesized, and thus detected, only once the specific recognition step between a genetically modified temperate bacteriophage and its bacterial host has occurred. To ensure the accuracy and the execution speed of our system, we developed a test that does not require bacterial growth, since a simple 1-hour infection step is required. To ensure a high sensitivity of our tool and in order to detect up to a single bacterium, fluorescence is measured using a portable flow cytometer, also allowing on-site detection. In this study, we have constructed and characterized several "phagosensor" prototypes using the HK620 bacteriophage and its host Escherichia coli TD2158 and we successfully adapted this method to Salmonella detection. We show that the method is fast, robust and sensitive, allowing the detection of as few as 10 bacteria per ml with no concentration nor enrichment step. Moreover, the test is functional in sea water and allows the detection of alive bacteria. Further development will aim to develop phagosensors adapted on demand to the detection of any human or animal pathogen that may be present in water. PMID:26186207

  8. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray

    PubMed Central

    Stieber, Bettina; Monecke, Stefan; Müller, Elke; Büchler, Joseph; Ehricht, Ralf

    2015-01-01

    Background S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins. Methods In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays. Results 110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate. Conclusions The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers. PMID:26624622

  9. Specific detection of tetanus toxoid using an aptamer-based matrix.

    PubMed

    Modh, Harshvardhan B; Bhadra, Ankan K; Patel, Kinjal A; Chaudhary, Rajeev K; Jain, Nishant K; Roy, Ipsita

    2016-11-20

    Batch-to-batch variation of therapeutic proteins produced by biological means requires rigorous monitoring at all stages of the production process. A large number of animals are employed for risk assessment of biologicals, which has low ethical and economic acceptability. Research is now focussed on the validation of in vitro and ex vivo tests to replace live challenges. Among in vitro methods, enzyme-linked immunosorbent assay (ELISA) is considered to be the gold standard for estimation of integrity of tetanus toxoid. ELISA utilizes antibodies for detection, which, because of their biological origin and limited modifiability, may have low stability and result in irreproducibility. We have developed a method using highly specific and selective RNA aptamers for detection of tetanus toxoid. Using displacement assay, we first identified aptamers which bind to different aptatopes on the surface of the toxoid. Pairs of these aptamers were employed as capture-detection ligands in a sandwich-ALISA (aptamer-linked immobilized sorbent assay) format. The binding efficiency was confirmed by the fluorescence intensity in each microtire plate well. Using aptamers alone, detection of tetanus toxoid was possible with the same level of sensitivity as antibody. Aptamers were also used in the capture ALISA format. Adjuvanted tetanus toxoid was subjected to accelerated stress testing, including thermal, mechanical and freeze-thawing stress conditions. The loss in antigenicity of the preparation determined by ALISA in each case was found to be similar to that determined by conventional ELISA. Thus, it is possible to replace antibodies with aptamers to develop a more robust detection tool for tetanus toxoid.

  10. High specific energy and specific power aluminum/air battery for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Matthies, L.

    2014-06-01

    Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.

  11. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  12. An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus

    PubMed Central

    Acharya, Dhiraj; Bastola, Pradip; Le, Linda; Paul, Amber M.; Fernandez, Estefania; Diamond, Michael S.; Miao, Wujian; Bai, Fengwei

    2016-01-01

    Zika virus (ZIKV) is a globally emerging mosquito-transmitted flavivirus that can cause severe fetal abnormalities, including microcephaly. As such, highly sensitive, specific, and cost-effective diagnostic methods are urgently needed. Here, we report a novel electrogenerated chemiluminescence (ECL)-based immunoassay for ultrasensitive and specific detection of ZIKV in human biological fluids. We loaded polystyrene beads (PSB) with a large number of ECL labels and conjugated them with anti-ZIKV monoclonal antibodies to generate anti-ZIKV-PSBs. These anti-ZIKV-PSBs efficiently captured ZIKV in solution forming ZIKV-anti-ZIKV-PSB complexes, which were subjected to measurement of ECL intensity after further magnetic beads separation. Our results show that the anti-ZIKV-PSBs can capture as little as 1 PFU of ZIKV in 100 μl of saline, human plasma, or human urine. This platform has the potential for development as a cost-effective, rapid and ultrasensitive assay for the detection of ZIKV and possibly other viruses in clinical diagnosis, epidemiologic and vector surveillance, and laboratory research. PMID:27554037

  13. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  14. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases.

    PubMed

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-10-27

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases.

  15. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases

    PubMed Central

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-01-01

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases. PMID:27786270

  16. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens.

    PubMed

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R; Barany, Francis; Soper, Steven A

    2012-09-21

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic

  17. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  18. Multiplex Detection of Protease Activity with Quantum Dot Nanosensors Prepared by Intein-Mediated Specific Bioconjugation

    PubMed Central

    Xia, Zuyong; Xing, Yun; So, Min-Kyung; Koh, Ai Leen; Sinclair, Robert; Rao, Jianghong

    2009-01-01

    We report here a protease sensing nanoplatform based on semiconductor nanocrystals or quantum dots (QDs) and bioluminescence resonance energy transfer (QD-BRET) to detect the protease activity in complex biological samples. These nanosensors consist of bioluminescent proteins as the BRET donor, quantum dots as the BRET acceptor, and protease substrates sandwiched between the two as a sensing group. An intein-mediated conjugation strategy was developed for site-specific conjugation of proteins to QDs in preparing these QD nanosensors. In this traceless ligation, the intein itself is spliced out and excluded from the final conjugation product. With this method, we have synthesized a series of QD nanosensors for highly sensitive detection of an important class of protease matrix metalloproteinase (MMP) activity. We demonstrated that these nanosensors can detect the MMP activity in buffers and in mouse serum with the sensitivity to a few ng/ml, and secreted proteases by tumor cells. The suitability of these nanosensors for a multiplex protease assay has also been shown. PMID:18922019

  19. Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin.

    PubMed

    Wang, Pingyan; Li, Guanghui; Yan, Junrong; Hu, Yonghong; Zhang, Cunzheng; Liu, Xianjin; Wan, Yakun

    2014-12-15

    The variable domain of the heavy-chain-only antibody (VHH) or nanobody (Nb), derived from camelids, begins to play an important role on the detection of protein markers. In this study, we constructed a phage-displayed library of VHHs against Cry1Fa by immunizing a healthy Bactrian camel with Cry1Fa toxin. After a series of bio-panning and screening by phage display technology, three anti-Cry1Fa nanobodies (Nbs) with great difference in complementarity determining region 3 (CDR3) were obtained and they were highly specific to Cry1Fa as well as showed full of activity when exposed to 70 °C for 3 h. Through modifying Nbs with Horseradish Peroxidase (HRP) and biotin, two Nbs which can recognize the different epitopes of Cry1Fa were determined and they were used to establish a novel sandwich immune ELISA based on biotin-SA interaction for Cry1Fa detection. The immunoassay exhibited a linear range from 1 to 100 ng/mL with a detection limit of 0.88 ng/mL. The recoveries from spiked corn and soybean samples were ranged from 83.33 to 117.17%, with a coefficient of variation (C.V) less than 6.0%. All together, the proposed immunoassay will be a promising way for sensitive and accurate determination of Cry1Fa toxin.

  20. The evolutionary development of high specific impulse electric thruster technology

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.

    1992-01-01

    Electric propulsion flight and technology demonstrations conducted primarily by Europe, Japan, China, the U.S., and the USSR are reviewed. Evolutionary mission applications for high specific impulse electric thruster systems are discussed, and the status of arcjet, ion, and magnetoplasmadynamic thrusters and associated power processor technologies are summarized.

  1. A Ratio Test of Interrater Agreement with High Specificity

    ERIC Educational Resources Information Center

    Cousineau, Denis; Laurencelle, Louis

    2015-01-01

    Existing tests of interrater agreements have high statistical power; however, they lack specificity. If the ratings of the two raters do not show agreement but are not random, the current tests, some of which are based on Cohen's kappa, will often reject the null hypothesis, leading to the wrong conclusion that agreement is present. A new test of…

  2. Novel Bacteroides host strains for detection of human- and animal-specific bacteriophages in water.

    PubMed

    Wicki, Melanie; Auckenthaler, Adrian; Felleisen, Richard; Tanner, Marcel; Baumgartner, Andreas

    2011-03-01

    Bacteriophages active against specific Bacteroides host strains were shown to be suitable for detection of human faecal pollution. However, the practical application of this finding is limited because some specific host strains were restricted to certain geographic regions. In this study, novel Bacteroides host strains were isolated that discriminate human and animal faecal pollution in Switzerland. Two strains specific for bacteriophages present in human faecal contamination and three strains specific for bacteriophages indicating animal faecal contamination were evaluated. Bacteriophages infecting human strains were exclusively found in human wastewater, whereas animal strains detected bacteriophages only in animal waste. The newly isolated host strains could be used to determine the source of surface and spring water faecal contamination in field situations. Applying the newly isolated host Bacteroides thetaiotaomicron ARABA 84 for detection of bacteriophages allowed the detection of human faecal contamination in spring water.

  3. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    SciTech Connect

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  4. Open-Source Radiation Exposure Extraction Engine (RE3) with Patient-Specific Outlier Detection.

    PubMed

    Weisenthal, Samuel J; Folio, Les; Kovacs, William; Seff, Ari; Derderian, Vana; Summers, Ronald M; Yao, Jianhua

    2016-08-01

    We present an open-source, picture archiving and communication system (PACS)-integrated radiation exposure extraction engine (RE3) that provides study-, series-, and slice-specific data for automated monitoring of computed tomography (CT) radiation exposure. RE3 was built using open-source components and seamlessly integrates with the PACS. RE3 calculations of dose length product (DLP) from the Digital imaging and communications in medicine (DICOM) headers showed high agreement (R (2) = 0.99) with the vendor dose pages. For study-specific outlier detection, RE3 constructs robust, automatically updating multivariable regression models to predict DLP in the context of patient gender and age, scan length, water-equivalent diameter (D w), and scanned body volume (SBV). As proof of concept, the model was trained on 811 CT chest, abdomen + pelvis (CAP) exams and 29 outliers were detected. The continuous variables used in the outlier detection model were scan length (R (2)  = 0.45), D w (R (2) = 0.70), SBV (R (2) = 0.80), and age (R (2) = 0.01). The categorical variables were gender (male average 1182.7 ± 26.3 and female 1047.1 ± 26.9 mGy cm) and pediatric status (pediatric average 710.7 ± 73.6 mGy cm and adult 1134.5 ± 19.3 mGy cm).

  5. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Motin, Vladinir L.

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  6. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2009-02-24

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  7. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2007-02-06

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  8. Nucleotide sequences specific to Brucella and methods for the detection of Brucella

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.

    2009-02-24

    Nucleotide sequences specific to Brucella that serves as a marker or signature for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  9. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology.

    PubMed

    Roma, Cristin; Esposito, Claudia; Rachiglio, Anna Maria; Pasquale, Raffaella; Iannaccone, Alessia; Chicchinelli, Nicoletta; Franco, Renato; Mancini, Rita; Pisconti, Salvatore; De Luca, Antonella; Botti, Gerardo; Morabito, Alessandro; Normanno, Nicola

    2013-01-01

    Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR) is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA) based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC) samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2); the maximum cycle threshold (Ct = 37); and the cut-off ΔCt value (7) for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.

  10. Power spectral density specifications for high-power laser systems

    SciTech Connect

    Lawson, J.K.; Aikens, D.A.; English, R.E. Jr.; Wolfe, C.R.

    1996-04-22

    This paper describes the use of Fourier techniques to characterize the transmitted and reflected wavefront of optical components. Specifically, a power spectral density, (PSD), approach is used. High power solid-state lasers exhibit non-linear amplification of specific spatial frequencies. Thus, specifications that limit the amplitude of these spatial frequencies are necessary in the design of these systems. Further, NIF optical components have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. Components with non-circular apertures can not be analyzed correctly with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The shape of a resultant wavefront or the focal spot of a complex multicomponent laser system can be calculated and optimized using PSDs of the individual optical components which comprise the system. Surface roughness can be calculated over a range of spatial scale-lengths by integrating the PSD. Finally, since the optical transfer function (OTF) of the instruments used to measure the wavefront degrades at high spatial frequencies, the PSD of an optical component is underestimated. We can correct for this error by modifying the PSD function to restore high spatial frequency information. The strengths of PSD analysis are leading us to develop optical specifications incorporating this function for the planned National Ignition Facility (NIF).

  11. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms

    PubMed Central

    Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas

    2016-01-01

    Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640

  12. Dual labeling of a binding protein allows for specific fluorescence detection of native protein.

    PubMed

    Karlström, A; Nygren, P A

    2001-08-01

    Fluorescence resonance energy transfer has been investigated in the context of specific detection of unlabeled proteins. A model system based on the staphylococcal protein A (SPA)-IgG interaction was designed, in which a single domain was engineered to facilitate site-specific incorporation of fluorophores. An Asn23Cys mutant of the B domain from SPA was expressed in Escherichia coli and subsequently labeled at the introduced unique thiol and at an amino group, using N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS) and succinimidyl 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate (NBD-X, SE), respectively. Biosensor analysis of purified doubly labeled protein showed that high-affinity binding to the Fc region of IgG was retained. The fluorescence emission spectrum of the doubly labeled protein showed a shift in the relative emission of the two fluorophores in the presence of Fc3(1) fragments, which bind specifically to the B domain. In addition, the fluorescence emission ratio 480/525 nm was shown to increase with increasing concentration of Fc3(1), whereas the presence of a control protein did not affect the emission ratio over the same concentration range.

  13. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  14. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification.

    PubMed

    Yasuhara-Bell, Jarred; Marrero, Glorimar; De Silva, Asoka; Alvarez, Anne M

    2016-12-01

    Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays.

  15. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers.

    PubMed

    Ahmed, W; Powell, D; Goonetilleke, A; Gardner, T

    2008-01-01

    Multiple host-specific molecular markers were used to detect the sources of faecal pollution in a mixed land use non-sewered catchment in Southeast Queensland, Australia. These markers included human-specific Bacteroides (HF183 and HF134), cattle-specific Bacteroides (CF128), dog-specific Bacteroides (BacCan) and human-specific enterococci surface protein (esp) markers. The sensitivity and specificity of these markers were determined by testing 197 faecal samples from 13 host groups. The overall sensitivity and specificity of these markers was high (sensitivity>/=85% and specificity>/=93%) indicating their suitability for detecting the sources of faecal pollution. Of the 16 samples collected from the study area, 14 (87%) were positive for at least one of the molecular marker tested. Amongst all the markers, cattle-specific CF128 was more prevalent than others, followed by human-specific HF183 which was consistently detected in samples collected from sites within close proximity to urban development. Significant correlations were found between E. coli and enterococci concentrations with the positive/negative results of human-specific Bacteroides HF183 (p<0.001, p<0.0001) and HF134 (p<0.001, p<0.004) markers. No correlations were found between faecal indicators (E. coli or enterococci) with the CF128 or BacCan markers. A significant correlation was also found between enterococci concentrations and the presence/absence of the esp marker (p<0.02). Based on the results, it appears that the host-specific markers such as HF183 and esp are a sensitive measure of sources of human faecal pollution in surface waters in Southeast Queensland, Australia.

  16. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, G.R.

    1994-09-06

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  17. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, Ganapatic R.

    1994-01-01

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  18. Method of preparing high specific activity platinum-195m

    SciTech Connect

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.

    2004-06-15

    A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.

  19. Method for preparing high specific activity 177Lu

    DOEpatents

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.

    2004-04-06

    A method of separating lutetium from a solution containing Lu and Yb, particularly reactor-produced .sup.177 Lu and .sup.177 Yb, includes the steps of: providing a chromatographic separation apparatus containing LN resin; loading the apparatus with a solution containing Lu and Yb; and eluting the apparatus to chromatographically separate the Lu and the Yb in order to produce high-specific-activity .sup.177 Yb.

  20. Accelerator Production and Separations for High Specific Activity Rhenium-186

    SciTech Connect

    Jurisson, Silvia S.; Wilbur, D. Scott

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  1. Solar-powered rocket engine optimization for high specific impulse

    NASA Astrophysics Data System (ADS)

    Pande, J. Bradley

    1993-11-01

    Hercules Aerospace is currently developing a solar-powered rocket engine (SPRE) design optimized for high specific impulse (Isp). The SPRE features a low loss geometry in its light-gathering cavity, which includes an integral secondary concentrator. The simple one-piece heat exchanger is made from refractory metal and/or ceramic open-celled foam. The foam's high surface-area-to-volume ratio will efficiently transfer the thermal energy to the hydrogen propellant. The single-pass flow of propellant through the heat exchanger further boosts thermal efficiency by regeneratively cooling surfaces near the entrance of the optical cavity. These surfaces would otherwise reradiate a significant portion of the captured solar energy back out of the solar entrance. Such design elements promote a high overall thermal efficiency and hence, a high operating Isp

  2. Dual Immunomagnetic Nanobeads-Based Lateral Flow Test Strip for Simultaneous Quantitative Detection of Carcinoembryonic Antigen and Neuron Specific Enolase

    PubMed Central

    Lu, Wenting; Wang, Kan; Xiao, Kun; Qin, Weijian; Hou, Yafei; Xu, Hao; Yan, Xinyu; Chen, Yanrong; Cui, Daxiang; He, Jinghua

    2017-01-01

    A novel immunomagnetic nanobeads -based lateral flow test strip was developed for the simultaneous quantitative detection of neuron specific enolase (NSE) and carcinoembryonic antigen (CEA), which are sensitive and specific in the clinical diagnosis of small cell lung cancer. Using this nanoscale method, high saturation magnetization, carboxyl-modified magnetic nanobeads were successfully synthesized. To obtain the immunomagnetic probes, a covalent bioconjugation of the magnetic nanobeads with the antibody of NSE and CEA was carried out. The detection area contained test line 1 and test line 2 which captured the immune complexes sensitively and formed sandwich complexes. In this assay, cross-reactivity results were negative and both NSE and CEA were detected simultaneously with no obvious influence on each other. The magnetic signal intensity of the nitrocellulose membrane was measured by a magnetic assay reader. For quantitative analysis, the calculated limit of detection was 0.094 ng/mL for NSE and 0.045 ng/mL for CEA. One hundred thirty clinical samples were used to validate the test strip which exhibited high sensitivity and specificity. This dual lateral flow test strip not only provided an easy, rapid, simultaneous quantitative detection strategy for NSE and CEA, but may also be valuable in automated and portable diagnostic applications. PMID:28186176

  3. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation

    PubMed Central

    Ponnath, Abhilash; Hoke, Kim L.

    2013-01-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947

  4. [Species-specific detection of Proteus vulgaris and Proteus mirabilis by the polymerase chain reaction].

    PubMed

    Limanskiĭ, A; Minukhin, V; Limanskaia, O; Pavlenko, N; Mishina, M; Tsygenenko, A

    2005-01-01

    Sets of primers for the species-specific detection of P. mirabilis and P. vulgaris by the polymerase chain reaction (PCR) were developed. As targets for these primers beta-lactamase and 16S rRNA gene fragments were chosen on the basis of the multiple leveling of the sequences of the DNA of all known P. mirabilis and P. vulgaris isolates. For differential detection oligonucleotides were selected in such a way that primers, specific for P. vulgaris, contained the non-paired nucleotide for P. mirabilis isolate at the 3'-end, and all other nucleotides were complementary to the beta-lactamase gene fragment. Primers, specific for gene 16S rRNA of P. mirabilis, contained the non-paired nucleotide for P. vulgaris isolates at the 3'-end. Standard PCR was carried out for 6 P. mirabilis and P. vulgaris strains. The use of PCR species-specific primers to P. vulgaris DNA made it possible to amplify the DNA fragment of the expected length only for P. vulgaris isolates, while the result of PCR for P. mirabilis was negative. PCR with primers specific to P. mirabilis permitted the detection of amplicon sized 101 nucleotides pairs only for P. mirabilis strains. These primers were optimized so as to use them in the specific differentiation of closely related P. mirabilis and P. vulgaris species by multiplex PCR. Genus-specific primers permitted the detection of bacterial gyrB gene of the genus Proteus were developed also.

  5. Development and Evaluation of Species-Specific PCR for Detection of Nine Acinetobacter Species.

    PubMed

    Li, Xue Min; Choi, Ji Ae; Choi, In Sun; Kook, Joong Ki; Chang, Young-Hyo; Park, Geon; Jang, Sook Jin; Kang, Seong Ho; Moon, Dae Soo

    2016-05-01

    Molecular methods have the potential to improve the speed and accuracy of Acinetobacter species identification in clinical settings. The goal of this study is to develop species-specific PCR assays based on differences in the RNA polymerase beta-subunit gene (rpoB) to detect nine commonly isolated Acinetobacter species including Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter lwoffii, Acinetobacter ursingii, Acinetobacter bereziniae, Acinetobacter haemolyticus, and Acinetobacter schindleri. The sensitivity and specificity of these nine assays were measured using genomic DNA templates from 55 reference strains and from 474 Acinetobacter clinical isolates. The sensitivity of A. baumannii-specific PCR assay was 98.9%, and the sensitivity of species-specific PCR assays for all other species was 100%. The specificities of A. lwoffii- and A. schindleri-specific PCR were 97.8 and 98.9%, respectively. The specificity of species-specific PCR for all other tested Acinetobacter species was 100%. The lower limit of detection for the nine species-specific PCR assays developed in this study was 20 or 200 pg of genomic DNA from type strains of each species. The Acinetobacter species-specific PCR assay would be useful to determine the correct species among suggested candidate Acinetobacter species when conventional methods including MALDI-TOF MS identify Acinetobacter only to the genus level. The species-specific assay can be used to screen large numbers of clinical and environmental samples obtained for epidemiologic study of Acinetobacter for the presence of target species.

  6. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles

    PubMed Central

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang

    2015-01-01

    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection. PMID:26690477

  7. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles.

    PubMed

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang

    2015-12-10

    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  8. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.

    PubMed

    Agüero-Chapin, Guillermin; Pérez-Machado, Gisselle; Sánchez-Rodríguez, Aminael; Santos, Miguel Machado; Antunes, Agostinho

    2016-01-01

    Identifying adenylation domains (A-domains) and their substrate specificity can aid the detection of nonribosomal peptide synthetases (NRPS) at genome/proteome level and allow inferring the structure of oligopeptides with relevant biological activities. However, that is challenging task due to the high sequence diversity of A-domains (~10-40 % of amino acid identity) and their selectivity for 50 different natural/unnatural amino acids. Altogether these characteristics make their detection and the prediction of their substrate specificity a real challenge when using traditional sequence alignment methods, e.g., BLAST searches. In this chapter we describe two workflows based on alignment-free methods intended for the identification and substrate specificity prediction of A-domains. To identify A-domains we introduce a graphical-numerical method, implemented in TI2BioP version 2.0 (topological indices to biopolymers), which in a first step uses protein four-color maps to represent A-domains. In a second step, simple topological indices (TIs), called spectral moments, are derived from the graphical representations of known A-domains (positive dataset) and of unrelated but well-characterized sequences (negative set). Spectral moments are then used as input predictors for statistical classification techniques to build alignment-free models. Finally, the resulting alignment-free models can be used to explore entire proteomes for unannotated A-domains. In addition, this graphical-numerical methodology works as a sequence-search method that can be ensemble with homology-based tools to deeply explore the A-domain signature and cope with the diversity of this class (Aguero-Chapin et al., PLoS One 8(7):e65926, 2013). The second workflow for the prediction of A-domain's substrate specificity is based on alignment-free models constructed by transductive support vector machines (TSVMs) that incorporate information of uncharacterized A-domains. The construction of the models was

  9. Molecular characterization and specific detection of Anaplasma species (AP-sd) in sika deer and its first detection in wild brown bears and rodents in Hokkaido, Japan.

    PubMed

    Moustafa, Mohamed Abdallah Mohamed; Lee, Kyunglee; Taylor, Kyle; Nakao, Ryo; Sashika, Mariko; Shimozuru, Michito; Tsubota, Toshio

    2015-12-01

    A previously undescribed Anaplasma species (herein referred to as AP-sd) has been detected in sika deer, cattle and ticks in Japan. Despite being highly similar to some strains of A. phagocytophilum, AP-sd has never been detected in humans. Its ambiguous epidemiology and the lack of tools for its specific detection make it difficult to understand and interpret the prevalence of this Anaplasma species. We developed a method for specific detection, and examined AP-sd prevalence in Hokkaido wildlife. Our study included 250 sika deer (Cervus nippon yesoensis), 13 brown bears (Ursus arctos yesoensis) and 252 rodents including 138 (Apodemus speciosus), 45 (Apodemus argenteus), 42 (Myodes rufocanus) and 27 (Myodes rutilus) were collected from Hokkaido island, northern Japan, collected during 2010 to 2015. A 770 bp and 382 bp segment of the 16S rRNA and gltA genes, respectively, were amplified by nested PCR. Results were confirmed by cloning and sequencing of the positive PCR products. A reverse line blot hybridization (RLB) based on the 16S rRNA gene was then developed for the specific detection of AP-sd. The prevalence of AP-sd by nested PCR in sika deer was 51% (128/250). We detected this Anaplasma sp. for the first time in wild brown bears and rodents with a prevalence of 15% (2/13) and 2.4% (6/252), respectively. The sequencing results of the 16S rRNA and gltA gene amplicons were divergent from the selected A. phagocytophilum sequences in GenBank. Using a newly designed AP-sd specific probe for RLB has enabled us to specifically detect this Anaplasma species. Besides sika deer and cattle, wild brown bears and rodents were identified as potential reservoir hosts for AP-sd. This study provided a high throughput molecular method that specifically detects AP-sd, and which can be used to investigate its ecology and its potential as a threat to humans in Japan.

  10. Specific detection and confirmation of Campylobacter jejuni by DNA hybridization and PCR.

    PubMed Central

    Ng, L K; Kingombe, C I; Yan, W; Taylor, D E; Hiratsuka, K; Malik, N; Garcia, M M

    1997-01-01

    Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that

  11. Specific detection and confirmation of Campylobacter jejuni by DNA hybridization and PCR.

    PubMed

    Ng, L K; Kingombe, C I; Yan, W; Taylor, D E; Hiratsuka, K; Malik, N; Garcia, M M

    1997-11-01

    Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that

  12. Design and Implementation of an On-Chip Patient-Specific Closed-Loop Seizure Onset and Termination Detection System.

    PubMed

    Zhang, Chen; Bin Altaf, Muhammad Awais; Yoo, Jerald

    2016-07-01

    This paper presents the design of an area- and energy-efficient closed-loop machine learning-based patient-specific seizure onset and termination detection algorithm, and its on-chip hardware implementation. Application- and scenario-based tradeoffs are compared and reviewed for seizure detection and suppression algorithm and system which comprises electroencephalography (EEG) data acquisition, feature extraction, classification, and stimulation. Support vector machine achieves a good tradeoff among power, area, patient specificity, latency, and classification accuracy for long-term monitoring of patients with limited training seizure patterns. Design challenges of EEG data acquisition on a multichannel wearable environment for a patch-type sensor are also discussed in detail. Dual-detector architecture incorporates two area-efficient linear support vector machine classifiers along with a weight-and-average algorithm to target high sensitivity and good specificity at once. On-chip implementation issues for a patient-specific transcranial electrical stimulation are also discussed. The system design is verified using CHB-MIT EEG database [1] with a comprehensive measurement criteria which achieves high sensitivity and specificity of 95.1% and 96.2%, respectively, with a small latency of 1 s. It also achieves seizure onset and termination detection delay of 2.98 and 3.82 s, respectively, with seizure length estimation error of 4.07 s.

  13. Sensitive and specific colorimetric DNA detection by invasive reaction coupled with nicking endonuclease-assisted nanoparticles amplification.

    PubMed

    Zou, Bingjie; Cao, Xiaomei; Wu, Haiping; Song, Qinxin; Wang, Jianping; Kajiyama, Tomoharu; Kambara, Hideki; Zhou, Guohua

    2015-04-15

    Colorimetric DNA detection is preferable to methods in clinical molecular diagnostics, because no expensive equipment is required. Although many gold nanoparticle-based colorimetric DNA detection strategies have been developed to analyze DNA sequences of interest, few of them can detect somatic mutations due to their insufficient specificity. In this study, we proposed a colorimetric DNA detection method by coupling invasive reaction with nicking endonuclease-assisted nanoparticles amplification (IR-NEANA). A target DNA firstly produces many flaps by invasive reaction. Then the flaps are converted to targets of nicking reaction-assisted nanoparticles amplification by ligation reaction to produce the color change of AuNPs, which can be observed by naked eyes. The detection limit of IR-NEANA was determined as 1pM. Most importantly, the specificity of the method is high enough to pick up as low as 1% mutant from a large amount of wild-type DNA backgrounds. The EGFR gene mutated at c.2573 T>G in 9 tissue samples from non-small cell lung cancer patients were successfully detected by using IR-NEANA, suggesting that our proposed method can be used to detect somatic mutations in biological samples.

  14. Validation of an Immunodiagnostic Assay for Detection of 13 Streptococcus pneumoniae Serotype-Specific Polysaccharides in Human Urine

    PubMed Central

    Huijts, Susanne M.; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C.; Bonten, Marc J. M.; Jansen, Kathrin U.

    2012-01-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identified Streptococcus pneumoniae (13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults. PMID:22675155

  15. Validation of an immunodiagnostic assay for detection of 13 Streptococcus pneumoniae serotype-specific polysaccharides in human urine.

    PubMed

    Pride, Michael W; Huijts, Susanne M; Wu, Kangjian; Souza, Victor; Passador, Sherry; Tinder, Chunyan; Song, Esther; Elfassy, Arik; McNeil, Lisa; Menton, Ronald; French, Roger; Callahan, Janice; Webber, Chris; Gruber, William C; Bonten, Marc J M; Jansen, Kathrin U

    2012-08-01

    To improve the clinical diagnosis of pneumococcal infection in bacteremic and nonbacteremic community-acquired pneumonia (CAP), a Luminex technology-based multiplex urinary antigen detection (UAD) diagnostic assay was developed and validated. The UAD assay can simultaneously detect 13 different serotypes of Streptococcus pneumoniae by capturing serotype-specific S. pneumoniae polysaccharides (PnPSs) secreted in human urine. Assay specificity is achieved by capturing the polysaccharides with serotype-specific monoclonal antibodies (MAbs) on spectrally unique microspheres. Positivity for each serotype was based on positivity cutoff values calculated from a standard curve run on each assay plate together with positive- and negative-control urine samples. The assay is highly specific, since significant signals are detected only when each PnPS was paired with its homologous MAb-coated microspheres. Validation experiments demonstrated excellent accuracy and precision. The UAD assay and corresponding positivity cutoff values were clinically validated by assessing 776 urine specimens obtained from patients with X-ray-confirmed CAP. The UAD assay demonstrated 97% sensitivity and 100% specificity using samples obtained from patients with bacteremic, blood culture-positive CAP. Importantly, the UAD assay identified Streptococcus pneumoniae (13 serotypes) in a proportion of individuals with nonbacteremic CAP, a patient population for which the pneumococcal etiology of CAP was previously difficult to assess. Therefore, the UAD assay provides a specific, noninvasive, sensitive, and reproducible tool to support vaccine efficacy as well as epidemiological evaluation of pneumococcal disease, including CAP, in adults.

  16. Detecting location-specific neuronal firing rate increases in the hippocampus of freely-moving monkeys.

    PubMed

    Ludvig, Nandor; Tang, Hai M; Gohil, Baiju C; Botero, Juan M

    2004-07-16

    The spatial properties of the firing of hippocampal neurons have mainly been studied in (a) freely moving rodents, (b) non-human primates seated in a moveable primate chair with head fixed, and (c) epileptic patients subjected to virtual navigation. Although these studies have all revealed the ability of hippocampal neurons to generate spatially selective discharges, the detected firing patterns have been found to be considerably different, even conflicting, in many respects. The present cellular electrophysiological study employed squirrel monkeys (Saimiri sciureus), which moved freely on the walls and floor of a large test chamber. This permitted the examination of the spatial firing of hippocampal neurons in nearly ideal conditions, similar to those used in rodents, yet in a species that belongs to the primate Suborder Anthropoidea. The major findings were that: (1) a group of slow-firing complex-spike cells increased their basal, awake firing rate more than 20-fold, often above 30 spikes/s, when the monkey was in a particular location in the chamber, (2) these location-specific discharges occurred consistently, forming 4-25 s action potential volleys, and (3) fast-firing cells displayed no such electrical activity. Thus, during free movement in three dimensions, primate hippocampal complex-spike cells do generate high-frequency, location-specific action potential volleys. Since these cells are components of the medial temporal lobe memory system, their uncovered firing pattern may well be involved in the formation of declarative memories on places.

  17. Detection of Leptospira-Specific Antibodies Using a Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Halsey, Eric S.; Guevara, Carolina; Canal, Enrique; Hall, Eric; Maves, Ryan; Tilley, Drake H.; Kochel, Tadeusz J.; Ching, Wei-Mei

    2013-01-01

    We produced three highly purified recombinant antigens rLipL32, rLipL41, and rLigA-Rep (leptospiral immunoglobulin-like A repeat region) for the detection of Leptospira-specific antibodies in an enzyme-linked immunosorbent assay (ELISA). The performance of these recombinant antigens was evaluated using 121 human sera. Among them, 63 sera were microscopic agglutination test (MAT)-confirmed positive sera from febrile patients in Peru, 22 sera were indigenous MAT-negative febrile patient sera, and 36 sera were from patients with other febrile diseases from Southeast Asia, where leptospirosis is also endemic. Combining the results of immunoglobulin M (IgM) and IgG detection from these three antigens, the overall sensitivity is close to 90% based on the MAT. These results suggest that an ELISA using multiple recombinant antigens may be used as an alternative method for the detection of Leptospira-specific antibodies. PMID:24166046

  18. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  19. Outlier detection in high-density surface electromyographic signals.

    PubMed

    Marateb, Hamid R; Rojas-Martínez, Monica; Mansourian, Marjan; Merletti, Roberto; Villanueva, Miguel A Mañanas

    2012-01-01

    Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.

  20. Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method.

    PubMed

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-08-15

    Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities.

  1. [Quantitative specific detection of Staphylococcus aureus based on recombinant lysostaphin and ATP bioluminescence].

    PubMed

    Li, Yuyuan; Mi, Zhiqiang; An, Xiaoping; Zhou, Yusen; Tong, Yigang

    2014-08-01

    Quantitative specific detection of Staphylococcus aureus is based on recombinant lysostaphin and ATP bioluminescence. To produce recombinant lysostaphin, the lysostaphin gene was chemically synthesized and inserted it into prokaryotic expression vector pQE30, and the resulting expression plasmid pQE30-Lys was transformed into E. coli M15 for expressing lysostaphin with IPTG induction. The recombinant protein was purified by Ni(2+)-NTA affinity chromatography. Staphylococcus aureus was detected by the recombinant lysostaphin with ATP bioluminescence, and plate count method. The results of the two methods were compared. The recombinant lysostaphin was successfully expressed, and a method of quantitative specific detection of S. aureus has been established, which showed a significant linear correlation with the colony counting. The detection method developed has good perspective to quantify S. aureus.

  2. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    PubMed

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  3. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  4. Study of Prominence Detection Based on Various Phone-Specific Features

    NASA Astrophysics Data System (ADS)

    Kim, Sung Soo; Han, Chang Woo; Kim, Nam Soo

    In this letter, we present useful features accounting for pronunciation prominence and propose a classification technique for prominence detection. A set of phone-specific features are extracted based on a forced alignment of the test pronunciation provided by a speech recognition system. These features are then applied to the traditional classifiers such as the support vector machine (SVM), artificial neural network (ANN) and adaptive boosting (Adaboost) for detecting the place of prominence.

  5. Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes.

    PubMed

    Feng, Peter C H; Jinneman, Karen; Scheutz, Flemming; Monday, Steven R

    2011-09-01

    Specificity analysis for stx or Stx subtypes in Escherichia coli showed that the PCR assays we tested did not detect stx(1d) and stx(2f), and some also missed stx(2b) and stx(2g). Most of the serological assays examined did not detect Stx2c, Stx2e, Stx2f, and Stx2g, and some strain-to-strain variation in reactivity was observed for Stx2b.

  6. DNA detection on transistor arrays following mutation-specific enzymatic amplification

    NASA Astrophysics Data System (ADS)

    Pouthas, F.; Gentil, C.; Côte, D.; Bockelmann, U.

    2004-03-01

    An integrated array of silicon field-effect transistor structures is used for electronic detection of label-free DNA. Measurements of the dc current-voltage characteristics of the transistors gives us access to reproducible detection of single- and double-stranded DNA, locally adsorbed on the surface of the device. We combine this approach with allele-specific polymerase chain reaction, to test for the 35delG mutation, a frequent mutation related to prelingual nonsyndromic deafness.

  7. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP.

    PubMed

    Chung, Wen-Hsin; Chung, Wen-Chuan; Peng, Mun-Tsu; Yang, Hong-Ren; Huang, Jenn-Wen

    2010-02-28

    Anthracnose diseases, caused by Colletotrichum gloeosporioides, are a worldwide problem and are especially important in Taiwan owing to the severe economic damage they cause to tropical fruits that are grown for local consumption and export. Benzimidazoles are systemic fungicides widely used for controlling these diseases in Taiwan. Thirty-one isolates of C. gloeosporioides from mango and strawberry grown in Taiwan were examined for their sensitivity to benzimidazole fungicides. The responses of the isolates grown on benzimidazole-amended culture media were characterized as sensitive, moderately resistant, resistant or highly resistant. Analysis of point mutations in the beta-tubulin gene by DNA sequencing of PCR-amplified fragments revealed a substitution of GCG for GAG at codon 198 in resistant and highly resistant isolates and a substitution of TAC for TTC at codon 200 in moderately resistant isolates. A set of specific primers, TubGF1 and TubGR, was designed to amplify a portion of the beta-tubulin gene for the detection of benzimidazole-resistant C. gloeosporioides. Bsh1236I restriction maps of the amplified beta-tubulin gene showed that the resistant isolate sequence, but not the sensitive isolate sequence, was cut. The PCR restriction fragment length polymorphism (PCR-RFLP) was validated to detect benzimidazole-resistant and benzimidazole-sensitive C. gloeosporioides isolates recovered from avocado, banana, carambola, dragon fruit, grape, guava, jujube, lychee, papaya, passion fruit and wax apple. This method has the potential to become a valuable tool for monitoring the occurrence of benzimidazole-resistant C. gloeosporioides and for assessment of the need for alternative management practices.

  8. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates

    SciTech Connect

    Sano, T.; Smith, C.L.; Cantor, C.R. )

    1992-10-02

    An antigen detection system, termed immuno-polymerase chain reaction (immuno-PCR), was developed in which a specific DNA molecule is used as the marker. A streptavidin-protein A chimera that possesses tight and specific binding affinity both for biotin and immunoglobulin G was used to attach a biotinylated DNA specifically to antigen-monoclonal antibody complexes that had been immobilized on microtiter plate wells. Then, a segment of the attached DNA was amplified by PCR. Analysis of the PCR products by agarose gel electrophoresis after staining with ethidium bromide allowed as few as 580 antigen molecules to be readily and reproducibly detected. Direct comparison with enzyme-linked immunosorbent assay with the use of a chimera-alkaline phosphatase conjugate demonstrates that enhancement in detection sensitivity was obtained with the use of immuno-PCR. Given the enormous amplification capability and specificity of PCR, this immuno-PCR technology has a sensitivity greater than any existing antigen detection system and, in principle, could be applied to the detection of single antigen molecules.

  9. Detection of fungal development in closed spaces through the determination of specific chemical targets.

    PubMed

    Moularat, Stéphane; Robine, Enric; Ramalho, Olivier; Oturan, Mehmet A

    2008-05-01

    In addition to the biodegradation problems encountered in buildings, exposure of their occupants to moulds is responsible for numerous diseases: infections (invasive nosocomial aspergillosis), immediate or delayed allergies, food-borne infections and different types of irritation. In this context, the aim of our work has been to determine specific chemical tracers for fungal development on construction materials. More generally, by detecting a specific chemical fingerprint of fungal development, our objective was to propose a microbiological alert system which could control systems and/or procedures for the microbiological treatment of indoor areas. We therefore characterized the chemical emissions from six types of construction material contaminated artificially by moulds. Chemical fingerprints were established for 19 compounds arising specifically from fungal metabolism: 2-ethylhexanoic acid methyl ester, 1-octen-3-ol, 3-heptanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 1,3-octadiene, 2-(5H)-furanone, 2-heptene, alpha-pinene, 2-methylisoborneol, 4-heptanone, 2-methylfuran, 3-methylfuran, dimethyldisulfide, methoxybenzene, a terpenoid and three sesquiterpenes. Determining the origin of these compounds and their specific links with a growth substrate or fungal species made it possible to judge the pertinence of choosing these compounds as tracers. Thus the detecting specific volatile organic compounds emitted as from the second day of fungal growth demonstrated that this approach had the advantage of detecting fungal development both reliably and rapidly before any visible signs of contamination could be detected.

  10. Reverse enzyme immunoassay for detection of specific anti-Toxoplasma immunoglobulin M antibodies.

    PubMed Central

    Franco, E L; Walls, K W; Sulzer, A J

    1981-01-01

    A reverse enzyme immunoassay (R-EIA) is described, in which polystyrene muplates are sensitized with anti-immunoglobulin M (IgM) (mu chain) antibodies and then sequentially allowed to react with patient's serum, peroxidase-labeled Toxoplasma gondii soluble antigen, and substrate. Measurement of activity of the solid-phase bound enzyme conjugate was done by colorimetric reading of the final developed color and kinetically by the initial rate of color development. This R-EIA allowed full resolution between absorbance values of a group of 36 sera which presented positive results in the Toxoplasma IgM immunofluorescence test and the remaining groups, which consisted of 39 normal individuals, 22 rheumatoid factor-positive sera, 8 Waldenstrom's macroglobulinemic sera, 3 infectious mononucleosis samples, and 6 high-titered IgG anti-T. gondii sera. No interference of rheumatoid factor IgM or inhibition by high-titered specific IgG was detected, even in the false IgM immunofluorescence-positive rheumatoid factor samples. Likewise, false-negative IgM immunofluorescence samples gave positive R-EIA even without adsorption with Staphylococcus aureus protein A. The possibility of direct tagging of the antigen with the enzyme eliminates the need for using antigen and anti-antigen conjugates as separate layers, therefore eliminating one step in the assay. PMID:7016911

  11. Ultra-high sensitivity radiation detection apparatus and method

    DOEpatents

    Gross, Kenneth C.; Valentine, John D.; Markum, Francis; Zawadzki, Mary; Dickerman, Charles

    1999-01-01

    A method and apparatus are provided to concentrate and detect very low levels of radioactive noble gases from the atmosphere. More specifically the invention provides a method and apparatus to concentrate xenon, krypton and radon in an organic fluid and to detect these gases by the radioactive emissions.

  12. Engineering the stereochemistry of cephalosporin for specific detection of pathogenic carbapenemase-expressing bacteria.

    PubMed

    Shi, Haibin; Cheng, Yunfeng; Lee, Kyung Hyun; Luo, Robert F; Banaei, Niaz; Rao, Jianghong

    2014-07-28

    Reported herein is the design of fluorogenic probes specific for carbapenem-resistant Enterobacteriaceae (CRE) and they were designed based on stereochemically modified cephalosporin having a 6,7-trans configuration. Through experiments using recombinant β-lactamase enzymes and live bacterial species, these probes demonstrate the potential for use in the specific detection of carbapenemases, including metallo-β-lactamases in active bacterial pathogens.

  13. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types.

    PubMed

    Depuydt, C E; Boulet, G A V; Horvath, C A J; Benoy, I H; Vereecken, A J; Bogers, J J

    2007-01-01

    The causal relationship between persistent infection with high-risk HPV and cervical cancer has resulted in the development of HPV DNA detection systems. The widely used MY09/11 consensus PCR targets a 450bp conserved sequence in the HPV L1 gene, and can therefore amplify a broad spectrum of HPV types. However, limitations of these consensus primers are evident, particularly in regard to the variability in detection sensitivity among different HPV types. This study compared MY09/11 PCR with type-specific PCRs in the detection of oncogenic HPV types. The study population comprised 15, 774 patients. Consensus PCR failed to detect 522 (10.9%) HPV infections indicated by type-specific PCRs. A significant correlation between failure of consensus PCR and HPV type was found. HPV types 51, 68 and 45 were missed most frequently. The clinical relevance of the HPV infections missed by MY09/11 PCR was reflected in the fraction of cases with cytological abnormalities and in follow-up, showing 104 (25.4%) CIN2+ cases. The MY09/11 false negativity could be the result of poor sensitivity, mismatch of MY09/11 primers or disruption of L1 target by HPV integration or DNA degradation. Furthermore, MY09/11 PCR lacked specificity for oncogenic HPVs. Diagnostic accuracy of the PCR systems, in terms of sensitivity (MY09/11 PCR: 87.9%; type-specific PCRs: 98.3%) and specificity (MY09/11 PCR: 38.7%; type-specific PCRs: 76.14%), and predictive values for histologically confirmed CIN2+, suggest that type-specific PCRs could be used in a clinical setting as a reliable screening tool.

  14. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers

    PubMed Central

    2011-01-01

    Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection. PMID:21831278

  15. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  16. Detection and quantification of drug-specific T cells in penicillin allergy.

    PubMed

    Rozieres, A; Hennino, A; Rodet, K; Gutowski, M-C; Gunera-Saad, N; Berard, F; Cozon, G; Bienvenu, J; Nicolas, J-F

    2009-04-01

    Drug allergic reactions presenting as maculo-papular exanthema (MPE) are mediated by drug-specific T cells. In this study, the frequency of circulating specific T cells was analyzed by interferon-gamma (IFN-gamma) enzyme-linked immunospot assay in 22 patients with an allergic MPE to amoxicillin (amox). Amox-specific circulating T cells were detected in 20/22 patients with frequencies ranging from 1 : 8000 to 1 : 30 000 circulating leucocytes. No reactivity was observed in 46 control patients, including 15 patients with immunoglobulin E-mediated allergy to amoxicillin, 11 patients with a history of drug-induced MPE but tolerant to amoxicillin and 20 healthy individuals. Furthermore, amox-specific T cells were still detectable several years after the occurrence of the allergic reaction even after strict drug avoidance. Finally, analysis of drug-specific T cells in one patient allergic to ticarcillin (a penicillin antibiotic distinct from amox) revealed the presence of IFN-gamma-producing T cells reactive to ticarcillin and several other betalactam antibiotics, suggesting that the IFN-gamma ELISPOT assay is able to detect T cell cross-reactivity against chemically related drugs. These findings confirm that drug-induced MPE is associated with the presence of specific T cells in blood and further suggest that the IFN-gamma ELISPOT is a sensitive assay which could improve the diagnosis of betalactam allergy.

  17. Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing®.

    PubMed

    Antunes, Joana; Balamurugan, Kuppareddi; Duncan, George; McCord, Bruce

    2015-01-01

    In certain circumstances the outcome of a trial may hinge on the ability of a forensic laboratory to determine the identity of biological stains present at crime scenes. An example of such a situation would be the detection of blood, saliva, vaginal fluid, or other body fluid in a specific location whereby its presence would reinforce the victim's or suspect's version of the events that happened during the commission of a crime. However, current serological methods used for identifying body fluids may lack the sensitivity and specificity to identify these fluids, particularly for trace levels. New procedures using proteomic methods and RNA-based gene expression show promise in addressing this issue; however, concerns about stability and relative levels of gene expression remain. An alternative approach is to utilize patterns of epigenetic DNA methylation. DNA methylation is an epigenetic mechanism that regulates the specificity of genes being expressed or silenced in cells. Regions in the human genome referred to as tissue-specific differentially methylated regions account for unique patterns of DNA methylation that are specific for each cell type. This chapter addresses the application of bisulfite-modified PCR combined with Pyrosequencing(®) to detect tissue-specific DNA methylation patterns and perform trace serological analysis. The quantitative nature and precision available with Pyrosequencing presents major advantages in these studies as it permits detection of and contrast between cells with differential levels of methylation. The procedure can be applied to a variety of biological fluids which may be present at crime scenes.

  18. Plate-specific gain map correction for the improvement of detective quantum efficiency in computed radiography

    SciTech Connect

    Schnell, Erich A.; Samei, Ehsan; Dobbins, James T.

    2012-03-15

    Purpose: The purpose of this work is to improve the noise power spectrum (NPS), and thus the detective quantum efficiency (DQE), of computed radiography (CR) images by correcting for spatial gain variations specific to individual imaging plates. CR devices have not traditionally employed gain-map corrections, unlike the case with flat-panel detectors, because of the multiplicity of plates used with each reader. The lack of gain-map correction has limited the DQE(f) at higher exposures with CR. This current work describes a feasible solution to generating plate-specific gain maps. Methods: Ten high-exposure open field images were taken with an RQA5 spectrum, using a sixth generation CR plate suspended in air without a cassette. Image values were converted to exposure, the plates registered using fiducial dots on the plate, the ten images averaged, and then high-pass filtered to remove low frequency contributions from field inhomogeneity. A gain-map was then produced by converting all pixel values in the average into fractions with mean of one. The resultant gain-map of the plate was used to normalize subsequent single images to correct for spatial gain fluctuation. To validate performance, the normalized NPS (NNPS) for all images was calculated both with and without the gain-map correction. Variations in the quality of correction due to exposure levels, beam voltage/spectrum, CR reader used, and registration were investigated. Results: The NNPS with plate-specific gain-map correction showed improvement over the noncorrected case over the range of frequencies from 0.15 to 2.5 mm{sup -1}. At high exposure (40 mR), NNPS was 50%-90% better with gain-map correction than without. A small further improvement in NNPS was seen from carefully registering the gain-map with subsequent images using small fiducial dots, because of slight misregistration during scanning. Further improvement was seen in the NNPS from scaling the gain map about the mean to account for different beam

  19. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  20. Detecting Faults In High-Voltage Transformers

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1988-01-01

    Simple fixture quickly shows whether high-voltage transformer has excessive voids in dielectric materials and whether high-voltage lead wires too close to transformer case. Fixture is "go/no-go" indicator; corona appears if transformer contains such faults. Nests in wire mesh supported by cap of clear epoxy. If transformer has defects, blue glow of corona appears in mesh and is seen through cap.

  1. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat.

    PubMed

    Iida, Mayu; Yamashiro, Satomi; Yamakawa, Hirohito; Hayakawa, Katsuyuki; Kuribara, Hideo; Kodama, Takashi; Furui, Satoshi; Akiyama, Hiroshi; Maitani, Tamio; Hino, Akihiro

    2005-08-10

    Qualitative and quantitative Polymerase Chain Reaction (PCR) systems aimed at the specific detection and quantification of common wheat DNA are described. Many countries have issued regulations to label foods that include genetically modified organisms (GMOs). PCR technology is widely recognized as a reliable and useful technique for the qualitative and quantitative detection of GMOs. Detection methods are needed to amplify a target GM gene, and the amplified results should be compared with those of the corresponding taxon-specific reference gene to obtain reliable results. This paper describes the development of a specific DNA sequence in the waxy-D1 gene for common wheat (Triticum aestivum L.) and the design of a specific primer pair and TaqMan probe on the waxy-D1 gene for PCR analysis. The primers amplified a product (Wx012) of 102 bp. It is indicated that the Wx012 DNA sequence is specific to common wheat, showing homogeneity in qualitative PCR results and very similar quantification accuracy along 19 distantly related common wheat varieties. In Southern blot and real-time PCR analyses, this sequence showed either a single or a low number of copy genes. In addition, by qualitative and quantitative PCR using wx012 primers and a wx012-T probe, the limits of detection of the common wheat genome were found to be about 15 copies, and the reproducibility was reliable. In consequence, the PCR system using wx012 primers and wx012-T probe is considered to be suitable for use as a common wheat-specific taxon-specific reference gene in DNA analyses, including GMO tests.

  2. Detecting Dual AGN at High Redshift

    NASA Astrophysics Data System (ADS)

    Barrows, Robert S.

    2012-01-01

    The existence of supermassive black holes (SMBHs) in most, if not all, galaxies, along with observations of galaxy mergers, suggests that pairs of SMBHs should exist for some time in the merger remnant. Observational evidence for these systems at kpc-scale separations (i.e. dual AGN) has dramatically increased recently through a combination of spectral and morphological selections. I discuss observations of CXOXBJ142607.6+353351 (CXOJ1426+35), a candidate dual AGN at z=1.175, and put its properties, including significant obscuration, within the context of other candidate/confirmed dual AGN at lower redshifts. Though dual AGN are expected to be more common at higher redshifts, they are more difficult to detect. Furthermore, adding to the difficulties of detection are a number of other physical mechanisms which can mimic the spectroscopic signature of two Type 2 AGN. In particular, I will discuss the possibility of strong outflows from an AGN. These outflow phenomena can be an important feedback mechanism in galaxies and are apparently common in AGN, making them a viable alternative to the dual AGN scenario. Based on our candidate's luminosity and emission line intensities, we find that an outflow is a possibility. If this is the case, such an outflow would be especially strong and has implications for AGN feedback in galaxies. However, the dual AGN scenario cannot be ruled out, and at z=1.175, the two putative AGN could potentially be resolved with Chandra. Other candidate dual AGN at similar redshifts and with significant obscuration could also be confirmed this way. This research was sponsored by the Strategic University Research Partnership Program, the National Aeronautics and Space Administration and the Arkansas NASA EPSCoR program.

  3. Novel primers and PCR protocols for the specific detection and quantification of Sphingobium suberifaciens in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogen causing corky root on lettuce, Sphingobium suberifaciens, is recalcitrant to standard epidemiological methods. Primers were selected from 16S rDNA sequences useful for the specific detection and quantification of S. suberifaciens. Conventional (PCR) and quantitative (qPCR) PCR protocols...

  4. Early detection of prostate cancer. Role of prostate-specific antigen.

    PubMed Central

    Prabhakaran, V. M.

    1996-01-01

    Pressure to request prostate-specific antigen (PSA) tests for early detection of prostate cancer in middle-aged and older men is increasing. However, current scientific data suggest that such testing does more harm than good. Most professional groups do not advise routine screening for prostate cancer. This paper reviews the current status of PSA testing. PMID:8653039

  5. TM7 detection in human microbiome: are PCR primers and FISH probes specific enough?

    PubMed Central

    Sizova, Maria V.; Doerfert, Sebastian N.; Gavrish, Ekaterina; Epstein, Slava S.

    2015-01-01

    TM7 appears important and omnipresent because it is repeatedly detected by molecular techniques in diverse environments. Here we report that most of primers and FISH probes thought to be TM7-specific do hybridize with multiple species from oral and vaginal cavity. This calls for re-examination of TM7 distribution and abundance. PMID:25957511

  6. The detection of specific biomolecular interactions with micro-Hall magnetic sensors.

    PubMed

    Manandhar, Pradeep; Chen, Kan-Sheng; Aledealat, Khaled; Mihajlović, Goran; Yun, C Steven; Field, Mark; Sullivan, Gerard J; Strouse, Geoffrey F; Chase, P Bryant; von Molnár, Stephan; Xiong, Peng

    2009-09-02

    The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.

  7. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  8. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis

    EPA Science Inventory

    ABSTRACT BACKGROUND Anti-neutrophil cytoplasmic autoantibodies (ANCA) specific for myeloperoxidase (MPO) or proteinase 3 (PR3) are detectable in >90% of patients with ANCA-associated vasculitis (AAV). ANCA titers do not correlate well with disease activity. In vivo and in vi...

  9. Construction of specific DNA probe for the detection of Salmonella in food.

    PubMed

    Pilantanapak, A; Jayanetra, P; Panbangred, W; Klungthong, C; Bangtrakulnonth, A

    1997-03-01

    The Salmonella specific DNA fragment from genomic DNA of S. typhimurium ATCC 23566 was cloned in E. coli and successfully used as a digoxigenin labeled probe for detecting the presence of Salmonella serotypes in both artificially contaminated food and natural contaminated food samples.

  10. Specific Heat of High Temperature Superconductors: a Review

    NASA Astrophysics Data System (ADS)

    Junod, Alain

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * LATTICE SPECIFIC HEAT * NORMAL-STATE ELECTRONIC SPECIFIC HEAT * SUPERCONDUCTING STATE * BEHAVIOR AT T→0 * CONCLUSION * ACKNOWLEDGEMENTS * APPENDIX * REFERENCES

  11. Detection of the Cracks using High-Tc SQUID

    NASA Astrophysics Data System (ADS)

    Fujii, Tatsuhiko; Hyun-Sung, Tae; Takamatsu, Tsuyoshi; Sakuta, Ken; Itozaki, Hideo

    Eddy current non-distractive evaluation (NDE) is very useful technique for detection of cracks. We use the high-Tc SQUID in this system. First, we respect the result of this measurement by the finite element method. We can detect of the signal from the hole by NDE system with high-Tc SQUID. This result is reasonable to compare with the result of simulation. Finaly, we can detect of the hidden defect under 5mm depth from the sample surface.

  12. Simultaneous, specific and real-time detection of biothreat and frequently encountered food-borne pathogens

    PubMed Central

    Woubit, Abdela Salah; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-01-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg

  13. Characterization of grain-specific peptide markers for the detection of gluten by mass spectrometry.

    PubMed

    Fiedler, Katherine L; McGrath, Sara C; Callahan, John H; Ross, Mark M

    2014-06-25

    Global and targeted mass spectrometry-based proteomic approaches were developed to discover, evaluate, and apply gluten peptide markers to detect low parts per million (ppm) wheat contamination of oats. Prolamins were extracted from wheat, barley, rye, and oat flours and then reduced, alkylated, and digested with chymotrypsin. The resulting peptides were subjected to LC-MS/MS analysis and database matching. No peptide markers common to wheat, barley, and rye were identified that could be used for global gluten detection. However, many grain-specific peptide markers were identified, and a set of these markers was selected for gluten detection and grain differentiation. Wheat flour was spiked into gluten-free oat flour at concentrations of 1-100,000 ppm and analyzed to determine the lowest concentration at which the wheat "contaminant" could be confidently detected in the mixture. The same 2D ion trap instrument that was used for the global proteomics approach was used for the targeted proteomics approach, providing a seamless transition from target discovery to application. A powerful, targeted MS/MS method enabled detection of two wheat peptide markers at the 10 ppm wheat flour-in-oat flour concentration. Because gluten comprises approximately 10% of wheat flour protein, the reported wheat gluten-specific peptides can enable detection of approximately 1 ppm of wheat gluten in oats.

  14. [Sensitivity and specificity of the ELISA Kit for the detection of antidobies to Junin virus].

    PubMed

    Pirozhkov, A P; Timofeev, M A; Borisevich, I V; Syromiatnikova, S I; Shatokhina, I V; Pantyukhov, V B; Kovalchuk, A V; Borisevich, S V

    2015-01-01

    The goal of this work was to describe methodological approaches to determination of sensitivity and specificity of the enzyme-linked immunosorbent assay kit (ELISA Kit) for detection of the specific anti-Junin virus (JV) antibody. Comparison of ELISA to plaque reduction neutralization test (PRNT) showed direct relationship between antibody titers in the samples of serum of immunized animals, determined by either PRNT or ELISA methods. The obtained results provided an opportunity to form the panels of positive and negative serum samples to determine the sensitivity and specificity of the ELISA Kit. Sensitivity of the ELISA Kit was at least 98% when studying the samples of serum of immunized guinea pigs and rabbits (determined as positive in PRNT). The sensitivity of the ELISA Kit was at least 68% when studying the samples determined by PNRT as uncertain positive. The specificity was 98%. The specificity of the ELISA Kit was 98%.

  15. Computing highly specific and mismatch tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2003-01-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about twenty units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a sub-sequence other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 63% to approximately 79% of qualified oligomers.

  16. Computing highly specific and noise-tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2004-03-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about 20 units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a substring other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of numerous oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 65% approximately 76% of qualified oligomers.

  17. A highly specific coding system for structural chromosomal alterations.

    PubMed

    Martínez-Frías, M L; Martínez-Fernández, M L

    2013-04-01

    The Spanish Collaborative Study of Congenital Malformations (ECEMC, from the name in Spanish) has developed a very simple and highly specific coding system for structural chromosomal alterations. Such a coding system would be of value at present due to the dramatic increase in the diagnosis of submicroscopic chromosomal deletions and duplications through molecular techniques. In summary, our new coding system allows the characterization of: (a) the type of structural anomaly; (b) the chromosome affected; (c) if the alteration affects the short or/and the long arm, and (d) if it is a non-pure dicentric, a non-pure isochromosome, or if it affects several chromosomes. We show the distribution of 276 newborn patients with these types of chromosomal alterations using their corresponding codes according to our system. We consider that our approach may be useful not only for other registries, but also for laboratories performing these studies to store their results on case series. Therefore, the aim of this article is to describe this coding system and to offer the opportunity for this coding to be applied by others. Moreover, as this is a SYSTEM, rather than a fixed code, it can be implemented with the necessary modifications to include the specific objectives of each program.

  18. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  19. Renaturation of blotted allergens increases the sensitivity of specific IgE detection.

    PubMed

    Muro, M D; Fernández, C; Moneo, I

    1996-01-01

    Several authors have demonstrated that renaturation is an essential step for the appropriate recognition of blotted proteins. The use of nonionic detergents has been described as a useful alternative to enhance the antigenicity in immunoblotting, although elution from proteins by detergents has been observed. To measure the influence of different factors on the sensitivity of specific IgE by immunoblotting, we used twenty human sera from atopic patients who were allergic or nonallergic to a common, reliable allergen (grass pollen mixture). The use of Nonidet-P40 was found to be a useful alternative for the renaturation of the allergens. No elution from the membrane was found when employing this detergent, even at high concentrations (3%), and its use gave better sensitivity than methanol. On the other hand, we detected that methanol possessed renaturing properties. A transfer method using diffusion instead of electric transfer gave the best results and two membranes could be obtained from each gel. Using this method, we found that after NP-40 incubation of the membrane, the use of bovine albumin could be omitted as blocking agent and that its use had even deleterious effects.

  20. [High output stoma: detection and approach].

    PubMed

    Arenas Villafranca, Jose Javier; Abilés, Jimena; Moreno, Gloria; Tortajada Goitia, Begoña; Utrilla Navarro, Pilar; Gándara Adán, Norberto

    2014-12-01

    High output stoma is a frequent complication in patients with ileostomies that is not well identified and is not often properly addressed by clinicians. It has not been described properly, and can vary between debits of 2.000ml in 24 h to 1.500 ml in 3-5 days, according to different authors. Frequently presents both short-term and long-term negative implications for patients and is associated with readmissions. We present a review of published literature focusing in surgical resection-related factors that influence a later appearance of this complication, causes involved in its development, the need to establish a clear and objective concept of high ouput as well as the negative implications it presents. Also we develop how should we the management of these patients regarding treatment and nutritional approach.

  1. Detection of Serotype-Specific Antibodies to the Four Dengue Viruses Using an Immune Complex Binding (ICB) ELISA

    PubMed Central

    Emmerich, Petra; Mika, Angela; Schmitz, Herbert

    2013-01-01

    Background Dengue virus (DENV) infections are preferentially diagnosed by detection of specific IgM antibodies, DENV NS1 antigen assays or by amplification of viral RNA in serum samples of the patients. The type-specific immunity to the four worldwide circulating DENV serotypes can be determined by neutralization assays. An alternative to the complicated neutralization assays would be helpful to study the serotype-specific immune response in people in DENV hyperendemic areas but also in subjects upon DENV vaccination. Methods In consecutive samples of patients with DENV-1- 4 infection type-specific antibodies were detected using an immune complex binding (ICB) ELISA. During incubation of serum samples and enzyme- labeled recombinant envelope domain III (EDIII) antigens immune complexes (ICs) are formed, which are simultaneously bound to a solid phase coated with an Fc–receptor (CD32). After a single washing procedure the bound labeled ICs can be determined. To further improve type-specific reactions high concentrations of competing heterologous unlabeled ED III proteins were added to the labeled antigens. Results Follow-up serum samples of 64 patients with RT-PCR confirmed primary DENV-1, -2, -3 or -4 infections were tested against four enzyme-labeled recombinant DENV EDIII antigens. Antibodies to the EDIII antigens were found in 55 patients (sensitivity 86%). A complete agreement between the serotype detected by PCR in early samples and the serotype-specific antibody in later samples was found. Type-specific anti-EDIII antibodies were first detected 9–20 days after onset of the disease. In 21% of the samples collected from people in Vietnam secondary infections with antibodies to two serotypes could be identified. Conclusions The data obtained with the ICB-ELISA show that after primary DENV infection the corresponding type-specific antibodies are detected in almost all samples collected at least two weeks after onset of the disease. The method will be of value

  2. Human genome-specific real-time PCR method for sensitive detection and reproducible quantitation of human cells in mice.

    PubMed

    Song, Pengyue; Xie, Zhenhua; Guo, Ling; Wang, Chengmei; Xie, Weidong; Wu, Yaojiong

    2012-12-01

    Xenotransplantation of human cells into immunodeficiency mice has been frequently used to study stem cells in tissue repair and regeneration and cancer cell metastasis. However, a sensitive and reproducible method to quantify cell engraftment lacks. Here, we developed a Real-Time PCR-based method which facilitated consistent detection and quantification of small amounts of human cells distributed in mouse organs after infusion. The principle of the method was to directly detect a humans-specific sequence in the human-murine genomic DNA mixture. In a mouse myocardial infarction model, the Real-Time PCR-based method consistently determined the amounts of human mesenchymal stem cells (hMSCs) engrafted into the heart and other organs 7 days after infusion of as little as 2.5 × 10(5) cells, indicating a high sensitivity, and the amounts of hMSCs detected in mice highly correlated to the numbers of hMSCs transplanted. Importantly, different from previous PCR-based methods, our method produced highly consistent and reproducible results. The reliability of the method was further proven by parallel analyses of DiI-labeled hMSCs in tissue sections and in single cell suspensions of mice. Our data show that the present human genomic DNA-specific primers-based Real-Time PCR method is sensitive and highly reproducible in determining the amount of xenotransplanted human cells in murine tissues.

  3. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples.

  4. Plasmoid Thruster for High Specific-Impulse Propulsion

    NASA Technical Reports Server (NTRS)

    Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael

    2007-01-01

    A report discusses a new multi-turn, multi-lead design for the first generation PT-1 (Plasmoid Thruster) that produces thrust by expelling plasmas with embedded magnetic fields (plasmoids) at high velocities. This thruster is completely electrodeless, capable of using in-situ resources, and offers efficiencies as high as 70 percent at a specific impulse, I(sub sp), of up to 8,000 s. This unit consists of drive and bias coils wound around a ceramic form, and the capacitor bank and switches are an integral part of the assembly. Multiple thrusters may be gauged to inductively recapture unused energy to boost efficiency and to increase the repetition rate, which, in turn increases the average thrust of the system. The thruster assembly can use storable propellants such as H2O, ammonia, and NO, among others. Any available propellant gases can be used to produce an I(sub sp) in the range of 2,000 to 8,000 s with a single-stage thruster. These capabilities will allow the transport of greater payloads to outer planets, especially in the case of an I(sub sp) greater than 6,000 s.

  5. Nanoporous ultra-high specific surface inorganic fibres

    NASA Astrophysics Data System (ADS)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  6. Taxon-specific oligonucleotide primers for detection of two ancient endomycorrhizal fungi, Glomus occultum and Glomus brasilianum.

    PubMed

    Millner, P D; Mulbry, W W; Reynolds, S L

    2001-03-15

    A unique oligonucleotide pair, GOCC56:GOCC427, was designed that correctly primed specific amplification of a approximately 370-bp sequence spanning the ITS and 5.8S rDNA regions of Glomus occultum and Glomus brasilianum. In addition, this primer pair successfully detected G. occultum and G. brasilianum DNA in nested PCR using a primary PCR product amplified from highly diluted extracts of colonized corn (Zea mays) roots using modified ITS1:ITS4 primers. A second primer pair, GBRAS86:GBRAS388, primed specific amplification of a approximately 200-bp sequence spanning the ITS and 5.8S rDNA regions present only in G. brasilianum and Glomus strain GR582. Combined use of both primer pairs provides the means to detect and differentiate two ancient endomycorrhizal species, G. occultum and G. brasilianum, undetectable by standard root staining procedures. Sequence analysis showed that the purported G. occultum strain GR582 is likely a strain of G. brasilianum.

  7. Rapid and specific detection of cell-derived microvesicles using a magnetoresistive biochip.

    PubMed

    Cherré, Solène; Fernandes, Elisabete; Germano, José; Dias, Tomás; Cardoso, Susana; Piedade, Moisés S; Rozlosnik, Noemi; Oliveira, Marta I; Freitas, Paulo P

    2017-03-13

    Microvesicles (MVs) are a promising source of diagnostic biomarkers which have gained a wide interest in the biomedical and biosensing field. They can be interpreted as a "fingerprint" of various diseases. Nonetheless, MVs implementation into clinical settings has been hampered by the lack of technologies to accurately characterize, detect and quantify them. Here, we report the specific sensing and quantification of MVs from endothelial cells using a portable magnetoresistive (MR) biochip platform, in less than one hour and within physiologically relevant concentrations (1 × 10(8) MVs per ml). MVs were isolated from both endothelial and epithelial cells undergoing apoptosis, and characterized by atomic force microscopy (AFM) and nanoparticle tracking analysis (NTA), which revealed similar MV sizes. Importantly, our results showed that the two distinct MV populations could be discriminated with the MR biochip platform, with over a 5-fold capture efficiency of endothelial MVs in comparison to the control (epithelial MVs). Also, unspecific binding of MVs to BSA was less than 1% of the specific signal. The detection strategy was based on a sandwich immunoassay, where MVs were labelled with magnetic nanoparticles (MNPs) functionalized with Annexin V and then captured by anti-CD31 antibodies previously immobilized on the surface of the sensor. Results suggest that this approach allows the detection of specific MVs from complex samples such as serum, and highlight the potential of this technology to become a suitable tool for MVs detection as a complementary method of diagnosis.

  8. A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments.

    PubMed

    Sun, Xiuxia; Fan, Jun; Zhang, Yuping; Chen, Hongli; Zhao, Yongqing; Xiao, Jianxi

    2016-05-15

    The unstructured collagen species plays a critical role in a variety of important biological processes as well as pathological conditions. In order to develop novel diagnosis and therapies for collagen-related diseases, it is essential to construct simple and efficient methods to detect unfolded collagen fragments. We therefore have designed a FITC-labeled collagen mimic triple helical peptide, whose adsorption on the surface of GO effectively quenches its fluorescence. The newly constructed GO/FITC-GPO complex specifically detects unstructured collagen fragments, but not fully folded triple helix species. The detection shows a clear preference for the collagen targets with complementary GPO-rich sequences. The conformation-sensitive, sequence-specific GO-based approach can be applied as an efficient biosensor for rapid detection of unfolded collagen fragments at nM level, and may have great potential in drug screening for inhibitors of unfolded collagen. It may provide a prototype to develop GO-based assays to detect other important unstructured proteins involved in diseases.

  9. Reagentless, Electrochemical Approach for the Specific Detection of Double- and Single-Stranded DNA Binding Proteins

    PubMed Central

    Ricci, Francesco; Bonham, Andrew J.; Mason, Aaron C.; Reich, Norbert O.; Plaxco, Kevin W.

    2009-01-01

    Here we demonstrate a reagentless, electrochemical platform for the specific detection of proteins that bind to single- or double-stranded DNA. The sensor is composed of a double- or single-stranded, redox-tagged DNA probe which is covalently attached to an interrogating electrode. Upon protein binding the current arising from the redox tag is suppressed, indicating the presence of the target. Using this approach we have fabricated sensors against the double-stranded DNA binding proteins TATA-box binding protein and M.HhaI methyltransferase, and against the single-strand binding proteins Escherichia coli SSBP and replication protein A. All four targets are detected at nanomolar concentrations, in minutes, and in a convenient, general, readily reusable, electrochemical format. The approach is specific; we observed no significant cross-reactivity between the sensors. Likewise the approach is selective; it supports, for example, the detection of single strand binding protein directly in crude nuclear extracts. The generality of our approach (including its ability to detect both double- and single-strand binding proteins) and a strong, non-monotonic dependence of signal gain on probe density support a collisional signaling mechanism in which binding alters the collision efficiency, and thus electron transfer efficiency, of the attached redox tag. Given the ubiquity with which protein binding will alter the collisional dynamics of an oligonucleotide, we believe this approach may prove of general utility in the detection of DNA and RNA binding proteins. PMID:19199570

  10. Specific detection of Pacific oyster (Crassostrea gigas) larvae in plankton samples using nested polymerase chain reaction.

    PubMed

    Patil, Jawahar G; Gunasekera, Rasanthi M; Deagle, Bruce E; Bax, Nicholas J

    2005-01-01

    Management of sustainable Pacific oyster fisheries would be assisted by an early, rapid, and accurate means of detecting their planktonic larvae. Reported here is an approach, based on polymerase chain reaction (PCR), for the detection of Pacific oyster larvae in plankton samples. Species-specific primers were designed by comparing partial mitochondrial cytochrome oxidase subunit I (COI) sequences from Crassostrea gigas, with other members of the family Ostreidae including those of Crassostrea angulata. Assay specificity was empirically validated through screening DNA samples obtained from several species of oysters. The assay was specific as only C. gigas samples returned PCR-positive results. A nested PCR approach could consistently detect 5 or more D-hinge-stage larvae spiked into a background of about 146 mg of plankton. The assay does not require prior sorting of larvae. We conclude that the assay could be used to screen environmental and ballast water samples, although further specificity testing against local bivalve species is recommended in new locations.

  11. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  12. Indirect enzyme-linked immunosorbent assay for detection of Brucella melitensis-specific antibodies in goat milk.

    PubMed

    Funk, N D; Tabatabai, L B; Elzer, P H; Hagius, S D; Martin, B M; Hoffman, L J

    2005-02-01

    Brucella melitensis is the cause of brucellosis in sheep and goats, which often results in abortion. Few cases of B. melitensis infection in goats have occurred in the United States over the last 25 years. However, vigilance must be maintained, as it is for the bovine milk industry, to ensure that brucellosis is not introduced into the U.S. goat population. The objective of this study was to develop a sensitive and specific indirect enzyme-linked immunosorbent assay (iELISA) for the detection of B. melitensis-specific antibodies in goat milk. Brucella salt-extractable protein extract was employed as an antigen, and a horseradish peroxidase-labeled polyclonal anti-goat antibody was used as an anti-species conjugate. Thirteen of 13 (100%) individual infected goat milk samples tested positive and 134 of 134 (100%) uninfected bulk milk samples tested negative by the developed iELISA. Three positive milk samples with high, medium, and low absorbance values were used to simulate one positive animal in an otherwise negative herd. By this estimation, one high-titer animal could be detected in a herd of >1,600 animals. Detection estimates for medium- and low-titer animals were one positive animal per herd of <200 and 50 animals, respectively. Based on this estimation, it is recommended that herds be sampled in groups of 50 animals or less for bulk milk testing. The iELISA developed for this study was found to be sensitive and specific and shows potential for use as a bulk milk test for the detection of B. melitensis-specific antibodies in goat milk.

  13. Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products.

    PubMed

    Garino, Cristiano; De Paolis, Angelo; Coïsson, Jean Daniel; Bianchi, Daniela Manila; Decastelli, Lucia; Arlorio, Marco

    2016-03-01

    Pine nuts are a known source of food allergens and several cases of adverse immunological reaction after ingestion have been reported. To protect allergic consumers, methods to unequivocally detect the presence of pine nuts in complex matrices must be developed. A Taqman-based real time PCR method for the detection of Pinus spp. was set up. A homemade pesto spiked at known concentration of pine nut powder was used as model food. Moreover, DNA was purified from commercial foods declaring or not the presence of pine nuts. The method displayed a very high efficiency and specificity for the genus Pinus. The intrinsic LOD was 1pg of DNA, while the practical LOD evaluated on model foods was 0.1ppm of pine nuts powder, the lowest ever registered for the detection of food allergens via real-time PCR. Finally, the declared presence/absence of pine nut in commercial foods was confirmed.

  14. pMHC Multiplexing Strategy to Detect High Numbers of T Cell Responses in Parallel.

    PubMed

    Philips, Daisy; van den Braber, Marlous; Schumacher, Ton N; Kvistborg, Pia

    2017-01-01

    The development of peptide loaded major histocompatibility complexes (MHC) conjugated to fluorochromes by Davis and colleagues 20 years ago provided a highly useful tool to identify and characterize antigen-specific T cells. In this chapter we describe a multiplexing strategy that allows detection of high numbers of T cell responses in parallel.

  15. Specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans

    SciTech Connect

    Arredondo, R.; Jerez, C.A. )

    1989-08-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in {sup 125}I-labeled protein A or {sup 125}I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 10{sup 3} cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations.

  16. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.

    PubMed

    Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E

    Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers.

  17. Development and Validation of Burkholderia pseudomallei-Specific Real-Time PCR Assays for Clinical, Environmental or Forensic Detection Applications

    PubMed Central

    Price, Erin P.; Dale, Julia L.; Cook, James M.; Sarovich, Derek S.; Seymour, Meagan L.; Ginther, Jennifer L.; Kaufman, Emily L.; Beckstrom-Sternberg, Stephen M.; Mayo, Mark; Kaestli, Mirjam; Glass, Mindy B.; Gee, Jay E.; Wuthiekanun, Vanaporn; Warner, Jeffrey M.; Baker, Anthony; Foster, Jeffrey T.; Tan, Patrick; Tuanyok, Apichai; Limmathurotsakul, Direk; Peacock, Sharon J.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Pearson, Talima

    2012-01-01

    The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ), limit of detection (LoD), linearity, ruggedness and robustness) to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples) comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community. PMID:22624061

  18. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications.

    PubMed

    Price, Erin P; Dale, Julia L; Cook, James M; Sarovich, Derek S; Seymour, Meagan L; Ginther, Jennifer L; Kaufman, Emily L; Beckstrom-Sternberg, Stephen M; Mayo, Mark; Kaestli, Mirjam; Glass, Mindy B; Gee, Jay E; Wuthiekanun, Vanaporn; Warner, Jeffrey M; Baker, Anthony; Foster, Jeffrey T; Tan, Patrick; Tuanyok, Apichai; Limmathurotsakul, Direk; Peacock, Sharon J; Currie, Bart J; Wagner, David M; Keim, Paul; Pearson, Talima

    2012-01-01

    The bacterium Burkholderia pseudomallei causes melioidosis, a rare but serious illness that can be fatal if untreated or misdiagnosed. Species-specific PCR assays provide a technically simple method for differentiating B. pseudomallei from near-neighbor species. However, substantial genetic diversity and high levels of recombination within this species reduce the likelihood that molecular signatures will differentiate all B. pseudomallei from other Burkholderiaceae. Currently available molecular assays for B. pseudomallei detection lack rigorous validation across large in silico datasets and isolate collections to test for specificity, and none have been subjected to stringent quality control criteria (accuracy, precision, selectivity, limit of quantitation (LoQ), limit of detection (LoD), linearity, ruggedness and robustness) to determine their suitability for environmental, clinical or forensic investigations. In this study, we developed two novel B. pseudomallei specific assays, 122018 and 266152, using a dual-probe approach to differentiate B. pseudomallei from B. thailandensis, B. oklahomensis and B. thailandensis-like species; other species failed to amplify. Species specificity was validated across a large DNA panel (>2,300 samples) comprising Burkholderia spp. and non-Burkholderia bacterial and fungal species of clinical and environmental relevance. Comparison of assay specificity to two previously published B. pseudomallei-specific assays, BurkDiff and TTS1, demonstrated comparable performance of all assays, providing between 99.7 and 100% specificity against our isolate panel. Last, we subjected 122018 and 266152 to rigorous quality control analyses, thus providing quantitative limits of assay performance. Using B. pseudomallei as a model, our study provides a framework for comprehensive quantitative validation of molecular assays and provides additional, highly validated B. pseudomallei assays for the scientific research community.

  19. Prostate-specific Antigen Density Variation Rate as a Potential Guideline Parameter for Second Prostate Cancer Detection Biopsy

    PubMed Central

    Xie, Gan-Sheng; Lyv, Jin-Xing; Li, Gang; Yan, Chun-Yin; Hou, Jian-Quan; Pu, Jin-Xian; Ding, Xiang; Huang, Yu-Hua

    2016-01-01

    Background: The diagnostic value of current prostate-specific antigen (PSA) tests is challenged by the poor detection rate of prostate cancer (PCa) in repeat prostate biopsy. In this study, we proposed a novel PSA-related parameter named PSA density variation rate (PSADVR) and designed a clinical trial to evaluate its potential diagnostic value for detecting PCa on a second prostate biopsy. Methods: Data from 184 males who underwent second ultrasound-guided prostate biopsy 6 months after the first biopsy were included in the study. The subjects were divided into PCa and non-PCa groups according to the second biopsy pathological results. Prostate volume, PSA density (PSAD), free-total PSA ratio, and PSADVR were calculated according to corresponding formulas at the second biopsy. These parameters were compared using t-test or Mann-Whitney U-test between PCa and non-PCa groups, and receiver operating characteristic analysis were used to evaluate their predictability on PCa detection. Results: PCa was detected in 24 patients on the second biopsy. Mean values of PSA, PSAD, and PSADVR were greater in the PCa group than in the non-PCa group (8.39 μg/L vs. 7.16 μg/L, 0.20 vs. 0.16, 14.15% vs. −1.36%, respectively). PSADVR had the largest area under the curve, with 0.667 sensitivity and 0.824 specificity when the cutoff was 10%. The PCa detection rate was significantly greater in subjects with PSADVR >10% than PSADVR ≤10% (28.6% vs. 6.5%, P < 0.001). In addition, PSADVR was the only parameter in this study that showed a significant correlation with mid-to-high-risk PCa (r = 0.63, P = 0.03). Conclusions: Our results demonstrated that PSADVR improved the PCa detection rate on second biopsies, especially for mid-to-high-risk cancers requiring prompt treatment. PMID:27453228

  20. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    SciTech Connect

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  1. HLA class I donor-specific triplet antibodies detected after renal transplantation.

    PubMed

    Varnavidou-Nicolaidou, A; Doxiadis, I I N; Iniotaki-Theodoraki, A; Patargias, T; Stavropoulos-Giokas, C; Kyriakides, G K

    2004-01-01

    The purpose of this study was to investigate whether IgG, non-donor-specific anti-HLA class I antibodies (HLAabI) detected after renal transplantation recognize immunogenic amino acid triplets expressed on the foreign graft. In addition, we sought to evaluate the effect of these antibodies as well as other posttransplant HLAabI on graft outcome. Posttransplant sera from 264 renal recipients were tested for the presence of IgG HLAabI and HLA class II-specific alloantibodies (HLAabII) by ELISA. The HLAMatchmaker computer algorithm was used to define the HLA class I non-donor-specific antibodies, which seem to recognize immunogenic amino acid triplets. Donor-specific triplet antibodies (DSTRab) were detected in 16 of 22 (72.7%) recipients based on at least one HLA-A or -B mismatched antigen with the donor. DSTRab were found either without (n = 7) or with (n = 9) HLA donor-specific antibodies (HLA-DSA). The presence of DSTRab alone in the periphery was associated with acute rejection, whereas the presence of both DSTRab and HLA-DSA was associated with chronic rejection and graft failure.

  2. Device for detecting the specific gravity of a liquid. [Patent application

    DOEpatents

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  3. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  4. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease.

    PubMed

    Sternberg, Samuel H; Haurwitz, Rachel E; Doudna, Jennifer A

    2012-04-01

    Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated Cas6 family member in many CRISPR systems. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4 (Cas6f), which binds and cleaves at the 3' side of a stable RNA stem-loop structure encoded by the CRISPR repeat. We show here that Csy4 recognizes its RNA substrate with an ~50 pM equilibrium dissociation constant, making it one of the highest-affinity protein:RNA interactions of this size reported to date. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product and thereby sequester the crRNA for downstream targeting. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. Collectively, our data highlight diverse modes of substrate recognition employed by Csy4 to enable accurate selection of CRISPR transcripts while avoiding spurious, off-target RNA binding and cleavage.

  5. High performance fiber-based optical coherent detection

    NASA Astrophysics Data System (ADS)

    Chen, Youming

    The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has

  6. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer.

    PubMed

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders; Skov, Birgit G

    2014-12-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR PCR kit, Qiagen, UK; reference method). For immunohistochemistry, antibodies against exon19 deletions (clone 6B6), exon21 mutations (clone 43B2) from Cell Signaling Technology (Boston, USA) and EGFR variantIII (clone 218C9) from Dako (Copenhagen, DK) were applied. Protein expression was evaluated, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94.4-99.4%). Sensitivity of exon19 antibody was 63.2% (95% confidence interval=38.4-83.7%) and of exon21 antibody was 80.0% (95% confidence interval=44.4-97.5%). Seven exon19 and four exon21 mutations were false negatives (immunohistochemistry negative, RT-PCR positive). Two exon19 and three exon21 mutations were false positive (immunohistochemistry positive, RT-PCR negative). One false positive exon21 mutation had staining score 300. The EGFR variantIII antibody showed no correlation to EGFR mutation status determined by RT-PCR or to EGFR immunohistochemistry. High specificity of the mutation-specific antibodies was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC

  7. Development of a Sensitive and Specific Antigen-Detection System for Strongyloides Stercoralis and Hookworm Infections

    DTIC Science & Technology

    1997-06-01

    Development of a Sensitive and Specific Antigen-Detection System for Strongyloides Stercoralis and Hookworm Infections PRINCIPAL INVESTIGATOR: Helene...Stercoralis and Hookworm Infections 6. AUTHOR(S) Helene Paxton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Integrated...of S. stercoralis and human hookworms . Using commercial immunoreagents that were available during the time line of phase I, antibody capture DS

  8. A specific real-time PCR assay for the detection of Bordetella pertussis.

    PubMed

    Vincart, Benoit; De Mendonça, Ricardo; Rottiers, Sylvianne; Vermeulen, Françoise; Struelens, Marc J; Denis, Olivier

    2007-07-01

    A novel real-time PCR (RT-PCR) assay was developed for detection of Bordetella pertussis in respiratory specimens by targeting the pertactin gene. In vitro evaluation with reference strains and quality control samples showed analytical sensitivity equivalent to and specificity superior to those of PCR assays which target the IS481 element. The pertactin-based RT-PCR assay offers better discrimination between B. pertussis and other Bordetella species than previously described assays.

  9. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  10. Specific and sensitive detection of Alcaligenes species from an agricultural environment.

    PubMed

    Nakano, Miyo; Niwa, Masumi; Nishimura, Norihiro

    2013-03-01

    A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment.

  11. Sensitivity and specificity of a commercial BSE kit for the detection of ovine scrapie.

    PubMed

    Yamamoto, Takuji; Ushiki-Kaku, Yuko; Yokoyama, Takashi; Hattori, Shunji

    2013-06-01

    To examine the sensitivity of a commercially available bovine spongiform encephalopathy (BSE) kit (NippIBL) for the detection of ovine scrapie, 50 scrapie-positive ovine samples from the UK, and 54 scrapie-negative ovine samples from Japan were obtain and tested using this kit. The sensitivity and specificity of NippIBL for ovine samples were 96% and 100%, respectively. The detection limit of the abnormal isoform of prion protein (PrP(Sc) ) of NippIBL was examined using diluted scrapie-positive samples. The sensitivity of NippIBL to ovine scrapie was 3-10 times superior to that of another commercial BSE diagnosis kit. Thus, the NippIBL kit proved more effective for the detection of ovine scrapie.

  12. Construction of Specific Primers for Rapid Detection of South African Exportable Vegetable Macergens

    PubMed Central

    Aremu, Bukola Rhoda; Babalola, Olubukola Oluranti

    2015-01-01

    Macergens are bacteria causing great damages to the parenchymatous tissues of vegetable both on the field and in transit. To effectively and rapidly investigate the diversity and distribution of these macergens, four specific primers were designed by retrieving 16S rDNA sequences of pectolytic bacteria from GenBank through the National Center for Biotechnology Information (NCBI). These were aligned using ClusterW via BioEdit and primers were designed using Primer3Plus platform. The size and primer location of each species and PCR product size were accurately defined. For specificity enhancement, DNA template of known macergens (Pectobacterium chrysanthermi) and fresh healthy vegetable were used. These primers yielded expected size of approximately 1100 bp product only when tested with known macergens and no amplicon with fresh healthy vegetable was detected. Rapid detection of macergens in rotten vegetable samples was then carried out using these primers. Nucleotide sequences of macergens identified were deposited into the GenBank and were assigned accession numbers. Hence, with these specific primers, macergens can be identified with minimal quantities of the vegetable tissues using molecular techniques, for future use of the quarantine section of the Agricultural Department of the country for quick and rapid detection of macergens before exportation. PMID:26437427

  13. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR

    PubMed Central

    Jami Al-Ahmadi, G.; Zahmatkesh Roodsari, R.

    2016-01-01

    Summary Pseudomonas aeruginosa is an important life-threatening nosocomial pathogen that plays a prominent role in wound infections of burned patients. We designed this study to identify the isolates of P. aeruginosa recovered from burned patients at the genus and species level through primers targeting oprI and oprL genes, and analyzed their antimicrobial resistance pattern. Over a 2-month period, wound samples were taken from burned patients and plated on MacConkey agar. All suspected colonies were primarily screened for P. aeruginosa by a combination of phenotypic tests. Molecular identifications of colonies were done using specific primers for oprI and oprL genes. Bacterial isolates were recovered from burn wound infections. Based on phenotypical identification tests, 138 (34%) P. aeruginosa isolates were identified; whereas by molecular techniques, just 128 P. aeruginosa yielded amplicon of oprL gene using species-specific primers, verifying the identity of P. aeruginosa; the others yielded amplicon of oprI gene using genus-specific primers, confirming the identity of fluorescent pseudomonads. This study indicates that molecular detection of P. aeruginosa in burn patients employing the OprL gene target is a useful technique for the early and precise detection of P. aeruginosa. PCR detection should be carried out as well as phenotypic testing for the best aggressive antibiotic treatment of P. aeruginosa strains at an earlier stage. It also has significant benefits on clinical outcomes. PMID:28289359

  14. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.

  15. Genotyping of DNA using sequence-specific methyltransferases followed by immunochemical detection.

    PubMed

    López, Osvaldo J; Quintanar, André; Padhye, Nisha V; Nelson, Michael

    2003-01-01

    Modern molecular genetics relies on the ability to map the positions of genes on chromosomes, relative to known DNA markers. The first such DNA markers described were Restriction Fragment Length Polymorphisms, but any restriction endonuclease used for RFLP mapping is just one member of a restriction-modification pair. For each restriction endonuclease, there is a companion methyltransferase (MTase) that has the same DNA sequence specificity. Therefore, in principle, it should be possible to use MTases rather than restriction enzymes to detect polymorphic sites in DNA. We have used sequence-specific DNA MTases to detect polym orphisms in closely related viral pathogens. If at least one MTase recognition site is present in PCR-amplified DNA, then methyl groups are incorporated; if no MTase site is present, then methyl groups are not incorporated. When several different sequence-specific DNA MTase reactions are carried out, the pattern of methyl incorporation defines a DNA MTase genotype. DNA MTase Genotyping (DMG) can be used to rapidly diagnose heritable or infectious diseases, to immunochemically detect DNA at defined 2 to 8 base pair sites, or to characterize the amplicons by constructing ordered maps.

  16. Rapid and specific detection of porcine parvovirus by isothermal recombinase polymerase amplification assays.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Yanmin; Zhang, Zhidong

    2016-10-01

    Porcine parvovirus (PPV) is a major cause of swine reproductive failure and reported in many countries worldwide. Recombinase polymerase amplification (RPA) assays using a real-time fluorescent detection (PPV real-time RPA assay) and a lateral flow dipstick (PPV RPA LFD assay) were developed targeting PPV NS1 gene. The detection limit of PPV real-time RPA assay was 300 copies per reaction within 9 min at 38 °C, while the RPA LFD assay has a detection limit of 400 copies per reaction in less than 20 min at 38 °C. In both assays, there were no cross-reactions with porcine circovirus type 2, pseudorabies virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. Based on a total of 128 clinical samples examined, the sensitivity and the specificity of the developed RPA assays for identification of PPV was 94.4% and 100%, respectively, when compared to real-time (qPCR) assay. Therefore, the RPA assay provides a rapid, sensitive and specific alternative for PPV detection.

  17. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed Central

    Wenzel, Markus A.; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Objective Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user’s interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Approach Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Results Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). Significance The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI. PMID:27792781

  18. Specific detection of potentially allergenic kiwifruit in foods using polymerase chain reaction.

    PubMed

    Taguchi, Hiromu; Watanabe, Satoshi; Hirao, Takashi; Akiyama, Hiroshi; Sakai, Shinobu; Watanabe, Takahiro; Matsuda, Rieko; Urisu, Atsuo; Maitani, Tamio

    2007-03-07

    Kiwifruit (Actinidia deliciosa and Actinidia chinensis) is allergenic to sensitive patients, and, under Japanese regulations, it is one of the food items that are recommended to be declared on food labeling as much as possible. To develop PCR-based methods for the detection of trace amounts of kiwifruit in foods, two primer pairs targeting the ITS-1 region of the Actinidia spp. were designed using PCR simulation software. On the basis of the known distribution of a major kiwifruit allergen (actinidin) within the Actinidia spp., as well as of reports on clinical and immunological cross-reactivities, one of the primer pairs was designed to detect all Actinidia spp. and the other to detect commercially grown Actinidia spp. (i.e., kiwifruit, Actinidia arguta, and their interspecific hybrids) except for Actinidia polygama. The specificity of the developed methods using the designed primer pairs was verified by performing PCR experiments on 8 Actinidia spp. and 26 other plants including fruits. The methods were considered to be specific enough to yield target-size products only from the target Actinidia spp. and to detect no target-size products from nontarget species. The methods were sensitive enough to detect 5-50 fg of Actinidia spp. DNA spiked in 50 ng of salmon testis DNA used as a carrier (1-10 ppm of kiwifruit DNA) and 1700 ppm (w/w) of fresh kiwifruit puree spiked in a commercial plain yogurt (corresponding to ca. 10 ppm of kiwifruit protein). These methods would be expected to be useful in the detection of hidden kiwifruit and its related species in processed foods.

  19. Association of Copy Number Variants With Specific Ultrasonographically Detected Fetal Anomalies

    PubMed Central

    Donnelly, Jennifer C; Platt, Lawrence D; Rebarber, Andrei; Zachary, Julia; Grobman, William A; Wapner, Ronald J

    2014-01-01

    Objective To evaluate the association of other-than-common benign copy number variants with specific fetal abnormalities detected by ultrasonogram. Methods Fetuses with structural anomalies were compared to fetuses without detected abnormalities for the frequency of other-than-common benign copy number variants. This is a secondary analysis from the previously published National Institute of Child Health and Human Development microarray trial. Ultrasound reports were reviewed and details of structural anomalies were entered into a nonhierarchical web-based database. The frequency of other-than-common benign copy number variants (ie, either pathogenic or variants of uncertain significance) not detected by karyotype was calculated for each anomaly in isolation and in the presence of other anomalies and compared to the frequency in fetuses without detected abnormalities. Results Of 1,082 fetuses with anomalies detected on ultrasound, 752 had a normal karyotype. Other-than-common benign copy number variants were present in 61 (8.1%) of these euploid fetuses. Fetuses with anomalies in more than one system had a 13.0% frequency of other-than-common benign copy number variants, which was significantly higher (p<0.001) than the frequency (3.6%) in fetuses without anomalies (n = 1966). Specific organ systems in which isolated anomalies were nominally significantly associated with other-than-common benign copy number variants were the renal (p= 0.036) and cardiac systems (p=0.012) but did not meet the adjustment for multiple comparisons. Conclusions When a fetal anomaly is detected on ultrasonogram, chromosomal microarray offers additional information over karyotype, the degree of which depends on the organ system involved. PMID:24901266

  20. A Highly Specific Monoclonal Antibody for Botulinum Neurotoxin Type A-Cleaved SNAP25

    PubMed Central

    Rhéaume, Catherine; Cai, Brian B.; Wang, Joanne; Fernández-Salas, Ester; Aoki, K. Roger; Francis, Joseph; Broide, Ron S.

    2015-01-01

    Botulinum neurotoxin type-A (BoNT/A), as onabotulinumtoxinA, is approved globally for 11 major therapeutic and cosmetic indications. While the mechanism of action for BoNT/A at the presynaptic nerve terminal has been established, questions remain regarding intracellular trafficking patterns and overall fate of the toxin. Resolving these questions partly depends on the ability to detect BoNT/A’s location, distribution, and movement within a cell. Due to BoNT/A’s high potency and extremely low concentrations within neurons, an alternative approach has been employed. This involves utilizing specific antibodies against the BoNT/A-cleaved SNAP25 substrate (SNAP25197) to track the enzymatic activity of toxin within cells. Using our highly specific mouse monoclonal antibody (mAb) against SNAP25197, we generated human and murine recombinant versions (rMAb) using specific backbone immunoglobulins. In this study, we validated the specificity of our anti-SNAP25197 rMAbs in several different assays and performed side-by-side comparisons to commercially-available and in-house antibodies against SNAP25. Our rMAbs were highly specific for SNAP25197 in all assays and on several different BoNT/A-treated tissues, showing no cross-reactivity with full-length SNAP25. This was not the case with other reportedly SNAP25197-selective antibodies, which were selective in some, but not all assays. The rMAbs described herein represent effective new tools for detecting BoNT/A activity within cells. PMID:26114335

  1. Development of amperometric magnetogenosensors coupled to asymmetric PCR for the specific detection of Streptococcus pneumoniae.

    PubMed

    Campuzano, Susana; Pedrero, María; García, José L; García, Ernesto; García, Pedro; Pingarrón, José M

    2011-03-01

    A disposable magnetogenosensor for the rapid, specific and sensitive detection of Streptococcus pneumoniae is reported. The developed procedure involves the use of streptavidin-modified magnetic beads, a specific biotinylated capture probe that hybridizes with a specific region of lytA, the gene encoding the pneumococcal major autolysin, and appropriate primers for asymmetric polymerase chain reaction (PCR) amplification. Capture probes and amplicons specific for S. pneumoniae were selected by a careful analysis of all lytA alleles available. The selected primers amplify a 235-bp fragment of pneumococcal lytA. A detection limit (LOD) of 5.1 nM was obtained for a 20-mer synthetic target DNA without any amplification protocol, while the LOD for the asymmetric PCR amplicon was 1.1 nM. A RSD value of 6.9% was obtained for measurements carried out with seven different genosensors for 1.1-nM aPCR product. The strict specificity of the designed primers was demonstrated by aPCR amplification of genomic DNA prepared from different bacteria, including some closely related streptococci. Direct asymmetric PCR (daPCR), using cells directly from broth cultures of S. pneumoniae, showed that daPCR products could be prepared with as few as 2 colony-forming units (CFU). Furthermore, this methodology did not show any cross-reaction with closely related streptococci such as Streptococcus mitis (or Streptococcus pseudopneumoniae) even when present in the culture at concentrations up to 10(5) times higher than that of S. pneumoniae. Preliminary data for rapid detection of pneumococcus directly in clinical samples has shown that it is possible to discriminate between non-inoculated blood and urine samples and samples inoculated with only 10(3) CFU mL(-1)  S. pneumoniae.

  2. Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer.

    PubMed

    Wang, Wei-Xian; Cheung, Yee-Wai; Dirkzwager, Roderick M; Wong, Wai-Chung; Tanner, Julian A; Li, Hong-Wei; Wu, Yuqing

    2017-02-27

    Innovative nanomaterials offer significant potential for diagnosis of severe diseases of the developing world such as malaria. Small sized silver nanoclusters have shown promise for diagnostics due to their intense fluorescence emission and photo-stabilities. Here, double-stranded DNA-scaffolded silver nanoclusters (AgNCs-dsDNA) were prepared to detect the established malaria biomarker, Plasmodium falciparum lactate dehydrogenase (PfLDH). Significant luminescence enhancement over a wide concentration range of PfLDH was demonstrated. In addition, a low limit of detection at 0.20 nM (7.4 pg μL(-1)) was achieved for PfLDH in buffer solution, sensitive enough for practical use correlating with the clinical level of PfLDH in plasma from malaria-infected patients. Unique specificity was observed towards Plasmodium falciparum over Plasmodium vivax and human lactate dehydrogenase, as well as other non-specific proteins, by combining the use of AgNCs-dsDNA with a DNA aptamer against PfLDH. Moreover, the intrinsic mechanism was revealed in detail for the two-step luminescence response. The combination of DNA-scaffolded silver nanoclusters coupled to a selective single-stranded DNA aptamer allows for a highly specific and sensitive detection of PfLDH with significant promise for malaria diagnosis in future.

  3. Comparative study of fluorogenic and chromogenic media for specific detection of environmental isolates of thermotolerant Escherichia coli.

    PubMed

    Ramteke, Pramod W; Tewari, Suman

    2002-10-01

    In a field study 78 water samples were analysed employing Fluorocult Brilla Broth (BB) and its performance was compared with standard MPN procedure. Out of 78 water samples analysed 56 (71.7%) samples yielded positive reactions in BB whereas, 50 (64.1%) samples were positive by standard fecal coliform test. A comparative study of fluorogenic and chromogenic media containing substrate beta-D glucuronide for specific detection of environmental isolates of 313 thermotolerant E. coli has been undertaken. Five fluorogenic media were used: Fluorocult MacConkey agar (MCA), Fluorocult ECD agar (ECD), Fluorocult VRB agar (VRB), Fluorocult E. coli 0157:H7 agar (ECH7) and Fluorocult Brilla Broth (BB) and Chromogenic Chromocult agar (CCA). BB and CCA were found to be highly specific and sensitive media to detect E. coli as all E. coli yielded positive reaction on them. On ECH7 and ECD agar 67.5 and 64.9 of E. coli isolates gave positive reaction, respectively. Low sensitivity was observed in case of MCA and VRB agar in detecting E. coli. The performance of BB appears to be better when compared with standard MPN procedure employing MacConkey broth/Brilliant green bile broth in detecting E. coli in drinking water.

  4. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  5. Novel use of a radiolabelled antibody against stage specific embryonic antigen for the detection of occult abscesses in mammals

    DOEpatents

    Thakur, Madhukar L.

    1990-01-01

    The invention discloses improved reagents containing antibodies against stage specific embryonic antigen-1 antibodies and improved methods for detection of occult abscess and inflammation using the improved reagents.

  6. [Clinical significance of ID4 methylation detection by quantitative methylation-specific PCR in acute leukemia].

    PubMed

    Liu, Yang; Zhong, Wen-Wen; Kang, Hui-Yuan; Wang, Li-Li; Lu, Xue-Chun; Yu, Li; Zhu, Hong-Li

    2014-06-01

    The advances of treatment improved the prognosis of the patients with acute leukemia (AL) in the last decade, but the lack of general biomarker for predicting relapse in AL, which is one of the most important factors influencing the survival and prognosis. DNA methylation of ID4 gene promoter occurred frequently in patients with AL and was found to be highly related to the tumor progression. Based on the previous work of the setup of methylation-specific quantitative PCR system for ID4 gene, this study was designed to investigate the relation between the quantitative indicator of methylation density, percentage of methylation reference(PMR) value, and different disease status of AL. PMR of ID4 was detected by MS-PCR in bone marrow (BM) samples of 17 healthy persons and 54 AL patients in the status of newly diagnosis, complete remission and disease relapse. The results showed that at different disease status, PMR value in newly diagnosed group was significantly lower than that in complete remission group (P = 0.031). Among serial samples, PMR value remained very low at the status of patients with continuous complete remission (<1.5‰), and increased along with the accumulation of tumor cells at relapse. In 1 relapse case, the abnormal rise of PMR value occurred prior to morphological relapse. PMR value seemed to be related to body tumor cell load. It is concluded that the quantitative indicator of methylation density and PMR value may reflect the change of tumor cell load in acute leukemia patients. Dynamic monitoring of PMR maybe predict leukemia relapse.

  7. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR

    PubMed Central

    Orue, Andrea; Rieber, Manuel

    2016-01-01

    Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. Conclusion. Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting. PMID:27632281

  8. Non-detection errors in a survey of persistent, highly-detectable vegetation species.

    PubMed

    Clarke, Kenneth D; Lewis, Megan; Brandle, Robert; Ostendorf, Bertram

    2012-01-01

    Rare, small or annual vegetation species are widely known to be imperfectly detected with single site surveys by most conventional vegetation survey methods. However, the detectability of common, persistent vegetation species is assumed to be high, but without supporting research. In this study, we evaluate the extent of false-negative errors of perennial vegetation species in a systematic vegetation survey in arid South Australia. Analysis was limited to the seven most easily detected persistent vegetation species and controlled for observer skill. By comparison of methodologies, we then predict the magnitude of non-detection error rates in a second survey. The analysis revealed that all but one highly detectable perennial vegetation species was imperfectly detected (detection probabilities ranged from 0.22 to 0.83). While focussed in the Australian rangelands, the implications of this study are far reaching. Inferences drawn from systematic vegetation surveys that fail to identify and account for non-detection errors should be considered potentially flawed. The identification of this problem in vegetation surveying is long overdue. By comparison, non-detection has been a widely acknowledged, and dealt with, problem in fauna surveying for decades. We recommend that, where necessary, vegetation survey methodology adopt the methods developed in fauna surveying to cope with non-detection errors.

  9. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  10. Detection specificity studies of bacteriophage adhesin-coated long-period grating-based biosensor

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Cusano, Andrea; Bock, Wojtek J.

    2015-09-01

    In this work, we present a label-free detection specificity study of an optical fiber long-period grating (LPG) biosensor working near the dispersion turning point of higher order cladding modes. The LPG sensor functionalized with bacteriophage adhesin is tested with specific and non-specific bacteria dry weight. We show that such biosensor is able to selectively bind, thus recognize different bacteria. We use bacteria dry weights of E. coli B as positive test and E. coli K12 and Salmonella enterica as negative tests. The resonance wavelength shift induced by E. coli B reaches over 90 nm, while for E. coli K12 and Salmonella enterica approximately 40 and 20 nm, respectively.

  11. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas

    PubMed Central

    2011-01-01

    Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94%) and adenomas (35-91%), whereas normal mucosa samples were rarely (0-5%) methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection. PMID:21777459

  12. High infrasonic goniometry applied to the detection of a helicopter in a high activity environment

    NASA Astrophysics Data System (ADS)

    Chritin, Vincent; Van Lancker, Eric; Wellig, Peter; Ott, Beat

    2016-10-01

    A current concern of armasuisse is the feasibility of a fixed or mobile acoustic surveillance and recognition network of sensors allowing to permanently monitor the noise immissions of a wide range of aerial activities such as civil or military aviation, and other possible acoustic events such as transient events, subsonic or sonic booms or other. This objective requires an ability to detect, localize and recognize a wide range of potential acoustic events of interest, among others possibly parasitic acoustic events (natural and industrial events on the ground for example), and possibly high background noise (for example close to urban or high activity areas). This article presents a general discussion and conclusion about this problem, based on 20 years of experience totalizing a dozen of research programs or internal researches by IAV, with an illustration through one central specific experimental case-study carried out within the framework of an armasuisse research program.

  13. Development of a Sensitive and Specific Polyclonal Antibody for Serological Detection of Clavibacter michiganensis subsp. sepedonicus

    PubMed Central

    Przewodowska, Agnieszka

    2017-01-01

    The quarantine bacterium Clavibacter michiganensis subsp. sepedonicus (Cms) causes bacterial ring rot (BRR) in potato but is difficult to detect, hampering the diagnosis of this disease. ELISA immunoassays have not been widely used to detect Cms because commercially available anti-Cms antibodies detect mainly EPS-producing bacteria and can fail to detect strains that do not produce EPS. In the current study, we developed a new type of polyclonal antibody that specifically detects Clavibacter michiganensis subsp. sepedonicus bacteria irrespective of their EPS level. We first found that the presence of bacterial EPS precluded quantitative measurement of bacteria by currently available immunoenzymatic methods, but that washing Cms cells with acidic and basic buffers to remove EPS before analysis successfully standardized ELISA results. We used a mix of three strains of Cms with diverse EPS levels to generate antigen for production of antibodies recognizing Cms cells with and without an EPS layer (IgG-EPS and IgG-N-EPS, respectively). The resulting IgG-N-EPS recognized almost all Cms strains tested in this work regardless of their mucoidal level. The availability of this new antibody renders immunological diagnostics of Cms more sensitive and reliable, as our newly developed antibodies can be used in many type of immunoassays. This work represents an important step forward in efforts to diagnose and prevent the spread of BRR, and the methods and solutions developed in this work are covered by six Polish, one European and one US patents. PMID:28068400

  14. Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine.

    PubMed

    Cui, Lei; Ji, Chunfei; Peng, Zhixing; Zhong, Lin; Zhou, Chaohui; Yan, Luliang; Qu, Song; Zhang, Shuping; Huang, Chusen; Qian, Xuhong; Xu, Yufang

    2014-05-06

    An optical probe based on colorimetric and ratiometric as well as chemiluminometric signal outputs is developed for the specific detection of hydrazine. On the basis of a Gabriel-type reaction, hydrazinolysis of a simple probe CF (4-phtalamide-N-(4'-methylcoumarin) naphthalimide) produces both the fluorescence of 7-amino-4-methylcoumarin with the max emission wavelength changed from 480 to 420 nm (along with a color change from yellow to transparent) and the luminol chemiluminescence activated by H2O2 with a max emission wavelength at 450 nm. The experimental detection limit of hydrazine is 3.2 ppb (0.1 μM). Selectivity experiments proved CF has excellent selectivity to hydrazine over other interfering substances. Probe CF was also successfully applied in the vapor hydrazine detection over other interfering volatile analytes. Furthermore, the probe CF loaded thin-layer chromatography (TLC) plate for vapor hydrazine detection limit is 5.4 mg/m(3) which is well below the half lethal dose of hydrazine gas for mice (LC50(mice), 330 mg/m(3)) and National Institute of Occupational Safety and Health's immediately dangerous to life or health limit (NIOSHIDLH, 66 mg/m(3)). With H2O2, only hydrazinolysis product luminol can be lighted at 450 nm, other species have no signal. Probe CF can also be used for the detection of hydrazine in HeLa cells.

  15. Sequence-specific electrochemical detection of asymmetric PCR amplicons of traditional Chinese medicinal plant DNA.

    PubMed

    Lee, Thomas M H; Hsing, I-Ming

    2002-10-01

    In this study, an electrochemistry-based approach to detect nucleic acid amplification products of Chinese herbal genes is reported. Using asymmetric polymerase chain reaction and electrochemical techniques, single-stranded target amplicons are produced from trace amounts of DNA sample and sequence-specific electrochemical detection based on the direct hybridization of the crude amplicon mix and immobilized DNA probe can be achieved. Electrochemically active intercalator Hoechst 33258 is bound to the double-stranded duplex formed by the target amplicon hybridized with the 5'-thiol-derivated DNA probe (16-mer) on the gold electrode surface. The electrochemical current signal of the hybridization event is measured by linear sweep voltammetry, the response of which can be used to differentiate the sequence complementarities of the target amplicons. To improve the reproducibility and sensitivity of the current signal, issues such as electrode surface cleaning, probe immobilization, and target hybridization are addressed. Factors affecting hybridization efficiency including the length and binding region of the target amplicon are discussed. Using our approach, differentiation of Chinese herbal species Fritillaria (F. thunbergii and F. cirrhosa) based on the 16-mer unique sequences in the spacer region of the 5S-rRNA is demonstrated. The ability to detect PCR products using a nonoptical electrochemical detection technique is an important step toward the realization of portable biomicrodevices for on-spot bacterial and viral detections.

  16. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity.

    PubMed

    Mussolino, Claudio; Alzubi, Jamal; Fine, Eli J; Morbitzer, Robert; Cradick, Thomas J; Lahaye, Thomas; Bao, Gang; Cathomen, Toni

    2014-06-01

    Designer nucleases have been successfully employed to modify the genomes of various model organisms and human cell types. While the specificity of zinc-finger nucleases (ZFNs) and RNA-guided endonucleases has been assessed to some extent, little data are available for transcription activator-like effector-based nucleases (TALENs). Here, we have engineered TALEN pairs targeting three human loci (CCR5, AAVS1 and IL2RG) and performed a detailed analysis of their activity, toxicity and specificity. The TALENs showed comparable activity to benchmark ZFNs, with allelic gene disruption frequencies of 15-30% in human cells. Notably, TALEN expression was overall marked by a low cytotoxicity and the absence of cell cycle aberrations. Bioinformatics-based analysis of designer nuclease specificity confirmed partly substantial off-target activity of ZFNs targeting CCR5 and AAVS1 at six known and five novel sites, respectively. In contrast, only marginal off-target cleavage activity was detected at four out of 49 predicted off-target sites for CCR5- and AAVS1-specific TALENs. The rational design of a CCR5-specific TALEN pair decreased off-target activity at the closely related CCR2 locus considerably, consistent with fewer genomic rearrangements between the two loci. In conclusion, our results link nuclease-associated toxicity to off-target cleavage activity and corroborate TALENs as a highly specific platform for future clinical translation.

  17. Scalable photonic crystal chips for high sensitivity protein detection.

    PubMed

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  18. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning.

    PubMed

    Lerch, Jason P; Yiu, Adelaide P; Martinez-Canabal, Alonso; Pekar, Tetyana; Bohbot, Veronique D; Frankland, Paul W; Henkelman, R Mark; Josselyn, Sheena A; Sled, John G

    2011-02-01

    Multiple recent human imaging studies have suggested that the structure of the brain can change with learning. To investigate the mechanism behind such structural plasticity, we sought to determine whether maze learning in mice induces brain shape changes that are detectable by MRI and whether such changes are specific to the type of learning. Here we trained inbred mice for 5 days on one of three different versions of the Morris water maze and, using high-resolution MRI, revealed specific growth in the hippocampus of mice trained on a spatial variant of the maze, whereas mice trained on the cued version were found to have growth in the striatum. The structure-specific growth found furthermore correlated with GAP-43 staining, a marker of neuronal process remodelling, but not with neurogenesis nor neuron or astrocyte numbers or sizes. Our findings provide evidence that brain morphology changes rapidly at a scale detectable by MRI and furthermore demonstrate that specific brain regions grow or shrink in response to the changing environmental demands. The data presented herein have implications for both human imaging as well as rodent structural plasticity research, in that it provides a tool to screen for neuronal plasticity across the whole brain in the mouse while also providing a direct link between human and mouse studies.

  19. Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation.

    PubMed

    Tang, Yongjun; Zou, Jun; Ma, Chao; Ali, Zeeshan; Li, Zhiyang; Li, Xiaolong; Ma, Ninging; Mou, Xianbo; Deng, Yan; Zhang, Liming; Li, Kai; Lu, Guangming; Yang, Haowen; He, Nongyue

    2013-01-01

    A method for highly sensitive and rapid detection of Pseudomonas aeruginosa, based on magnetic enrichment and magnetic separation, is described in this paper. The magnetic nanoparticles (MNPs) were applied to adsorb genome DNA after the sample was lysed. The DNA binding MNPs were directly subjected to polymerase chain reaction (PCR) to amplify gyrB specific sequence of Pseudomonas aeruginosa. The biotin labeled PCR products were detected by chemiluminescence when they were successively incubated with the probes-modified MNPs and alkaline phosphatase (ALP) labeled streptavidin (SA). Agarose gel electrophoresis analyses approved the method of in situ PCR to be highly reliable. The factors which could affect the chemiluminiscence were studied in detail. The results showed that the MNPs of 400 nm in diameter are beneficial to the detection. The sequence length and the binding site of the probe with a target sequence have obvious effects on the detection. The optimal concentration of the probes, hybridization temperature and hybridization time were 10 μM, 60 ºC and 60 mins, respectively. The method of in situ PCR based on MNPs can greatly improve the utilization rate of the DNA template ultimately enhancing the detection sensitivity. Experiment results proved that the primer and probe had high specificity, and Pseudomonas aeruginosa was successfully detected with detection limits as low as 10 cfu/mL by this method, while the detection of a single Pseudomonas aeruginosa can also be achieved.

  20. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    PubMed Central

    Wang, Zhi-qiang; Zhao, Jun; Zeng, Jin; Wu, Kai-jie; Chen, Yu-le; Wang, Xin-yang; Chang, Luke S; He, Da-lin

    2011-01-01

    Aim: Survivin molecular beacons can be used to detect bladder cancer cells in urine samples non-invasively. The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair. Methods: Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed, which had no overlap with the other genes in the apoptosis inhibitor protein family. Human bladder cancer cell lines 5637, 253J and T24, as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined. Images of cells were taken using a laser scanning confocal fluorescence microscope. For assays using dual FRET MBs, the excitation wavelength was 488 nm, and the emission detection wavelengths were 520±20 nm and 560±20 nm, respectively. Results: The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals. In contrast, no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs. Conclusion: The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer. PMID:22019956

  1. A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus.

    PubMed

    Batten, Carrie A; Banyard, Ashley C; King, Donald P; Henstock, Mark R; Edwards, Lorraine; Sanders, Anna; Buczkowski, Hubert; Oura, Chris C L; Barrett, Tom

    2011-02-01

    Peste des petits ruminants virus (PPRV) causes a devastating disease of small ruminants present across much of Africa and Asia. Recent surveillance activities and phylogenetic analyses have suggested that the virus is an emerging problem as it is now being detected in areas previously free of the disease. As such, the virus not only is threatening small ruminant production and agricultural stability in the developing world, but also poses an economic threat to livestock in the European Union (EU) through introduction from European Turkey and North Africa. This report describes the development of a high throughput, rapid, real time RT-PCR method for the sensitive and specific detection of PPRV using robotic RNA extraction. This assay targets the nucleocapsid (N) gene of PPRV and has been shown to detect all four genetic lineages of PPRV in tissues, ocular and nasal swabs and blood samples collected in the field. The lowest detection limit achieved was approximately 10 genome copies/reaction, making this assay an ideal tool for the sensitive and rapid detection of PPRV in diagnostic laboratories.

  2. Development of a fast ELISA for the specific detection of both leucomalachite green and malachite green

    NASA Astrophysics Data System (ADS)

    Jiang, Yousheng; Chen, Li; Hu, Kun; Yu, Wenjuan; Yang, Xianle; Lu, Liqun

    2015-04-01

    Malachite green (MG), a dye, is an antifungal agent that has been used to treat and prevent fish diseases. It is metabolized into reduced leucomalachite green forms (LMG) that may reside in fish muscles for a long period, thus being harmful to human health. The aim of this study was to develop a competitive and direct enzyme-linked immunosorbent assay (ELISA) to detect MG and LMG specifically. The monoclonal antibody (mAb) to LMG was generated using a hybridoma technique. The obtained mAb showed good cross-reactivity (CR) to malachite green (MG), but not to crystal violet (CV) and Brilliant Green (BG). The mAb was used to develop a fast detecting ELISA of MG and LMG in fish. By introducing the conjugation LMG-HRP, the detection capability was 0.37 ng mL-1 for MG and LMG. The mean recovery from spiked grass carp tissues ranged from 76.2% to 82.9% and the coefficients of variation varied between 1.8% and 7.5%. The stable and efficient monoclonal cell line obtained is a sustainable source of sensitive and specific antibody to MG and LMG.

  3. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses

    PubMed Central

    Dick, Jeffrey E.; Hilterbrand, Adam T.; Strawsine, Lauren M.; Upton, Jason W.; Bard, Allen J.

    2016-01-01

    We report the specific collision of a single murine cytomegalovirus (MCMV) on a platinum ultramicroelectrode (UME, radius of 1 μm). Antibody directed against the viral surface protein glycoprotein B functionalized with glucose oxidase (GOx) allowed for specific detection of the virus in solution and a biological sample (urine). The oxidation of ferrocene methanol to ferrocenium methanol was carried out at the electrode surface, and the ferrocenium methanol acted as the cosubstrate to GOx to catalyze the oxidation of glucose to gluconolactone. In the presence of glucose, the incident collision of a GOx-covered virus onto the UME while ferrocene methanol was being oxidized produced stepwise increases in current as observed by amperometry. These current increases were observed due to the feedback loop of ferrocene methanol to the surface of the electrode after GOx reduces ferrocenium methanol back to ferrocene. Negative controls (i) without glucose, (ii) with an irrelevant virus (murine gammaherpesvirus 68), and (iii) without either virus do not display these current increases. Stepwise current decreases were observed for the prior two negative controls and no discrete events were observed for the latter. We further apply this method to the detection of MCMV in urine of infected mice. The method provides for a selective, rapid, and sensitive detection technique based on electrochemical collisions. PMID:27217569

  4. Cloud-Enabled Microscopy and Droplet Microfluidic Platform for Specific Detection of Escherichia coli in Water

    PubMed Central

    Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania

    2014-01-01

    We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107

  5. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water.

    PubMed

    Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania

    2014-01-01

    We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.

  6. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis.

    PubMed Central

    Bereswill, S; Pahl, A; Bellemann, P; Zeller, W; Geider, K

    1992-01-01

    Detection and identification of the fire blight pathogen, Erwinia amylovora, can be accurately done by polymerase chain reaction (PCR) analysis in less than 6 h. Two oligomers derived from a 29-kb plasmid which is common to all strains of E. amylovora were used to amplify a 0.9-kb fragment of the plasmid. By separation of the PCR products on agarose gel, this fragment wa specifically detected when E. amylovora DNA was present in the amplification assay. It was not found when DNA from other plant-pathogenic bacteria was used for the assay. A visible band specific to the 0.9-kb fragment was produced with DNA from fewer than 100 E. amylovora cells. A signal of similar strength was also obtained from E. amylovora cell lysates in the presence of the mild detergent Tween 20. Signals were weaker when bacteria were added to the PCR mixture without the detergent. As with results obtained from hybridization experiments using pEA29 DNA< the PCR signal was obtained with E. amylovora isolates from various geographic regions. This technique could also be used for detection of the fire blight pathogen in extracts of tissue obtained from infected plant material. Images PMID:1482178

  7. Development and testing of biosensors that quantitatively and specifically detect organic contaminants

    SciTech Connect

    Jackson, P.; Keim, P.; Kuske, C.; Willardson, B.

    1996-07-01

    This is the final report of a two-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a more sensitive and less expensive method of detecting organic contaminants. Assaying complex environmental samples for organic contaminant content is costly and labor intensive. This often limits extensive testing. Sensitive microbial biosensors that detect specific organic contaminants in complex waste mixtures without prior separation from other waste components have been developed. Some soil microbes degrade organic compounds that contaminate the environment. These bacteria sense minute quantities of particular organic compounds then respond by activating genes encoding enzymes that degrade these molecules. Genetic manipulation of these gene regulatory processes has been employed to develop unique biosensors that detect specific organic compounds using standard biochemical assays. Such biosensors allow rapid, sensitive testing of environmental samples for selected organic contaminants. The cost of biosensor assays is at least 100-fold less than present methods, allowing more rapid and extensive testing and site characterization.

  8. Specific triplex binding capacity of mixed base sequence duplex nucleic acids used for single-nucleotide polymorphism detection.

    PubMed

    Daksis, Jasmine I; Erikson, Glen H

    2005-01-01

    Specific base recognition and binding between native double-stranded DNA (dsDNA) and complementary single-stranded DNA (ssDNA) of mixed base sequence is presented. Third-strand binding, facilitated and stabilized by a DNA intercalator, YOYO-1, occurs within 5 min at room temperature. This triplex binding capability has been used to develop a homogeneous assay that accurately detects 1-, 2-, or 3-bp mutations or deletions in the dsDNA target. Every type of 1-bp mismatch can be identified. The assay can reliably distinguish homozygous from heterozygous polymerase chain reaction (PCR)-amplified genomic dsDNA, thus providing a highly sensitive clinical diagnostic assay.

  9. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  10. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.

    PubMed

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-08-12

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  11. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    PubMed Central

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-01-01

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954

  12. Designing DNA interstrand lock for locus-specific methylation detection in a nanopore

    PubMed Central

    Kang, Insoon; Wang, Yong; Reagan, Corbin; Fu, Yumei; Wang, Michael X.; Gu, Li-Qun

    2013-01-01

    DNA methylation is an important epigenetic regulation of gene transcription. Locus-specific DNA methylation can be used as biomarkers in various diseases including cancer. Many methods have been developed for genome-wide methylation analysis, but molecular diagnotics needs simple tools to determine methylation states at individual CpG sites in a gene fragment. In this report, we utilized the nanopore single-molecule sensor to investigate a base-pair specific metal ion/nucleic acids interaction, and explored its potential application in locus-specific DNA methylation analysis. We identified that divalent Mercury ion (Hg2+) can selectively bind a uracil-thymine mismatch (U-T) in a dsDNA. The Hg2+ binding creates a reversible interstrand lock, called MercuLock, which enhances the hybridization strength by two orders of magnitude. Such MercuLock cannot be formed in a 5-methylcytosine-thymine mismatch (mC-T). By nanopore detection of dsDNA stability, single bases of uracil and 5-methylcytosine can be distinguished. Since uracil is converted from cytosine by bisulfite treatment, cytosine and 5′-methylcytosine can be discriminated. We have demonstrated the methylation analysis of multiple CpGs in a p16 gene CpG island. This single-molecule assay may have potential in detection of epigenetic cancer biomarkers in biofluids, with an ultimate goal for early diagnosis of cancer. PMID:24135881

  13. Designing DNA interstrand lock for locus-specific methylation detection in a nanopore

    NASA Astrophysics Data System (ADS)

    Kang, Insoon; Wang, Yong; Reagan, Corbin; Fu, Yumei; Wang, Michael X.; Gu, Li-Qun

    2013-10-01

    DNA methylation is an important epigenetic regulation of gene transcription. Locus-specific DNA methylation can be used as biomarkers in various diseases including cancer. Many methods have been developed for genome-wide methylation analysis, but molecular diagnotics needs simple tools to determine methylation states at individual CpG sites in a gene fragment. In this report, we utilized the nanopore single-molecule sensor to investigate a base-pair specific metal ion/nucleic acids interaction, and explored its potential application in locus-specific DNA methylation analysis. We identified that divalent Mercury ion (Hg2+) can selectively bind a uracil-thymine mismatch (U-T) in a dsDNA. The Hg2+ binding creates a reversible interstrand lock, called MercuLock, which enhances the hybridization strength by two orders of magnitude. Such MercuLock cannot be formed in a 5-methylcytosine-thymine mismatch (mC-T). By nanopore detection of dsDNA stability, single bases of uracil and 5-methylcytosine can be distinguished. Since uracil is converted from cytosine by bisulfite treatment, cytosine and 5'-methylcytosine can be discriminated. We have demonstrated the methylation analysis of multiple CpGs in a p16 gene CpG island. This single-molecule assay may have potential in detection of epigenetic cancer biomarkers in biofluids, with an ultimate goal for early diagnosis of cancer.

  14. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    PubMed

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  15. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  16. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  17. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors

    NASA Astrophysics Data System (ADS)

    Wanunu, Meni; Dadosh, Tali; Ray, Vishva; Jin, Jingmin; McReynolds, Larry; Drndić, Marija

    2010-11-01

    Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.

  18. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories.

  19. Glyco-seek: Ultrasensitive Detection of Protein-Specific Glycosylation by Proximity Ligation Polymerase Chain Reaction.

    PubMed

    Robinson, Peter V; Tsai, Cheng-Ting; de Groot, Amber E; McKechnie, Julia L; Bertozzi, Carolyn R

    2016-08-31

    We report a non-destructive biochemical technique, termed "Glyco-seek", for analysis of O-GlcNAcylated proteins. Glyco-seek combines chemoenzymatic labeling, proximity ligation, and quantitative polymerase chain reaction to detect O-GlcNAcylated proteins with ultrahigh sensitivity. Our glycan-specific assay can be paired with traditional proximity ligation assays to simultaneously determine the change in total protein levels. We show that Glyco-seek detects attomoles of glycoproteins of interest from cell lysates, with sensitivity several orders of magnitude higher than that of current techniques. We used the method to directly assay the O-GlcNAcylation status of a low-abundance transcription factor from cell lysates without need for isolation or enrichment.

  20. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    NASA Astrophysics Data System (ADS)

    Samuelsen, Simone V.; Solov’Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  1. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    PubMed Central

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  2. Computational Analysis of Specific MicroRNA Biomarkers for Noninvasive Early Cancer Detection

    PubMed Central

    Song, Tianci; Liang, Yanchun; Cao, Zhongbo

    2017-01-01

    Cancer is a complex disease residing in various tissues of human body, accompanied with many abnormalities and mutations in genomes, transcriptome, and epigenome. Early detection plays a crucial role in extending survival time of all major cancer types. Recent advances in microarray and sequencing techniques have given more support to identifying effective biomarkers for early detection of cancer. MicroRNAs (miRNAs) are more and more frequently used as candidates for biomarkers in cancer related studies due to their regulation of target gene expression. In this paper, the comparative analysis is used to discover miRNA expression patterns in cancer versus normal samples on early stage of eight prevalent cancer types. Our work focuses on the specific miRNAs biomarkers identification and function analysis. Several identified miRNA biomarkers in this paper are matched well with those reported in existing researches, and most of them could serve as potential candidate indicators for clinical early diagnosis applications. PMID:28357401

  3. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  4. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    NASA Astrophysics Data System (ADS)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  5. L1 regularization facilitates detection of cell type-specific parameters in dynamical systems

    PubMed Central

    Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens

    2016-01-01

    Motivation: A major goal of drug development is to selectively target certain cell types. Cellular decisions influenced by drugs are often dependent on the dynamic processing of information. Selective responses can be achieved by differences between the involved cell types at levels of receptor, signaling, gene regulation or further downstream. Therefore, a systematic approach to detect and quantify cell type-specific parameters in dynamical systems becomes necessary. Results: Here, we demonstrate that a combination of nonlinear modeling with L1 regularization is capable of detecting cell type-specific parameters. To adapt the least-squares numerical optimization routine to L1 regularization, sub-gradient strategies as well as truncation of proposed optimization steps were implemented. Likelihood-ratio tests were used to determine the optimal regularization strength resulting in a sparse solution in terms of a minimal number of cell type-specific parameters that is in agreement with the data. By applying our implementation to a realistic dynamical benchmark model of the DREAM6 challenge we were able to recover parameter differences with an accuracy of 78%. Within the subset of detected differences, 91% were in agreement with their true value. Furthermore, we found that the results could be improved using the profile likelihood. In conclusion, the approach constitutes a general method to infer an overarching model with a minimum number of individual parameters for the particular models. Availability and Implementation: A MATLAB implementation is provided within the freely available, open-source modeling environment Data2Dynamics. Source code for all examples is provided online at http://www.data2dynamics.org/. Contact: bernhard.steiert@fdm.uni-freiburg.de PMID:27587694

  6. Improvement in the specificity of assays for detection of antibody to hepatitis B core antigen.

    PubMed Central

    Weare, J A; Robertson, E F; Madsen, G; Hu, R; Decker, R H

    1991-01-01

    Reducing agents dramatically alter the specificity of competitive assays for antibody to hepatitis B core antigen (anti-HBc). A specificity improvement was demonstrated with a new assay which utilizes microparticle membrane capture and chemiluminescence detection as well as a current radioimmunoassay procedure (Corab: Abbott Laboratories, Abbott Park, Ill.). The effect was most noticeable with elevated negative and weakly reactive samples. In both systems, reductants increased separation of a negative population (n = 160) from assay cutoffs. With a selected population (n = 307), inclusion of reductant eliminated apparent anti-HBc activity in 54 of 81 samples in the 30 to 70% inhibition range. Reductant-stable anti-HBc samples were strongly associated with the presence of antibody to hepatitis B surface antigen (21 of 27). The association persisted below the detection limits of current assays to 0.3 to 0.4 Paul Ehrlich Institute units per ml. Only 1 of 54 reduction-sensitive borderline samples was confirmed to be positive for antibody to hepatitis B surface antigen. The modified procedures had unchanged or slightly improved sensitivity for immunoglobulin G (IgG)-associated anti-HBc activity. Although IgM anti-HBc detection was reduced from four- to eightfold in the presence of reductants, sensitivities remained at least twofold greater than tha of an enzyme immunoassay (Corzyme M; Abbott) designed to detect acute-phase levels of IgM anti-HBc. The use of reducing agents should significantly improve the reliability of anti-HBc testing, especially near assay cutoffs. PMID:2037678

  7. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  8. TEA HF laser with a high specific radiation energy

    NASA Astrophysics Data System (ADS)

    Puchikin, A. V.; Andreev, M. V.; Losev, V. F.; Panchenko, Yu. N.

    2017-01-01

    Results of experimental studies of the chemical HF laser with a non-chain reaction are presented. The possibility of the total laser efficiency of 5 % is shown when a traditional C-to-C pumping circuit with the charging voltage of 20-24 kV is used. It is experimentally shown that the specific radiation output energy of 21 J/l is reached at the specific pump energy of 350 J/l in SF6/H2 = 14/1 mixture at the total pressure of 0.27 bar.

  9. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  10. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  11. Specific binding of magnetic nanoparticle probes to platelets in whole blood detected by magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Eberbeck, Dietmar; Wiekhorst, Frank; Steinhoff, Uwe; Schwarz, Kay Oliver; Kummrow, Andreas; Kammel, Martin; Neukammer, Jörg; Trahms, Lutz

    2009-05-01

    The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL -1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.

  12. A real-time PCR targeted to the upstream regions of HlyB for specific detection of Edwardsiella tarda

    NASA Astrophysics Data System (ADS)

    Xie, Guosi; Huang, Jie; Zhang, Qingli; Han, Nana; Shi, Chengyin; Wang, Xiuhua; Liu, Qinghui

    2012-09-01

    Edwardsiella tarda has become one of the most important emerging pathogens in aquaculture industry. Therefore, a rapid, reproducible, and sensitive method for detection and quantification of this pathogen is needed urgently. To achieve this purpose, we developed a TaqMan-based real-time PCR assay for detection and quantification of E. tarda. The assay targets the hemolysin activator HlyB domain protein of E. tarda. Our optimized TaqMan assay is capable of detecting as little as 40 fg of genomic DNA per reaction. A standard curve was generated from the threshold cycle values ( y) against log10 ( E. tarda genomic DNA concentration) as x. The intra- and inter-assay coefficient of variation (CV) values were less than 2.06% and 1.05% respectively, indicating that the assay had good reproducibility. This method is highly specific to E. tarda strains, as it shows no cross-reactivity to Edwardsiella ictaluri, a member of the same genus, or to nine other fish-pathogenic bacteria species belonging to three other genera. This sensitive and specific real-time PCR assay provides a valuable tool for diagnostic quantitation of E. tarda in clinical samples.

  13. A sensitive and specific PCR assay for the detection of Baylisascaris schroederi eggs in giant panda feces.

    PubMed

    Wang, Ning; Li, De-Sheng; Zhou, Xuan; Xie, Yue; Liang, Yi-Nan; Wang, Cheng-Dong; Yu, Hua; Chen, Shi-Jie; Yan, Yu-Bo; Gu, Xiao-Bin; Wang, Shu-Xian; Peng, Xue-Rong; Yang, Guang-You

    2013-10-01

    Baylisascaris schroederi is one of the most common intestinal nematodes in giant pandas. It can cause severe baylisascariasis which is highly infectious in its natural hosts. A rapid and reliable diagnosis of parasite infections is crucial to protect giant pandas, as well as for environmental monitoring and disease surveillance. Here, we established a specific PCR assay for B. schroederi detection which was targeting a 331-bp long fragment of the mitochondrial cytochrome c oxidase subunit II (COII) gene. Fifty fresh fecal samples collected from captive giant pandas were tested by the established PCR assay and the traditional flotation technique. DNA extracted from a single B. schroederi egg could be successfully amplified, while no cross-reactivity was found with DNA from Ancylostoma caninum eggs. The detection rate of the PCR assay was 68%, which was higher than that of the traditional egg flotation (46%). Our findings demonstrated that the PCR assay is sensitive and specific for the detection and identification of B. schroederi eggs. Therefore, it could become a useful tool for the investigation of B. schroederi infections in giant pandas.

  14. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    SciTech Connect

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  15. SeaMon-HC Buoy. A specific real-time-lightweight-moored platform as a tool for fast hydrocarbon detection

    NASA Astrophysics Data System (ADS)

    Barrera, C.; Rueda, M. J.; Moran, R.; Llerandi, C.; Llinas, O.

    2009-04-01

    The present paper-work describes the design, last development stages and the derived results from a specific buoy platform for fast hydrocarbon detection in seawater. Under the name of SeaMon-HC, (Patent No. P200302219/8) the buoy represents a very chief tool for coastal monitoring, mainly surrounding areas with a high oil-spill risk level, like harbours, off-shore fish farming, beaches and so on. Nowadays, the Macaronesian area has nine units working in real-time, under the frame of the Red ACOMAR Network. The main innovative aspect from this buoy is the detection system. It's based in polymer technology, working as a resistance, who increase its value when the pollutant on water surface is detected. The response time from the sensor is a direct function of the hydrocarbon volatility level. For hydrocarbons with high volatility levels (like petrol), the sensor needs less time (around 3 minutes) than others with less volatility such as oils. SeaMon-HC is an autonomous, modular, reusable and a very low-cost development integrated by four subsystems (SS): SS-Flotation (different materials and shapes available); SS-Sensors (hydrocarbon detector and additional sensors -up to 15-, to solve specific sensor configuration requirements); SS-Power Supply (equipped in its basic configuration with a couple of solar modules and two 12V batteries) and the SS-Communication (based on a RF or GSM/GPRS modem technology, with a selectable communication frequency). All SeaMon-HC units, as well the rest of the ODAS buoys who joint together the Red ACOMAR Network, works in real-time, sending the collected information to the control centre that manages the communications, providing data, in a useful form (as a web site), to diverse socio-economic important sectors which make an exhaustive use of the littoral in the Macaronesian region. The access to the information by the users is done through a specific GIS software application.

  16. High dynamic range imaging for the detection of motion

    NASA Astrophysics Data System (ADS)

    Hay, Jeffrey Robert

    High dynamic range imaging involves imaging at a bit depth higher than the typical 8-12 bits offered by standard video equipment. We propose a method of imaging a scene at high dynamic range, 14+ bits, to detect motion correlated with changes in the measured optical signal. Features within a scene, namely edges, can be tracked through a time sequence and produce a modulation in light levels associated with the edge moving across a region being sampled by the detector. The modulation in the signal is analyzed and a model is proposed that allows for an absolute measurement of the displacement of an edge. In addition, turbulence present in the received optical path produces a modulation in the received signal that can be directly related to the various turbulent eddy sizes. These features, present in the low frequency portion of the spectrum, are correlated to specific values for a relative measurement of the turbulence intensity. In some cases a single element sensor is used for a measurement at a single point. Video technology is also utilized to produce simultaneous measurements across the entire scene. Several applications are explored and the results discussed. Key applications include: the use of this technique to analyze the motions of bridges for the assessment of structural health, non-contact methods of measuring the blood pulse waveform and respiration rate of an individual(s), and the imaging of turbulence, including clear air turbulence, for relative values of intensity. Resonant frequencies of bridges can be measured with this technique as well as eddies formed from turbulent flow.

  17. Selection of Ceratitis capitata (Diptera: Tephritidae) Specific Recombinant Monoclonal Phage Display Antibodies for Prey Detection Analysis

    PubMed Central

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators. PMID:23272105

  18. Use of Specific Chemical Reagents for Detection of Modified Nucleotides in RNA

    PubMed Central

    Behm-Ansmant, Isabelle; Helm, Mark; Motorin, Yuri

    2011-01-01

    Naturally occurring cellular RNAs contain an impressive number of chemically distinct modified residues which appear posttranscriptionally, as a result of specific action of the corresponding RNA modification enzymes. Over 100 different chemical modifications have been identified and characterized up to now. Identification of the chemical nature and exact position of these modifications is typically based on 2D-TLC analysis of nucleotide digests, on HPLC coupled with mass spectrometry, or on the use of primer extension by reverse transcriptase. However, many modified nucleotides are silent in reverse transcription, since the presence of additional chemical groups frequently does not change base-pairing properties. In this paper, we give a summary of various chemical approaches exploiting the specific reactivity of modified nucleotides in RNA for their detection. PMID:21716696

  19. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    PubMed

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  20. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array.

    PubMed

    Moscovici, Mario; Bhimji, Alyajahan; Kelley, Shana O

    2013-03-07

    A rapid, simple and specific cancer cell counting sensor would allow for early detection and better disease management. We have developed a novel cell counting device that can specifically count 125 prostate cancer cells in both complex media with serum and a mixed cell population containing non-target cells within 15 min. The microfabricated glass chip with exposed gold apertures utilizes the anti-EpCAM antibody to selectively count prostate cancer cells via differential pulse voltammetry. The newly developed sensor exhibits excellent sensitivity and selectivity. The cells remain viable throughout the counting process and can be used for further analysis. This device could have utility for future applications in early stage cancer diagnosis.

  1. Specification of High Activity Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    International Commission on Radiation Units and Measurements, Washington, DC.

    The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…

  2. Kinase detection with gallium nitride based high electron mobility transistors.

    PubMed

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  3. An Improved, high-throughput method for detection of bluetongue virus RNA in Culicodes midges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new rapid (less than 6 h from insect-to-results) high-throughput assay is reported that is sensitive and specific for detecting BTV RNA in Culicoides biting midges. Homogenization and extraction of nucleic acids from individual Culicoides specimens were performed in a 96-well plate format using sp...

  4. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity.

    PubMed

    Zhou, Jun; Cheng, Meng; Zeng, Lizhang; Liu, Weipeng; Zhang, Tao; Xing, Da

    2016-05-15

    Conventional plant protease detection always suffers from high background interference caused by the complex coloring metabolites in plant cells. In this study, a bio-modified magnetic beads-based strategy was developed for sensitive and quantitative detection of plant vacuolar processing enzyme (VPE) activity. Cleavage of the peptide substrate (ESENCRK-FITC) after asparagine residue by VPE resulted in the 2-cyano-6-amino-benzothiazole (CABT)-functionalized magnetic beads capture of the severed substrate CRK-FITC via a condensation reaction between CABT and cysteine (Cys). The catalytic activity was subsequently obtained by the confocal microscopy imaging and flow cytometry quantitative analysis. The sensor system integrated advantages of (i) the high efficient enrichment and separation capabilities of magnetic beads and (ii) the catalyst-free properties of the CABT-Cys condensation reaction. It exhibited a linear relationship between the fluorescence signal and the concentration of severed substrate in the range of 10-600 pM. The practical results showed that, compared with normal growth conditions, VPE activity was increased by 2.7-fold (307.2 ± 25.3 μM min(-1)g(-1)) upon cadmium toxicity stress. This platform effectively overcame the coloring metabolites-caused background interference, showing fine applicability for the detection of VPE activity in real samples. The strategy offers great sensitivity and may be further extended to other protease activity detection.

  5. Brain-specific expression of MAP2 detected using a cloned cDNA probe

    PubMed Central

    1986-01-01

    We describe the isolation of a set of overlapping cDNAs encoding mouse microtubule associated protein 2 (MAP2), using an anti-MAP antiserum to screen a mouse brain cDNA expression library cloned in bacteriophage lambda gt11. The authenticity of these clones was established by the following criteria: (a) three non-identical clones each expressing a MAP2 immunoreactive fusion protein were independently isolated from the expression library; each of these clones cross-hybridized at the nucleic acid level; (b) anti-MAP antiserum was affinity purified using nitrocellulose-bound fusion protein; these antibodies detected only MAP2 in an immunoblot experiment of whole brain microtubule protein; (c) a series of cDNA "walking" experiments was done so as to obtain a non-overlapping cloned fragment corresponding to a different part of the same mRNA molecule. Upon subcloning this non-overlapping fragment into plasmid expression vectors, a fusion protein was synthesized that was immunoreactive with an anti-MAP2 specific antiserum. Thus, a single contiguous cloned mRNA molecule encodes at least two MAP2-specific epitopes; (d) the cloned cDNA probes detect an mRNA species in mouse brain that is of a size (approximately 9 kb) consistent with the coding capacity required by a 250,000-D protein. The MAP2-specific cloned cDNA probes were used in RNA blot transfer experiments to assay for the presence of MAP2 mRNA in a variety of mouse tissues. Though brain contained abundant quantities of MAP2 mRNA, no corresponding sequences were detectable in RNA prepared from liver, kidney, spleen, stomach, or thymus. We conclude that the expression of MAP2 is brain-specific. Use of the MAP2 specific cDNA probes in genomic Southern blot transfer experiments showed the presence of a single gene encoding MAP2 in mouse. The microheterogeneity of MAP2 is therefore ascribable either to alternative splicing within a single gene, or to posttranslational modification(s), or both. Under conditions of low

  6. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea.

    PubMed

    Lee, On On; Wang, Yong; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2011-04-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.

  7. Using a high spatial resolution tactile sensor for intention detection.

    PubMed

    Castellini, Claudio; Koiva, Risto

    2013-06-01

    Intention detection is the interpretation of biological signals with the aim of automatically, reliably and naturally understanding what a human subject desires to do. Although intention detection is not restricted to disabled people, such methods can be crucial in improving a patient's life, e.g., aiding control of a robotic wheelchair or of a self-powered prosthesis. Traditionally, intention detection is done using, e.g., gaze tracking, surface electromyography and electroencephalography. In this paper we present exciting initial results of an experiment aimed at intention detection using a high-spatial-resolution, high-dynamic-range tactile sensor. The tactile image of the ventral side of the forearm of 9 able-bodied participants was recorded during a variable-force task stimulated at the fingertip. Both the forces at the fingertip and at the forearm were synchronously recorded. We show that a standard dimensionality reduction technique (Principal Component Analysis) plus a Support Vector Machine attain almost perfect detection accuracy of the direction and the intensity of the intended force. This paves the way for high spatial resolution tactile sensors to be used as a means for intention detection.

  8. Sensitivity and specificity of parallel or serial serological testing for detection of canine Leishmania infection.

    PubMed

    Arruda, Mauro Maciel de; Figueiredo, Fabiano Borges; Marcelino, Andreza Pain; Barbosa, José Ronaldo; Werneck, Guilherme Loureiro; Noronha, Elza Ferreira; Romero, Gustavo Adolfo Sierra

    2016-03-01

    In Brazil, human and canine visceral leishmaniasis (CVL) caused by Leishmania infantum has undergone urbanisation since 1980, constituting a public health problem, and serological tests are tools of choice for identifying infected dogs. Until recently, the Brazilian zoonoses control program recommended enzyme-linked immunosorbent assays (ELISA) and indirect immunofluorescence assays (IFA) as the screening and confirmatory methods, respectively, for the detection of canine infection. The purpose of this study was to estimate the accuracy of ELISA and IFA in parallel or serial combinations. The reference standard comprised the results of direct visualisation of parasites in histological sections, immunohistochemical test, or isolation of the parasite in culture. Samples from 98 cases and 1,327 noncases were included. Individually, both tests presented sensitivity of 91.8% and 90.8%, and specificity of 83.4 and 53.4%, for the ELISA and IFA, respectively. When tests were used in parallel combination, sensitivity attained 99.2%, while specificity dropped to 44.8%. When used in serial combination (ELISA followed by IFA), decreased sensitivity (83.3%) and increased specificity (92.5%) were observed. Serial testing approach improved specificity with moderate loss in sensitivity. This strategy could partially fulfill the needs of public health and dog owners for a more accurate diagnosis of CVL.

  9. Free and complexed prostate-specific antigen (PSA) in the early detection of prostate cancer.

    PubMed

    Tello, F L; Prats, C H; González, M D

    2001-02-01

    We evaluated the analytical performance and diagnostic utility of complexed prostate-specific antigen (CPSA) and their ratios, complexed-to-total PSA (C/T PSA) and free-to-complexed PSA (F/C PSA), in comparison with the total PSA (TPSA) and free-to-total PSA ratio (F/T PSA) as means of diagnosing prostate cancer (PC). Samples (n=101) were drawn from men with no evidence of malignancy (n=80) and from men with PC (n=21) at biopsy. For determination of the F/T PSA ratio, the DPC Immulite-2000 method was used; and the Bayer Immuno-1 CPSA and TPSA assays were used to determine the C/T PSA ratio. The Bayer Immuno-1 CPSA assay provides accurate and precise CPSA values in human serum. The performance of the different forms and ratios was compared using receiver operating characteristic curve analysis. CPSA had the greatest area under the curve (AUC, 0.689) although it was not statistically different from the other parameters. A cut-off value of 4.66 ng/ml for CPSA provided a specificity of 38% and a sensitivity of 93%. The F/C PSA ratio maintained a sensitivity of 93% and had an increased specificity of 41%. The measurement of CPSA provides a slight increase in specificity compared with the use of the TPSA in the early detection of prostate cancer.

  10. Identification of putative sequence specific PCR primers for detection of the toxigenic fungal species Stachybotrys chartarum.

    PubMed

    Haugland, R A; Heckman, J L

    1998-12-01

    The nucleotide sequence of a c 936 bp segment of the nuclear rRNA gene operon was determined for the toxigenic fungal species Stachybotrys chartarum and for other species of Stachybotrys and the related genus Memnoniella. This information was used to infer the phylogenetic relationships of these organisms and to search for sequence specific polymerase chain reaction (PCR) primers for S. chartarum in the internal transcribed spacer (ITS) regions. Searches for candidate primers were performed both by computer using the commercially available Oligo(R) v5.0 primer analysis software package and by manual inspection of the aligned sequences. Primers identified in both types of searches were evaluated for their specificities using a priming efficiency analysis algorithm available in the Oligo(R) 5.0 software. The automated computer searches were unsuccessful in finding S. chartarum-specific primers but did identify a group-specific reverse primer (designated as StacR4) for a phylogenetically related cluster of species that included S. chartarum. Manual searches led to the identification of a reverse primer (designated as StacR3) that was predicted to be specific for only S. chartarum and one other species of Stachybotrys. Experimental PCR analyses using these primers in conjunction with a universal forward primer indicated that the computer-generated amplification efficiency predictions were correct in most instances. A notable exception was the finding that StacR3 was specific only for S. chartarum. The relative merits of different PCR strategies for the detection of S. chartarum employing either one or both of the primers identified in this study are discussed.

  11. Portable radiation detection system for pulsed high energy photon sources

    SciTech Connect

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.

    1994-12-31

    Portable, battery-operated, radiation detection systems for measuring the intensity and energy characteristics of intense, pulsed photon sources (either high energy X-ray or gamma) have been developed at the Idaho National Engineering Laboratory. These field-deployable, suitcase-sized detection units are designed to measure and record the characteristics of a single radiation burst or multiple bursts from a pulsed ionizing radiation source. The recorded information can then be analyzed on a simple laptop computer at a location remote from the detection system and completely independent of the ongoing data acquisition process. Two detection unit designs are described. The first, called the MARK-1, has eight bismuth germanate (BGO) radiation detectors. Four of which are unshielded and have different thicknesses (diameters). The remaining four are the same size as the largest unshielded detector but have different thicknesses of lead shielding surrounding each detector. The second unit design, called the MARK-1 A, utilizes the same detection methodology as the MARK-1 but has ten BGO detectors instead of eight and utilizes a different method of amplifying detector signals enabling reduced overall size and weight of the detection unit. Both the detection system designs have sensitivity ranges from 3 x 10{sup {minus}9} cGy to 9 x 10{sup {minus}5} cGy per radiation burst. Experimental detection results will be presented and discussed along the systems` potential for commercial applications.

  12. Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No.1.

    PubMed

    Wei, Jiaojun; Le, Huangying; Pan, Aihu; Xu, Junfeng; Li, Feiwu; Li, Xiang; Quan, Sheng; Guo, Jinchao; Yang, Litao

    2016-03-01

    For transferring the event-specific PCR methods of genetically modified papaya Huanong No.1 to other laboratories, we validated the previous developed PCR assays of Huanong No.1 according to the international standard organization (ISO) guidelines. A total of 11 laboratories participated and returned their test results in this trial. In qualitative PCR assay, the high specificity and limit of detection as low as 0.1% was confirmed. For the quantitative PCR assay, the limit of quantification was as low as 25 copies. The quantitative biases among ten blind samples were within the range between 0.21% and 10.04%. Furthermore, the measurement uncertainty of the quantitative PCR results was calculated within the range between 0.28% and 2.92% for these ten samples. All results demonstrated that the Huanong No.1 qualitative and quantitative PCR assays were creditable and applicable for identification and quantification of GM papaya Huanong No.1 in further routine lab analysis.

  13. Specific detection of the floodwater mosquitoes Aedes sticticus and Aedes vexans DNA in predatory diving beetles.

    PubMed

    Vinnersten, Thomas Z Persson; Halvarsson, Peter; Lundström, Jan O

    2015-08-01

    Floodwater mosquitoes (Diptera: Culicidae) are associated with periodically flooded wet meadows, marshes, and swamps in floodplains of major rivers worldwide, and their larvae are abundant in the shallow parts of flooded areas. The nuisance caused by the blood-seeking adult female mosquitoes motivates mosquito control. Larviciding with Bacillus thuringiensis israelensis is considered the most environmentally safe method. However, some concern has been raised whether aquatic predatory insects could be indirectly affected by this reduction in a potential vital prey. Top predators in the temporary wetlands in the River Dalälven floodplains are diving beetles (Coleoptera: Dytiscidae), and Aedes sticticus and Ae. vexans are the target species for mosquito control. For detailed studies on this aquatic predator-prey system, we developed a polymerase chain reaction (PCR) assay for detection of mosquito DNA in the guts of medium-sized diving beetles. Primers were designed for amplifying short mitochondrial DNA fragments of the cytochrome C oxidase subunit I (COI) gene in Ae. sticticus and Ae. vexans, respectively. Primer specificity was confirmed and half-life detectability of Ae. sticticus DNA in diving beetle guts was derived from a feeding and digestion experiment. The Ae. sticticus DNA within diving beetle guts was detected up to 12 h postfeeding, and half-life detectability was estimated to 5.6 h. In addition, field caught diving beetles were screened for Ae. sticticus and Ae. vexans DNA and in 14% of the diving beetles one or both mosquito species were detected, showing that these mosquito species are utilized as food by the diving beetles.

  14. Viral immunoblotting: a sensitive method for detecting viral-specific oliogoclonal bands in unconcentrated cerebrospinal fluid.

    PubMed

    Moyle, S; Keir, G; Thompson, E J

    1984-06-01

    A new method for detecting viral antibodies in cerebrospinal fluid is described. The technique has many advantages over previously published methods in that it is highly sensitive eliminating the need to concentrate the CSF, takes 5 h to complete, avoids the use of radionucleides, and most importantly circumvents problems associated with prozone effects which occur in immunoprecipitation reaction since the viral antigen is immobilized on nitrocellulose membranes.

  15. Detection of Doppler Microembolic Signals Using High Order Statistics

    PubMed Central

    Geryes, Maroun; Hassan, Walid; Mcheick, Ali

    2016-01-01

    Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of microemboli. The most common standard detection is achieved through the Doppler energy signal and depends on an empirically set constant threshold. On the other hand, in the past few years, higher order statistics have been an extensive field of research as they represent descriptive statistics that can be used to detect signal outliers. In this study, we propose new types of microembolic detectors based on the windowed calculation of the third moment skewness and fourth moment kurtosis of the energy signal. During energy embolus-free periods the distribution of the energy is not altered and the skewness and kurtosis signals do not exhibit any peak values. In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis signals exhibit peaks, corresponding to the latter emboli. Applied on real signals, the detection of microemboli through the skewness and kurtosis signals outperformed the detection through standard methods. The sensitivities and specificities reached 78% and 91% and 80% and 90% for the skewness and kurtosis detectors, respectively. PMID:28096889

  16. Specific Antibodies for the Detection of Alternaria Allergens and the Identification of Cross-Reactive Antigens in Other Fungi

    PubMed Central

    Twaroch, Teresa E.; Curin, Mirela; Sterflinger, Katja; Focke-Tejkl, Margit; Swoboda, Ines; Valenta, Rudolf

    2017-01-01

    Background The mould Alternaria alternata is an important source of respiratory allergens. A. alternata extracts show great variations regarding allergenic potency. The aim of this study was to generate antibody probes specific for important Alternaria allergens and to use them to study allergen expression, depending on different culture conditions, as well as to search for cross-reactive allergens in other mould species. Methods Synthetic peptides from antigenic regions of A. alternata allergens (Alt a 1, Alt a 2, Alt a 3, Alt a 6 and Alt a 8) were used to raise highly specific rabbit antibodies. These antibodies and IgE from allergic patients were used to detect allergens by immunoblotting in extracts of 4 A. alternata strains grown under varying culturing conditions, in commercial skin-prick extracts and in closely (Cladosporium herbarum and Aureobasidium pullulans) or distantly related (Aspergillus niger and Penicillium chrysogenum) mould species. Results There was a wide variation of expression of the individual A. Alternata allergens, depending on the strain and culture conditions, but the antibody probes allowed us to distinguish strains and culture conditions with low and high allergen expression. In the commercial skin-prick solutions, varying levels of Alt a 1 were found, but no other allergens were detectable. Alt a 1 was identified as species-specific A. Alternata allergen, whereas Alt a 3, 6- and Alt a 8-cross-reactive antigens were found in C. herbarum and/or A. pullulans. Conclusions and Clinical Relevance Peptide-specific antibodies are useful to analyze diagnostic and therapeutic mould extracts, to study the presence of A. Alternata allergens in biological samples and to search for cross-reactive allergens in other mould species. PMID:27780168

  17. Detection of HLA class I-specific antibodies by the QuikScreen enzyme-linked immunosorbent assay.

    PubMed Central

    Lucas, D P; Paparounis, M L; Myers, L; Hart, J M; Zachary, A A

    1997-01-01

    The GTI QuikScreen test is an enzyme-linked immunosorbent assay (ELISA) that uses soluble HLA class I antigens as targets. In tests of 5,893 human serum specimens, we evaluated the reliability, sensitivity, and utility of the GTI QuikScreen test for detecting HLA class I-specific antibody. We found that the test could reliably detect HLA-specific antibodies of the immunoglobulin G (IgG) but not the IgM class. The degree of correlation with lymphocytotoxicity testing varied among the different serum sources, with the best correlation achieved with sera from renal transplant candidates (r > 0.7) and the poorest with sera from patients with end-stage liver disease (r = 0.26), possibly because of elevated alkaline phosphatase levels in the liver patients. Test reproducibility was high (96%), and test failure rate was low (1.7%). The test sensitivity is comparable to that of the antiglobulin cytotoxicity and, possibly, even flow cytometric tests. There was a highly significant (P < 0.001) correlation between the optical densities obtained in the ELISA and the percent panel reactive antibody determined by cytotoxicity testing. Therefore, although designed only to determine the presence or absence of HLA-specific antibody, GTI QuikScreen test results also provided an indication of the extent of sensitization. The test is one of the most effective and efficient ways to determine if antibodies producing a positive result in crossmatch tests are specific for HLA class I antigens. As an adjunct to serum screening by cytotoxicity testing, the GTI QuikScreen test can produce a substantial savings of time and effort that reduces the cost to the laboratory and to the patient. PMID:9144358

  18. [Structural characteristics providing for high specificity of enteropeptidase].

    PubMed

    Mikhaĭlova, A G; Rumsh, L D

    1998-04-01

    The effects of structural modification upon the specificity of enteropeptidase were studied. A variation in the unique specificity of the enzyme was shown to be the result of an autolysis caused by the enzyme's loss of calcium ions. The cleavage sites of the autolysis were determined. A truncated enzyme containing the C-terminal fragment of its heavy chain (466-800 residues) and the intact light chain were shown to be the products of autolysis. The kinetic parameters of the hydrolysis of trypsinogen, a recombinant protein, and a peptide substrate with both forms of enteropeptidase were determined. Conditions were found that can help regulate the transition of the native enzyme into the truncated form. A hypothesis was proposed concerning the autoactivational character of proenteropeptidase processing.

  19. Coaxial plasma thrusters for high specific impulse propulsion

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  20. High throughput SNP detection system based on magnetic nanoparticles separation.

    PubMed

    Liu, Bin; Jia, Yingying; Ma, Man; Li, Zhiyang; Liu, Hongna; Li, Song; Deng, Yan; Zhang, Liming; Lu, Zhuoxuan; Wang, Wei; He, Nongyue

    2013-02-01

    Single-nucleotide polymorphism (SNP) was one-base variations in DNA sequence that can often be helpful to find genes associations for hereditary disease, communicable disease and so on. We developed a high throughput SNP detection system based on magnetic nanoparticles (MNPs) separation and dual-color hybridization or single base extension. This system includes a magnetic separation unit for sample separation, three high precision robot arms for pipetting and microtiter plate transferring respectively, an accurate temperature control unit for PCR and DNA hybridization and a high accurate and sensitive optical signal detection unit for fluorescence detection. The cyclooxygenase-2 gene promoter region--65G > C polymorphism locus SNP genotyping experiment for 48 samples from the northern Jiangsu area has been done to verify that if this system can simplify manual operation of the researchers, save time and improve efficiency in SNP genotyping experiments. It can realize sample preparation, target sequence amplification, signal detection and data analysis automatically and can be used in clinical molecule diagnosis and high throughput fluorescence immunological detection and so on.

  1. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  2. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

    PubMed Central

    Varkonyi-Gasic, Erika; Wu, Rongmei; Wood, Marion; Walton, Eric F; Hellens, Roger P

    2007-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression. PMID:17931426

  3. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay.

    PubMed

    Zhang, Cunzheng; Wang, Li; Tu, Zhui; Sun, Xing; He, Qinghua; Lei, Zhaojing; Xu, Chongxin; Liu, Yuan; Zhang, Xiao; Yang, Jingyi; Liu, Xianjin; Xu, Yang

    2014-05-15

    An approach is developed to detect the organophosphorus pesticides via competitive binding to a recombinant broad-specificity DNA aptamer with a molecular beacon (MB), the binding of the MB to the aptamer results in the activation of a fluorescent signal, which can be measured for pesticide quantification. Aptamers selected via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) were structurally modified and truncated to narrow down the binding region of the target, which indicated that loops of the aptamer contributed different functions for different chemical recognition. Thereafter, a variant fused by two different minimum functional structures, was clarified with broad specificity and increased affinity. Further molecular docking and molecular dynamics simulations was conducted to understand the molecular interaction between DNA structure and chemicals. 3D modeling revealed a hot spot area formed by 3 binding sites, forces including hydrogen bonds and van der Waals interactions appear to play a significant role in enabling and stabilizing the binding of chemicals. Finally, an engineered aptamer based approach for the detection of organophosphorus pesticides was successfully applied in a test using a real sample, the limit of quantification (LOQ) for phorate, profenofos, isocarbophos, and omethoate reached 19.2, 13.4, 17.2, and 23.4 nM (0.005 mg L(-1)), respectively.

  4. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Bozorgmehr, Ali; Yazdanparast, Razieh; Mollasalehi, Hamidreza

    2016-12-01

    In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  5. A new quantitative in vitro for the detection of latex-specific IgE antibodies.

    PubMed

    Moussadeh, M; Hamedi, N; Alem, N; Alem, M

    1999-12-01

    Immediate-type hypersensitivity to latex allergens has resulted in anaphylactic shock and death in numerous reported cases. The allergenic proteins of latex are contained within the natural rubber extract of Hevea brasiliensis and are eluted into the final product during the manufacturing process. The quantity and types of latex allergens found in different latex products depends on the manufacturing process. Not all of these allergens are available for use in the latex prick skin test, and as a result, such tests may not be conclusive. Furthermore, application of such allergens to the skin of undiagnosed hypersensitive individuals may have harmful effects on their health. Therefore, it is important to be able to utilize in vitro methods, which reliably identify latex allergy without placing hypersensitive individuals at risk. We have developed a relatively simple and new enzyme immuno-assay (EIA) method for the detection of latex allergy. This in vitro method is quantitative and allows for the classification of allergy to latex in a short time. In comparative studies, ninety-nine serum specimens with documented clinical history of latex allergy were tested by this method, and the results paralleled those of the skin prick test performed by an independent group. The data showed that the specificity and sensitivity of our assay approaches 97.5% and 100%, respectively. We conclude that, by using a simple assay, the detection of specific IgE to latex proteins may be valuable for screening individuals and for the diagnosis of allergy to latex.

  6. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers

    PubMed Central

    Filella, Xavier; Foj, Laura

    2016-01-01

    Prostate specific antigen (PSA) remains the most used biomarker in the management of early prostate cancer (PCa), in spite of the problems related to false positive results and overdiagnosis. New biomarkers have been proposed in recent years with the aim of increasing specificity and distinguishing aggressive from non-aggressive PCa. The emerging role of the prostate health index and the 4Kscore is reviewed in this article. Both are blood-based tests related to the aggressiveness of the tumor, which provide the risk of suffering PCa and avoiding negative biopsies. Furthermore, the use of urine has emerged as a non-invasive way to identify new biomarkers in recent years, including the PCA3 and TMPRSS2:ERG fusion gene. Available results about the PCA3 score showed its usefulness to decide the repetition of biopsy in patients with a previous negative result, although its relationship with the aggressiveness of the tumor is controversial. More recently, aberrant microRNA expression in PCa has been reported by different authors. Preliminary results suggest the utility of circulating and urinary microRNAs in the detection and prognosis of PCa. Although several of these new biomarkers have been recommended by different guidelines, large prospective and comparative studies are necessary to establish their value in PCa detection and prognosis. PMID:27792187

  7. A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici.

    PubMed

    Torres-Calzada, C; Tapia-Tussell, R; Quijano-Ramayo, A; Martin-Mex, R; Rojas-Herrera, R; Higuera-Ciapara, I; Perez-Brito, D

    2011-09-01

    Colletotrichum capsici is an important fungal species that causes anthracnose in many genera of plants causing severe economic losses worldwide. A primer set was designed based on the sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a conventional PCR assay. The primer set (CcapF/CcapR) amplified a single product of 394 bp with DNA extracted from 20 Mexican isolates of C. capsici. The specificity of primers was confirmed by the absence of amplified product with DNA of four other Colletotrichum species and eleven different fungal genera. This primer set is capable of amplifying only C. capsici from different contaminated tissues or fungal structures, thereby facilitating rapid diagnoses as there is no need to isolate and cultivate the fungus in order to identify it. The sensitivity of detection with this PCR method was 10 pg of genomic DNA from the pathogen. This is the first report of a C. capsici-specific primer set. It allows rapid pathogen detection and provides growers with a powerful tool for a rational selection of fungicides to control anthracnose in different crops and in the post-harvest stage.

  8. Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR.

    PubMed Central

    van Kuppeveld, F J; Johansson, K E; Galama, J M; Kissing, J; Bölske, G; van der Logt, J T; Melchers, W J

    1994-01-01

    The suitability of a 16S rRNA-based mycoplasma group-specific PCR for the detection of mycoplasma contamination in cell cultures was investigated. A total of 104 cell cultures were tested by using microbiological culture, DNA fluorochrome staining, DNA-rRNA hybridization, and PCR techniques. A comparison of the results obtained with these techniques revealed agreement for 95 cell cultures. Discrepant results, which were interpreted as false negative or false positive on the basis of a comparison with the results obtained with other methods, were observed with nine cell cultures. The microbiological culture technique produced false-negative results for four cell cultures. The hybridization technique produced false-negative results for two cell cultures, and for one of these cell cultures the DNA staining technique also produced a false-negative result. The PCR may have produced false-positive results for one cell culture. Ambiguous results were obtained with the remaining two cell cultures. Furthermore, the presence of contaminating bacteria interfered with the interpretation of the DNA staining results for 16 cell cultures. For the same reason the hybridization signals of nine cell cultures could not be interpreted. Our results demonstrate the drawbacks of each of the detection methods and the suitability of the PCR for the detection of mycoplasmas in cell cultures. PMID:7509584

  9. Label-free flow-enhanced specific detection of Bacillus anthracis using a piezoelectric microcantilever sensor†

    PubMed Central

    McGovern, John-Paul; Rest, Richard; Purohit, Mitali; Pandya, Yognandan; Shih, Wei-Heng

    2009-01-01

    Differentiation between species of similar biological structure is of critical importance in biosensing applications. Here, we report specific detection of Bacillus anthracis (BA) spores from that of close relatives, such as B. thuringiensis (BT), B. cereus (BC), and B. subtilis (BS) by varying the flow speed of the sampling liquid over the surface of a piezoelectric microcantilever sensor (PEMS). Spore binding to the anti-BA spore IgG coated PEMS surface is determined by monitoring the resonance frequency change in the sensor’s impedance vs. frequency spectrum. Flow increases the resonance frequency shift at lower flow rates until the impingement force from the flow overcomes the binding strength of the antigen and decreases the resonance frequency shift at higher flow rates. We showed that the change from increasing to decreasing resonance frequency shift occurred at a lower fluid flow speed for BT, BC, and BS spores than for BA spores. This trend reduces the cross reactivity ratio of BC, BS, and BT to the anti-BA spore IgG immobilized PEMS from around 0.4 at low flow velocities to less than 0.05 at 3.8 mm s−1. This cross reactivity ratio of 0.05 was essentially negligible considering the experimental uncertainty. The use of the same flow that is used for detection to further distinguish the specific binding (BA to anti-BA spore antibody) from nonspecific binding (BT, BC, and BS to anti-BA spore antibody) is unique and has great potential in the detection of general biological species. PMID:18427687

  10. Detection of subsequent episodes of gestational diabetes mellitus: a need for specific guidelines.

    PubMed

    Maser, Raelene E; Lenhard, M James; Henderson, Bernardine C; Cobb, Rosemary S; Hands, Kathleen E

    2004-01-01

    Guidelines for detection of individuals with gestational diabetes mellitus (GDM) indicate that glucose testing for women with a history of GDM should occur as soon as feasible with retesting of an initially negative screen to occur between the 24th and 28th week of gestation. The aim of this study was to evaluate medical records for individuals enrolled in a GDM management program that presented with two subsequent pregnancies with GDM and to determine if more specific guidelines for detection are needed. Records (n=60) from both pregnancies were reviewed for gestational age at enrollment, delivery, and when insulin was started, infant birth weights and complications (e.g., hypoglycemia), and maternal complications (e.g., emergency cesarean section). Over half [33/60 (55%)] of the women required insulin during both pregnancies, while 16.7% (10/60) required insulin during the second enrollment for GDM but not the first. For those requiring insulin during both pregnancies, 88% (29/33) required it earlier during the subsequent pregnancy (31.5+/-2.7 vs. 21.6+/-8.4 weeks of gestation, P<.001). During the subsequent pregnancy, approximately 1/2 of the women requiring insulin needed it before the 24th week of gestation while 1/3 required it by the 15th week. Also during the subsequent pregnancy, neonate birth weights declined (3494+/-521 vs. 3356+/-515 g, P<.05) and there were fewer complications. Given that approximately 70% of the women required insulin therapy during a subsequent GDM pregnancy and that this therapy was on average necessary by the 22nd week of gestation, we recommend that specific guidelines be established with a definitive time frame determined for the detection of repeat episodes of GDM.

  11. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    NASA Astrophysics Data System (ADS)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  12. Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies.

    PubMed

    Bache, M; Kappler, M; Said, H M; Staab, A; Vordermark, D

    2008-01-01

    Poor oxygenation of solid tumors is a major indicator of adverse prognosis after standard treatment, e.g. radiotherapy. This observation founded on intratumoral pO(2) electrode measurements has been supported more recently by studies of injected hypoxia markers (pimonidazole, EF5) or hypoxia-related proteins (hypoxia-inducible factor-1alpha, carbonic anhydrase IX) detected immunohistochemically. Alternative approaches include imaging of tumor hypoxia by nuclear medicine studies and the measurement of hypoxia-related proteins (osteopontin) in patient plasma. Low oxygen levels as found in tumors are rarely observed in normal tissues. The presence of hypoxic tumor cells is therefore regarded not only as an adverse prognostic factor but as an opportunity for tumor-specific treatment. Classic approaches to normalize tumor oxygenation involve the breathing of modified gas mixtures and pharmacologic modification of blood flow as in the "accelerated radiotherapy, carbogen, nicotinamide" (ARCON) scheme. Specific killing of hypoxic tumor cells can potentially be achieved by hypoxia-selective cytotoxins (model substance tirapazamine), which has shown promise in head and neck cancer. Direct targeting of hypoxia-related molecules such as hypoxia-inducible factor-1alpha, the central regulator of the hypoxic response in tumor cells, is an attractive approach currently tested in preclinical models. For clinical applications, the appropriate combination of hypoxia detection for patient selection with a hypoxia-specific treatment is essential. A therapeutic benefit has been suggested for the selection of patients by plasma osteopontin level and treatment with the hypoxic radiosensitizer nimorazole in addition to radiotherapy, for selection by F-misonidazole positron-emission tomography (PET) and treatment with tirapazamine in addition to chemoradiation and for selection by pimonidazole immunohistochemistry and ARCON treatment, all in head and neck cancer.

  13. Detection of selenium in environmental samples, inorganic mixtures, and a specific method for its gravemetric analysis

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.; Diwan, B. D.; Agarwal, S.; Singh, P.; Gupta, V. K.; Mundhara, G. L.

    2003-05-01

    A novel compound, i.c. malonyl dihydrazide (MDH) was synthesized by coupling of diethylmalonate and hydrazine hydrate in alcoholic medium. The reagent is applied for the field test detection of Se, and garvimetric analysis of Se and Te in various real samples, i.e. sediment, waste-water, cigarette paper, cabbage, etc. A drop of sample containing more than 2 and 6 μg of Se on test-tube/plate and test-paper were found to be detected, respectively. The reagent is successfully applied for the detection of Se and Te in semi-micro analysis of inorganic mixtures containing different ions. The gravimetric determination of Se and Te is highly selective, as the analysis conditions are different for both the elements. The non-stick precipitates also having good filtration characteristics, therefore 5 mg Se or Te present in the solution can be estimated accurately. Almost an metal ions associated with real samples did not interfere. The detection and determination with the proposed reagent is simple, rapid, selective and sensitive in comparison to other conventional methods. The data of estimation of Se and Te in standard samples prove the reliability of the proposed gravimetric determination.

  14. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  15. The enhanced detection of persistent disease after prostatectomy with a new prostate specific antigen immunoassay.

    PubMed

    Takayama, T K; Vessella, R L; Brawer, M K; Noteboom, J; Lange, P H

    1993-08-01

    Prostate specific antigen (PSA) determinations after radical prostatectomy are valuable in detecting persistent disease. Previously, we determined that 0.4 ng./ml. PSA was a reliable clinical threshold using the Hybritech Tandem-R PSA assay. Recently, we reported that a new PSA immunoassay (Abbott IMx PSA) correlated well with results of the Tandem-R immunoradiometric PSA assay and had a lower threshold. Using a conservative threshold of 0.1 ng./ml. PSA for the IMx PSA assay, we analyzed IMx PSA values in serial postoperative serum from 72 radical prostatectomy patients whose initial Tandem-R levels were less than 0.4 ng./ml. PSA. The lower detection limits of the IMx PSA assay allowed approximately a third (15 of 42) more detection of persistent disease within 8 months of surgery. When the PSA level remained undetectable for more than 8 months but the disease eventually recurred the lead times averaged 9 to 12 months when 0.1 ng./ml. PSA was used to signify persistent disease. All patients whose PSA levels reached 0.1 ng./ml. PSA and were subsequently followed for more than 3 months continued to have increasing levels. Also, every man who eventually had recurrence also had a PSA serum level of at least 0.1 ng./ml. PSA within 28 months postoperatively, although the subsequent increase from 0.1 to 0.4 ng./ml. PSA sometimes took several years. Although the clinical impact of these findings is yet unknown, new or altered PSA assays with lower detection limits can provide unique information that may offer opportunities for improved clinical investigation and possibly patient management.

  16. Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity

    PubMed Central

    Kang, Dezhi; Wang, Jiangjie; Zhang, Weiyun; Song, Yanling; Li, Xilan; Zou, Yuan; Zhu, Mingtao; Zhu, Zhi; Chen, Fuyong; Yang, Chaoyong James

    2012-01-01

    Background Glioblastoma is the most common and most lethal form of brain tumor in human. Unfortunately, there is still no effective therapy to this fatal disease and the median survival is generally less than one year from the time of diagnosis. Discovery of ligands that can bind specifically to this type of tumor cells will be of great significance to develop early molecular imaging, targeted delivery and guided surgery methods to battle this type of brain tumor. Methodology/Principal Findings We discovered two target-specific aptamers named GBM128 and GBM131 against cultured human glioblastoma cell line U118-MG after 30 rounds selection by a method called cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX). These two aptamers have high affinity and specificity against target glioblastoma cells. They neither recognize normal astraglial cells, nor do they recognize other normal and cancer cell lines tested. Clinical tissues were also tested and the results showed that these two aptamers can bind to different clinical glioma tissues but not normal brain tissues. More importantly, binding affinity and selectivity of these two aptamers were retained in complicated biological environment. Conclusion/Significance The selected aptamers could be used to identify specific glioblastoma biomarkers. Methods of molecular imaging, targeted drug delivery, ligand guided surgery can be further developed based on these ligands for early detection, targeted therapy, and guided surgery of glioblastoma leading to effective treatment of glioblastoma. PMID:23056171

  17. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors.

    PubMed

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Drabkin, Harry A; Gemmill, Robert M; Simon, George R; Chin, Steve H; Chen, Ray T

    2013-05-15

    We experimentally demonstrate label-free photonic crystal (PC) microcavity biosensors in silicon-on-insulator (SOI) to detect the epithelial-mesenchymal transition (EMT) transcription factor, ZEB1, in minute volumes of sample. Multiplexed specific detection of ZEB1 in lysates from NCI-H358 lung cancer cells down to an estimated concentration of 2 cells per micro-liter is demonstrated. L13 photonic crystal microcavities, coupled to W1 photonic crystal waveguides, are employed in which resonances show high Q in the bio-ambient phosphate buffered saline (PBS). When the sensor surface is derivatized with a specific antibody, the binding of the corresponding antigen from a complex whole-cell lysate generates a change in refractive index in the vicinity of the photonic crystal microcavity, leading to a change in the resonance wavelength of the resonance modes of the photonic crystal microcavity. The shift in the resonance wavelength reveals the presence of the antigen. The sensor cavity has a surface area of ∼11μm(2). Multiplexed sensors permit simultaneous detection of many binding interactions with specific immobilized antibodies from the same bio-sample at the same instant of time. Specificity was demonstrated using a sandwich assay which further amplifies the detection sensitivity at low concentrations. The device represents a proof-of-concept demonstration of label-free, high throughput, multiplexed detection of cancer cells with specificity and sensitivity on a silicon chip platform.

  18. DNA Mapping Using Microfluidic Stretching and Single-Molecule Detection of Fluorescent Site-Specific Tags

    PubMed Central

    Chan, Eugene Y.; Goncalves, Nuno M.; Haeusler, Rebecca A.; Hatch, Amie J.; Larson, Jonathan W.; Maletta, Anthony M.; Yantz, Gregory R.; Carstea, Eugene D.; Fuchs, Martin; Wong, Gordon G.; Gullans, Steven R.; Gilmanshin, Rudolf

    2004-01-01

    We have developed a rapid molecular mapping technology—Direct Linear Analysis (DLA)—on the basis of the analysis of individual DNA molecules bound with sequence-specific fluorescent tags. The apparatus includes a microfluidic device for stretching DNA molecules in elongational flow that is coupled to a multicolor detection system capable of single-fluorophore sensitivity. Double-stranded DNA molecules were tagged at sequence-specific motif sites with fluorescent bisPNA (Peptide Nucleic Acid) tags. The DNA molecules were then stretched in the microfluidic device and driven in a flow stream past confocal fluorescence detectors. DLA provided the spatial locations of multiple specific sequence motifs along individual DNA molecules, and thousands of individual molecules could be analyzed per minute. We validated this technology using the 48.5 kb λ phage genome with different 8-base and 7-base sequence motif tags. The distance between the sequence motifs was determined with an accuracy of ±0.8 kb, and these tags could be localized on the DNA with an accuracy of ±2 kb. Thus, DLA is a rapid mapping technology, suitable for analysis of long DNA molecules. PMID:15173119

  19. An Intelligent Clinical Decision Support System for Patient-Specific Predictions to Improve Cervical Intraepithelial Neoplasia Detection

    PubMed Central

    Bountris, Panagiotis; Haritou, Maria; Pouliakis, Abraham; Margari, Niki; Kyrgiou, Maria; Spathis, Aris; Pappas, Asimakis; Panayiotides, Ioannis; Paraskevaidis, Evangelos A.; Karakitsos, Petros; Koutsouris, Dimitrios-Dionyssios

    2014-01-01

    Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%), high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the referral rate for colposcopy and guide personalised management and therapeutic interventions. PMID:24812614

  20. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  1. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  2. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  3. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  4. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  5. An algorithm for on-line detection of high frequency oscillations related to epilepsy.

    PubMed

    López-Cuevas, Armando; Castillo-Toledo, Bernardino; Medina-Ceja, Laura; Ventura-Mejía, Consuelo; Pardo-Peña, Kenia

    2013-06-01

    Recent studies suggest that the appearance of signals with high frequency oscillations components in specific regions of the brain is related to the incidence of epilepsy. These oscillations are in general small in amplitude and short in duration, making them difficult to identify. The analysis of these oscillations are particularly important in epilepsy and their study could lead to the development of better medical treatments. Therefore, the development of algorithms for detection of these high frequency oscillations is of great importance. In this work, a new algorithm for automatic detection of high frequency oscillations is presented. This algorithm uses approximate entropy and artificial neural networks to extract features in order to detect and classify high frequency components in electrophysiological signals. In contrast to the existing algorithms, the one proposed here is fast and accurate, and can be implemented on-line, thus reducing the time employed to analyze the experimental electrophysiological signals.

  6. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  7. Specific Abilities May Increment Psychometric g for High Ability Populations

    DTIC Science & Technology

    2016-04-14

    factoring of cognitive ability batteries yields primary group factors that are highly g-loaded ( Carroll , 1993). Using military data, Ree and Earles... Carroll , J. B. (1993). Human Cognitive Abilities. New York: Cambridge University Press. Detterman, D. K., Daniel, M. H. (1989). Correlations of

  8. Microwave detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Privitera, P.

    2011-09-01

    A novel detection technique for Ultra-High Energy Cosmic Rays based on microwave emission from the extensive air showers may provide large area coverage with 100% duty cycle at low cost. The status and prospects of several complementary R&D projects for GHz detectors is reviewed.

  9. Multichannel Detection in High-Performance Liquid Chromatography.

    ERIC Educational Resources Information Center

    Miller, James C.; And Others

    1982-01-01

    A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…

  10. In situ detection of specific gene expression during and immediately after transcription at electron microscopic level.

    PubMed

    Kitazawa, Sohei; Kitazawa, Riko

    2006-01-01

    In situ hybridization (ISH) is a widely applied technique used for visualizing specific nucleic acid sequences at chromosomal, cytologic, and histologic levels. It sometimes fails, however, to demonstrate precise cell identity, early stages of gene expression and variants of alternative splicing because of its limited resolution. To overcome this shortcoming, we have developed an improved ISH technique at the electron microscopic (EM) level by conducting en bloc hybridization before embedding (pre-embedding) and immuno-EM detection after ultra-thin sectioning (post-embedding). We applied this technique to demonstrate both the dynamic expression of interleukin (IL)-6 mRNA immediately after lipopolysaccharide (LPS) treatment, and the static expression of osteonectin mRNA in a differentiating osteoblastic cell linage. Tissue samples were diced into 1mm cubes, fixed with 4% paraformaldehyde, and then successively hybridized en bloc with the digoxigenin (DIG)-labeled single-stranded probe measuring 200-300 bp with the aid of microwave treatment. After washing, for EM observation, the cubes were embedded in epon for ultra-thin sectioning, and a gold-colloid-labeled anti-DIG antibody was used for post-embedding immuno-EM; some of the cubes was directly incubated with anti-DIG antibody and developed en bloc for stereoscopic and light microscopic observation. IL-6 mRNA during and immediately after transcription was demonstrated in the nuclei of the alveolar macrophages and in neutrophils of mouse lung tissue as early as 15 min after LPS treatment, which was of better sensitivity than that by Northern blot or nuclear run-on techniques. Moreover, in mouse calvaria tissue, osteonectin mRNA both in the nucleus and the cytoplasm was observed in a differentiating osteoblastic cell linage in a differentiation-specific manner. This technique is useful in identifying specific cell types during and immediately after transcribing specific mRNA based on ultrastructural morphology.

  11. High Specific Energy Pulsed Electric Discharge Laser Research.

    DTIC Science & Technology

    1975-12-01

    drop out excess water, filtered, dried, filtered again, and then pumped up to the storage bottle pressure (Fig. 47). At the exit of the high...pressure pump, an oil filter was used to remove any oil that may have been introduced by the compressor. Bottles were pumped up to 2000 psig...Lowder, R. S. , "Air-Combustion Product N2-C02 Electric Laser, " J. Appl. Phys. Lett. 26, 373 (1975). 5. Miller, D. J. and Millikan , R. C

  12. A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV.

    PubMed

    Liang, Caishuang; Wang, Huan; He, Kui; Chen, Chunyan; Chen, Xiaoming; Gong, Hang; Cai, Changqun

    2016-11-01

    Major stumbling blocks in the recognition and detection of virus are the unstable biological recognition element or the complex detection means. Here a fluorescent sensor based on virus-molecular imprinted polymers (virus-MIPs) was designed for specific recognition and highly sensitive detection of Japanese encephalitis virus (JEV). The virus-MIPs were anchored on the surface of silica microspheres modified by fluorescent dye, pyrene-1-carboxaldehyde (PC). The fluorescence intensity of PC can be enhanced by the principle of fluorescence resonance energy transfer (FRET), where virus acted as energy donor and PC acted as energy acceptor. The enhanced fluorescence intensity was proportional to the concentration of virus in the range of 24-960pM, with a limit of detection (LOD, 3σ) of 9.6pM, and the relative standard deviation was 1.99%. In additional, the specificity study confirmed the resultant MIPs has high-selectivity for JEV. This sensor would become a new key for the detection of virus because of its high sensitive, simple operation, high stability and low cost.

  13. Rapid and Sensitive Multiplex Detection of Burkholderia pseudomallei-Specific Antibodies in Melioidosis Patients Based on a Protein Microarray Approach

    PubMed Central

    Kohler, Christian; Dunachie, Susanna J.; Müller, Elke; Kohler, Anne; Jenjaroen, Kemajittra; Teparrukkul, Prapit; Baier, Vico; Ehricht, Ralf; Steinmetz, Ivo

    2016-01-01

    Background The environmental bacterium Burkholderia pseudomallei causes the infectious disease melioidosis with a high case-fatality rate in tropical and subtropical regions. Direct pathogen detection can be difficult, and therefore an indirect serological test which might aid early diagnosis is desirable. However, current tests for antibodies against B. pseudomallei, including the reference indirect haemagglutination assay (IHA), lack sensitivity, specificity and standardization. Consequently, serological tests currently do not play a role in the diagnosis of melioidosis in endemic areas. Recently, a number of promising diagnostic antigens have been identified, but a standardized, easy-to-perform clinical laboratory test for sensitive multiplex detection of antibodies against B. pseudomallei is still lacking. Methods and Principal Findings In this study, we developed and validated a protein microarray which can be used in a standard 96-well format. Our array contains 20 recombinant and purified B. pseudomallei proteins, previously identified as serodiagnostic candidates in melioidosis. In total, we analyzed 196 sera and plasmas from melioidosis patients from northeast Thailand and 210 negative controls from melioidosis-endemic and non-endemic regions. Our protein array clearly discriminated between sera from melioidosis patients and controls with a specificity of 97%. Importantly, the array showed a higher sensitivity than did the IHA in melioidosis patients upon admission (cut-off IHA titer ≥1:160: IHA 57.3%, protein array: 86.7%; p = 0.0001). Testing of sera from single patients at 0, 12 and 52 weeks post-admission revealed that protein antigens induce either a short- or long-term antibody response. Conclusions Our protein array provides a standardized, rapid, easy-to-perform test for the detection of B. pseudomallei-specific antibody patterns. Thus, this system has the potential to improve the serodiagnosis of melioidosis in clinical settings. Moreover, our

  14. Tackling reproducibility in microcantilever biosensors: a statistical approach for sensitive and specific end-point detection of immunoreactions.

    PubMed

    Kosaka, Priscila M; Tamayo, Javier; Ruz, José J; Puertas, Sara; Polo, Ester; Grazu, Valeria; de la Fuente, Jesús M; Calleja, Montserrat

    2013-02-21

    In the last decade, microcantilever biosensors have shown enormous potential for highly sensitive label-free detection of nucleic acid and proteins. Despite the enormous advances, the promise of applications of this technology in the biomedical field has been frustrated because of its low reproducibility. Here we tackle the reproducibility issue in microcantilever biosensors and provide the guidelines to minimize the deviations in the biosensor response between different assays. We use as a model system the label-free end-point detection of horseradish peroxidase. We choose the end-point detection mode because of its suitability for implementation in the clinical field that requires simplicity and point-of-care capability. Our study comprises the analysis of 1012 cantilevers with different antibody surface densities, two blocking strategies based on polyethylene-glycol (PEG) and bovine serum albumin (BSA) and stringent controls. The study reveals that the performance of the assay critically depends on both antibody surface density and blocking strategies. We find that the optimal conditions involve antibody surface densities near but below saturation and blocking with PEG. We find that the surface stress induced by the antibody-antigen binding is significantly correlated with the surface stress generated during the antibody attachment and blocking steps. The statistical correlation is harnessed to identify immobilization failure or success, and thus enhancing the specificity and sensitivity of the assay. This procedure enables achieving rates of true positives and true negatives of 90% and 91% respectively. The detection limit is of 10 ng mL(-1) (250 pM) that is similar to the detection limit obtained in our enzyme-linked immunosorbent assay (ELISA) and at least two orders of magnitude smaller than that achieved with well-established label-free biosensors such as a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensor.

  15. Range-Specific High-resolution Mesoscale Model Setup

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2013-01-01

    This report summarizes the findings from an AMU task to determine the best model configuration for operational use at the ER and WFF to best predict winds, precipitation, and temperature. The AMU ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF. For both the ER and WFF, the ARW core outperformed the NMM core. Results for the ER indicate that the Lin microphysical scheme and the YSU PBL scheme is the optimal model configuration for the ER. It consistently produced the best surface and upper air forecasts, while performing fairly well for the precipitation forecasts. Both the Ferrier and Lin microphysical schemes in combination with the YSU PBL scheme performed well for WFF in the spring and fall seasons. The AMU has been tasked with a follow-on modeling effort to recommended local DA and numerical forecast model design optimized for both the ER and WFF to support space launch activities. The AMU will determine the best software and type of assimilation to use, as well as determine the best grid resolution for the initialization based on spatial and temporal availability of data and the wall clock run-time of the initialization. The AMU will transition from the WRF EMS to NU-WRF, a NASA-specific version of the WRF that takes advantage of unique NASA software and datasets. 37

  16. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers.

    PubMed

    Farzan, Valentina M; Markelov, Mikhail L; Skoblov, Alexander Yu; Shipulin, German A; Zatsepin, Timofei S

    2017-03-13

    Molecular beacons (MBs) are valuable tools in molecular biology, clinical diagnostics and analytical chemistry. Here we describe a novel approach for the design of MBs with nucleotide or non-nucleotide linkers between the stem and loop regions. Such modified MBs have significantly improved specificity and performance for single nucleotide polymorphism (SNP) detection. These advantages are especially distinct, when compared to the classic MBs, in the case of possible interactions between the stem and loop regions. We demonstrated the applicability of such modified MBs for the discrimination of common Factor V, NOS3 and ADRB2 SNPs in model plasmids and in clinical samples. The developed approach could be applicable not only to fluorescently labeled MBs, but also to other biosensors based on nucleic acids with stem-loop structures.

  17. Specific antibodies to porcine zona pellucida detected by quantitative radioimmunoassay in both fertile and infertile women

    SciTech Connect

    Kurachi, H.; Wakimoto, H.; Sakumoto, T.; Aono, T.; Kurachi, K.

    1984-02-01

    The specific radioimmunoassay system was developed for the titration of the antibodies to porcine zona pellucida (ZP) in human sera by using /sup 125/I-labeled purified porcine ZP as antigen, which is known to have cross-reactivity with human ZP. The antibodies in human sera were detected in 3 of 11 (27%) women with unexplained infertility, in 16 of 48 (33%) amenorrheic patients, in 4 of 12 (33%) fertile women, and in 3 of 10 (30%) men. Moreover, antibody titers in infertile women were no higher than those in fertile women and in men. These results seem to suggest that the antibodies in human sera that cross-react with porcine ZP may not be an important factor in causing infertility in women.

  18. Host specificity of the badger's flea (Paraceras melis) and first detection on a bat host.

    PubMed

    Ancillotto, Leonardo; Mazza, Giuseppe; Menchetti, Mattia; Mori, Emiliano

    2014-10-01

    Defining the whole spectrum of potential hosts of a parasite has large epidemiological and evolutionary implications in biology. Specialized parasites might be able to occasionally exploit a range of different host species, increasing the individual survival and the chances of successful dispersal. For long time Paraceras melis has been considered a specific flea of European badger Meles meles. Anyway, it has occasionally been reported on different hosts. In this work, we summarize the host spectrum of P. melis from literature and we report its first detection on a bat host. Ten species were identified as occasional hosts, man included, and the plasticity of this flea in host exploitation is noteworthy because of possible increase of pathogens transmission to humans and domestic species.

  19. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOEpatents

    Haskel, Daniel; Lang, Jonathan C.; Srajer, George

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  20. Detection of a novel HLA-DQ specificity: serological and immunochemical analyses by a monoclonal antibody.

    PubMed

    Ishikawa, N; Kojima, H; Nakayama, T; Kunikane, H; Hawkin, S; Fukasawa, Y; Ikeda, H; Ogasawara, K; Kasahara, M; Tajima, Y

    1987-01-01

    A monoclonal antibody (mAb) with a novel human B-cell allospecificity was produced by immunizing a C3H/He mouse with the human B lymphoblastoid cell line EBV-Wa (HLA-DR4/Dw15/DQblank homozygous). The mAb, termed HU-46, reacted with B cells from not only DR4/Dw15-positive individuals but also certain DRw8/Dw8-positive ones whose DQ phenotypes had not yet been defined. Two-dimensional gel analyses indicated that the mAb recognized class II antigens which were encoded by the HLA-DQ locus. Furthermore, in genetic analysis, the gene encoding the class II antigen detected by HU-46 met the Hardy-Weinberg condition as a fourth allele of the DQ locus. We provisionally labeled this novel DQ specificity DQWa.