Suppression and Structure of Low Strain Rate Nonpremixed Flames
NASA Technical Reports Server (NTRS)
Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer
2003-01-01
The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.
Flame stabilizer for stagnation flow reactor
Hahn, David W.; Edwards, Christopher F.
1999-01-01
A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...
2017-02-23
This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less
Impact of heat release on strain rate field in turbulent premixed Bunsen flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno Rene Leon; Frank, Jonathan H.
2016-08-10
The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the divergence.« less
Method of growing films by flame synthesis using a stagnation-flow reactor
Hahn, David W.; Edwards, Christopher F.
1998-01-01
A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.
NASA Technical Reports Server (NTRS)
Egolfopoulos, F. N.; Dong, Y.; Spedding, G.; Cuenot, B.; Poinsot, T.
2001-01-01
Strained laminar flames have been systematically studied, as the understanding of their structure and dynamic behavior is of relevance to turbulent combustion.. Most of these studies have been conducted in opposed-jet, stagnation-type flow configurations. Studies at high strain rates are important in quantifying and understanding the response of vigorously burning flames and determine extinction states. Studies of weakly strained flames can be of particular interest for all stoichiometries. For example, the laminar flame speeds, S(sup o)(sub u), can be accurately determined by using the counterflow technique only if measurements are obtained at very low strain rates. Furthermore, near-limit flames are stabilized by weak strain rates. Previous studies have shown that near-limit flames are particularly sensitive to chain mechanisms, thermal radiation, and unsteadiness. The stabilization and study of weakly strained flames is complicated by the presence of buoyancy that can render the flames unstable to the point of extinction. Thus, the use of microgravity (mu-g) becomes essential in order to provide meaningful insight into this important combustion regime. In our past studies the laminar flame speeds and extinction strain rates were directly measured at ultra-low strain rates. The laminar flame speeds were measured by having a positively strained planar flame undergoing a transition to a negatively strained Bunsen flame and by measuring the propagation speed during that transition. The extinction strain rates of near-limit flames were measured in mu-g. Results obtained for CH4/air and C3H8/air mixtures are in agreement with those obtained by Maruta et al.
Method of growing films by flame synthesis using a stagnation-flow reactor
Hahn, D.W.; Edwards, C.F.
1998-11-24
A method is described for stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability. 5 figs.
Suppression of Low Strain Rate Nonpremixed Flames by an Agent
NASA Technical Reports Server (NTRS)
Hamins, A.; Bundy, M.; Puri, I. K.; McGrattan, K.; Park, W. C.
2001-01-01
The agent concentration required to achieve the suppression of low strain rate nonpremixed flames is an important consideration for fire protection in a microgravity environment such as a space platform. Currently, there is a lack of understanding of the structure and extinction of low strain rate (<20 s(exp -1)) nonpremixed flames. The exception to this statement is the study by Maruta et al., who reported measurements of low strain rate suppression of methane-air diffusion flames with N2 added to the fuel stream under microgravity conditions. They found that the nitrogen concentration required to achieve extinction increased as the strain rate decreased until a critical value was obtained. As the strain rate was further decreased, the required N2 concentration decreased. This phenomenon was termed "turning point" behavior and was attributed to radiation-induced nonpremixed flame extinction. In terms of fire safety, a critical agent concentration assuring suppression under all flow conditions represents a fundamental limit for nonpremixed flames. Counterflow flames are a convenient configuration for control of the flame strain rate. In high and moderately strained near-extinction nonpremixed flames, analysis of flame structure typically neglects radiant energy loss because the flames are nonluminous and the hot gas species are confined to a thin reaction zone. In counterflowing CH4-air flames, for example, radiative heat loss fractions ranging from 1 to 6 percent have been predicted and measured. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a number of suppressants (N2, CO2, or CF3Br) was considered as they were added to either the fuel or oxidizer streams of low strain rate methane-air diffusion flames.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
Radiant extinction of gaseous diffusion flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.
1995-01-01
The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel type, etc.) is important for spacecraft fire safety. Thus, the objective is to experimentally and theoretically investigate the radiation-induced extinction of diffusion flames in microgravity and determine the effect of flame radiation on the 'weak' microgravity diffusion flame.
Numerical Study of Pressure Influence on Methane-Oxygen Laminar Counterflow Diffusion Flames
NASA Astrophysics Data System (ADS)
Iino, Kimio; Akamatsu, Fumiteru; Katsuki, Masashi
We carried out numerical studies on methane/oxygen diffusion flames of counter-flow configuration to elucidate the influence of pressure on flame structure, heat release rate and reaction mechanisms. The chemistry in gas-phase was based on GRI-Mech 3.0 database. The thickness of diffusion flame became thinner with increasing strain rate a , with its characteristic flame thickness varying inversely with √a, especially its relation became significant with increasing pressure. Flame temperature increased with increasing pressure. Enhanced H2O production reactions, especially chain terminal reactions for H2O production, were found to be important in determining the flame temperature at high pressures. The small reduction in the flame temperature with increasing strain rate at high pressures, compared to the atmospheric pressure, is caused by the capacitor effect of product dissociation. From QRPDs, the third body dependent reactions were enhanced in high pressure conditions, hence C2 pathway was enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2010-07-15
Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgridmore » strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be implemented in numerical simulations of turbulent premixed combustion. (author)« less
An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay
1993-01-01
In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.
Coriton, Bruno; Frank, Jonathan H.
2016-02-16
In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less
Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects
NASA Technical Reports Server (NTRS)
Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.
1999-01-01
Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe the nature of the stagnation plane for strain rates smaller than 100 (1/s). These experiments were conducted with a non-reacting flow. Video images of a propane air diffusion flame were used to describe the behaviour of a diffusion flame in this regime. Flame geometry and pulsation frequency are described.
NASA Astrophysics Data System (ADS)
Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan
2018-06-01
The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.
Diffusion Flame Extinction in a Low Strain Flow
NASA Technical Reports Server (NTRS)
Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.
1997-01-01
Diffusion flames are of great interest in fire safety and many industrial processes. Many parameters significantly affect the flame structure, shape and stability, of particular importance are the constraints imposed by geometrical boundaries. Physical boundaries determine the characteristics of the flow, affect heat, fuel, and oxidizer transport from and towards the flame and can act as heat sinks or heat sources. As a result, the existence of a flame, its shape and nature are intimately related to the geometrical characteristics of the environment that surrounds it. The counter-flow configuration provides a constant strain flow, therefore, is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in micro-gravity conditions have begun to explore the low strain regimes. The main objective of these on-going studies is to determine the effect of radiative heat losses and variable strain on the structure and radiation-induced extinction of diffusion flames. For these programs, size, geometry, and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. Whether is the burning of condensed or gaseous fuels, for most real situations the boundaries impose a significant effect on the nature of the flame. There is, therefore, a need to better understand the effect that geometrical constraints (i.e. flow nonperpendicular to a fuel surface, heat losses to the boundaries, etc.) might have on the final characteristics of a diffusion flame. Preliminary experiments have shown that, in the absence of gravity, and depending on the distance from the flame to the boundary, three characteristically different regimes can be observed. Close to the boundary, the flame is parabolic, very thin and blue, almost soot-less. Diffusion is the main mechanism controlling fuel transport to the reaction zone, conduction towards the inlets is the main source of heat losses. As the distance increases the flame becomes linear and thickens, remaining blue at the oxidizer side and turning yellow at the fuel side. Here, convection brings fuel and oxidizer together and the reaction occurs in the viscous layer formed between the fuel and oxidizer streams. This region corresponds to the characteristic counter-flow flame where conduction and convection become negligible forms of heat losses and radiation becomes dominant. The flame in the third (mixed) region, between the two others, results from the combination of the scenarios presented above.
The premixed flame in uniform straining flow
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1982-01-01
Characteristics of the premixed flame in uniform straining flow are investigated by the technique of activation-energy asymptotics. An inverse method is used, which avoids some of the restrictions of previous analyses. It is shown that this method recovers known results for adiabatic flames. New results for flames with heat loss are obtained, and it is shown that, in the presence of finite heat loss, straining can extinguish flames. A stability analysis shows that straining can suppress the cellular instability of flames with Lewis number less than unity. Strain can produce instability of flames with Lewis number greater than unity. A comparison shows quite good agreement between theoretical deductions and experimental observations of Ishizuka, Miyasaka & Law (1981).
Premixed Edge-Flames in Spatially-Varying Straining Flows
NASA Technical Reports Server (NTRS)
Liu, Jian-Bang; Ronney, Paul D.
1999-01-01
Flames subject to temporally and spatially uniform hydrodynamic strain are frequently used to model the local interactions of flame fronts with turbulent flow fields (Williams, 1985; Peters, 1986; Bradley, 1992). The applicability of laminar flamelet models in strongly turbulent flows have been questioned recently (Shay and Ronney, 1998) because in turbulent flows the strain rate (sigma) changes at rates comparable to sigma itself and the scale over which the flame front curvature and sigma changes is comparable to the curvature scale itself. Therefore quasi-static, local models of turbulent strain and curvature effects on laminar flamelets may not be accurate under conditions where the strain and curvature effects are most significant. The purpose of this study is to examine flames in spatially-varying strain and compare their properties to those of uniformly strained flames.
More About High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.
1994-01-01
Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion flames provides potential for significant computational simplifications for modeling purposes in many instances, allowing for effects of finite-rate chemistry while avoiding time-consuming computations of Arrhenius expressions.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.
Suppression of Low Strain Rate Nonpremixed Flames by an Agent
NASA Technical Reports Server (NTRS)
Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.
2004-01-01
The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.
Ignition, Burning, and Extinction of a Strained Fuel Strip
NASA Technical Reports Server (NTRS)
Selerland, T.; Karagozian, A. R.
1996-01-01
Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.
Kemenov, Konstantin A.; Calhoon, William H.
2015-03-24
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less
Effect of chemistry and turbulence on NO formation in oxygen-natural gas flames
NASA Technical Reports Server (NTRS)
Samaniego, J. -M.; Egolfopoulos, F. N.; Bowman, C. T.
1996-01-01
The effects of chemistry and turbulence on NO formation in oxygen-natural turbulent diffusion flames gas flames have been investigated. The chemistry of nitric oxides has been studied numerically in the counterflow configuration. Systematic calculations with the GRI 2.11 mechanism for combustion of methane and NO chemistry were conducted to provide a base case. It was shown that the 'simple' Zeldovich mechanism accounts for more than 75% of N2 consumption in the flame in a range of strain-rates varying between 10 and 1000 s-l. The main shortcomings of this mechanism are: 1) overestimation (15%) of the NO production rate at low strain-rates because it does not capture the reburn due to the hydrocarbon chemistry, and 2) underestimation (25%) of the NO production rate at high strainrates because it ignores NO production through the prompt mechanism. Reburn through the Zeldovich mechanism alone proves to be significant at low strain-rates. A one-step model based on the Zeldovich mechanism and including reburn has been developed. It shows good agreement with the GRI mechanism at low strain-rates but underestimates significantly N2 consumption (about 50%) at high strain-rates. The role of turbulence has been assessed by using an existing 3-D DNS data base of a diffusion flame in decaying turbulence. Two PDF closure models used in practical industrial codes for turbulent NO formation have been tested. A simpler version of the global one-step chemical scheme for NO compared to that developed in this study was used to test the closure assumptions of the PDF models, because the data base could not provide all the necessary ingredients. Despite this simplification, it was possible to demonstrate that the current PDF models for NO overestimate significantly the NO production rate due to the fact that they neglect the correlations between the fluctuations in oxygen concentration and temperature. A single scalar PDF model for temperature that accounts for such correlations based on laminar flame considerations has been developed and showed excellent agreement with the values given by the DNS.
Development of a Laminar Flame Test Facility for Bio-Diesel Characterization
NASA Astrophysics Data System (ADS)
Tan, Giam
2009-11-01
The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.
1992-01-01
A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.
Attachment techniques for high temperature strain
NASA Astrophysics Data System (ADS)
Wnuk, Steve P., Jr.
1993-01-01
Attachment methods for making resistive strain measurements to 2500 F were studied. A survey of available strain gages and attachment techniques was made, and the results are compiled for metal and carbon composite test materials. A theoretical analysis of strain transfer into a bonded strain gage was made, and the important physical parameters of the strain transfer medium, the ceramic matrix, were identified. A pull tester to measure pull-out tests on commonly used strain gage cements indicated that all cements tested displayed adequate strength for good strain transfer. Rokide flame sprayed coatings produced significantly stronger bonds than ceramic cements. An in-depth study of the flame spray process produced simplified installation procedures which also resulted in greater reliability and durability. Application procedures incorporating improvements made during this program are appended to the report. Strain gages installed on carbon composites, Rene' 41, 316 stainless steel, and TZM using attachment techniques developed during this program were successfully tested to 2500 F. Photographs of installation techniques, test procedures, and graphs of the test data are included in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.
The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less
Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...
2017-07-07
The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less
NASA Astrophysics Data System (ADS)
Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.
2015-11-01
A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.
Planar Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Extinction
NASA Technical Reports Server (NTRS)
Fendell, Francis; Gokoglu, Suleyman; Rungaldier, Harald; Schultz, Donald
1999-01-01
An effectively strain-rate-free diffusion flame constitutes the most vigorous laminar combustion of initially unmixed reactive gases. Such a diffusion flame is characterized by a relatively long residence time and by a relatively large characteristic length scale. If such a flame were also planar, providing high symmetry, it would be particularly suitable for experimental and theoretical investigations of key combustion phenomena, such as multicomponent diffusion, chemical kinetics, and soot inception, growth, and oxidation. Unfortunately, a planar strain-rate-free diffusion flame is highly disrupted in earth-gravity (e.g., in a counterflow-diffusion-flame apparatus) because of the very rapid onset (approx. 100 ms) of gravity-induced instability. Accordingly, a specially dedicated apparatus was designed, fabricated, and initially checked out for the examination of a planar strain-rate-free diffusion flame in microgravity. Such a diffusion flame may be formed within a hollowed-out squat container (initially configured as 25 cm x 25 cm x 9 cm), with isothermal, noncatalytic, impervious walls. At test initiation, a thin metallic sheet (approx. 1 mm in thickness) that separates the internal volume into two equal portions, each of dimensions 25 cm x 25 cm x 4.5 cm, is withdrawn, by uniform translation (approx. 50 cm/s) in its own plane, through a tightly fitting slit in one side wall. Thereupon, diluted fuel vapor (initially confined to one half-volume of the container) gains access to diluted oxygen (initially with the same pressure, density, and temperature as the fuel, but initially confined to the other half-volume). After a brief delay (approx. 10 ms), to permit limited but sufficient-for-flammability diffusional interpenetration of fuel vapor and oxidizer, burning is initiated by discharge of a line igniter, located along that side wall from which the trailing edge of the separator withdraws. The ignition spawns a triple-flame propagation across the 25 cm x 25 cm centerplane. When a diffusion flame is emplaced in the centerplane, any subsequent travel, and change in temperature, of that planar diffusion flame may be tracked, along with the effectively spatially uniform but temporally evolving pressure within the container. Eventually, nearly complete depletion of the stoichiometrically deficient reactant, along with heat loss to the container surfaces, effects extinction. These data afford an opportunity to check theoretical models of diffusion and chemical kinetics under conditions ranging from intense burning to flame out, or, alternatively, to evolve simple empirical representations of these phenomena. Thus, the project sought to utilize microgravity testing to elucidate commonly encountered phenomenology, arising in the commonly-encountered mode of combustion (whether related to heating, manufacturing, boiling, and propulsion, or to uncontrolled, free-burning fire in structures and wildland vegetation), of those commonly utilized fuels usually categorized as gaseous fuels (such as hydrogen, natural gas, and propane, which are gaseous under atmospheric conditions).
Dynamics of Diffusion Flames in von Karman Swirling Flows Studied
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Williams, Forman A.
2002-01-01
Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.
Flame-vortex interactions imaged in microgravity
NASA Technical Reports Server (NTRS)
Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin
1995-01-01
The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Axelbaum, Richard L.; Urban, D. L.
2000-01-01
We have examined the sooting behavior of spherical microgravity diffusion flames burning ethylene at atmospheric pressure in the NASA Glenn 2.2-second drop tower. In a novel application of microgravity, spherical flames allowed convection across the flame to be either from fuel to oxidizer or from oxidizer to fuel. Thus, microgravity flames are uniquely capable of allowing independent variation of convection direction across the flame and stoichiometric mixture fraction, Z(sub st). This allowed us to determine the dominant mechanism responsible for the phenomenon of permanently-blue diffusion flames -- flames that remain blue as strain rate approaches zero. Stoichiometric mixture fraction was varied by changing inert concentrations such that adiabatic flame temperature did not change. At low and high Z(sub st) nitrogen was supplied with the oxidizer and the fuel, respectively. For the present flames, structure (Z(sub st)) was found to have a profound effect on soot production. Soot-free conditions were observed at high Z(sub st) (Z(sub st) = 0.78) and sooting conditions were observed at low Z(sub st) (Z(sub st) = 0.064) regardless of the direction of convection. Convection direction was found to have a lesser impact on soot inception, with formation being suppressed when convection at the flame sheet was directed towards the oxidizer.
Simulation of a turbulent flame in a channel
NASA Technical Reports Server (NTRS)
Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J. H.
1994-01-01
The interaction between turbulent premixed flames and channel walls is studied. Combustion is represented by a simple irreversible reaction with a large activation temperature. Feedback to the flowfield is suppressed by invoking a constant density assumption. The effect of wall distance on local and global flame structure is investigated. Quenching distances and maximum wall heat fluxes computed in laminar cases are compared to DNS results. It is found that quenching distances decrease and maximum heat fluxes increase relative to laminar flame values. It is shown that these effects are due to large coherent structures which push flame elements towards to wall. The effect of wall strain is studied in flame-wall interaction in a stagnation line flow; this is used to explain the DNS results. It is also shown that 'remarkable' flame events are produced by interaction with a horseshoe vortex: burnt gases are pushed towards the wall at high speed and induce quenching and high wall heat fluxes while fresh gases are expelled from the wall region and form finger-like structures. Effects of the wall on flame surface density are investigated, and a simple model for flame-wall interaction is proposed; its predictions compare well with the DNS results.
NASA Technical Reports Server (NTRS)
Holanda, R.; Frause, L. M.
1977-01-01
The reliability of 45 state-of-the-art strain gage systems under full scale engine testing was investigated. The flame spray process was used to install 23 systems on the first fan rotor of a YF-100 engine; the others were epoxy cemented. A total of 56 percent of the systems failed in 11 hours of engine operation. Flame spray system failures were primarily due to high gage resistance, probably caused by high stress levels. Epoxy system failures were principally erosion failures, but only on the concave side of the blade. Lead-wire failures between the blade-to-disk jump and the control room could not be analyzed.
An experimental and numerical study of the inwardly-propagating premixed flame
NASA Astrophysics Data System (ADS)
Ibarreta, Alfonso F.
Flame stretch, described as the time rate of change of the flame surface area, can cause large changes in burning velocity of laminar premixed flames. Many experimental studies have been conducted to quantify the effects of flame stretch, but most only deal with the hydrodynamic strain component of stretch rate. In this thesis, a new experimental technique was used to study the inwardly-propagating premixed flame. This flame configuration is significant because it is subjected to the curvature component of stretch rate without the competing effects of hydrodynamic strain. Inwardly-propagating premixed flames were formed using a vortex to wrinkle a flame and create a pocket of reactants. Experiments using lean propane/air mixtures were run at both one-g and microgravity conditions to optimize the formation of large pockets of reactants. Numerical simulations of the inwardly-propagating flame (IPF) and outwardly-propagating flame (OPF) were performed for lean propane/air, methane/air and hydrogen/air mixtures. Complex chemistry as well as three different one-step reaction models were employed. Markstein numbers obtained from the experiments and computations were compared to OPF experimental data available in the literature. Researchers have used different definitions of flame location and burning velocity; the effects of these differences on the Markstein number were assessed. Experimental and numerical results indicate that the Markstein numbers obtained for the IPF are typically two to three times larger than those for the OPF. It was concluded that the observed difference in Markstein number was not caused by the IPF flame-flame interaction or the presence of intermediate species. Analysis of results obtained from the one-step reaction models identified the reasons for the difference between IPFs and OPFs: (A) the thermo-diffusive mechanism, (B) the pure curvature mechanism and (C) gas expansion. The consumption speed (Sc) was found to depend only on the thermo-diffusive mechanism and to be less sensitive to the flame geometry than the displacement velocity (Su). Observed differences between IPF and OPF results lead to the conclusion that the effects of curvature and strain cannot be grouped into a single term, but two separate Markstein numbers should be defined, one for curvature and one for strain.
NASA Technical Reports Server (NTRS)
Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)
2001-01-01
The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.
NO{sub x}-abatement potential of lean-premixed GT combustors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattelmayer, T.; Polifke, W.; Winkler, D.
1998-01-01
The influence of the structure of perfectly premixed flames on NO{sub x} formation is investigated theoretically. Since a network of reaction kinetics modules and model flames is used for this purpose, the results obtained are independent of specific burner geometries. Calculations are presented for a mixture temperature of 630 K, an adiabatic flame temperature of 1840 K, and 1 and 15 bars combustor pressure. In particular, the following effects are studied separately from each other: molecular diffusion of temperature and species, flame strain, local quench in highly strained flames and subsequent reignition, turbulent diffusion (no preferential diffusion), and small scalemore » mixing (stirring) in the flame front. Either no relevant influence or an increase in NO{sub x} burners is to avoid excessive turbulent stirring in the flame front. Turbulent flames that exhibit locally and instantaneously near laminar structures (flamelets) appear to be optimal. Using the same methodology, the scope of the investigation is extended to lean-lean staging, since a higher NO{sub x}-abatement potential can be expected in principle. As long as the chemical reactions of the second stage take place in the boundary between the fresh mixture of the second stage and the combustion products from upstream, no advantage can be expected from lean-lean staging. Only if the preliminary burner exhibits much poorer mixing than the second stage can lean-lean staging be beneficial. In contrast, if full mixing between the two stages prior to afterburning can be achieved (lean-mix-lean technique), the combustor outlet temperature can in principle be increased somewhat without NO penalty.« less
NASA Astrophysics Data System (ADS)
Hou, Shuhn-Shyurng; Huang, Wei-Cheng
2015-02-01
This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-03-17
In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less
An equivalent dissipation rate model for capturing history effects in non-premixed flames
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang; ...
2016-11-11
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
An equivalent dissipation rate model for capturing history effects in non-premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
Multidimensional flamelet-generated manifolds for partially premixed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam
2010-01-15
Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less
Sooting Limits Of Diffusion Flames With Oxygen-Enriched Air And Diluted Fuel
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B. H.; Axelbaum, R. L.
2003-01-01
Oxygen-enhanced combustion permits certain benefits and flexibility that are not otherwise available in the design of practical combustors, as discussed by Baukal. The cost of pure and enriched oxygen has declined to the point that oxygen-enhanced combustion is preferable to combustion in air for many applications. Carbon sequestration is greatly facilitated by oxygen enrichment because nitrogen can be eliminated from the product stream. For example, when natural gas (or natural gas diluted with CO2) is burned in pure oxygen, the only significant products are water and CO2. Oxygen-enhanced combustion also has important implications for soot formation, as explored in this work. We propose that soot inception in nonpremixed flames requires a region where C/O ratio, temperature, and residence time are above certain critical values. Soot does not form at low temperatures, with the threshold in nonpremixed flames ranging from about 1250-1650 K, a temperature referred to here as the critical temperature for soot inception, Tc. Soot inception also can be suppressed when residence time is short (equivalently, when the strain rate in counterflow flames is high). Soot induction times of 0.8-15 ms were reported by Tesner and Shurupov for acetylene/nitrogen mixtures at 1473 K. Burner stabilized spherical microgravity flames are employed in this work for two main reasons. First, this configuration offers unrestricted control over convection direction. Second, in steady state these flames are strain-free and thus can yield intrinsic sooting limits in diffusion flames, similar to the way past work in premixed flames has provided intrinsic values of C/O ratio associated with soot inception limits.
On the Alignment of Strain, Vorticity and Scalar Gradient in Turbulent, Buoyant, Nonpremixed Flames
NASA Technical Reports Server (NTRS)
Boratav, O. N.; Elghobashi, S. E.; Zhong, R.
1999-01-01
The alignment of vorticity and scalar gradient with the eigendirections of the rate of strain tensor is investigated in turbulent buoyant nonpremixed horizontal and vertical flames. The uniqueness of a buoyant nonpremixed flame is that it contains regions with distinct alignment characteristics. The strain-enstrophy angle Psi is used to identify these regions. Examination of the vorticity field and the vorticity production in these different regions indicates that Psi and consequently the alignment properties near the flame surface identified by the mixture fraction band F approximately equals F(sub st) differ from those in the fuel region, F > F(sub st) and the oxidizer region, F < F(sub st). The F approximately equals F(sub st) band shows strain-dominance resulting in vorticity/alpha alignment while F > F(sub st) (and F < F(sub st) for the vertical flame) band(s) show(s) vorticity/beta alignment. The implication of this result is that the scalar dissipation, epsilon(sub F), attains its maximum value always near F approximately equals F(sub st). These results are also discussed within the framework of recent dynamical results [Galanti et al., Nonlinearity 10, 1675 (1997)] suggesting that the Navier-Stokes equations evolved towards an attracting solution. It is shown that the properties of such an attracting solution are also consistent with our results of buoyant turbulent nonpremixed flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wang; Wang, Haiou; Kuenne, Guido
This supplementary material complements the article and provides additional information to the chemical mechanism used in this work, boundary conditions for the LES con guration and table generation, comparisons of axial velocities, results from a LES/ nite-rate chemistry (FRC) approach, and results from the LES/DTF/SPF approach with a particular chemistry table that is generated using a single strained premixed amelet solution.
Transient Evolution of a Planar Diffusion Flame Aft of a Translating Flat Plate
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
2003-01-01
The high degree of spatial symmetry of a planar diffusion flame affords great simplifications for experimental and modeling studies of gaseous fuel combustion. Particularly, in a microgravity environment, where buoyancy effects are negligible, an effectively strain-rate-free, vigorous flame may be obtained. Such a flame can also provide long residence times and large length scales for practical probing of flame structures and soot processes. This 2-D numerical study explores the feasibility of establishing such a planar diffusion flame in an enclosed container utilizing a realistic test protocol for a microgravity experiment. Fuel and oxygen mixtures, initially segregated into two half-volumes of a squat rectangular container by a thin separator, are ignited as soon as a flammable mixture is formed in the wake of the separator withdrawn in the centerplane. A triple-flame ensues that propagates behind the trailing edge of the separator. The results of calculations show that the mechanically- and thermally-induced convection decays in about two seconds. The establishment of a planar diffusion flame after this period seems feasible in the central region of the container with sufficient quantities of reactants left over for subsequent studies. An analysis of the flame initiation and formation process suggests how the feasibility of creating such a flame can be further improved.
Influences of the Darrieus-Landau instability on premixed turbulent flames
NASA Astrophysics Data System (ADS)
Patyal, Advitya; Matalon, Moshe
2017-11-01
The propagation of turbulent flames in three-dimensional turbulent flows is studied within the context of the hydrodynamic theory. The flame is treated as a surface of density discontinuity with the flow modified by gas expansion resulting from heat released during combustion. The flame is tracked using a level-set method with a propagation speed that depends on the local flame stretch, modulated by a Markstein length. Impact of the Darrieus-Landau instability on the topology of the flame surface is studied. It is shown that similar to passive interfaces, flames under the influence of the hydrodynamic instability resort to cylindrical structures with increasing turbulence intensity, even in 3D. The mechanism of modification of vortical structures in the burned gas is identified in terms of the alignments between the vorticity vector, flame surface normal and eigenvectors of the strain rate tensor. The results indicate that the strain rate tensor is intricately coupled with the normal to the flame surface and creates anisotropy in the orientation of vortical structures, which begins to weaken as the turbulent intensity increases. Furthermore, vorticity budgets are used to highlight the relative importance of baroclinic torque due to Darrieus-Landau instability.
The dynamics of turbulent premixed flames: Mechanisms and models for turbulence-flame interaction
NASA Astrophysics Data System (ADS)
Steinberg, Adam M.
The use of turbulent premixed combustion in engines has been garnering renewed interest due to its potential to reduce NOx emissions. However there are many aspects of turbulence-flame interaction that must be better understood before such flames can be accurately modeled. The focus of this dissertation is to develop an improved understanding for the manner in which turbulence interacts with a premixed flame in the 'thin flamelet regime'. To do so, two new diagnostics were developed and employed in a turbulent slot Bunsen flame. These diagnostics, Cinema-Stereoscopic Particle Image Velocimetry and Orthogonal-Plane Cinema-Stereoscopic Particle Image Velocimetry, provided temporally resolved velocity and flame surface measurements in two- and three-dimensions with rates of up to 3 kHz and spatial resolutions as low as 280 mum. Using these measurements, the mechanisms with which turbulence generates flame surface area were studied. It was found that the previous concept that flame stretch is characterized by counter-rotating vortex pairs does not accurately describe real turbulence-flame interactions. Analysis of the experimental data showed that the straining of the flame surface is determined by coherent structures of fluid dynamic strain rate, while the wrinkling is caused by vortical structures. Furthermore, it was shown that the canonical vortex pair configuration is not an accurate reflection of the real interaction geometry. Hence, models developed based on this geometry are unlikely to be accurate. Previous models for the strain rate, curvature stretch rate, and turbulent burning velocity were evaluated. It was found that the previous models did not accurately predict the measured data for a variety of reasons: the assumed interaction geometries did not encompass enough possibilities to describe the possible effects of real turbulence, the turbulence was not properly characterized, and the transport of flame surface area was not always considered. New models therefore were developed that accurately reflect real turbulence-flame interactions and agree with the measured data. These can be implemented in Large Eddy Simulations to provide improved modeling of turbulence-flame interaction.
Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
NASA Astrophysics Data System (ADS)
Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.
2010-11-01
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
Modeling and calculation of turbulent lifted diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J.P.H.; Lamers, A.P.G.G.
1994-01-01
Liftoff heights of turbulent diffusion flames have been modeled using the laminar diffusion flamelet concept of Peters and Williams. The strain rate of the smallest eddies is used as the stretch describing parameter, instead of the more common scalar dissipation rate. The h(U) curve, which is the mean liftoff height as a function of fuel exit velocity can be accurately predicted, while this was impossible with the scalar dissipation rate. Liftoff calculations performed in the flames as well as in the equivalent isothermal jets, using a standard k-[epsilon] turbulence model yield approximately the same correct slope for the h(U) curvemore » while the offset has to be reproduced by choosing an appropriate coefficient in the strain rate model. For the flame calculations a model for the pdf of the fluctuating flame base is proposed. The results are insensitive to its width. The temperature field is qualitatively different from the field calculated by Bradley et al. who used a premixed flamelet model for diffusion flames.« less
Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko; ...
2017-03-12
Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coriton, Bruno; Im, Seong -Kyun; Gamba, Mirko
Here, we present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jetmore » exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξ st, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH 2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.« less
Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching
NASA Technical Reports Server (NTRS)
Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald
1997-01-01
For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the inevitably present convective (Rayleigh-Benard) instabilities, associated with hot-under-cold (flame-under-fresh-reactant) stratification of fluid in a gravitational field, have time to grow to finite amplitude during transit of the burner.
Two-Dimensional Failure Waves and Ignition Fronts in Premixed Combustion
NASA Technical Reports Server (NTRS)
Vedarajan, T. G.; Buckmaster J.; Ronney, P.
1998-01-01
This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions (bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining flow generated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation losses. The edge-flames constructed from the first configuration have positive or negative speeds, according to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds (corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of the one-dimensional twin deflagration configuration. an overlooked problem from the 70s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arias-Zugasti, Manuel; High Temperature Chemical Reaction Engineering Laboratory and Yale Center for Combustion Studies, Department of Chemical Engineering, Yale University, New Haven, CT 06520-8286; Rosner, Daniel E.
Since, according to ideal gas kinetic theory, Ludwig-Soret species transport (temperature-gradient-driven mass transport) must be simultaneously included along with nonunity Lewis numbers [D.E. Rosner, R.S. Israel, B. La Mantia, Combust. Flame 123 (2000) 547-560], we formally consider here the influence of both effects on laminar, counterflow gaseous diffusion flames in the thin flame limit. Our deliberately idealized theoretical analysis includes cases of steady/unsteady, strained/unstrained flames and formally permits the prediction of trends for the combustion of either light or heavy fuel vapors in O{sub 2}-containing streams. Our results suggest that, in cases of low- or high-molecular-weight gaseous fuels, Ludwig-Soret transportmore » can itself introduce significant shifts in flame position and flame temperature, compared to results of the same mathematical model neglecting Soret fuel-vapor transport but including only nonunity fuel Lewis numbers. These systematic shifts (which in specific cases may have to be supplemented by additional corrections due to variable thermophysical properties) are expected to have important consequences for NO{sub x} production and/or infrared radiation emission. (author)« less
On the formation and early evolution of soot in turbulent nonpremixed flames
NASA Astrophysics Data System (ADS)
Bisetti, F.; Blanquart, G.; Mueller, M. E.; Pitsch, H.
2010-11-01
A direct numerical simulation of soot formation in a turbulent nonpremixed flame has been performed to investigate unsteady hydrodynamic strain effects on soot growth processes and transport immediately following nucleation. For the first time in a DNS, polycyclic aromatic hydrocarbon (PAH) species are included in the chemical kinetics mechanism to describe soot inception. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments (HMOM) is employed. In agreement with previous experimental studies in laminar flames, Damköhler number effects are significant, and soot nucleation and growth are locally inhibited by high scalar dissipation rate. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow by condensation of PAH species on the surface of soot aggregates. In contrast to previous DNS studies employing simplified models, we find that soot-flame interaction plays a limited role in soot growth. Nucleation and condensation processes occurring in the fuel stream are responsible for the greatest generation of soot mass.
An extinction/reignition dynamic method for turbulent combustion
NASA Astrophysics Data System (ADS)
Knaus, Robert; Pantano, Carlos
2011-11-01
Quasi-randomly distributed locations of high strain in turbulent combustion can cause a nonpremixed or partially premixed flame to develop local regions of extinction called ``flame holes''. The presence and extent of these holes can increase certain pollutants and reduce the amount of fuel burned. Accurately modeling the dynamics of these interacting regions can improve the accuracy of combustion simulations by effectively incorporating finite-rate chemistry effects. In the proposed method, the flame hole state is characterized by a progress variable that nominally exists on the stoichiometric surface. The evolution of this field is governed by a partial-differential equation embedded in the time-dependent two-manifold of the flame surface. This equation includes advection, propagation, and flame hole formation (flame hole healing or collapse is accounted by propagation naturally). We present a computational algorithm that solves this equation by embedding it in the usual three-dimensional space. A piece-wise parabolic WENO scheme combined with a compression algorithm are used to evolve the flame hole progress variable. A key aspect of the method is the extension of the surface data to the three-dimensional space in an efficient manner. We present results of this method applied to canonical turbulent combusting flows where the flame holes interact and describe their statistics.
A new methodology to determine kinetic parameters for one- and two-step chemical models
NASA Technical Reports Server (NTRS)
Mantel, T.; Egolfopoulos, F. N.; Bowman, C. T.
1996-01-01
In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used.
Negativly streched premixed flames
NASA Astrophysics Data System (ADS)
Krikunova, A. I.; Saveliev, A. S.; Son, E. E.
2018-01-01
An experimental study of gravity effect on the blow-off and flash-back borders of the conical methane-air flame (normal and ring-stabilized) was performed. The influence of the preferential diffusion on the flame behavior in vicinity of flash-back boundaries was observed. Under conditions at Lewis number Le > 1, the radius of curvature of the flame tip increased gradually approaching flash-back boundaries while for the lean methane-air flames (Le < 1) the radius decreased abruptly. It was shown that the burning velocity for lean flames is less than that for reach ones, so the flash-back occurs at higher strains.
Ignition Delay Associated with a Strained Strip
NASA Technical Reports Server (NTRS)
Gerk, T. J.; Karagozian, A. R.
1996-01-01
Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1997-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus, progressive changes in the apparent strain behavior were corroborated by the extensometer, which unlike the mounted gage can distinguish quantitative changes in the material's thermal strain response. One specimen was instrumented with both a fixed and floating gage. From the difference in output of these two gages, the thermal expansion strains were calculated. These data, which are given in the figure, show excellent agreement with the values measured by the high-temperature extensometry.
Comparison Testings between Two High-temperature Strain Measurement Systems
NASA Technical Reports Server (NTRS)
Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.
1996-01-01
An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.
Experiments on Diffusion Flame Structure of a Laminar Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.
1999-01-01
The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary
1989-01-01
Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.
Evaluation of a strain-sensitive transport model in LES of turbulent nonpremixed sooting flames
NASA Astrophysics Data System (ADS)
Lew, Jeffry K.; Yang, Suo; Mueller, Michael E.
2017-11-01
Direct Numerical Simulations (DNS) of turbulent nonpremixed jet flames have revealed that Polycyclic Aromatic Hydrocarbons (PAH) are confined to spatially intermittent regions of low scalar dissipation rate due to their slow formation chemistry. The length scales of these regions are on the order of the Kolmogorov scale or smaller, where molecular diffusion effects dominate over turbulent transport effects irrespective of the large-scale turbulent Reynolds number. A strain-sensitive transport model has been developed to identify such species whose slow chemistry, relative to local mixing rates, confines them to these small length scales. In a conventional nonpremixed ``flamelet'' approach, these species are then modeled with their molecular Lewis numbers, while remaining species are modeled with an effective unity Lewis number. A priori analysis indicates that this strain-sensitive transport model significantly affects PAH yield in nonpremixed flames with essentially no impact on temperature and major species. The model is applied with Large Eddy Simulation (LES) to a series of turbulent nonpremixed sooting jet flames and validated via comparisons with experimental measurements of soot volume fraction.
NASA Technical Reports Server (NTRS)
Fendell, Francis; Rungaldier, Harald
1999-01-01
An experimental apparatus for the examination of a planar, virtually strain-rate-free diffusion flame in microgravity has been designed and fabricated. Such a diffusion flame is characterized by relatively large spatial scale and high symmetry (to facilitate probing), and by relatively long fluid-residence time (to facilitate investigation of rates associated with sooting phenomena). Within the squat rectangular apparatus, with impervious, noncatalytic isothermal walls of stainless steel, a thin metallic splitter plate subdivides the contents into half-volumes. One half-volume initially contains fuel vapor diluted with an inert gas, and the other, oxidizer diluted with another inert gas-so that the two domains have equal pressure, density, and temperature. As the separator is removed, by translation in its own plane, through a tightly fitting slit in one side wall, a line ignitor in the opposite side wall initiates a triple-flame propagation across the narrow layer of combustible mixture formed near midheight in the chamber. The planar diffusion flame so emplaced is quickly disrupted in earth gravity. In microgravity, the planar flame persists, and travels ultimately into the half-volume containing the stoichiometrically deficient reactant; the flame eventually becomes extinguished owing to reactant depletion and heat loss to the walls.
Takahashi, Shouji; Satake, Ikuko; Konuma, Isao; Kawashima, Koji; Kawasaki, Manami; Mori, Shingo; Morino, Jun; Mori, Junichi; Xu, Hongde; Abe, Katsumasa; Yamada, Ryo-hei; Kera, Yoshio
2010-01-01
Tris(2-chloroethyl) and tris(1,3-dichloro-2-propyl) phosphates are chlorinated persistent flame retardants that have recently emerged as environmental pollutants. Two bacterial strains that can degrade the compounds when they are the sole phosphorus sources have been isolated and identified as members of the sphingomonads. The strains can be useful for the bioremediation of environments contaminated with these compounds. PMID:20525857
Stability of a Premixed Flame in Stagnation-Point Flow Against General Disturbance
1992-06-01
Tien and Matalon 1990; Dixon-Lewis 1991) aimed at understanding the structure and burning characteristics of laminar flames. Results of these studies...upstream, the flow field is the classical stagnation-point flow characterized by the strain rate e. The flame, which separates the burned products from the...fresh unburned mixture, is considered thin and is therefore represented by the surface O(x,y,z,t) - 0, where * > 0 is the burned gas region. The flame
NASA Technical Reports Server (NTRS)
Mantel, Thierry
1994-01-01
The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.
NASA Astrophysics Data System (ADS)
Zhang, Huangwei; Chen, Zheng
2018-05-01
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.
Numerical Simulation of Turbulent Combustion Using Vortex Methods
1988-09-27
laminar burning velocity times the flame length measured along the line of maximum reaction rate. Following the burning of the eddy core, the strain...is approximately the same as the flame length at t - 0. In the second stage, and as the eddy starts to roll up, the flame front forms a fold within the...Rp, which is the slope of the curve in Fig. 9, can be approximated by the product of the flame length times the average burning velocity along the
On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure
NASA Technical Reports Server (NTRS)
Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)
1998-01-01
A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and, consistent with counterflow flame experiments, this difference was found to dramatically reduce the total amount of S generated because the change in stoichiometric mixture fraction affects residence times, temperatures and concentrations in the soot/precursor formation and consumption zones. Furthermore, while the soot/precursor consumption reaction had a negligible effect on the soot process for fuel-air flames it was very important to diluted fuel - oxygen flames.
3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions
NASA Astrophysics Data System (ADS)
Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru
2014-11-01
Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.
Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels
NASA Astrophysics Data System (ADS)
Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.
2011-07-01
Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.
Studies of Methane Counterflow Flames at Low Pressures
NASA Astrophysics Data System (ADS)
Burrell, Robert Roe
Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.
NASA Astrophysics Data System (ADS)
Swaminathan, N.; Bilger, R. W.
2001-09-01
Characteristics of the scalar dissipation rate, N, of a progress variable, c, based on temperature in turbulent H2-air premixed flames are studied via direct numerical simulation with complex chemical kinetics for a range of flow/flame conditions (Baum et al 1994 J. Fluid Mech. 281 1). The flames are in the usually designated wrinkled-flamelet and well-stirred reactor regimes. The normalized conditional average, Nζ+, is observed to be higher than the corresponding planar laminar value because of strain thinning and the augmentation of laminar transport by turbulence within the flame front. Also, Nζ+ varies strongly across the flame-brush when u'/Sl is high. N has a log-normal distribution when u'/Sl is small and has a long negative tail for cases where u'/Sl is large. In the flame with φ = 0.5, \\widetilde{N_{\\zeta}^ + }/\\widetilde{N_^ + }" shows some sensitivity to Pζ and the sensitivity seems to be weak in a φ = 0.35 flame. The effect of turbulence on <ζ> is observed to be marginal. The conditional diffusion and the conditional dilatation, <∇ · u|ζ>, peak on the unburnt side of the flame-front and are higher than the corresponding laminar flame values in all cases. The inter-relationship among the conditional dissipation, diffusion, dilatation and velocity is discussed. A model for uζ obtained from the conditional dilatation is found not to perform as well as a linear model. The above results are limited, however, because, the flow field is two dimensional, hydrogen is used as the fuel, the range of dynamic length scales is small and the sample size is small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D.; Lawes, M.; Mansour, M.S.
2009-07-15
The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa,more » temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)« less
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.
1999-01-01
Recent experimental, numerical and analytical work has shown that the stoichiometric mixture fraction (Z(sub st)) can have a profound effect on soot formation in diffusion flames. These findings were obtained at constant flame temperature (T(sub ad)), employing the approach described in Du and Axelbaum (1995, 1996). For example, a fuel mixture containing 1 mole of ethylene and 11.28 moles of nitrogen burning in pure oxygen ((Z(sub st)) = 0.78) has the same adiabatic flame temperature (2370 K) as that of pure ethylene burning in air ((Z(sub st)) = 0.064). An important finding of these works was that at sufficiently high (Z(sub st)), flames remain blue as strain rate approaches zero in counterflow flames, or as flame height and residence time approach infinity in coflowing flames. Lin and Faeth (1996a) coined the term permanently blue to describe such flames. Two theories have been proposed to explain the appearance of permanently-blue flames at high (Z(sub st)). They are based on (1) hydrodynamics and (2) flame structure. Previous experimental studies in normal gravity are not definitive as to which, if either, mechanism is dominant because both hydrodynamics and structure suppress soot formation at high (Z(sub st)) in coflowing and counterflowing diffusion flames. In counterflow flames with (Z(sub st)) < 0.5 streamlines at the flame sheet are directed toward the fuel. Newly formed soot is convected into richer regions, favoring soot growth over oxidation. For (Z(sub st)) > 0.5, convection at the flame is toward the oxidizer, thus enhancing soot oxidization. Thus, in counterflow flames, hydrodynamics causes soot to be convected towards the oxidizer at high (Z(sub st)) which suppresses soot formation. Axelbaum and co-workers maintain that while the direction of convection can impact soot growth and oxidation, these processes alone cannot cause permanently-blue flames. Soot growth and oxidation are dependent on the existence of soot particles and the presence of soot is invariably accompanied by yellow luminosity. Soot-particle inception, on the other hand, arises from gas-phase reactions and its dependence on flow direction is weak, similar to that of other gas-phase reactions in flames. For example, when the flame moves across the stagnation plane no significant changes in flame chemistry are observed. Furthermore, since the soot-inception zone has a finite thickness, soot has been produced in counterflow flames with (Z(sub st)) > 0.5. For large (Z(sub st)) the fuel concentration decreases and oxygen concentration increases in the soot forming regions of the flame. This yields a shift in the OH profile toward the fuel side of the flame, and this shift can dramatically influence soot inception because it essentially narrows the soot inception zone. Soot-free (permanently-blue) conditions can be realized when the structure of the flame is adjusted to the extent that significant oxidizing species exist on the fuel side of the flame at temperatures above the critical temperature for soot inception, ca. 1250 K. In previously considered flames it was impossible to independently vary flame structure and convection direction. In contrast, spherical diffusion flames (which generally require microgravity) allow both properties to be varied independently. We altered structure (Z(sub st)) by exchanging inert between the oxidizer and the fuel and we independently varied convection direction at the flame sheet by interchanging the injected and ambient gases. In this work we established four flames: (a) ethylene issuing into air, (b) diluted ethylene issuing into oxygen, (c) air issuing into ethylene, and (d) oxygen issuing into diluted ethylene. (Z(sub st)) is 0.064 in flames (a) and (c) and 0.78 in flames (b) and (d). The convection direction is from fuel to oxidizer in flames (a) and (b) and from oxidizer to fuel in flames (c) and (d). Under the assumption of equal diffusivities of all species and heat, the stoichiometric contours of these flames have identical temperatures and nitrogen concentrations.
Study of Turbulent Premixed Flame Propagation using a Laminar Flamelet Model
NASA Technical Reports Server (NTRS)
Im, H. G.
1995-01-01
The laminar flamelet concept in turbulent reacting flows is considered applicable to many practical combustion systems (Linan & Williams 1993). For turbulent premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz number is less than unity, which is equivalent to stating that the characteristic thickness of the flame is less than that of a Kolmogorov eddy; this is known as the Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its laminar structure, and the effect of turbulent flow is merely to wrinkle and strain the flame front. The propagating wrinkled premixed flame can then be described as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt product.
NASA Astrophysics Data System (ADS)
Arias, Paul; Uranakar, Harshavardhana; Chaudhuri, Swetaprovo; Im, Hong
2015-11-01
The effects of Damköhler number and Karlovitz number on the flame dynamics of three-dimensional statistically planar turbulent premixed flames are investigated by direct numerical simulation incorporating detailed chemistry and transport for a hydrogen-air mixture. The mean inlet velocity was dynamically adjusted to ensure a stable flame within the computational domain, allowing the investigation of time-averaged quantities of interest. A particular interest was on understanding the effects of turbulence on the displacement speed of the flame relative to the local fluid flow. Results show a linear dependence on the displacement speed as a function of total strain, consistent with earlier work on premixed-laminar flames. Additional analysis on the local flame thickness reveals that the effect of turbulence is twofold: (1) the increase in mixing results in flame thinning due to the enhancement of combustion at early onset of the flame, and (2) for large Reynolds number flows, the penetration of the turbulence far into the preheat zone and into the reaction zone results in localized flame broadening.
Effects of gravity on sheared and nonsheared turbulent nonpremixed flames
NASA Technical Reports Server (NTRS)
Elghobashi, Said; Lee, Yong-Yao; Zhong, Rongbin
1995-01-01
The present numerical study is concerned with the fundamental physics of the multiway interaction between turbulence, chemical reaction, and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous, three-dimensional governing equations. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration. The effects of buoyancy include the generation of local shear, baroclinic production or destruction of vorticity, and countergradient heat and mass transport. Increased vorticity and small-scale turbulence promote further mixing and reaction. However, if the strain-rates become too high, local flame extinction can occur. Our objective is to gain an understanding of the complex interactions between the physical phenomena involved, with particular attention to the effects of buoyancy on the turbulence structure, flame behavior, and factors influencing flame extinction.
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1996-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary
1989-01-01
Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.
2004-01-01
Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.
NASA Astrophysics Data System (ADS)
Natarajan, Jayaprakash
Coal derived synthetic gas (syngas) fuel is a promising solution for today's increasing demand for clean and reliable power. Syngas fuels are primarily mixtures of H2 and CO, often with large amounts of diluents such as N2, CO2, and H2O. The specific composition depends upon the fuel source and gasification technique. This requires gas turbine designers to develop fuel flexible combustors capable of operating with high conversion efficiency while maintaining low emissions for a wide range of syngas tact mixtures. Design tools often used in combustor development require data on various fundamental gas combustion properties. For example, laminar flame speed is often an input as it has a significant impact upon the size and static stability of the combustor. Moreover it serves as a good validation parameter for leading kinetic models used for detailed combustion simulations. Thus the primary objective of this thesis is measurement of laminar flame speeds of syngas fuel mixtures at conditions relevant to ground-power gas turbines. To accomplish this goal, two flame speed measurement approaches were developed: a Bunsen flame approach modified to use the reaction zone area in order to reduce the influence of flame curvature on the measured flame speed and a stagnation flame approach employing a rounded bluff body. The modified Bunsen flame approach was validated against stretch-corrected approaches over a range of fuels and test conditions; the agreement is very good (less than 10% difference). Using the two measurement approaches, extensive flame speed information were obtained for lean syngas mixtures at a range of conditions: (1) 5 to 100% H2 in the H2/CO fuel mixture; (2) 300-700 K preheat temperature; (3) 1 to 15 atm pressure, and (4) 0-70% dilution with CO2 or N2. The second objective of this thesis is to use the flame speed data to validate leading kinetic mechanisms for syngas combustion. Comparisons of the experimental flame speeds to those predicted using detailed numerical simulations of strained and untrained laminar flames indicate that all the current kinetic mechanisms tend to over predict the increase in flame speed with preheat temperature for medium and high H2 content fuel mixtures. A sensitivity analysis that includes reported uncertainties in rate constants reveals that the errors in the rate constants of the reactions involving HO 2 seem to be the most likely cause for the observed higher preheat temperature dependence of the flame speeds. To enhance the accuracy of the current models, a more detailed sensitivity analysis based on temperature dependent reaction rate parameters should be considered as the problem seems to be in the intermediate temperature range (˜800-1200 K).
NASA Technical Reports Server (NTRS)
Andac, M. Gurhan; Egolfopoulos, Fokion N.; Campbell, Charles S.; Lauvergne, Romain; Wu, Ming-Shin (Technical Monitor)
2000-01-01
A combined experimental and detailed numerical study was conducted on the interaction between chemically inert solid particles and strained, atmospheric methane/air and propane/air laminar flames, both premixed and non-premixed. Experimentally, the opposed jet configuration was used with the addition of a particle seeder capable of operating in conditions of varying gravity. The particle seeding system was calibrated under both normal and micro gravity and a noticeable gravitational effect was observed. Flame extinction experiments were conducted at normal gravity by seeding inert particles at various number densities and sizes into the reacting gas phase. Experimental data were taken for 20 and 37 (mu) nickel alloy and 25 and 60 (mu) aluminum oxide particles. The experiments were simulated by solving along the stagnation streamline the conservation equations of mass, momentum, energy, and species conservation for both phases, with detailed descriptions of chemical kinetics, molecular transport, and thermal radiation. The experimental data were compared with numerical simulations, and insight was provided into the effects on extinction of the fuel type, equivalence ratio, flame configuration, strain rate. particle type. particle size. particle mass, delivery rate. the orientation of particle injection with respect to the flame and gravity. It was found that for the same injected solid mass, larger particles can result in more effective flame cooling compared to smaller particles, despite the fact that equivalent masses of the larger particles have smaller total surface area to volume ratio. This counter-intuitive finding resulted from the fact that the heat exchange between the two phases is controlled by the synergistic effect of the total contact area and the temperature difference between the two phases. Results also demonstrate that meaningful scaling of interactions between the two phases may not be possible due to the complexity of the couplings between the dynamic and thermal parameters of the problem.
The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames
NASA Technical Reports Server (NTRS)
Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)
1996-01-01
The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.
Onset of Darrieus-Landau Instability in Expanding Flames
NASA Astrophysics Data System (ADS)
Mohan, Shikhar; Matalon, Moshe
2017-11-01
The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.
Palladium-chromium static strain gages for high temperatures
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1992-01-01
An electrical resistance strain gage that can provide accurate static strain measurement to a temperature of 1500 F or above is being developed both in fine wire and thin film forms. The gage is designed to be temperature compensated on any substrate material. It has a dual element: the gage element is a special alloy, palladium-13wt percent chromium (PdCr), and the compensator element is platinum (Pt). Earlier results of a PdCr based wire gage indicated that the apparent strain of this gage can be minimized and the repeatability of the apparent strain can be improved by prestabilizing the gage on the substrate for a long period of time. However, this kind of prestabilization is not practical in many applications and therefore the development of a wire gage which is prestabilized before installation on the substrate is desirable. This paper will present our recent progress in the development of a prestabilized wire gage which can provide meaningful strain data for the first thermal cycle. A weldable PdCr gage is also being developed for field testing where conventional flame-spraying installation can not be applied. This weldable gage is narrower than a previously reported gage, thereby allowing the gage to be more resistant to buckling under compressive loads. Some preliminary results of a prestabilized wire gage flame-sprayed directly on IN100, an engine material, and a weldable gage spot-welded on IN100 and SCS-6/(beta)21-S Titanium Matrix Composite (TMC), a National Aero-Space Plane (NASP) structure material, will be reported. Progress on the development of a weldable thin film gage will also be addressed. The measurement technique and procedures and the lead wire effect will be discussed.
NASA Technical Reports Server (NTRS)
Pellett, G.; Kabaria, A.; Panigrahi, B.; Sammons, K.; Convery, J.; Wilson, L.
2005-01-01
This study of laminar non-premixed HC-air flames used an Oscillatory-input Opposed Jet Burner (OOJB) system developed from a previously well-characterized 7.2-mm Pyrex-nozzle OJB system. Over 600 dynamic Flame Strength (FS) measurements were obtained on unanchored (free-floating) laminar Counterflow Diffusion Flames (CFDF's). Flames were stabilized using plug inflows having steady-plus-sinusoidal axial velocities of varied magnitude, frequency, f, up to 1600 Hz, and phase angle from 0 (most data) to 360 degrees. Dynamic FS is defined as the maximum average air input velocity (U(sub air), at nozzle exit) a CFDF can sustain before strain-induced extinction occurs due to prescribed oscillatory peak-to-peak velocity inputs superimposed on steady inputs. Initially, dynamic flame extinction data were obtained at low f, and were supported by 25-120 Hz Hot-Wire cold-flow velocity data at nozzle exits. Later, expanded extinction data were supported by 4-1600 Hz Probe Microphone (PM) pk/pk P data at nozzle exits. The PM data were first obtained without flows, and later with cold stagnating flows, which better represent speaker-diaphragm dynamics during runs. The PM approach enabled characterizations of Dynamic Flame Weakening (DFW) of CFDF's from 8 to 1600 Hz. DFW was defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = - 100 d(U(sub air) / U(sub air),0Hz) / d(pkpk P). The linear normalization with respect to acoustic pressure magnitude (and steady state (SS) FS) led to a DFW unaffected by strong internal resonances. For the C2H4/N2-air system, from 8 to 20 Hz, DFW is constant at 8.52 plus or minus 0.20 (% weakening)/Pa. This reflects a quasi-steady flame response to an acoustically induced dU(sub air)/dP. Also, it is surprisingly independent of C2H4/N2 mole fraction due to normalization by SS FS. From 20 to approximately 150 Hz, the C2H4/N2 air-flames weakened progressively less, with an inflection at approximately 70 Hz, and became asymptotically insensitive (DFW approximately 0) at approximately 300 Hz, which continued to 1600 Hz. The DFW of CH4-air flames followed a similar pattern, but showed much greater weakening than C2H4/N2-air flames; i.e., the quasi-steady DFW (8 to approximately 15 Hz) was 44.3 %/Pa, or approximately 5x larger, even though the 0 Hz (SS) FS was only 3.0 x smaller. The quasi-steady DFW's of C3H8-air and C2H6-air were intermediate at 34.8 and 20.9 %Pa, respectively. The DFW profiles of all four fuels, at various frequencies, correlated well but non-linearly with respective SS FS's. Notably, the DFW profile for C3H8 air fell more rapidly in the range greater than 15 to 60 Hz, compared with the 1- and 2-carbon fuels. This may indicate a shift in chemical kinetics, and/or O2 transport to a flame that moved closer to the fuel-side. In conclusion, Dynamic Flame Weakening limits appear significant and unique for each fuel, and correlate closely, but non-linearly, with Steady-State Flame Strengths at any given frequency. For reasons unknown, the dynamic flames didn't weaken more at intermediate frequencies (e.g., at 20-50 Hz) than they did at low frequencies (less than 15 Hz), where quasi-steady weakening appears to dominate. Quasi-steady flame weakening ostensibly represents a transient input strain rate maximum that just exceeds the steady-state strain-rate-limited extinction limit for a few cycles. Clearly, further detailed mechanistic understanding is needed in the fall-off region.
NASA Astrophysics Data System (ADS)
Xia, Liang; Xing, Zengshan; Yu, Jianhui; Lu, Huihui; Guan, Heyuan; Zhong, Yongchun; Chen, Zhe
2017-11-01
We demonstrated strain sensing of a microfiber with a microarched transition region, which was fabricated by flame heated tapering. Due to multimode interference of different propagation modes of microfiber, two main transmission dips were observed at 1215.0 and 1469.8 nm. Enhanced by the microarched transition region, the depth of the dip was up to 19 dB at 1215.0 nm. The position of the dip red-shifted while the axial strain changed from 0 to 1166.2 μɛ. The axial strain sensitivity was up to 56.6 pm/μɛ, which was one order of magnitude higher than that of the traditional optical strain sensor based on microfiber or fiber Bragg grating. The linear correlation coefficient was 98.21%. This kind of microfiber with a microarched transition region can be widely used in various physical, chemical, and biological sensing and detection fields.
Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions
NASA Technical Reports Server (NTRS)
Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.
2001-01-01
Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).
Properties of Refractory Concrete in Tension and Compression
NASA Technical Reports Server (NTRS)
Sampson, Jeffrey
2009-01-01
Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.
Flame deformation and entrainment associated with an isothermal transverse fuel jet
NASA Technical Reports Server (NTRS)
Jenkins, D. W.; Karagozian, A. R.
1992-01-01
This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.
NASA Astrophysics Data System (ADS)
Lee, Chin Yik; Cant, Stewart
2017-07-01
A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.
A novel formulation for unsteady counterflow flames using a thermal-conductivity-weighted coordinate
NASA Astrophysics Data System (ADS)
Weiss, Adam D.; Vera, Marcos; Liñán, Amable; Sánchez, Antonio L.; Williams, Forman A.
2018-01-01
A general formulation is given for the description of reacting mixing layers in stagnation-type flows subject to both time-varying strain and pressure. The salient feature of the formulation is the introduction of a thermal-conductivity-weighted transverse coordinate that leads to a compact transport operator that facilitates numerical integration and theoretical analysis. For steady counterflow mixing layers, the associated transverse mass flux is shown to be effectively linear in terms of the new coordinate, so that the conservation equations for energy and chemical species uncouple from the mass and momentum conservation equations, thereby greatly simplifying the solution. Comparisons are shown with computations of diffusion flames with infinitely fast reaction using both the classic Howarth-Dorodnitzyn density-weighted coordinate and the new thermal-conductivity-weighted coordinate, illustrating the advantages of the latter. Also, as an illustrative application of the formulation to the computation of unsteady counterflows, the flame response to harmonically varying strain is examined in the linear limit.
Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch
NASA Technical Reports Server (NTRS)
Driscoll, James F.
2001-01-01
The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical pocket, which burns inwardly. Shadowgraphs at 1000 frames/sec quantify the Markstein number and flame speed. A Low-Laser Power PIV System was developed and is being added to the drop package. Numerical computations were required to explain why the Markstein numbers measured for the inwardly-propagating flames differ from those of outward propagating flames; this is an important research issue in the assessment of the Theory of Flame Stretch. The RUN-1DL code (developed by Prof. B. Rogg) was run for IPF and OPFs with complex methane and propane chemistry. Results confirmed that Ma for the IPFs are larger than for OPFs as was observed experimentally. Physical reasons for these new findings about the Theory of Flame Stretch are being determined from the experiments and the computations. Several journal papers have been published; the drop package is described in the AIAA Journal, while the one-g results appear in three other journal papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panoutsos, C.S.; Hardalupas, Y.; Taylor, A.M.K.P.
This work presents results from detailed chemical kinetics calculations of electronically excited OH (A{sup 2}{sigma}, denoted as OH{sup *}) and CH (A{sup 2}{delta}, denoted as CH{sup *}) chemiluminescent species in laminar premixed and non-premixed counterflow methane-air flames, at atmospheric pressure. Eight different detailed chemistry mechanisms, with added elementary reactions that account for the formation and destruction of the chemiluminescent species OH{sup *} and CH{sup *}, are studied. The effects of flow strain rate and equivalence ratio on the chemiluminescent intensities of OH{sup *}, CH{sup *} and their ratio are studied and the results are compared to chemiluminescent intensity ratio measurementsmore » from premixed laminar counterflow natural gas-air flames. This is done in order to numerically evaluate the measurement of equivalence ratio using OH{sup *} and CH{sup *} chemiluminescence, an experimental practise that is used in the literature. The calculations reproduced the experimental observation that there is no effect of strain rate on the chemiluminescent intensity ratio of OH{sup *} to CH{sup *}, and that the ratio is a monotonic function of equivalence ratio. In contrast, the strain rate was found to have an effect on both the OH{sup *} and CH{sup *} intensities, in agreement with experiment. The calculated OH{sup *}/CH{sup *} values showed that only five out of the eight mechanisms studied were within the same order of magnitude with the experimental data. A new mechanism, proposed in this work, gave results that agreed with experiment within 30%. It was found that the location of maximum emitted intensity from the excited species OH{sup *} and CH{sup *} was displaced by less than 65 and 115 {mu}m, respectively, away from the maximum of the heat release rate, in agreement with experiments, which is small relative to the spatial resolution of experimental methods applied to combustion applications, and, therefore, it is expected that intensity from the OH{sup *} and CH{sup *} excited radicals can be used to identify the location of the reaction zone. Calculations of the OH{sup *}/CH{sup *} intensity ratio for strained non-premixed counterflow methane-air flames showed that the intensity ratio takes different values from those for premixed flames, and therefore has the potential to be used as a criterion to distinguish between premixed and non-premixed reaction in turbulent flames. (author)« less
Flame Dynamics and Chemistry in LRE Combustion Instability
2016-12-22
simulation conditions are as follows: the upper boundary consists of a mixture of DME, oxygen and nitrogen at a fixed temperature of 300 K, while the lower...Fig. 11 a. However, the reduction effect of increased oxygen con- centration on the cool flame extinction temperature is again over- predicted by... temperature chemistry and extends the hysteresis between ignition and Fig. 11. Ignition and extinction temperatures at various strain rates and oxygen
NASA Astrophysics Data System (ADS)
Behrens, Alison Anne
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)✩
Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas
2018-01-01
Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions. PMID:29628525
Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity Conditions
NASA Technical Reports Server (NTRS)
Clemens, N. T.; Idicheria, C. A.; Boxx, I. G.
2001-01-01
It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.
1995-01-01
Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.
Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Ravikrishna, Rayavarapu V.
2000-01-01
The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the region where prompt-NO dominates. Finally, LIF measurements of NO were obtained in counterflow diffusion flames at 2 to 5 atm. Comparisons between [NO] measurements and predictions show that the GRI mechanism underpredicts prompt-NO by a factor of two to three at all pressures. In general, the results indicate a need for refinement of the CH chemistry, especially the pressure-dependent CH formation and destruction reactions.
Flame structure and stabilization in miniature liquid film combustors
NASA Astrophysics Data System (ADS)
Pham, Trinh Kim
Liquid-fueled miniature combustion systems can be promising portable power devices when high specific power and long operation duration are required. A uniquely viable fueling option for small scale combustion is to introduce the liquid fuel as a film on the combustor walls. As one example of such systems, this dissertation characterizes 1-cm-diameter tubular combustors fed by liquid fuel films, and seeks to identify the mechanisms by which flames are stabilized within them. Early experimental work demonstrates that flame behavior is dependent upon steadiness in fuel and air injection and in geometric symmetry and uniformity. Significant discoveries in later work include the impact of direct strain on the flame by the airflow, the fact that no local recirculation zone appears to exist for stabilization as was previously believed, and that the film thickness, uniformity, and location directly affect the flame's characteristics and stability. A gradient in film thickness is required for stable operation, and this requirement may explain why the combustor maintains overall rich conditions. Initial numerical simulations of two-dimensional cold and reacting flows in a simplified model of the combustor yields flame shape and flow field results that do not match experiments in the burning case, therefore suggesting that local turbulence in the fuel injection region provides the necessary degree of mixing. A three-dimensional model of the combustor is needed if reacting flows are to be simulated accurately. It was also found that thermal conduction from the chamber exit to the chamber base plays an important role in fuel vaporization and the stability of the flame. Consequently, flames cannot be sustained in quartz and other transparent but thermally insulating materials for the selected geometry, so observation of the flame's entire structure cannot be accomplished without either the addition of other flameholding elements or the employment of a more thermally conductive chamber material. Such a material is sapphire, and successful operation of a chamber constructed from tubes of sapphire and other metals upon a steel base permitted the identification of stable operational envelopes for materials of various thermal conductivities. The sapphire chamber also allowed for chemiluminescence measurements, and a combination of flame observations, exit temperature measurements, and supporting evidence provided in literature demonstrate conclusively that the flame is stabilized at its ignition point by a triple flame structure created when the fuel rich zone near the wall film fades to a fuel lean region near the center of the chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boxx, I.; Stoehr, M.; Meier, W.
This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scalemore » flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)« less
Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...
2015-06-22
Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less
Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor
NASA Astrophysics Data System (ADS)
Sadanandan, R.; Stöhr, M.; Meier, W.
2008-03-01
In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions.
Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity
NASA Technical Reports Server (NTRS)
Ghaderi, M.; Gupta, A. K.
2003-01-01
The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.
X ray based displacement measurement for hostile environments
NASA Technical Reports Server (NTRS)
Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.
1992-01-01
A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Carter, Campbell D.; Stöhr, Michael; Meier, Wolfgang
2013-05-01
An image-processing routine was developed to autonomously identify and statistically characterize flame-kernel events, wherein OH (from a planar laser-induced fluorescence, PLIF, measurement) appears in the probe region away from the contiguous OH layer. This routine was applied to datasets from two gas turbine model combustors that consist of thousands of joint OH-velocity images from kHz framerate OH-PLIF and particle image velocimetry (PIV). Phase sorting of the kernel centroids with respect to the dominant fluid-dynamic structure of the combustors (a helical precessing vortex core, PVC) indicates through-plane transport of reacting fluid best explains their sudden appearance in the PLIF images. The concentration of flame-kernel events around the periphery of the mean location of the PVC indicates they are likely the result of wrinkling and/or breakup of the primary flame sheet associated with the passage of the PVC as it circumscribes the burner centerline. The prevailing through-plane velocity of the swirling flow-field transports these fragments into the imaging plane of the OH-PLIF system. The lack of flame-kernel events near the center of the PVC (in which there is lower strain and longer fluid-dynamic residence times) indicates that auto-ignition is not a likely explanation for these flame kernels in a majority of cases. The lack of flame-kernel centroid variation in one flame in which there is no PVC further supports this explanation.
Liang, Zhishu; Li, Guiying; Das, Ranjit
2016-01-01
Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197
NASA Technical Reports Server (NTRS)
Miller, I. M.
1978-01-01
A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.
Computations of steady-state and transient premixed turbulent flames using pdf methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulek, T.; Lindstedt, R.P.
1996-03-01
Premixed propagating turbulent flames are modeled using a one-point, single time, joint velocity-composition probability density function (pdf) closure. The pdf evolution equation is solved using a Monte Carlo method. The unclosed terms in the pdf equation are modeled using a modified version of the binomial Langevin model for scalar mixing of Valino and Dopazo, and the Haworth and Pope (HP) and Lagrangian Speziale-Sarkar-Gatski (LSSG) models for the viscous dissipation of velocity and the fluctuating pressure gradient. The source terms for the presumed one-step chemical reaction are extracted from the rate of fuel consumption in laminar premixed hydrocarbon flames, computed usingmore » a detailed chemical kinetic mechanism. Steady-state and transient solutions are obtained for planar turbulent methane-air and propane-air flames. The transient solution method features a coupling with a Finite Volume (FV) code to obtain the mean pressure field. The results are compared with the burning velocity measurements of Abdel-Gayed et al. and with velocity measurements obtained in freely propagating propane-air flames by Videto and Santavicca. The effects of different upstream turbulence fields, chemical source terms (different fuels and strained/unstrained laminar flames) and the influence of the velocity statistics models (HP and LSSG) are assessed.« less
NASA Astrophysics Data System (ADS)
Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem
2015-11-01
Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.
Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2001-01-01
The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.
The Interaction of High-Speed Turbulence with Flames
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei Y.; Oran, E. S.
2010-01-01
Interaction of flames with turbulence occurs in systems ranging from chemical flames on Earth to thermonuclear burning fronts, which are presently believed to be the key component of the explosion mechanism powering the type Ia supernovae. A number of important questions remains concerning the dynamics of turbulent flames in the presence of high-speed turbulence, the flame structure and stability, as well as the ability of the turbulent cascade to penetrate and disrupt the flame creating the distributed mode of burning. We present results of a systematic study of the dynamics and properties of turbulent flames formed under the action of high-speed turbulence using a simplified one-step kinetics similar to the one used to describe hydrogen combustion. This approach makes large-scale highly resolved simulations computationally feasible and it allows one to focus on the process of the turbulence-flame interaction in a simplified controlled setting. Numerical simulations were performed using the massively parallel reactive-flow code Athena-RFX. We discuss global properties of the turbulent flame in this regime (flame width, speed, etc.) and the internal structure of the flame brush. A method is presented for directly reconstructing the internal flame structure and it is shown that correct characterization of the flame regime can be very sensitive to the proper choice of the diagnostic method. We discuss the ability of the turbulent cascade to penetrate the internal flame structure. Finally, we also consider the processes that determine the turbulent burning velocity and identify two distinct regimes of flame evolution. This work was supported in part by the National Research Council, Naval Research Laboratory, and the Office of Naval Research, and by the National Science Foundation through the TeraGrid resources.
OH and CH luminescence in opposed flow methane oxy-flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A.
Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measuredmore » chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)« less
NASA Astrophysics Data System (ADS)
Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao
2017-03-01
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.
Stability analysis of confined V-shaped flames in high-velocity streams.
El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A
2010-06-01
The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.
Flame retardant antibacterial cotton high-loft nonwoven fabrics
USDA-ARS?s Scientific Manuscript database
Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...
Premixed Flames Under Microgravity and Normal Gravity Conditions
NASA Astrophysics Data System (ADS)
Krikunova, Anastasia I.; Son, Eduard E.
2018-03-01
Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.
Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames
NASA Astrophysics Data System (ADS)
Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi
The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)
1978-01-01
Flame retardant elastomeric compositions comprised of either spandex type polyurethane having halogen containing polyols incorporated into the polymer chain, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives were developed. Methods are described for preparing fibers of the flame retardant elastomeric materials and manufactured articles as well as nonelastic materials such as polybenzimidazoles, fiberglass, and nylons, for high oxygen environments.
An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Idicheria, Cherian; Clemens, Noel
2000-11-01
The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.
Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames
NASA Technical Reports Server (NTRS)
Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.
1997-01-01
The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).
Spatially resolved heat release rate measurements in turbulent premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.
Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less
2017-02-01
risks, by modeling thermal strain. Twenty clothing ensembles were tested for thermal and evaporative resistances according to American Society of...e.g., football, hockey, etc.) or during military, law enforcement, or first responder operations (e.g., body armor, flame resistant clothing, etc...Each clothing configuration was tested to American Society of Testing and Materials (ASTM) standards for “dry” thermal resistance (Rct) (ASTM F1291
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. Burton; Wilson, L. G.
1991-01-01
Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Campbell, Charles S.
1999-01-01
A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)
1999-01-01
A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.
Characterisation of the Interaction between Toroidal Vortex Structures and Flame Front Propagation
NASA Astrophysics Data System (ADS)
Long, E. J.; Hargrave, G. K.; Jarvis, S.; Justham, T.; Halliwell, N.
2006-07-01
Experimental laser diagnostic data is presented for flame characterisation during interactions with toroidal vortices generated in the wake of an annular obstacle. A novel twin section combustion chamber has been utilised to allow the controlled formation of stable eddy structures into which a flame front can propagate. High speed laser sheet visualisation was employed to record the flow field and flame front temporal development and high-speed digital particle image velocimetry was used to quantify the velocity field of the unburnt mixture ahead of the flame front. Results provide characterisation of the toroidal vortex/flame front interaction for a range of vortex scales of and recirculation strengths.
Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions
NASA Technical Reports Server (NTRS)
Wang, Y.; Gupta, A. K.
2001-01-01
The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.
NASA Astrophysics Data System (ADS)
Shen, Liguo; Li, Jianxi; Li, Renjie; Lin, Hongjun; Chen, Jianrong; Liao, Bao-Qiang
2018-04-01
In this study, a new strategy which blends low-density polyethylene (LDPE), magnesium hydroxide (MH) and lauryl acrylate by electron-beam radiation for production of LDPE-based composites with high performance was proposed. It was found that, MH played main roles in flame retardancy but reduced processing flow and mechanical properties of the composites. Meanwhile, melt flow rate (MFR) increased while viscosity of the composites decreased with lauryl acrylate content increased, facilitating LDPE composites processing. Electron beam radiation could prompt crosslinking of lauryl acrylate, which significantly enhanced the mechanical properties of LDPE composites. Meanwhile, lauryl acrylate addition only slightly decreased the flame retardancy, suggesting that LDPE composites could remain high flame retardancy even when lauryl acrylate content was high. The study highly demonstrated the feasibility to produce LDPE-based composites simultaneously with high flame retardancy and high mechanical properties by the blending strategy provided in this study.
Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp.
Raju, Maddela Naga; Leo, Rodriguez; Herminia, Sanaguano Salguero; Morán, Ricardo Ernesto Burgos; Venkateswarlu, Kadiyala; Laura, Scalvenzi
2017-05-01
Two species of Bacillus, B. thuringiensis B3 and B. cereus B6, isolated from crude oil-contaminated sites in Ecuador, were tested for their capability in degrading polycyclic aromatic hydrocarbons (PAHs) in diesel (shake-flask), and to remove total petroleum hydrocarbons (TPHs) from crude oil- or spent lubricating oil-polluted soils (plot-scale). TPHs and PAHs were analyzed by Gas chromatography-Flame ionization detector (GC-FID) and High performance liquid chromatography (HPLC), respectively. Degradation percentages of PAHs by strain B6 were in the range of 11-83 after 30 days. A mixed culture of both the strains removed 84% and 28% of TPHs from crude oil- and spent lubricating oil-polluted soils, respectively. Reduction in the abundance of total n-alkane fractions (C 8 -C 40 ) of spent lubricating oil was 94%, which was 18% higher than the control. Our results clearly indicate that the selected strains have great potential in degrading petroleum hydrocarbons at both laboratory- and field-scales.
Unstrained and strained flamelets for LES of premixed combustion
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian
2016-05-01
The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.
The Effects of Buoyancy on Characteristics of Turbulent Nonpremixed Jet Flames
NASA Astrophysics Data System (ADS)
Idicheria, Cherian; Boxx, Isaac; Clemens, Noel
2002-11-01
This work addresses the influence of buoyant forces on the underlying structure of turbulent nonpremixed jet flames. Buoyancy effects are investigated by studying transitional and turbulent propane and ethylene flames (Re_D=2500-10500) at normal, low and microgravity conditions. The reduced gravity experiments are conducted by dropping a combustion rig in the University of Texas 1.25-second drop tower and the NASA Glenn 2.2-second drop tower. The diagnostic employed is high-speed luminosity imaging using a CCD camera. The images obtained are used to compare flame length, mean, RMS and flame tip oscillation characteristics The results showed that, in contrast to previous studies, the high Reynolds number flames at all gravity levels were essentially identical. Furthermore, the parameter ξL (Becker and Yamazaki, 1978) is sufficient for quantifying the effects of buoyancy on the flame characteristics. The large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided ξL is less than approximately 3.
Modeling local extinction in turbulent combustion using an embedding method
NASA Astrophysics Data System (ADS)
Knaus, Robert; Pantano, Carlos
2012-11-01
Local regions of extinction in diffusion flames, called ``flame holes,'' can reduce the efficiency of combustion and increase the production of certain pollutants. At sufficiently high speeds, a flame may also be lifted from the rim of the burner to a downstream location that may be stable. These two phenomena share a common underlying mechanism of propagation related to edge-flame dynamics where chemistry and fluid mechanics are equally important. We present a formulation that describes the formation, propagation, and growth of flames holes on the stoichiometric surface using edge flame dynamics. The boundary separating the flame from the quenched region is modeled using a progress variable defined on the moving stoichiometric surface that is embedded in the three-dimensional space using an extension algorithm. This Cartesian problem is solved using a high-order finite-volume WENO method extended to this nonconservative problem. This algorithm can track the dynamics of flame holes in a turbulent reacting-shear layer and model flame liftoff without requiring full chemistry calculations.
A ring stabilizer for lean premixed turbulent flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M.R.; Kostiuk, L.W.; Cheng, R.K.
1998-08-01
In previous experiments on conical flame behavior in microgravity, which were conducted in drop-towers and in airplanes, the use of a pilot flame was not an option. To permit combustion of stable lean premixed conical flames without a pilot, a ring stabilizer was developed. Although similar types of bluff-body stabilization have been used in the past, the ring stabilizer is somewhat unique. It is designed to fit inside the burner exit port and has demonstrated to be highly effective in stabilizing flames over a very wide range of conditions (including ultra-lean flames at high flow-rates) without adversely affecting flame emissions.more » Unlike a simple rod stabilizer or a stagnation flame system, the benefit of having the stabilizer conform to the burner port is that there is very little leakage of the unburned fuel. The purpose of this brief communication is to offer this simple and highly useful device to the combustion research community. Presented are highlights of a parametric study that measured the stabilization limits and pollutant emissions of several different rings, and demonstrated their potential for use in practical systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Eric; Mathieu, Olivier; Morones, Anibal
This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less
Porto-Fett, Anna C S; Juneja, Vijay K; Tamplin, Mark L; Luchansky, John B
2009-03-01
Irradiated ground beef samples (ca. 3-g portions with ca. 25% fat) inoculated with Yersina pestis strain KIM5 (ca. 6.7 log CFU/g) were heated in a circulating water bath stabilized at 48.9, 50, 52.5, 55, 57.5, or 60 degrees C (120, 122, 126.5, 131, 135.5, and 140 degrees F, respectively). Average D-values were 192.17, 34.38, 17.11, 3.87, 1.32, and 0.56 min, respectively, with a corresponding z-value of 4.67 degrees C (8.41 degrees F). In related experiments, irradiated ground beef patties (ca. 95 g per patty with ca. 25% fat) were inoculated with Y. pestis strains KIMS or CDC-A1122 (ca. 6.0 log CFU/g) and cooked on an open-flame gas grill or on a clam-shell type electric grill to internal target temperatures of 48.9, 60, and 71.1 degrees C (120, 140, and 160 degrees F, respectively). For patties cooked on the gas grill, strain KIM5 populations decreased from ca. 6.24 to 4.32, 3.51, and < or = 0.7 log CFU/g at 48.9, 60, and 71.1 degrees C, respectively, and strain CDC-A1122 populations decreased to 3.46 log CFU/g at 48.9 degrees C and to < or = 0.7 log CFU/g at both 60 and 71.1 degrees C. For patties cooked on the clam-shell grill, strain KIM5 populations decreased from ca. 5.96 to 2.53 log CFU/g at 48.9 degrees C and to < or = 0.7 log CFU/g at 60 or 71.1 degrees C, and strain CDC-A1122 populations decreased from ca. 5.98 to < or = 0.7 log CFU/g at all three cooking temperatures. These data confirm that cooking ground beef on an open-flame gas grill or on a clam-shell type electric grill to the temperatures and times recommended by the U.S. Department of Agriculture and the U.S. Food and Drug Administration Food Code, appreciably lessens the likelihood, severity, and/or magnitude of consumer illness if the ground beef were purposefully contaminated even with relatively high levels of Y. pestis.
A flamelet model for transcritical LOx/GCH4 flames
NASA Astrophysics Data System (ADS)
Müller, Hagen; Pfitzner, Michael
2017-03-01
This work presents a numerical framework to efficiently simulate methane combustion at supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than standard cubic EoSs without deteriorating their good computational performance. To consistently account for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along with the transport equations for mixture fraction and mixture fraction variance. The method is validated against available experimental data for a laboratory scale LOx/GCH4 flame at conditions that resemble those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH* radiation.
NASA Technical Reports Server (NTRS)
Reisel, John R.; Laurendeau, Normand M.
1994-01-01
Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.
Nonlinear effects of stretch on the flame front propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C.
2010-10-15
In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperaturesmore » were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)« less
Flames in vortices & tulip-flame inversion
NASA Astrophysics Data System (ADS)
Dold, J. W.
This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.
A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet
NASA Technical Reports Server (NTRS)
Nayagam, V.; Dietrich, D.; Williams, F. A.
2016-01-01
Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chun S
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C. S.; Richardson, E.; Sankaran, R.
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
High pressure flame system for pollution studies with results for methane-air diffusion flames
NASA Technical Reports Server (NTRS)
Miller, I. M.; Maahs, H. G.
1977-01-01
A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.
Quick-Change Ceramic Flame Holder for High-Output Torches
NASA Technical Reports Server (NTRS)
Haskin, Henry
2010-01-01
Researchers at NASA's Langley Research Center have developed a new ceramic design flame holder with a service temperature of 4,000 F (2,204 C). The combination of high strength and high temperature capability, as well as a twist-lock mounting method to the steel burner, sets this flame holder apart from existing technology.
78 FR 32551 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... manifolds and borescope- inspection of the flame tube and the high-pressure (HP) turbine area for possible...-inspect the flame tube and the high-pressure turbine area for turbine distress, when replacing the fuel... installation before exceeding 400 operating hours TSN. (2) Borescope-inspect the flame tube and the high...
2008-06-02
CAPE CANAVERAL, Fla. -- A member of the walk-down team takes a close look at debris scattered across Launch Pad 39A at NASA's Kennedy Space Center following launch of space shuttle Discovery on its STS-124 mission. During the post-launch walk down, the pad team noted severe launch damage on a 100’ X 20’ section of the east wall of the north flame trench. Broken sections of the flame trench wall were scattered from the flame trench to the pad perimeter fence. NASA is forming an investigation board. The flame trench transecting the pad's mound at ground level is 490 feet long, 58 feet wide and 40 feet high. It is made of concrete and refractory brick. The top of the solid rocket booster flame deflector abuts with that of the orbiter flame deflector to form a flattened, inverted V-shaped structure beneath the mobile launcher platform's three exhaust holes. The orbiter flame deflector is fixed and is 38 feet high, 72 feet long and 57.6 feet wide. The deflector weighs 1.3 million pounds. The solid rocket booster deflector is 42.5 feet high, 42 feet long and 57 feet wide. The structure weighs 1.1 million pounds. The deflectors are built of steel and covered with a high-temperature concrete surface with an average thickness of 5 inches. There are two movable solid rocket booster side flame deflectors, one located on each side of the flame trench. They are 19.5 feet high, 44 feet long and 17.5 feet wide. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan
2007-01-01
In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.
NASA Astrophysics Data System (ADS)
Iurashev, Dmytro; Campa, Giovanni; Anisimov, Vyacheslav V.; Cosatto, Ezio
2017-11-01
Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damages to combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. This work presents a three-step method to find stability margins within which gas turbines can be operated without going into self-excited pressure oscillations. As a first step, a set of unsteady Reynolds-averaged Navier-Stokes simulations with the Flame Speed Closure (FSC) model implemented in the OpenFOAM® environment are performed to obtain the flame describing function of the combustor set-up. The standard FSC model is extended in this work to take into account the combined effect of strain and heat losses on the flame. As a second step, a linear three-time-lag-distributed model for a perfectly premixed swirl-stabilized flame is extended to the nonlinear regime. The factors causing changes in the model parameters when applying high-amplitude velocity perturbations are analysed. As a third step, time-domain simulations employing a low-order network model implemented in Simulink® are performed. In this work, the proposed method is applied to a laboratory test rig. The proposed method permits not only the unsteady frequencies of acoustic oscillations to be computed, but the amplitudes of such oscillations as well. Knowing the amplitudes of unstable pressure oscillations, it is possible to determine how these oscillations are harmful to the combustor equipment. The proposed method has a low cost because it does not require any license for computational fluid dynamics software.
Log-Normality and Multifractal Analysis of Flame Surface Statistics
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2013-11-01
The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.
Planar SiC MEMS flame ionization sensor for in-engine monitoring
NASA Astrophysics Data System (ADS)
Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.
2013-12-01
A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.
Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno
Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.
Direct numerical simulation of a high Ka CH 4/air stratified premixed jet flame
Wang, Haiou; Hawkes, Evatt R.; Savard, Bruno; ...
2018-04-24
Here, direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH 4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH 4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species.
NASA Astrophysics Data System (ADS)
Cicoria, David; Chan, C. K.
2017-07-01
Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.
NASA Astrophysics Data System (ADS)
Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min
2017-12-01
The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.
NASA Astrophysics Data System (ADS)
Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min
2018-06-01
The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.
Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Combustion Systems
NASA Astrophysics Data System (ADS)
Gomez, Alessandro
2013-11-01
Since the pioneering work of Weinberg's group at Imperial College in the `60s, the counterflow system has been the workhorse of laminar flame studies. Recent developments have shown that it is also a promising benchmark for highly turbulent (Ret ~ 1000) nonpremixed and premixed flames of direct relevance to gasturbine combustion. Case studies will demonstrate the versatility of the system in mimicking real flame effects, such as heat loss and flame stratification in premixed flames, and the compactness of the combustion region. The system may offer significant advantages from a computational viewpoint, including: a) aerodynamic flame stabilization near the interface between the two opposed jets, with ensuing simplifications in the prescription of boundary conditions; b) a fiftyfold reduction of the domain of interest as compared to conventional nonpremixed jet flames at the same Reynolds number; and c) millisecond mean residence times, which is particularly useful for DNS/LES computational modeling, and for soot suppression in the combustion of practical fuels.
Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure
NASA Astrophysics Data System (ADS)
Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi
We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.
A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Alex M.; Gülder, Ömer L.
Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminarmore » diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.« less
The discrete regime of flame propagation
NASA Astrophysics Data System (ADS)
Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew
The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment available only on orbital platforms.
NASA Astrophysics Data System (ADS)
Prasad, Vinayaka N.; Juddoo, Mrinal; Masri, Assaad R.; Jones, William P.; Luo, Kai H.
2013-06-01
Extinction and re-ignition processes observed experimentally in thin reaction zones of piloted turbulent non-premixed methane flames approaching blow-off are analysed using Large Eddy Simulation (LES) along with the Eulerian stochastic field method representing the unresolved sub-grid turbulence-chemistry interactions. Eight stochastic fields in conjunction with a reduced chemical mechanism involving 19 species are employed to perform simulations of the Sydney flames L, B and M, which exhibit increasing levels of extinction. The agreement of the flame statistics of the velocities, mixture fraction and selected reactive species were found to be encouraging and highlight the ability of the method to capture quantitatively the effects of increasing jet velocity in this series. In a subsequent analysis of the flame structure using the LES simulation data, the strong three-dimensionality of the flame was emphasised. Quantitative comparisons with recent measurements using high-speed Planar Laser-Induced Fluorescence of OH (OH-PLIF) were found to be in reasonably good agreement with LES simulations and confirm the previous observations that the rates of flame breakages are greater than those of flame closures. This study, which also represents the first successful numerical attempt to describe the entire flame series, highlights the potential and complementary capabilities of a hybrid LES and high-speed imaging approach to resolve issues such as the role of out-of-plane motion in the investigation of transient processes such as flame breakages and re-ignition.
NASA Technical Reports Server (NTRS)
Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)
2000-01-01
Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames. Finally, PLIF is expanded to high pressure in an effort to quantify the detected fluorescence image for LDI flames. Success is achieved by correcting the PLIF calibration via a single-point LIF measurement. This procedure removes the influence of any preferential background that occurs in the PLIF detection window. In general, both the LIF and PLIF measurements verify that the LDI strategy could be used to reduce NO(sub x) emissions in future gas turbine combustors.
Unsteady Spherical Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.
2001-01-01
The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.
Thermal Response of UHMWPE Materials in a Flash Flame Test Environment
2014-11-13
Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin. Several UHMWPE fabrics were tested underneath...PROTECTIVE CLOTHING COTTON FLASH FLAMES UNDERGARMENTS TEST AND EVALUATION FABRICS FLAME TESTING FIRE ...PROTECTION FIRE RESISTANT TEXTILES UHMWPE(ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE
Physical and Chemical Processes in Turbulent Flames
2015-06-23
positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if
NASA Astrophysics Data System (ADS)
Nau, Patrick; Yin, Zhiyao; Geigle, Klaus Peter; Meier, Wolfgang
2017-12-01
Wall temperatures were measured with thermographic phosphors on the quartz walls of a model combustor in ethylene/air swirl flames at 3 bar. Three operating conditions were investigated with different stoichiometries and with or without additional injection of oxidation air downstream of the primary combustion zone. YAG:Eu and YAG:Dy were used to cover a total temperature range of 1000-1800 K. Measurements were challenging due to the high thermal background from soot and window degradation at high temperatures. The heat flux through the windows was estimated from the temperature gradient between the in- and outside of the windows. Differences in temperature and heat flux density profiles for the investigated cases can be explained very well with the previously measured differences in flame temperatures and flame shapes. The heat loss relative to thermal load is quite similar for all investigated flames (15-16%). The results complement previous measurements in these flames to investigate soot formation and oxidation. It is expected, that the data set is a valuable input for numerical simulations of these flames.
The structure and propagation of laminar flames under autoignitive conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
Tmore » he laminar flame speed s l is an important reference quantity for characterising and modelling combustion. Experimental measurements of laminar flame speed require the residence time of the fuel/air mixture (τ f) to be shorter than the autoignition delay time (τ). his presents a considerable challenge for conditions where autoignition occurs rapidly, such as in compression ignition engines. As a result, experimental measurements in typical compression ignition engine conditions do not exist. Simulations of freely propagating premixed flames, where the burning velocity is found as an eigenvalue of the solution, are also not well posed in such conditions, since the mixture ahead of the flame can autoignite, leading to the so called “cold boundary problem”. In this paper, a numerical method for estimating a reference flame speed, s R, is proposed that is valid for laminar flame propagation at autoignitive conditions. wo isomer fuels are considered to test this method: ethanol, which in the considered conditions is a single-stage ignition fuel; and dimethyl ether, which has a temperature-dependent single- or two-stage ignition and a negative temperature coefficient regime for τ. Calculations are performed for the flame position in a one-dimensional computational domain with inflow-outflow boundary conditions, as a function of the inlet velocity U I and for stoichiometric fuel–air premixtures. he response of the flame position, L F, to U I shows distinct stabilisation regimes. For single-stage ignition fuels, at low U I the flame speed exceeds U I and the flame becomes attached to the inlet. Above a critical U I value, the flame detaches from the inlet and L f becomes extremely sensitive to U I until, for sufficiently high U I, the sensitivity decreases and L f corresponds to the location expected from a purely autoignition stabilised flame. he transition from the attached to the autoignition regimes has a corresponding peak dL f/dU I value which is proposed to be a unique reference flame speed s R for single-stage ignition fuels. For two-stage ignition fuels, there is an additional stable regime where a high-temperature flame propagates into a pool of combustion intermediates generated by the first stage of autoignition. his results in two peaks in dL f/dU I and therefore two reference flame speed values. he lower value corresponds to the definition of s R for single-stage ignition fuels, while the higher value exists only for two-stage ignition fuels and corresponds to a high temperature flame propagating into the first stage of autoignition and is denoted s R ' . Finally, a transport budget analysis for low- and high-temperature radical species is also performed, which confirms that the flame structures at U I = s R and U I = s R ' do indeed correspond to premixed flames (deflagrations), as opposed to spontaneous ignition fronts which do not have a unique propagation speed.« less
The structure and propagation of laminar flames under autoignitive conditions
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-11-05
Tmore » he laminar flame speed s l is an important reference quantity for characterising and modelling combustion. Experimental measurements of laminar flame speed require the residence time of the fuel/air mixture (τ f) to be shorter than the autoignition delay time (τ). his presents a considerable challenge for conditions where autoignition occurs rapidly, such as in compression ignition engines. As a result, experimental measurements in typical compression ignition engine conditions do not exist. Simulations of freely propagating premixed flames, where the burning velocity is found as an eigenvalue of the solution, are also not well posed in such conditions, since the mixture ahead of the flame can autoignite, leading to the so called “cold boundary problem”. In this paper, a numerical method for estimating a reference flame speed, s R, is proposed that is valid for laminar flame propagation at autoignitive conditions. wo isomer fuels are considered to test this method: ethanol, which in the considered conditions is a single-stage ignition fuel; and dimethyl ether, which has a temperature-dependent single- or two-stage ignition and a negative temperature coefficient regime for τ. Calculations are performed for the flame position in a one-dimensional computational domain with inflow-outflow boundary conditions, as a function of the inlet velocity U I and for stoichiometric fuel–air premixtures. he response of the flame position, L F, to U I shows distinct stabilisation regimes. For single-stage ignition fuels, at low U I the flame speed exceeds U I and the flame becomes attached to the inlet. Above a critical U I value, the flame detaches from the inlet and L f becomes extremely sensitive to U I until, for sufficiently high U I, the sensitivity decreases and L f corresponds to the location expected from a purely autoignition stabilised flame. he transition from the attached to the autoignition regimes has a corresponding peak dL f/dU I value which is proposed to be a unique reference flame speed s R for single-stage ignition fuels. For two-stage ignition fuels, there is an additional stable regime where a high-temperature flame propagates into a pool of combustion intermediates generated by the first stage of autoignition. his results in two peaks in dL f/dU I and therefore two reference flame speed values. he lower value corresponds to the definition of s R for single-stage ignition fuels, while the higher value exists only for two-stage ignition fuels and corresponds to a high temperature flame propagating into the first stage of autoignition and is denoted s R ' . Finally, a transport budget analysis for low- and high-temperature radical species is also performed, which confirms that the flame structures at U I = s R and U I = s R ' do indeed correspond to premixed flames (deflagrations), as opposed to spontaneous ignition fronts which do not have a unique propagation speed.« less
Coupling between premixed flame propagation and swirl flow during boundary layer flashback
NASA Astrophysics Data System (ADS)
Ebi, Dominik; Ranjan, Rakesh; Clemens, Noel T.
2018-07-01
Flashback of premixed methane-air flames in the turbulent boundary layer of swirling flows is investigated experimentally. The premix section of the atmospheric model swirl combustor features an axial swirler with an attached center-body. Our previous work with this same configuration investigated the flame propagation during flashback using particle image velocimetry (PIV) with liquid droplets as seed particles that precluded making measurements in the burnt gases. The present study investigates the transient velocity field in the unburnt and burnt gas region by means of solid-particle seeding and high-speed stereoscopic PIV. The global axial and circumferential lab-frame flame propagation speed is obtained simultaneously based on high-speed chemiluminescence movies. By combining the PIV data with the global flame propagation speed, the quasi-instantaneous swirling motion of the velocity field is constructed on annular shells, which provides a more intuitive view on the complex three-dimensional flow-flame interaction. Previous works showed that flashback is led by flame tongues. We find that the important flow-flame interaction occurs on the far side of these flame tongues relative to the approach flow, which we henceforth refer to as the leading side. The leading side is found to propagate as a classical premixed flame front relative to the strongly modified approach flow field. The blockage imposed by flame tongues is not limited to the immediate vicinity of the flame base, but occurs along the entire leading side.
NASA Astrophysics Data System (ADS)
Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.
2012-10-01
Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.
Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV
NASA Astrophysics Data System (ADS)
Steinberg, Adam M.; Driscoll, James F.; Ceccio, Steven L.
2008-06-01
A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.
2010-07-15
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less
Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng
2015-09-01
Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.
Flashback flame arrester devices for fuel cargo tank vapor vents
NASA Technical Reports Server (NTRS)
Bjorklund, R. A.; Kushida, R. O.
1981-01-01
The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.
FLAME: A platform for high performance computing of complex systems, applied for three case studies
Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...
2011-01-01
FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.
Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Cabra, Ricardo
2004-01-01
Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.
Jet flames of a refuse derived fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof
This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far intomore » the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)« less
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature environment of a flame is excellent for producing high-purity simple compounds, ultrafine metals and non-oxide ceramic powders are inherently reactive in the presence of oxygen and/or moisture. Thus, the handling of these powders after synthesis poses a challenging problem. Impurities acquired during handling of nanoparticles have plagued the advancement of nanostructured materials technology.
Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Eric; Krejci, Michael; Mathieu, Olivier
2014-01-24
This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times andmore » species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.« less
An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions
NASA Astrophysics Data System (ADS)
Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.
2002-11-01
We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.
Tulip flames: changes in shape of premixed flames propagating in closed tubes
NASA Astrophysics Data System (ADS)
Dunn-Rankin, D.; Sawyer, R. F.
The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.
Radiant Extinction Of Gaseous Diffusion Flames
NASA Technical Reports Server (NTRS)
Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.
2003-01-01
The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.
Turbulent premixed flames on fractal-grid-generated turbulence
NASA Astrophysics Data System (ADS)
Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.
2013-12-01
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.
NASA Astrophysics Data System (ADS)
Feier, Ioan I., Jr.
The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.
Outwardly Propagating Flames at Elevated Pressures
NASA Technical Reports Server (NTRS)
Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.
2001-01-01
Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.
Method for control of NOx emission from combustors using fuel dilution
Schefer, Robert W [Alamo, CA; Keller, Jay O [Oakland, CA
2007-01-16
A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.
NASA Astrophysics Data System (ADS)
Szedlmayer, Michael Thomas
The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions are plotted versus Strouhal number, vortical structures are thought to have a strong influence on the response of this multi-nozzle configuration. The structure of heat release rate fluctuations throughout the flame is analyzed using CH* chemiluminescence acquired with a high speed camera. Flames with a similar level of flame transfer function gain are found to exhibit similarity in the spatial distribution of their heat release rate fluctuations, regardless of the operating condition. Flames with high gain are found to have high amplitude fluctuations near the downstream end of the flame, with weak fluctuations near the flame base. The phase of the downstream fluctuations changes minimally across the downstream region, indicating that they occur inphase. Flames with low gain exhibit stronger fluctuations near the flame base, but weak fluctuations in the downstream region. The phase of the fluctuations near the flame base changes continuously along the flame axis, indicating that parts of the flame will fluctuate out-of-phase. Accordingly, from a global perspective, destructive interference between heat release rate fluctuations in different parts of the flame can be expected. The behavior observed in the flame is ascribed to the interaction of acoustic velocity fluctuations, vortical disturbances and swirl fluctuations. The response of the multi-nozzle flame to high amplitude velocity fluctuations was tested for a single operating condition. Based on the global flame response, most frequencies responded linearly over the tested range of amplitudes. Nonlinear effects were found to occur at three frequencies. The behaviors observed at these frequencies matched those observed in the literature and included flame response saturation and mode triggering. For conditions which responded linearly at all amplitudes, the structure of heat release rate fluctuations was found to remain nearly constant. For conditions with nonlinear behavior, the structure of the fluctuations was a function of the forcing amplitude, particularly in the downstream region. The behavior of the multi-nozzle flame was compared directly to that of a single-nozzle flame of the same nozzle design. The multi-nozzle characteristic flame length was found to be on average 10% longer than for the single-nozzle flame. The flame transfer functions from the two cases were found to exhibit qualitative similarity, where the frequencies at which the extrema occur are similar. The actual value of gain for the same operating condition and frequency does, however, vary by more than a factor of two in some cases. The phase value can also vary by as much as pi radians. These differences indicate that single-nozzle flame transfer functions should not be used directly to predict the instability driving force of real gas turbine combustors.
NASA Astrophysics Data System (ADS)
Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup
2018-06-01
In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.
2016-05-24
experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been studied over the...is to obtain high-fidelity experimental data critically needed to validate research codes at relevant conditions, and to develop systematic and...validated with experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been
Wildland firefighter safety zones: A review of past science and summary of future needs
B. W. Butler
2014-01-01
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire....
Effectiveness of Flame Retardants in TufFoam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abelow, Alexis Elizabeth; Nissen, April; Massey, Lee Taylor
An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.
Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Sacksteder, Kurt
2013-01-01
Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.
Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame
NASA Technical Reports Server (NTRS)
Cheng, Robert K.; Bedat, Benoit
1997-01-01
Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to characterize microgravity (micro g) premixed flames. The results are used to derive appropriate scaling parameters for guiding the development of theoretical models to include the effects of buoyancy. Knowledge gain from the analysis will also contribute to further understanding of the elliptical nature of premixed flames. Our current emphasis is to examine the momentum limit above which the effects of buoyancy would become insignificant. This is accomplished by comparing the flowfields and the mean properties of normal gravity flames (+g), and reversed gravity flames (-g, up-side-down flames) at different flow velocities and turbulence intensities. Microgravity (micro g) flames experiments provide the key reference data to reconcile the differences between flames in +g and -g. As flame configuration has significant impact on premixed flames characteristics we have studied axi-symmetric conical flames and plane-symmetric rod-stabilized v-flames. The two configurations produce distinct features that dictates how the flames couple with buoyancy. In a conical flame, the hot products plume completely envelopes the flame cone and shields the flame from direct interaction with the ambient air. The plume originates at the burner rim and generates a divergent flowfield. In comparison, the products region of v-flames forms between the twin flame sheets and it is convergent towards the center-plane. Interaction with ambient air is limited to the two end regions of the stabilized rod and beyond the flame sheets.
Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Dom; Lieuwen, Tim
Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescencemore » flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.« less
Particle Effects On The Extinction And Ignition Of Flames In Normal- And Micro-Gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2003-01-01
Reacting dusty flows have been studied to lesser extent than pure gas phase flows and sprays. Particles can significantly alter the ignition, burning and extinction characteristics of the gas phase due to the dynamic, thermal, and chemical couplings between the phases. The understanding of two-phase flows can be attained in stagnation flow configurations, which have been used to study spray combustion [e.g. 1] as well as reacting dusty flows [e.g. 2]. The thermal coupling between inert particles and a gas, as well as the effect of gravity, were studied in Ref. 3. It was also shown that the gravity can substantially affect parameters such as the particle velocity, number density, mass flux, and temperature. In Refs. 4 and 5, the effects of inert particles on the extinction of strained premixed and nonpremixed flames were studied both experimentally and numerically at 1-g and m-g. It was shown that large particles can cool flames more effectively than smaller particles. The effects of flame configuration and particle injection orientation were also addressed. It was shown that it was not possible to obtain a simple and still meaningful scaling that captured all the pertinent physics due to the complexity of the couplings between parameters. Also, the cooling by particles is more profound in the absence of gravity as gravity works to reduce the particle number density in the neighborhood of the flame. The efforts were recently shifted towards the understanding of the effects of combustible particles on extinction [6], the gas-phase ignition by hot particle injection [7], and the hot gas ignition of flames in the presence of particles that are not hot enough to ignite the gas phase by themselves.
NASA Astrophysics Data System (ADS)
He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining
2008-11-01
Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.
Flame surface statistics of constant-pressure turbulent expanding premixed flames
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2014-04-01
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.
Interaction of a vortex and a premixed flame
NASA Technical Reports Server (NTRS)
Ferziger, Joel H.; Rutland, Christopher J.
1989-01-01
The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Harper, Samuel E.
2001-01-01
This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.
Combustor oscillating pressure stabilization and method
Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.
1998-08-11
High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
A slice of an aluminum particle: Examining grains, strain and reactivity
McCollum, Jena; Smith, Dylan K.; Hill, Kevin J.; ...
2016-09-12
The Combustion Institute Micron-scale aluminum (Al) particles are plagued by incomplete combustion that inhibits their reactivity. One approach to improving reactivity is to anneal Al particles to increase dilatational (volumetric) strain which has also been linked to increased combustion performance. While optimal annealing temperatures have been identified (roughly 300 °C), little is known about cooling rate effects on particle combustion performance. This study examines the effect of quenching after annealing Al microparticles to 100, 200 and 300 °C on intra-particle dilatational strain and reactivity. Synchrotron X-ray diffraction analysis of the particles reveals the cooling rates in the range from 0.007 to 0.38 K/smore » have little effect on the dilatational strain of the aluminum-core, alumina-shell particles. The annealed and quenched Al particles were then combined with a metal oxidizer (copper oxide) to examine reactivity. Flame propagation experiments follow the same trend: flame speeds are unchanged until a critical annealing temperature of 300 °C is reached and performance is maintained for each annealing temperature regardless of cooling rate. These results show that altering the mechanical properties and combustion performance of Al particles is strongly dependent on the annealing temperature and unchanged with variation in cooling rate. The contributions from elastic and plastic deformation mechanisms on strain are also considered and additional experimental results are shown on the microstructure of an Al particle. Focused ion beam milling of an Al particle to electron transparency was combined with transmission electron microscope imaging in order to examine the microstructure of the Al particles. This confirmed that the Al microparticles have a polycrystalline structure shown by grains all exceeding 100 nm in size.« less
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei
2018-04-01
We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.
Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition
NASA Astrophysics Data System (ADS)
Chambers, Jessica; Ahmed, Kareem
2016-11-01
Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.
Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...
Particle Generation and Evolution in Silane/Acetylene Flames in Microgravity
NASA Technical Reports Server (NTRS)
Keil, D. G.
2001-01-01
The objective of this new experimental program is to advance the understanding of the formation of particles from gas phase combustion processes. The work will utilize the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio. A key goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release necessary to drive the combustion wave, and to locate the parts of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like "highly sooty" hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.
Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity
NASA Technical Reports Server (NTRS)
Keil, D. G.
2003-01-01
The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.
Evaporation and combustion of LOX under supercritical and subcritical conditions
NASA Technical Reports Server (NTRS)
Yang, A. S.; Hsieh, W. H.; Kuo, K. K.
1993-01-01
The objective is to study the evaporation and combustion of LOX under supercritical and subcritical conditions both experimentally and theoretically. In the evaporation studies, evaporation rate and surface temperature were measured when LOX vaporizing in helium environments at pressures ranging from 5 to 68 atm. A Varian 3700 gas chromatograph was employed to measure the oxygen concentration above the LOX surface. For the combustion tests, high-magnification video photography was used to record direct images of the flame shape of a LOX/H2/He laminar diffusion flame. The gas composition in the post-flame region is also being measured with the gas sampling and chromatography analysis. These data are being used to validate the theoretical model. A comprehensive theoretical model with the consideration of the solubility of ambient gases as well as variable thermophysical properties was formulated and solved numerically to study the gasification and burning of LOX at elevated pressures. The calculated flame shape agreed reasonably well with the edge of the observed luminous flame surface. The effect of gravity on the flame structure of laminar diffusion flames was found to be significant. In addition, the predicted results using the flame-sheet model were compared with those based upon full equilibrium calculations (which considered the formation of intermediate species) at supercritical pressures. Except at the flame front where temperature exceeded 2,800 K, the flame-sheet and equilibrium solutions in terms of temperature distributions were in very close agreement. The temperature deviation in the neighborhood of the flame front is caused by the effect of high-temperature dissociation.
NASA Astrophysics Data System (ADS)
Jarvis, S.; Hargrave, G. K.
2006-01-01
Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi
2014-10-01
For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).
Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.
2017-01-01
Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.
The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed
2010-08-05
AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S) 9 . SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR / MONITOR’S REPORT NUMBER(S...UL 38 A.Y. Poludnenko (202) 767-6582 05 -08-2010 Memorandum Report Turbulent premixed combustion Turbulence Flamelet Turbulent flame speed Office of...3.4. Stretch factor and the balance between ST and AT ...................................................................... 9 4. Flame surface
Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua
2017-04-05
Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6
NASA Astrophysics Data System (ADS)
Zhao, Zhenwei
To help understand the fuel oxidation process in practical combustion environments, laminar flame speeds and high temperature chemical kinetic models were studied for several practical fuels and "surrogate" fuels, such as propane, dimethyl ether (DME), and primary reference fuel (PRF) mixtures, gasoline and n-decane. The PIV system developed for the present work is described. The general principles for PIV measurements are outlined and the specific considerations are also reported. Laminar flame speeds were determined for propane/air over a range of equivalence ratios at initial temperature of 298 K, 500 K and 650 K and atmospheric pressure. Several data sets for propane/air laminar flame speeds with N 2 dilution are also reported. These results are compared to the literature data collected at the same conditions. The propane flame speed is also numerically calculated with a detailed kinetic model and multi component diffusion, including Soret effects. This thesis also presents experimentally determined laminar flame speeds for primary reference fuel (PRF) mixtures of n-heptane/iso-octane and real gasoline fuel at different initial temperature and at atmospheric pressure. Nitrogen dilution effects on the laminar flame speed are also studied for selected equivalence ratios at the same conditions. A minimization of detailed kinetic model for PRF mixtures on laminar flame speed conditions was performed and the measured flame speeds were compared with numerical predictions using this model. The measured laminar flame speeds of n-decane/air mixtures at 500 K and at atmospheric pressure with and without dilution were determined. The measured flame speeds are significantly different that those predicted using existing published kinetic models, including a model validated previously against high temperature data from flow reactor, jet-stirred reactor, shock tube ignition delay, and burner stabilized flame experiments. A significant update of this model is described which continues to predict the earlier validation experiments as well as the newly acquired laminar flame speed data and other recently published shock tube ignition delay measurements. A high temperature decomposition and oxidation model based on a hierarchical nature of reacting systems to reflect the new development in the small molecule and radical kinetics and thermochemistry and to evaluate recent measurements of DME laminar flame speeds is developed. The, thermal decomposition of DME was studied theoretically by using the RRKM/master equation approach and the high temperature model was then compared with the literature experimental data. The new model predicts well high temperature flow reactor data, high temperature shock tube ignition delays, and the species profiles from the burner-stabilized flames. Predictions of laminar flame speed and jet-stirred reactor data also reasonably agree with the available experimental data. The remaining uncertainties that need to be addressed for further model improvement will also be discussed. This thesis also presents a novel temperature-dependent feature sensitivity analysis methodology for combustion modeling. The obtained information is demonstrated to be of critical relevance in optimizing complex reaction schemes against multiple experimental targets. Applications of the presented approach are not limited to sensitivities with respect to reaction rate coefficients; the method can also be used to investigate any temperature-dependent property of interest (such as binary diffusion coefficients). This application is also demonstrated in this thesis.
TG-FTIR characterization of flame retardant polyurethane foams materials
NASA Astrophysics Data System (ADS)
Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.
2016-07-01
Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.
Sooting turbulent jet flame: characterization and quantitative soot measurements
NASA Astrophysics Data System (ADS)
Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.
2011-08-01
Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.
Detection of 1-nitropyrene in yakitori (grilled chicken).
Kinouchi, T; Tsutsui, H; Ohnishi, Y
1986-01-01
Pieces of raw chicken with or without a marinating sauce were grilled over a city gas flame, extracted with benzene-ethanol (4:1) by ultrasonication and fractionated into diethyl ether-soluble neutral, acidic and basic fractions. The mutagenicity of these fractions was measured with Salmonella typhimurium strains TA100, TA98, TA98NR and TA98/1,8-DNP6 in the presence and absence of a 9000 X g post-mitochondrial supernatant from Aroclor 1254-treated Sprague-Dawley rat liver (S9 mix). The basic fraction of yakitori without the sauce was more mutagenic than the other fractions for S. typhimurium strain TA98 in the presence of S9 mix. This is probably due to the presence of amino acid or protein pyrolysates. However, when the chicken was grilled with the sauce, the basic fraction showed lower mutagenicity for strain TA98 in the presence of S9 mix than did the same fraction without the sauce. The neutral fraction of yakitori with sauce showed high mutagenicity for strain TA98 in the absence of S9 mix, but low mutagenicity for strains TA98NR and TA98/1,8-DNP6, suggesting that this fraction might contain nitropyrenes (NPs). The neutral fraction of yakitori was analyzed by high-performance liquid chromatography (HPLC). The neutral fraction of the chicken grilled with the sauce for 3, 5 and 7 min contained 3.8, 19 and 43 ng, respectively, of 1-NP per gram of yakitori accounting for 3.0, 2.7 and 1.3%, respectively, of the total mutagenicity.(ABSTRACT TRUNCATED AT 250 WORDS)
Flame-spreading phenomena in the fin-slot region of a solid rocket motor
NASA Astrophysics Data System (ADS)
Kuo, K. K.; Kokal, R. A.; Paulauskas, M.; Alaksin, P.; Lee, L. S.
1993-06-01
Flame-spreading processes in the fin-slot regions of solid-propellant motor grains have the potential to influence the behavior of the overall ignition transient. The work being done on this project is aimed at obtaining a better understanding of the flame-spreading processes in rocket motors with aft-end fin slots. Non-intrusive optical diagnostic methods were employed to acquire flame-spreading measurements in the fin-slot region of a subscale rocket motor. Highly non-uniform flame-spreading processes were observed in both the deep and shallow fin regions of the test rig. The average flame-spreading rates in the fin-slot region were found to be two orders of magnitude less than those in the circular port region of a typical rocket motor. The flame-spreading interval was found to correlate well with the local pressurization rates. A higher pressurization rate produces a shorter flame-spreading time interval.
Dynamics of Isolated and Interacting Flame Structures in Strongly-Pulsed, Turbulent Jet Flames
NASA Astrophysics Data System (ADS)
Fregeau, Mathieu; Liao, Ying-Hao; Hermanson, James; Stocker, Dennis; Hegde, Uday
2007-11-01
The dynamics of the large-scale structures in strongly-pulsed, turbulent diffusion flames were studied in normal- and microgravity. Cross-correlation of temperature measurements and high-speed flame imaging were used to estimate the celerity of the flame structures. Both diagnostics indicate a marked increase in celerity with the increasing flame puff interaction as the jet off-time decreases. The celerity is also generally higher for shorter injection times, which yield more compact flame puffs. These trends are seen both for the case of fixed injection velocity as well as for the case of fixed fueling rate. The celerity correlates well with the inverse downstream distance scaled with an appropriate injection parameter, suggesting that the impact of buoyancy can be partially accounted for by the corresponding changes in the mean flame length. Differences in the values of celerity determined by the temperature and visual techniques can be attributed to nature of the evolution of the flame puffs with downstream distance.
Investigations of two-phase flame propagation under microgravity conditions
NASA Astrophysics Data System (ADS)
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets uniformly distributed. Ethanol-air mixtures are used and the experiments are performed under reduced gravity conditions in the Airbus A310 ZERO-G of the CNES, during which a 10-2g gravity level is achieved. The experiments are conducted in a pressure-release type dual chamber which consists of a spherical combustion chamber of 1 L which is centered in a high pressure chamber of 11 L. Propagating flames under various mixture, droplet size and pressure conditions are investigated with various optical techniques. The collected flame images and the deduced flame propagation velocities enabled to establish various flame propagation and cellular instability regimes, mainly depending on the droplet size and droplet density. The experiments also permitted comparisons with gaseous flames having the same global equivalence ratio as the two-phase flames, therefore allowing analyzing clearly the role of the presence of the droplets in the flame propagation process.
Gravitational Effects on Cellular Flame Structure
NASA Technical Reports Server (NTRS)
Dunsky, C. M.; Fernandez-Pello, A. C.
1991-01-01
An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.
Third-harmonic generation and scattering in combustion flames using a femtosecond laser filament.
Zang, Hong-Wei; Li, He-Long; Su, Yue; Fu, Yao; Hou, Meng-Yao; Baltuška, Andrius; Yamanouchi, Kaoru; Xu, Huailiang
2018-02-01
Coherent radiation in the ultraviolent (UV) range has high potential applicability to the diagnosis of the formation processes of soot in combustion because of the high scattering efficiency in the UV wavelength region, even though the UV light is lost largely by the absorption within the combustion flames. We show that the third harmonic (TH) of a Ti:sapphire 800 nm femtosecond laser is generated in a laser-induced filament in a combustion flame and that the conversion efficiency of the TH varies sensitively by the ellipticity of the driver laser pulse but does not vary so much by the choice of alkanol species introduced as fuel for the combustion flames. We also find that the TH recorded from the side direction of the filament is the Rayleigh scattering of the TH by soot nanoparticles within the flame and that the intensity of the TH varies depending on the fuel species as well as on the position of the laser filament within the flame. Our results show that a remote and in situ measurement of distributions of soot nanoparticles in a combustion flame can be achieved by Rayleigh scattering spectroscopy of the TH generated by a femtosecond-laser-induced filament in the combustion flame.
Saturated laser fluorescence in turbulent sooting flames at high pressure
NASA Technical Reports Server (NTRS)
King, G. B.; Carter, C. D.; Laurendeau, N. M.
1984-01-01
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.
NASA Astrophysics Data System (ADS)
Bessler, Wolfgang G.; Schulz, Christof; Lee, Tonghun; Jeffries, Jay B.; Hanson, Ronald K.
2002-06-01
Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with A-X (0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. We investigate the NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three previous schemes and for two newly chosen excitation schemes with wavelength-resolved LIF measurements in premixed methane and air flames at pressures between 1 and 60 bars and a range of fuel /air ratios. In slightly lean flames with an equivalence ratio of 0.83 at 60 bars, the contribution of O2 LIF to the NO LIF signal varies between 8% and 29% for the previous schemes. The O2 interference is best suppressed with excitation at 226.03 nm.
NASA Astrophysics Data System (ADS)
Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan
2017-11-01
Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.
NASA Astrophysics Data System (ADS)
Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.
2011-05-01
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.
NASA Astrophysics Data System (ADS)
An, Bin; Wang, Zhenguo; Yang, Leichao; Li, Xipeng; Zhu, Jiajian
2017-08-01
Cavity ignition of a model scramjet combustor fueled by ethylene was achieved through laser induced plasma, with inflow conditions of Ma = 2.92, total temperature T0 = 1650 K and stagnation pressure P0 = 2.6 MPa. The overall equivalent ratio was kept at 0.152 for all the tests. The ignition processes at different ignition energies and various ignition positions were captured by CH∗ and OH∗ chemiluminescence imaging. The results reveal that the initial flame kernel is carried to the cavity leading edge by the recirculation flow, and resides there for ∼100 μs before spreading downstream. The ignition time can be reduced, and the possibility of successful ignition for single laser pulse can be promoted by enhancing ignition energy. The scale and strength of the initial flame kernel is influenced by both the ignition energy and position. In present study, the middle part of the cavity is the best position for ignition, as it keeps a good balance between the strength of initial flame kernel and the impacts of strain rate in recirculation flow.
NASA Astrophysics Data System (ADS)
Dai, Jian; Yu, NanJia; Cai, GuoBiao
2015-12-01
Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tacina, M.
2013-01-01
Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.
An investigation of plasma enhanced combustion
NASA Astrophysics Data System (ADS)
Kim, Woo Kyung
This study examines the use of plasma discharges in flame stabilization. Three different types of plasma discharges are applied to a lifted jet diffusion flame in coflow, and evaluated for their abilities to enhance flame stabilization. A single electrode corona discharge (SECD) is found to maintain the flame at a 20 % higher coflow speed than that without the discharge. A dielectric barrier discharge (DBD) results in flame stabilization at up to 50 % higher coflow speed. Finally, an ultra short-pulsed repetitive discharge (USRD) is found to increase the stability limit by nearly ten-fold. The stabilization process is sensitive to the positioning of the discharge in the flow field, and the optimal position of the discharge is mapped into mixture fraction space. The result shows that the local mixture fraction at the optimal position is much leaner than that of a conventional lifted jet flame. Parametric studies are conducted in a plasma-assisted methane/air premixed flame system using USRD. Criteria for optimal electrode selection are suggested. Platinum provides the best result at low frequency operation (< 20 kHz) but tungsten shows better performance at high frequency operation (> 20 kHz). The increase in the flame stability limit is also investigated. The flame stability limit extends from an equivalence ratio of 0.7 to 0.47. Nitric oxide (NO) concentration in the premixed flame is measured. The discharge is a potential source of NO. Under certain conditions, we observed the presence of a cold pre-flame, located between the discharge and the main flame. It is found that the pre-flame partially consumes some NO. The flame kernel structure and ignition mechanism of plasma-assisted premixed combustion are discussed. It is observed that the pre-flame has an abundance of OH radicals. The key physics of the flame ignition is the diffusion of an OH stream (from the pre-flame) into the surrounding combustible mixture to form the main flame. Lastly, the proposed flame kernel structure is numerically validated using the OPPDIF code. The simulation shows that possibly three reaction zones, one pre-flame and two main flames, exist in this flame configuration.
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
NASA Astrophysics Data System (ADS)
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.
2003-01-01
Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1997-02-04
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Apparatus for producing nanoscale ceramic powders
Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.
1995-09-05
An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.
Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Faeth, G. M.
2001-01-01
Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and diffusion flames clearly must be resolved. Motivated by these findings, the present study undertook measurements of soot and flame properties within the soot oxidation region of some typical laminar diffusion flames and exploited the new measurements to identify soot oxidation mechanisms for these conditions. Present considerations were limited to the early stages of soot oxidation (carbon consumption less than 70%) where reactions at the surface of primary soot particles dominate the process, rather than the later stages when particle porosity and internal particle oxidation become important as discussed by Neoh et al.
Imaging Fluorescent Combustion Species in Gas Turbine Flame Tubes: On Complexities in Real Systems
NASA Technical Reports Server (NTRS)
Hicks, Y. R.; Locke, R. J.; Anderson, R. C.; Zaller, M.; Schock, H. J.
1997-01-01
Planar laser-induced fluorescence (PLIF) is used to visualize the flame structure via OH, NO, and fuel imaging in kerosene- burning gas turbine combustor flame tubes. When compared to simple gaseous hydrocarbon flames and hydrogen flames, flame tube testing complexities include spectral interferences from large fuel fragments, unknown turbulence interactions, high pressure operation, and the concomitant need for windows and remote operation. Complications of these and other factors as they apply to image analysis are considered. Because both OH and gas turbine engine fuels (commercial and military) can be excited and detected using OH transition lines, a narrowband and a broadband detection scheme are compared and the benefits and drawbacks of each method are examined.
Insights into flame-flow interaction during boundary layer flashback of swirl flames
NASA Astrophysics Data System (ADS)
Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel
2017-11-01
Boundary layer flashback in swirl flames is a frequent problem in industrial gas turbine combustors. During this event, an erstwhile stable swirl flame propagates into the upstream region of the combustor, through the low momentum region in the boundary layer. Owing to the involvement of various physical factors such as turbulence, flame-wall interactions and flame-flow interactions, the current scientific understanding of this phenomenon is limited. The transient and three-dimensional nature of the swirl flow, makes it even more challenging to comprehend the underlying physics of the swirl flame flashback. In this work, a model swirl combustor with an axial swirler and a centerbody was used to carry out the flashback experiments. We employed high-speed chemiluminescence imaging and simultaneous stereoscopic PIV to understand the flow-flame interactions during flashback. A novel approach to reconstruct the three-dimensional flame surface using time-resolved slice information is utilized to gain insight into the flame-flow interaction. It is realized that the blockage effect imposed by the flame deflects the approaching streamlines in axial as well as azimuthal directions. A detailed interpretation of streamline deflection during boundary layer flashback shall be presented. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107.
An investigation of flame spread over shallow liquid pools in microgravity and nonair environments
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Sotos, Raymond G.
1991-01-01
Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentrations, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.
An Investigation of Flame Spread over Shallow Liquid Pools in Microgravity and Nonair Environments
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Sotos, Raymond G.
1989-01-01
Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentration, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.
NASA Astrophysics Data System (ADS)
Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi
A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, Swetaprovo; Cetegen, Baki M.
2009-03-15
Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH{sup *} emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies rangedmore » from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u{sup '}/U{sub m}{approx}0.3) for U{sub m}=5 m/ s where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented. (author)« less
2016-06-23
4 . TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...nonpremixed/partially premixed flames and turbulence-chemistry interaction. Turbulent mixing of mixture fraction has been studied extensively [ 4 , 14]. In a...two-feed non-premixed flame, the mixture fraction is defined as: ξ = Y − Yo YF − Yo (1) where Y is a conserved quantity such as the mass fraction of any
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, C.R.; Shaddix, C.R.; Smyth, K.C.
This paper presents time-dependent numerical simulations of both steady and time-varying CH{sub 4}/air diffusion flames to examine the differences in combustion conditions which lead to the observed enhancement in soot production in the flickering flames. The numerical model solves the two-dimensional, time-dependent, reactive-flow Navier-Stokes equations coupled with submodels for soot formation and radiation transport. Qualitative comparisons between the experimental and computed steady flame show good agreement for the soot burnout height and overall flame shape except near the burner lip. Quantitative comparisons between experimental and computed radial profiles of temperature and soot volume fraction for the steady flame show goodmore » to excellent agreement at mid-flame heights, but some discrepancies near the burner lip and at high flame heights. For the time-varying CH{sub 4}/air flame, the simulations successfully predict that the maximum soot concentration increases by over four times compared to the steady flame with the same mean fuel and air velocities. By numerically tracking fluid parcels in the flowfield, the temperature and stoichiometry history were followed along their convective pathlines. Results for the pathline which passes through the maximum sooting region show that flickering flames exhibit much longer residence times during which the local temperatures and stoichiometries are favorable for soot production. The simulations also suggest that soot inception occurs later in flickering flames, and at slightly higher temperatures and under somewhat leaner conditions compared to the steady flame. The integrated soot model of Syed et al., which was developed from a steady CH{sub 4}/air flame, successfully predicts soot production in the time-varying CH{sub 4}/air flames.« less
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2003-01-01
A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
NASA Astrophysics Data System (ADS)
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
NASA Astrophysics Data System (ADS)
Slabaugh, Carson Daniel
In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the two-dimensional, two-component velocity field measurements is discussed. The effects of high flame luminosity and particle defocusing on the signal-to-noise ratio are discussed. Laser sheet absorption effects, which have been reported to be severe in many previous high pressure OH-PLIF attempts, were not observed to be significant in this work. The time-averaged peak and (spatial) mean signal to noise ratios were 12.7 and 6.3, respectively, at the flame B operating condition; 550 kW total thermal power and 1.0 MPa combustion chamber pressure. Simultaneous 5 kHz PIV and OH-PLIF measurements showed good agreement between single-shot flow-flame interactions, but unresolved, out-of-plane velocity components restricted the interpretation of the temporal context. At a 5 kHz interrogation frequency, the temporal resolution of the measurements was found to be sufficient for only the largest scales within the turbulent flame. The development of an analysis library for the extraction of physical data from highly-resolved planar measurements is also described. The resolution of the measurements, in space and time, is described with respect to the integral scales of the flow. The mean flow structure and its resultant effect on flame behavior is discussed. A method to perform mass-weighted averaging of flow variables was developed for direct comparison of turbulent flow properties between experimental measurements and computations. Conditional statistical sampling and length-scale filtering were used to elucidate details of flow-flame interactions as they pertain to sub-grid modeling in large-eddy simulations.
Combustion-transition interaction in a jet flame
NASA Astrophysics Data System (ADS)
Yule, A. J.; Chigier, N. A.; Ralph, S.; Boulderstone, R.; Ventura, J.
1980-01-01
The transition between laminar and turbulent flow in a round jet flame is studied experimentally. Comparison is made between transition in non-burning and burning jets and between jet flames with systematic variation in initial Reynolds number and equivalence ratio. Measurements are made using laser anemometry, miniature thermocouples, ionization probes, laser-schlieren and high speed cine films. Compared with the cold jet, the jet flame has a longer potential core, undergoes a slower transition to turbulence, has lower values of fluctuating velocity near the burner but higher values further downstream, contains higher velocity gradients in the mixing layer region although the total jet width does not alter greatly in the first twenty diameters. As in the cold jet, transitional flow in the flame contains waves and vortices and these convolute and stretch the initially laminar interface burning region. Unlike the cold jet, which has Kelvin-Helmholtz instabilities, the jet flame can contain at least two initial instabilities; an inner high frequency combustion driven instability and an outer low frequency instability which may be influenced by buoyancy forces.
Computation of Steady and Unsteady Laminar Flames: Theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai
1999-01-01
In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.
Bonding Lexan and sapphire to form high-pressure, flame-resistant window
NASA Technical Reports Server (NTRS)
Richardson, William R.; Walker, Ernie D.
1987-01-01
Flammable materials have been studied in normal gravity and microgravity for many years. Photography plays a major role in the study of the combustion process giving a permanent visual record that can be analyzed. When these studies are extended to manned spacecraft, safety becomes a primary concern. The need for a high-pressure, flame-resistant, shatter-resistant window permitting photographic recording of combustion experiments in manned spacecraft prompted the development of a method for bonding Lexan and sapphire. Materials that resist shattering (e.g., Lexan) are not compatible with combustion experiments; the material loses strength at combustion temperatures. Sapphire is compatible with combustion temperatures in oxygen-enriched atmospheres but is subject to shattering. Combining the two materials results in a shatter-resistant, flame-resistant window. Combustion in microgravity produces a low-visibility flame; however, flame propagation and flame characteristics are readily visible as long as there is no deterioration of the image. Since an air gap between the Lexan and the sapphire would reduce transmission, a method was developed for bonding these unlike materials to minimize light loss.
Chemiluminescence of BO{sub 2} to map the creation of thermal NO in flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maligne, D.; Cessou, A.; Stepowski, D.
The aim of this study is to detect and map the local conditions that generate thermal NO in flames. According to the Zeldovich mechanism, the formation of NO comes from the local conjunction of a high concentration of atomic oxygen and a temperature above a critical high level imposed by the high activation energy of the rate-limiting reaction. The green light emitted when a flame is seeded with boron salts is a chemiluminescence from the BO{sup *}{sub 2} that is chemically formed in its excited state when BO reacts with atomic oxygen. As the rate of this oxidation is alsomore » strongly increasing with temperature, the chemiluminescence of BO{sub 2} depends on the concentration of atomic oxygen and on the temperature in a way similar to the formation rate of thermal NO. This double analogy suggests the possibility of an experimental in situ simulation of the formation rate of thermal NO or at least the use of the chemiluminescence of BO{sub 2} to map the sites where thermal NO is being created. Spectroscopic experiments and comparisons with numerical simulations have been performed to test the feasibility of this technique in laminar premixed and diffusion methane/air flames. The agreement is good except in the burnt gases of fuel-rich flames. Imaging strategies with different spectral filters have been developed in the same flames to overcome the problem of interference from soot radiation in diffusion flames. (author)« less
NASA Astrophysics Data System (ADS)
Ma, Liu Hao; Lau, Lok Yin; Ren, Wei
2017-03-01
We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.
Hansen, N; Harper, M R; Green, W H
2011-12-07
An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.
Flame-Vortex Interactions in Microgravity to Improve Models of Turbulent Combustion
NASA Technical Reports Server (NTRS)
Driscoll, James F.
1999-01-01
A unique flame-vortex interaction experiment is being operated in microgravity in order to obtain fundamental data to assess the Theory of Flame Stretch which will be used to improve models of turbulent combustion. The experiment provides visual images of the physical process by which an individual eddy in a turbulent flow increases the flame surface area, changes the local flame propagation speed, and can extinguish the reaction. The high quality microgravity images provide benchmark data that are free from buoyancy effects. Results are used to assess Direct Numerical Simulations of Dr. K. Kailasanath at NRL, which were run for the same conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Y.; Hagiwara, M.
1982-09-01
Bromoacenaphthylenes and their condensates as flame-retardant reagents were synthesized by bromination of acenaphthylene using ZnCl/sub 2/ - CF/sub 3/COOH or FeCl/sub 3/ as catalysts and subsequent dehydrobromination. The chief components were identified as bromoacenaphthylene monomers when ZnCl/sub 2/ - CF/sub 3/COOH were used, and as their condensates (mostly trimers) in the case of FeCl/sub 3/. Their performance as flame-retardant reagents for ethylene-propylene-diene terpolymer (EPDM) was evaluated by measuring the oxygen index of finished compounds, and flammability by a vertical flammability test based on UL-94-VO. Both the monomers and the condensates demonstrated high flame-retardant effectiveness. The high efficiency was attributed tomore » their excellent dispersity in the base polymer and their characteristic thermal decomposition behavior. In thermal gravimetric analysis (TGA), they decomposed in a very wide range of temperature (ca.200-560/sup 0/C), which covers the decomposition range of EPDM. This was attributed to the existence of bromines of different thermal stabilities in one molecule. This paper is a part of a series of studies to develop new flame retardants which can give high flame retardancy as well as stabilty against ionizing radiation to EPDM.« less
2017-09-09
chemically. Such flames were systematically studied by measuring temperature, species 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...pressure) but are still well suited to quantitative diagnostics; 2) Study soot inception by measuring gaseous soot precursors and focusing on the gas-to...downstream across an envelope diffusion flame that is formed between the products of the rich premixed flame and the oxidizer. To mimic this situation, a
Dayton Aircraft Cabin Fire Model, Version 3, Volume I. Physical Description.
1982-06-01
contact to any surface directly above a burning element, provided that the current flame length makes contact possible. For fires originating on the...no extension of the flames horizontally beneath the surface is considered. The equation for computing the flame length is presented in Section 5. For...high as 0.3. The values chosen for DACFIR3 are 0.15 for Ec and 0.10 for E P. The Steward model is also used to compute flame length , hf, for the fire
NASA Astrophysics Data System (ADS)
Ganteaume, A.; Jappiot, M.; Lampin, C.
2012-04-01
The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles <2 mm in diameter) were measured using an epiradiator as burning device. The flammability parameters (ignition frequency, time-to-ignition, flaming duration and initial flame propagation) of the undisturbed litter samples were recorded during burning experiments performed on fire bench. Burning experiments using the epiradiator showed that live leaves of Phyllostachys sp., Photinia frasei and Prunus laurocerasus had the shortest time-to-ignition and the highest ignition frequency and flaming duration whereas Pittosporum tobira and Nerium oleander were the longest to ignite with a low frequency. Phyllostachys sp. and Nerium oleander litters were the shortest to ignite while Prunus laurocerasus litter had the lowest bulk density and long time-to-ignition, but high flame propagation. Photinia fraseri litter ignited frequently and had a high flame spread while Pittosporum tobira litter ignited the least frequently and for the shortest duration. Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus laurocerasus and Pyracantha coccinea) to the least flammable (Pittosporum tobira and Nerium oleander); the other species displaying two groups of intermediate flammabilities (Phyllostachys sp.- Photinia fraseri and Cupressus sempervirens ). The species with highly flammable characteristics should not be used in hedges planted in WUIs in South-Eastern France.
Rotational and vibrational Raman spectroscopy for thermochemistry measurements in supersonic flames
NASA Astrophysics Data System (ADS)
Bayeh, Alexander Christian
High speed chemically reacting flows are important in a variety of aerospace applications, namely ramjets, scramjets, afterburners, and rocket exhausts. To study flame extinction under similar high Mach number conditions, we need access to thermochemistry measurements in supersonic environments. In the current work a two-stage miniaturized combustor has been designed that can produce open supersonic methane-air flames amenable to laser diagnostics. The first stage is a vitiation burner, and was inspired by well-known principles of jet combustors. We explored the salient parameters of operation experimentally, and verified flame holding computationally using a well-stirred reactor model. The second stage of the burner generates an external supersonic flame, operating in premixed and partially premixed modes. The very high Mach numbers present in the supersonic flames should provide a useful test bed for the examination of flame suppression and extinction using laser diagnostics. We also present the development of new line imaging diagnostics for thermochemistry measurements in high speed flows. A novel combination of vibrational and rotational Raman scattering is used to measure major species densities (O 2, N2, CH4, H2O,CO2, CO, & H2) and temperature. Temperature is determined by the rotational Raman technique by comparing measured rotational spectra to simulated spectra based on the measured chemical composition. Pressure is calculated from density and temperature measurements through the ideal gas law. The independent assessment of density and temperature allows for measurements in environments where the pressure is not known a priori. In the present study we applied the diagnostics to laboratory scale supersonic air and vitiation jets, and examine the feasibility of such measurements in reacting supersonic flames. Results of full thermochemistry were obtained for the air and vitiation jets that reveal the expected structure of an under-expanded jet. Centerline traces of density, temperature, and pressure of the air jet agree well with computations, while measurements of chemical composition for the vitiation flow also agree well with predicted equilibrium values. Finally, we apply the new diagnostics to the exhaust of the developed burner, and show the first ever results for density, temperature, and pressure, as well as chemical composition in a supersonic flame.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.
2013-01-01
The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.
NASA Technical Reports Server (NTRS)
Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.
2014-01-01
Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to microgravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Noel
This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LESmore » to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.« less
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of impurities. In this work, we described a novel aerosol model that has been developed to simulate particle encapsulation in flames. The model will ultimately be coupled to a one-dimensional spherical flame code and compared to results from microgravity flame experiments.
Noyes, Pamela D.; Haggard, Derik E.; Gonnerman, Greg D.; Tanguay, Robert L.
2015-01-01
The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to many flame retardants currently in use and can be used to understand potential vulnerabilities to human health. PMID:25711236
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Kai; Liu, Wei; Qiu, Yongcai
Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymermore » shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.« less
Liu, Kai; Liu, Wei; Qiu, Yongcai; ...
2017-01-13
Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. Furthermore, during thermal runaway of the lithium-ion battery, the protective polymermore » shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.« less
Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi
2017-01-01
Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes. PMID:28097221
Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi
2017-01-01
Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel "smart" nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
NASA Technical Reports Server (NTRS)
Goldstein, D.; Magnotti, F.; Chinitz, W.
1983-01-01
Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.
Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities
NASA Astrophysics Data System (ADS)
Esposito, Gaetano
Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and identifying sources of uncertainty affecting relevant reaction pathways are usually addressed by resorting to Global Sensitivity Analysis (GSA) techniques. In particular, the most sensitive reactions controlling combustion phenomena are first identified using the Morris Method and then analyzed under the Random Sampling -- High Dimensional Model Representation (RS-HDMR) framework. The HDMR decomposition shows that 10% of the variance seen in the extinction strain rate of non-premixed flames is due to second-order effects between parameters, whereas the maximum concentration of acetylene, a key soot precursor, is affected by mostly only first-order contributions. Moreover, the analysis of the global sensitivity indices demonstrates that improving the accuracy of the reaction rates including the vinyl radical, C2H3, can drastically reduce the uncertainty of predicting targeted flame properties. Finally, the back-propagation of the experimental uncertainty of the extinction strain rate to the parameter space is also performed. This exercise, achieved by recycling the numerical solutions of the RS-HDMR, shows that some regions of the parameter space have a high probability of reproducing the experimental value of the extinction strain rate between its own uncertainty bounds. Therefore this study demonstrates that the uncertainty analysis of bulk flame properties can effectively provide information on relevant chemical reactions.
78 FR 9007 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... replacement of injector manifolds and borescope-inspection of the flame tube and the high-pressure (HP...-inspect the flame tube and the high-pressure turbine area for turbine distress. (3) Thereafter, within... and the high-pressure turbine area for turbine distress. (3) Thereafter, within every 400 operating...
NASA Astrophysics Data System (ADS)
Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui
2018-02-01
The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.
Experimental and modeling studies of small molecule chemistry in expanding spherical flames
NASA Astrophysics Data System (ADS)
Santner, Jeffrey
Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. F4FGA06055G001, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.
2000-01-01
Planar laser-induced fluorescence (PLIF), planar Mie scattering (PMie), and linear (1-D) spontaneous Raman scattering are applied to flame tube and sector combustors that burn Jet-A fuel at a range of inlet temperatures and pressures that simulate conditions expected in future high-performance civilian gas turbine engines. Chemiluminescence arising from C2 in the flame was also imaged. Flame spectral emissions measurements were obtained using a scanning spectrometer. Several different advanced concept fuel injectors were examined. First-ever PLIF and chemiluminescence data are presented from the 60-atm Gas turbine combustor facility.
High-Temperature, Thin-Film Strain Gages Improved
NASA Technical Reports Server (NTRS)
2005-01-01
Conventional resistance strain gage technology uses "bonded" strain gages. These foil or wire gages are bonded onto the surface of the test article with glue, ceramic cements, or flame-sprayed ceramics. These bonding agents can, in some instances, limit both the degree of strain transmission from the test structure to the gage and the maximum working temperature of the gage. Also, the bulky, bonded gage normally disrupts aerodynamic gas flow on the surface of the test structure because of its intrusive character. To respond to the urgent needs in aeronautic and aerospace research where stress and temperature gradients are high, aerodynamic effects need to be minimized, and higher operational temperatures are required, the NASA Lewis Research Center developed a thin film strain gage. This gage, a vacuum-deposited thin film formed directly on the surface of a test structure, operates at much higher temperatures than commercially available gages do and with minimal disruption of the aerodynamic flow. The gage uses an alloy, palladium-13 wt % chromium (hereafter, PdCr), which was developed by United Technologies Research Center under a NASA contract. PdCr is structurally stable and oxidation resistant up to at least 1100 C (2000 F); its temperature-induced resistance change is linear, repeatable, and not sensitive to the rates of heating and cooling. An early strain gage, which was made of 25-micrometer-diameter PdCr wire and demonstrated to be useable to 800 C, won an R&D 100 award in 1991. By further improving the purity of the material and by developing gage fabrication techniques that use sputter-deposition, photolithography patterning, and chemical etching, we have made an 8- to 10-m PdCr thin-film strain gage that can measure dynamic and static strain to at least 1100 C. For static strain measurements, a 5-m-thick Pt element serves as a temperature compensator to further minimize the temperature effect of the gage. These thin-film gages provide the advantage of minimally intrusive surface strain measurements and give highly repeatable readings with low drift at temperatures from ambient to 1100 C. This is a 300 C advance in operating temperature over the PdCr wire gage and a 500 C advance over commercially available gages made of other materials.
Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity
NASA Technical Reports Server (NTRS)
Yuan, Z. -G.; Hegde, U.; Faeth, G. M.
2001-01-01
It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.
Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture
NASA Astrophysics Data System (ADS)
Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram
2017-03-01
In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton
1987-01-01
Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.
Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations
ERIC Educational Resources Information Center
Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric
2014-01-01
A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…
An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames
NASA Technical Reports Server (NTRS)
Atreya, Arvind
1995-01-01
The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this goal was made during this project, identifying the experimental conditions for which radiative extinction occurs for various fuels requires further study. Details concerning this research which are discussed in published articles are included in the appendices.
High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame
NASA Technical Reports Server (NTRS)
Kojima, Jun; Fischer, David
2013-01-01
We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.
Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity
NASA Technical Reports Server (NTRS)
Howard, Jack B.; Brooker, John E. (Technical Monitor)
2002-01-01
The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found for a surprisingly high dilution fuel with argon. The maximum flame temperature seems to be of minor importance in fullerene formation. The HRTEM analysis of the soot showed an increase of the curvature of the carbon layers, and hence increased fullerenic character. After this maximum, the curvature decreases. In addition to the soot, the samples included fullerenic nanostructures, such as tubes and spheroids including highly-ordered multilayered or onion-like structures. The soot itself shows highly ordered regions that appear to have been cells of ongoing fullerenic nanostructure formation.
Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian
2015-10-01
The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamics and structure of turbulent premixed flames
NASA Technical Reports Server (NTRS)
Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.
1995-01-01
In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the opportunity to work close at hand with the (in this case numerical) experimental data. Not only can one spot patterns and relationships in the data which could be important, but one can also get to know the limitations of the technique being used, so that when the next experiment is being designed it will address resolvable questions. A three-year grant from the Australian Research Council has enabled us to develop a small capability at the University of Sydney to work on DNS of turbulent reacting flow, and to analyze data bases generated at CTR. Collaboration between the University of Sydney and CTR is essential to this project and finding a workable modus operandum for this collaboration, given the constraints involved, has been a major objective of the past year's effort. The overall objectives of the project are: (1) to obtain a quantitative understanding of the dynamics of turbulent premixed flames at high turbulence levels with a view to developing improved second order closure models; and (2) to carry out new DNS experiments on turbulent premixed flames using a carefully chosen multistep reduced mechanism for the chemical kinetics, with a view to elucidating the laser diagnostic findings that are contrary to the findings for DNS using one-step kinetics. In this first year the objectives have been to make the existing CTR data base more accessible to coworkers at the University of Sydney, to make progress on understanding the dynamics of the flame in this existing CTR data base, and to carefully construct a suitable multistep reduced mechanism for use in a new set of DNS experiments on turbulent premixed flames.
Flame front propagation in a channel with porous walls
NASA Astrophysics Data System (ADS)
Golovastov, S. V.; Bivol, G. Yu
2016-11-01
Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.
Combustion in microgravity: The French contribution
NASA Astrophysics Data System (ADS)
Prud'homme, Roger; Legros, Guillaume; Torero, José L.
2017-01-01
Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.
Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)
2002-01-01
A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.
NASA Astrophysics Data System (ADS)
Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya
2016-05-01
Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.
Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
2001-01-01
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.
About a flame propagation by a premixed gas mixture at high turbulence
NASA Astrophysics Data System (ADS)
Gaponov, Sergey A.
2018-03-01
In the paper the new model of the turbulent flame propagation in a premixed gas is offered. In its basis the diffusion equation of combustion products with a source, which is proportional to the contact surface of combustion products with a fresh mixture and an expansion coefficient is put. It is shown that the dependence of the generation rate of combustion products on their mass concentration satisfies conditions of the KPP (Kolmogorov, Petrovsky, Piskounov). In this case, the flame propagation speed depends on the flame surface in a unit volume near the leading front. But at turbulent motion the isolated fragments of combustion products surrounded with fresh mix can be formed on the forward front. It is assumed that the isolated fragments are the sphere shape at the weak turbulence, and with increase in intensity of turbulent pulsations the flame surface of each center is proportional to the pulsations velocity and inversely proportional to the flame speed relatively combustion products, i.e. it is inversely proportional to the product of normal flame speed and expansion coefficient. As a result the formula for the propagation speed calculation of the turbulent flame is proposed which includes not only traditional values of a pulsations velocity and normal flame speed, but also values of an expansion coefficient. On its basis it is explained why the turbulent flame speed exceeds the pulsations velocity by many times at moderate turbulence. It is shown that at the power dependence the turbulent flame speed on the pulsation velocity exponent can vary from 0.5 to unit. The received dependence can be improved if to replace the flat laminar flame with average on the surface of the curved flame, i.e. to take into account the Markstein theory.
Characteristics of sound radiation from turbulent premixed flames
NASA Astrophysics Data System (ADS)
Rajaram, Rajesh
Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.
Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows
NASA Astrophysics Data System (ADS)
Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng
2016-05-01
Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean Patrick
A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H 2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated formore » temperature/oxygen measurements in near-adiabatic H 2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C 2H 4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H 2/air flames, and by comparison with nanosecond CARS measurements for the C 2H 4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O 2/N 2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H 2/air combustion to fuel-rich sooting hydrocarbon flames.« less
Modeling Burns for Pre-Cooled Skin Flame Exposure
2017-01-01
On a television show, a pre-cooled bare-skinned person (TV host) passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated. PMID:28880253
Kim, Jung Kyu; Chai, Sung Uk; Cho, Yoonjun; Cai, Lili; Kim, Sung June; Park, Sangwook; Park, Jong Hyeok; Zheng, Xiaolin
2017-11-01
Mesoporous TiO 2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO 2 NP films for these solar cells are fabricated by annealing TiO 2 paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO 2 paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO 2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO 2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO 2 surface facilitates charge injection from the dye/perovskite to TiO 2 . Consequently, when the flame-annealed mesoporous TiO 2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO 2 films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aerodynamic features of flames in premixed gases
NASA Technical Reports Server (NTRS)
Oppenheim, A. K.
1984-01-01
A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.
Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
Wendels, Sophie; Chavez, Thiebault; Bonnet, Martin; Gaan, Sabyasachi
2017-01-01
Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions. In general, most flame retardant derivatives discussed in this review have been prepared via a one- to two-step synthetic strategy with relatively high yields greater than 80%. Specific examples of P-C containing flame retardants synthesized via suitable synthetic strategy and their applications on various polymer systems are described in detail. Aliphatic phosphorus compounds being liquids or low melting solids are generally applied in polymers via coatings (cellulose) or are incorporated in the bulk of the polymers (epoxy, polyurethanes) during their polymerization as reactive or non-reactive additives. Substituents on the P atoms and the chemistry of the polymer matrix greatly influence the flame retardant behavior of these compounds (condensed phase vs. the gas phase). Recently, aromatic DOPO based phosphinate flame retardants have been developed with relatively higher thermal stabilities (>250 °C). Such compounds have potential as flame retardants for high temperature processable polymers such as polyesters and polyamides. A vast variety of P-C bond containing efficient flame retardants are being developed; however, further work in terms of their economical synthetic methods, detailed impact on mechanical properties and processability, long term durability and their toxicity and environmental impact is much needed for their potential commercial exploitations. PMID:28773147
Kearney, Sean Patrick
2014-12-31
A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H 2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated formore » temperature/oxygen measurements in near-adiabatic H 2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C 2H 4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H 2/air flames, and by comparison with nanosecond CARS measurements for the C 2H 4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O 2/N 2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H 2/air combustion to fuel-rich sooting hydrocarbon flames.« less
NASA Technical Reports Server (NTRS)
1990-01-01
Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.
Oxy-combustion of high water content fuels
NASA Astrophysics Data System (ADS)
Yi, Fei
As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the spray were measured in the chamber for a stable flame. The experimental results indicate significant preferential vaporization of ethanol over water. Modeling results support this observation and indicate that the vaporization process is best described as the distillation limit mode with enhanced mass transfer by convection. Further, the influence of preferential vaporization on flame stability was investigated. A procedure was developed to evaluate the extent of preferential vaporization and subsequent flame stability of a fuel in aqueous solution. Various water soluble fuels were analyzed via this procedure in order to identify a chemical fuel showing strong preferential vaporization. t-Butanol was identified as having excellent physical and chemical properties, indicating stronger preferential vaporization than ethanol. Flame stability tests were run for aqueous solutions of both t-butanol and ethanol under identical flow conditions. Flame stability was characterized by the blow-off limit. In each comparison, the energy contents in the two solutions were kept the same. For the experiments under high swirl flow conditions (100% swirl flow), 12.5 wt% t-butanol has slightly lower blow-off limits than 15 wt% ethanol, and 8.3 wt% t-butanol has much lower blow-off limits than 10 wt% ethanol. For the experiments under a low swirl flow condition (50% swirl/50% axial flow), 12.5 wt% t-butanol has a much lower blow-off limit than 15 wt% ethanol. The time to release the fuel from a droplet was also calculated for both ethanol and t-butanol. For the same size droplet, the time to release t-butanol is much shorter than that of ethanol under the same conditions. Faster release of the fuel from water enhances flame stability, which is consistent with the experimental results. For the oxy-combustion characteristics of low-volatility fuel with high water content, glycerol was chosen as the fuel to study. It is found that self-sustained flame can be obtained for glycerol solution with concentration as high as 60 wt%, when burned in pure O2. However, the flame is lifted far away from the nozzle. To obtain a stable flame for a low glycerol concentration solution, t-butanol or ethanol was added as an additive. Experiments showed that an attached flame can be obtained by burning a mixture of 8.3 wt% t-butanol, 30 wt% glycerol and 61.7 wt% water (B8.3/G30) or 10 wt% ethanol, 30 wt% glycerol and 60 wt% water (E10/G30) under oxy-fired condition. The flame stability for B8.3/G30 and E10/G30 was characterized under 100% and 85% swirl flow conditions. Under 100% swirl flow condition, the blow-off limits are approximately the same for both cases. Under 85% swirl, the blow-off limits for B8.3/G30 are much lower in the low flow rate region. Additionally, the lift-off limits for B8.3/G30 are lower than those for E10/G30, which means the flame stability for B8.3/G30 is better. To study the flame structure, contours of temperature across the chamber's centerline were obtained for four attached flames. It was found that the flame becomes narrower as the swirl intensity decreases. A high temperature zone in the inner recirculation zone (IRZ) is formed for the four flames. This hot zone is critical to provide heat to vaporize the glycerol in near burner region, so that flame can be attached on the nozzle. For practical purposes, a PRB coal water slurry was studied in terms of preparation, characterization, atomization and combustion. A procedure to prepare stable coal water slurry from PRB coal was developed. Triton X-100 is a good nonionic surfactant for PRB coal. On the contrary, PSS, which is ionic, is not effective for PRB coal. Due to the hydrophilic surface property of PRB coal, the maximum loading of the coal in slurry can only reach 50 wt%. The viscosities of slurries containing various concentrations of Triton X-100 were measured. To deliver the slurry in a burner, two types of two fluid nozzles -- internal mixing and external mixing -- were investigated and both nozzles were able to generate a spray with good quality. Preliminary oxy-combustion experiments were successfully conducted. Due to the high swirl flow in the combustor, the nozzle overheated which caused clogging. Additional research is needed to solve this issue and characterize the flame systematically.
Shaddix, Christopher R.; Williams, Timothy C.
2016-07-12
Non-premixed oxy-fuel combustion of natural gas is used in industrial applications where high-intensity heat is required, such as glass manufacturing and metal forging and shaping. In these applications, the high flame temperatures achieved by oxy-fuel combustion increase radiative heat transfer to the surfaces of interest and soot formation within the flame is desired for further augmentation of radiation. However, the high cost of cryogenic air separation has limited the penetration of oxy-fuel combustion technologies. New approaches to air separation are being developed that may reduce oxygen production costs, but only for intermediate levels of oxygen enrichment of air. To determinemore » the influence of oxygen enrichment on soot formation and radiation, we developed a non-premixed coannular burner in which oxygen concentrations and oxidizer flow rates can be independently varied, to distinguish the effects of turbulent mixing intensity from oxygen enrichment on soot formation and flame radiation. Local radiation intensities, soot concentrations, and soot temperatures have been measured using a thin-film thermopile, planar laser-induced incandescence (LII), and two-color imaging pyrometry, respectively. The measurements show that soot formation increases as the oxygen concentration decreases from 100% to 50%, helping to moderate a decrease in overall flame radiation. An increase in turbulence intensity has a marked effect on flame height, soot formation and thermal radiation, leading to decreases in all of these. The soot temperature decreases with a decrease in the oxygen concentration and increases with an increase in turbulent mixing intensity. Altogether, the results suggest that properly designed oxygen-enriched burners that enhance soot formation for intermediate levels of oxygen purity may be able to achieve thermal radiation intensities as high as 85% of traditional oxy-fuel burners utilizing high-purity oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaddix, Christopher R.; Williams, Timothy C.
Non-premixed oxy-fuel combustion of natural gas is used in industrial applications where high-intensity heat is required, such as glass manufacturing and metal forging and shaping. In these applications, the high flame temperatures achieved by oxy-fuel combustion increase radiative heat transfer to the surfaces of interest and soot formation within the flame is desired for further augmentation of radiation. However, the high cost of cryogenic air separation has limited the penetration of oxy-fuel combustion technologies. New approaches to air separation are being developed that may reduce oxygen production costs, but only for intermediate levels of oxygen enrichment of air. To determinemore » the influence of oxygen enrichment on soot formation and radiation, we developed a non-premixed coannular burner in which oxygen concentrations and oxidizer flow rates can be independently varied, to distinguish the effects of turbulent mixing intensity from oxygen enrichment on soot formation and flame radiation. Local radiation intensities, soot concentrations, and soot temperatures have been measured using a thin-film thermopile, planar laser-induced incandescence (LII), and two-color imaging pyrometry, respectively. The measurements show that soot formation increases as the oxygen concentration decreases from 100% to 50%, helping to moderate a decrease in overall flame radiation. An increase in turbulence intensity has a marked effect on flame height, soot formation and thermal radiation, leading to decreases in all of these. The soot temperature decreases with a decrease in the oxygen concentration and increases with an increase in turbulent mixing intensity. Altogether, the results suggest that properly designed oxygen-enriched burners that enhance soot formation for intermediate levels of oxygen purity may be able to achieve thermal radiation intensities as high as 85% of traditional oxy-fuel burners utilizing high-purity oxygen.« less
Turbulent structure and emissions of strongly-pulsed jet diffusion flames
NASA Astrophysics Data System (ADS)
Fregeau, Mathieu
This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)
Characterization of flame radiosity in shrubland fires
Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro
2011-01-01
The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...
Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials
NASA Astrophysics Data System (ADS)
Dong, Zhizhong
Tungsten-oxide and molybdenum-oxide nanostructures are fabricated directly from the surfaces of metal substrates using counter-flow diffusion-flame synthesis method, which allows for correlation of morphologies with local conditions. Computational simulations aid in tailoring the flame structure with respect to chemical species and temperature. Furthermore, methane flames are compared with hydrogen flames, which only have H2O (and no CO2) as product species. The temperature profiles of the methane and hydrogen flames are strategically matched in order to compare the effect of chemical species produced by the flame which serve as reactants for nanostructure growth. Single-crystalline, well-vertically-aligned, and dense WO2.9 nanowires (diameters of 20-50 nm, lengths of >10 microm) are obtained at a gas-phase temperature of 1720 K, where the CO2 route is presumed to seed the growth of nanowires at the nucleation stage, with subsequent vapor-solid growth. Similarly, single-crystalline, vertically-aligned, and dense MoO 2 nanoplates (thicknesses of 60-80 nm, widths of 200-450 nm, lengths of 1-2 microm) are obtained at 1720 K. Nanoheterostructures are fabricated by decorating/coating the above flame-synthesized tungsten-oxide nanowires with other materials using an aqueous solution synthesis method. With WO 2.9 nanowires serving as the scaffold, sequential growth of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for different Zn2+:Sn2+ concentration ratios. High-resolution transmission electron microscopy (HRTEM) of the interfaces at the nanoheterojunctions show atomically abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches. Separately, co-axial nanoheterostructures are fabricated using ionic-liquid solutions, where single-crystal nanoscale Al layer are electrodeposited on the surfaces of the above flame-synthesized WO2.9 nanowires. These tungsten-oxide/aluminum coaxial nanowire arrays constitute thermite nanocomposites with high reactivity. These geometries not only present an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer, but also possibly eliminate or at least minimize the presence of Al2O3 passivation films between the aluminum and metal oxide.
A model of concurrent flow flame spread over a thin solid fuel
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.
1993-01-01
A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel. These heat losses lead to lower flame temperatures, and ultimately, extinction. This extinction mechanism differs from that of blowoff, where the flame is unable to be stabilized due to the high flow velocity.
Hexabromocyclododecanes (HBCDs) are high production volume brominated aliphatic cyclic hydrocarbons used as flame-retardants in foams, plastics and textiles. Commercial HBCD is a mixture of three main stereoisomers, alpha (α), beta (β) and gamma (γ). A shift from the high percent...
Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification.
Garcés, Hugo O; Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo
2018-05-11
Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination.
Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
NASA Astrophysics Data System (ADS)
Massa, L.; Jha, P.
2012-05-01
Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.
Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
1999-01-01
A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.
Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.
Xiao, Huahua; Sun, Jinhua; Chen, Peng
2014-03-15
An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Askari, Omid
This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.
Flame ignition studies of conventional and alternative jet fuels and surrogate components
NASA Astrophysics Data System (ADS)
Liu, Ning
Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.
NASA Astrophysics Data System (ADS)
Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.
2009-01-01
Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remming, Ian S.; Khokhlov, Alexei M.
We present general equations for non-ideal, reactive flow magnetohydrodynamics (RFMHD) in the form best suited for describing thermonuclear combustion in high-density degenerate matter of SNe Ia. The relative importance of various non-ideal effects is analyzed as a function of characteristic spatial and temporal scales of the problem. From the general RFMHD equations, we derive the one-dimensional ordinary differential equations describing the steady-state propagation of a planar thermonuclear flame front in a magnetic field. The physics of the flame is first studied qualitatively using a simple case of one-step Arrhenius kinetics, a perfect gas equation of state (EOS), and constant thermalmore » conductivity coefficients. After that, the equations are solved, the internal flame front structure is calculated, and the flame velocity, S {sub l} , and flame thickness, δ {sub l} , are found for carbon–oxygen degenerate material of supernovae using a realistic EOS, transport properties, and detailed nuclear kinetics. The magnetic field changes the flame behavior significantly, both qualitatively and quantitatively, as compared to the non-magnetic case of classical combustion. (1) The magnetic field influences the evolutionarity of a flame front and makes it impossible for a flame to propagate steadily in a wide range of magnetic field strengths and orientations relative to the front. (2) When the flame moves steadily, it can propagate in several distinct modes, the most important being the slow C {sub S} and super-Alfvénic C {sub sup} modes. (3) The speed of the flame can be diminished or enhanced by up to several factors relative to the non-magnetic laminar flame speed.« less
X-ray based displacement and strain measurements for hostile environments
NASA Technical Reports Server (NTRS)
Canistraro, Howard A.; Jordan, Eric H.; Pease, Douglas M.
1993-01-01
A completely new method of non-contacting, hostile environment displacement and strain measurement based on the focus and scanning of x-rays, has been developed and demonstrated. The new technique has the ability to overcome many of the limitations associated with available methods. The system is based on the focus and scanning of low energy, hard x-rays such as those emanating from table top copper or molybdenum sources. The x-rays are focused into a narrow and intense line image which can be swept onto targets that fluoresce secondary x-ray radiation. By monitoring the secondary radiation intensity and comparing it with the focused x-ray image's position as it is swept over the target edge, the position of the target edge relative to the focused image can be determined. The present system has a resolution of 0.5 micron, which has been shown to be limited by bearing backlash (or 'yaw' error) in the linear translation table. Its use has been demonstrated in the presence of an open flame with a resultant target temperature in excess of 2000 degrees Fahrenheit (1000 degrees Celsius). Strain measurements have been conducted in a laboratory environment at both room temperature and at a specimen temperature of 1300 degrees Fahrenheit, with an accuracy of within 20 microstrain (primarily a function of the 0.5 micron resolution limit). The main advantage of the technique lies in the penetrating, non-refractive nature of x-rays, which are virtually immune to the presence of refracting gas layers, smoke, flame or intense thermal radiation.
An Insidious Mode of Oxidative Degradation in a SiC-SiC Composite
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. T.
1997-01-01
The oxidative durability of a SiC-SiC composite with Hi-Nicalon fiber and BN interphase was investigated at 800 C (where pesting is known to occur in SiC-SiC composites) for exposure durations of up to 500 hours and in a variety of oxidant mixes and flow rates, ranging from quasi-stagnant room air, through slow flowing O2 containing 30-90% H2O, to the high-velocity flame of a burner rig. Degradation of the composite was determined from residual strength and fracture strain in post-exposure mechanical tests and correlated with microstructural evidence of damage to fiber and interphase. The severest degradation of composite behavior was found to occur in the bumer rig, and is shown to be connected with the high oxidant velocity and substantial moisture content, as well as a thin sublayer of carbon indicated to form between fiber and interphase during composite processing.
Photographic laboratory studies of explosions.
NASA Technical Reports Server (NTRS)
Kamel, M. M.; Oppenheim, A. K.
1973-01-01
Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.
Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number
NASA Astrophysics Data System (ADS)
Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco
2016-11-01
A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.
NASA Astrophysics Data System (ADS)
Mameri, A.; Tabet, F.; Hadef, A.
2017-08-01
This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.
Effect of gravity on the stability and structure of lean hydrogen-air flames
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1991-01-01
Detailed, time-dependent, 2D numerical simulations with full hydrogen-oxygen chemistry are used to investigate the effects of gravity on the stability and structure of laminar flames in lean, premixed hydrogen-air mixtures. The calculations show that the effects of gravity becomes more important as the lean flammability limit is approached. In a 12 percent hydrogen-air mixture, gravity plays only a secondary role in determining the multidimensional structure of the flame with the stability and structure of the flame controlled primarily by the thermo-diffusive instability mechanism. However, in leaner hydrogen-air mixtures gravity becomes more important. Upward-propagating flames are highly curved and evolve into a bubble rising upwards in the tube. Downward-propagating flames are flat or even oscillate between structures with concave and convex curvatures. The zero-gravity flame shows only cellular structures. Cellular structures which are present in zero gravity can be suppressed by the effect of buoyancy for mixtures leaner than 11 percent hydrogen. These observations are explained on the basis of an interaction between the processes leading to buoyancy-induced Rayleigh-Taylor instability and the thermo-diffusive instability.
Optically Based Flame Detection in the NASA Langley 8-ft High- Temperature Wind Tunnel
NASA Technical Reports Server (NTRS)
Borg, Stephen E.
2005-01-01
Two optically based flame-detection systems have been developed for use in NASA Langley's 8-Foot High-Temperature Tunnel (8-ft HTT). These systems are used to detect the presence and stability of the main-burner and pilot-level flames during facility operation. System design considerations will be discussed, and a detailed description of the system components and circuit diagrams will be provided in the Appendices of this report. A more detailed description of the manufacturing process used in the fabrication of the fiber-optic probes is covered in NASA TM-2001-211233.
Flame dynamics in a micro-channeled combustor
NASA Astrophysics Data System (ADS)
Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan
2015-01-01
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.
Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames
NASA Technical Reports Server (NTRS)
Thomsen, D. Douglas; Laurendeau, Normand M.
2000-01-01
Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry. Suggestions are made which significantly improve the predictive capability of the GRI mechanism in near-stoichiometric, rich, premixed flames and in atmospheric-pressure, diffusion flames. However, the modified reaction mechanism is unable to model the formation of NO in ultra-rich, premixed or in high-pressure, nonpremixed flames, thus indicating the need for additional study under these conditions.
A Study of Flame Physics and Solid Propellant Rocket Physics
2007-10-01
and ellipsoids, and the packing of pellets relevant to igniter modeling. Other topics are the instabilities of smolder waves, premixed flame...instabilities in narrow tubes, and flames supported by a spinning porous plug burner . Much of this work has been reported in the high-quality archival...perchlorate in fuel binder, the combustion of model propellant packs of ellipses and ellipsoids, and the packing of pellets relevant to igniter modeling
Mixing in High Schmidt Number Turbulent Jets
1991-01-01
the higher Sc jet is less well mixed. The difference is less pronounced at higher Re. Flame length estimates imply either an increase in entrainment...72 8.0 Estimation of flame lengths ....................................... 74 8.1 Estim ation m...A.4) Lf flame length N number of trials (Eq. 3.1) p exponent in fits of the variance behavior with Re p probability of a binomial event (Eq. 3.1) p
Qiu, Lei; Gao, Yanshan; Zhang, Cheng; Yan, Qinghua; O'Hare, Dermot; Wang, Qiang
2018-02-27
The thermal and flame retardant performances of polypropylene (PP) nanocomposites with sodium dodecyl sulfate (DDS) and stearic acid intercalated layered double hydroxides (DDS-LDHs and stearic-LDHs) were investigated in this study. The DDS- and stearic-LDHs were treated using the aqueous miscible organic solvent treatment (AMOST) method to give highly dispersed platelets in PP composites. The incorporation of AMO-DDS- and stearic-LDHs improved the thermal stability and flame retardancy of the PP matrix significantly. The T 0.5 (temperature at 50% weight loss) of PP/AMO-stearic-LDH (20 wt%) nanocomposites dramatically increased by 80 °C compared to that of neat PP. The flame retardant performance was dependent on both surfactants and the loading of LDHs. The AMO-stearic-LDHs showed better flame retardant properties than the AMO-DDS-LDHs, especially when the LDH loading was higher than ca. 7 wt%. In addition, stearic-LDHs with different solvothermal times including 5, 10, 24 and 72 h were studied. It was found that the nanocomposites with LDHs solvothermally treated for 10 h showed the best thermal stability. The PP/stearic-LDH (24 h) nanocomposites with 20 wt% LDH loading possessed a better flame retardant performance, with PHRR reduction reaching 70%.
Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity
NASA Astrophysics Data System (ADS)
Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo
2018-03-01
This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.
Investigation of the characteristics and stability of air-staged flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, J.; Sanz, A.; Gonzalez, M.A.
The influence of burner aerodynamics on the characteristics of the flame has been studied by means of detailed measurements in a laboratory gas-fired furnace. The distribution of air between two concentric injections and the swirl numbers of both air streams were systematically varied. As a result, a broad range of flames were obtained. The spatial distribution of temperature and species revealed important differences in the configuration of the flame, for which plausible interpretations are proposed. Air-staged flames led to reductions in NO{sub x} emissions down to one third. The fluctuations in pressure and heat release (estimated from OH* chemiluminescence) weremore » characterised in detail. Their standard deviations varied widely with the burner settings, reaching the highest values in some regimes close to flame extinction and also for high staging ratios. Analysis in the frequency domain revealed some characteristic peaks in the pressure spectra, some of them associated with resonant modes of the combustion chamber and the burner. Cross-correlations between the pressure and chemiluminescence signals indicated the onset of thermo-acoustic instabilities for highly air-staged flames, but not for non-staged regimes. This is attributed to the partial premixing achieved before the second combustion stage. The results confirm that the Rayleigh index is related to the magnitude of the fluctuations but, for the cases explored, the threshold associated with the onset of thermo-acoustic coupling might be different depending on the degree of premixing. (author)« less
Quantitative Species Measurements In Microgravity Combustion Flames
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.
2003-01-01
The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.
Laser-based measurements of OH in high pressure CH4/air flames
NASA Technical Reports Server (NTRS)
Battles, B. E.; Hanson, R. K.
1991-01-01
Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.
Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228
Light collection device for flame emission detectors
Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.
1990-01-01
A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion.
Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion
NASA Astrophysics Data System (ADS)
Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.
LES of Swirling Reacting Flows via the Unstructured scalar-FDF Solver
NASA Astrophysics Data System (ADS)
Ansari, Naseem; Pisciuneri, Patrick; Strakey, Peter; Givi, Peyman
2011-11-01
Swirling flames pose a significant challenge for computational modeling due to the presence of recirculation regions and vortex shedding. In this work, results are presented of LES of two swirl stabilized non-premixed flames (SM1 and SM2) via the FDF methodology. These flames are part of the database for validation of turbulent-combustion models. The scalar-FDF is simulated on a domain discretized by unstructured meshes, and is coupled with a finite volume flow solver. In the SM1 flame (with a low swirl number) chemistry is described by the flamelet model based on the full GRI 2.11 mechanism. The SM2 flame (with a high swirl number) is simulated via a 46-step 17-species mechanism. The simulated results are assessed via comparison with experimental data.
Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jian; Moon, Seoksu; Nishida, Keiya
This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The imagesmore » show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)« less
Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G
2016-03-10
Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.
NASA Astrophysics Data System (ADS)
Naik, S. V.; Laurendeau, N. M.
2004-11-01
We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.
Soot Formation in Freely-Propagating Laminar Premixed Flames
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Hassan, M. I.; Faeth, G. M.
1997-01-01
Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.
Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
NASA Astrophysics Data System (ADS)
Tamadonfar, Parsa
Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.
OH-LIF measurement of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile
NASA Astrophysics Data System (ADS)
Shimizu, T.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K.
2014-11-01
This paper presents combustion and ignition characteristic of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile. OH-LIF measurement was conducted to capture flame images. Flame responses were investigated for variable inlet flow velocity, U, and equivalence ratio, phi. Three kinds of flame responses were experimentally observed for the inlet flow velocities: stable flat flames (normal flames) in the high inlet flow velocity regime; unstable flames called Flames with Repetitive Extinction and Ignition (FREI) in the intermediate flow velocity regime; and stable weak flames in the low flow velocity regime, at phi = 0.6, 1.0 and 1.2. On the other hand, weak flame was not observed at phi = 3.0 by OH-LIF measurement. Computational OH mole fractions showed lower level at the rich conditions than those at stoichiometric and lean conditions. To examine this response of OH signal to equivalence ratio, rate of production analysis was conducted and four kinds of major contributed reaction for OH production: R3(O + H2 <=> H + OH); R38(H + O2 <=> O + OH); R46(H + HO2 <=> 2OH); and R86(2OH <=> O + H2O), were found. Three reactions among them, R3, R38 and R46, did not showed significant difference in rate of OH production for different equivalence ratios. On the other hand, rate of OH production from R86 at phi = 3.0 was extremely lower than those at phi = 0.6 and 1.0. Therefore, R86 was considered to be a key reaction for the reduction of the OH production at phi = 3.0.
Lean Premixed Combustion Stabilized by Low Swirl a Promising Concept for Practical Applications
NASA Technical Reports Server (NTRS)
Cheng, R. K.
1999-01-01
Since its inception, the low-swirl burner (LSB) has shown to be a useful laboratory apparatus for fundamental studies of premixed turbulent flames. The LSB operates under wide ranges of equivalence ratios, flow rates, and turbulence intensities. Its flame is lifted and detached from the burner and allows easy access for laser diagnostics. The flame brush is axisymmetric and propagates normal to the incident reactants. Therefore, the LSB is well suited for investigating detailed flame structures and empirical coefficients such as flame speed, turbulence transport, and flame generated turbulence. Due to its capability to stabilize ultra-lean premixed turbulent flames (phi approx. = 0.55), the LSB has generated interest from the gas appliance industry for use as an economical low-NO(x) burner. Lean premixed combustion emits low levels of NO(x), due primarily to the low flame temperature. Therefore, it is a very effective NO(x) prevention method without involving selective catalytic reduction (SCR), fuel-air staging, or flue gas recirculation (FGR). En the gas turbine industry, substantial research efforts have already been undertaken and engines with lean premixed combustors are already in use. For commercial and residential applications, premixed pulsed combustors and premixed ceramic matrix burners are commercially available. These lean premixed combustion technologies, however, tend to be elaborate but have relatively limited operational flexibility, and higher capital, operating and maintenance costs. Consequently, these industries are continuing the development of lean premixed combustion technologies as well as exploring new concepts. This paper summarizes the research effects we have undertaken in the past few years to demonstrate the feasibility of applying the low-swirl flame stabilization method for a wide range of heating and power generation systems. The principle of flame stabilization by low-swirl is counter to the conventional high-swirl methods that rely on a recirculation zone to anchor the flame. In LSBS, flow recirculation is not promoted to allow the premixed turbulent flames to propagate freely. A LSB with an air-jet swirler is essentially an open tube with the swirler at its mid section. The small air-jets generate swirling motion only in the annular region and leaving the central core of the flow undisturbed, When this flow exits the burner tube, the angular momentum generates radial mean pressure gradient to diverge the non-swirling reactants stream. Consequently, the mean flow velocity decreases linearly. Propagating against this decelerating flow, the flame self-sustains at the position where the local flow velocity equals the flame speed, S(sub f). The LSB operates with a swirl number, S, between 0.02 to 0.1. This is much lower than the minimum S of 0.6 required for the high-swirl burners. We found that the swirl number needed for flame stabilization varies only slightly with fuel type, flow velocity, turbulent conditions and burner dimensions (i.e. throat diameter and swirl injection angle).
NASA Astrophysics Data System (ADS)
Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.
2017-12-01
Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.
Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification
Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo
2018-01-01
Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination. PMID:29751625
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.
2003-01-01
A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.
UV Raman and Fluorescence for Multi-Species Measurement in Hydrocarbon-Fueled High-Speed Propulsion
NASA Technical Reports Server (NTRS)
Skaggs, Patricia Annette; Nandula, Sastri P.; Pitz, Robert W.
1999-01-01
This report documents work performed through the NASA Graduate Student Researchers Program, Grant No. NGT3-52316. Research performed included investigation of two-line fluorescence imaging of OH for temperature measurement and an investigation of negative flame speeds for modeling of premixed turbulent flames. The laboratory work and initial analysis of the fluorescence imaging was performed at NASA Glen Research Center with follow up analysis at Vanderbilt University. The negative flame speed investigation was performed using an opposed jet flow simulation program at Vanderbilt University. The fluorescence imaging work is presented first followed by the negative flame speed investigation.
Spectral response of a UV flame sensor for a modern turbojet aircraft engine
NASA Astrophysics Data System (ADS)
Schneider, William E.; Minott, George L.
1989-12-01
A flame sensor is incorporated into the F404 turbojet's afterburner section in order to monitor operations. The sensor contains a gaseous-discharge-type UV detector tube. Attention is presently given to the results of a study of the relationship between the flame and the sensor at temperatures of up to 400 F, using a double monochromator-based spectroradiometric system optimized for spectral response measurements in the 200-300 nm wavelength range. Modifications have been instituted as a result of these tests which guarantee a sufficiently high sensor output signal level, irrespective of variability in afterburner flame irradiance associated with differences in engine operating conditions.
Chemical Reactions in Turbulent Mixing Flows. Revision.
1983-08-02
jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the
Chemical Reactions in Turbulent Mixing Flows.
1986-06-15
length from Reynolds and Schmidt numbers at high Reynolds number, 2. the linear dependence of flame length on the stoichiometric mixture ratio, and, 3...processes are unsteady and the observed large scale flame length fluctuations are the best evidence of the individual cascade. A more detailed examination...Damk~hler number. When the same ideas are used in a model of fuel jets burning in air, it explains (Broadwell 1982): 1. the independence of flame
Application of image converter camera to measure flame propagation in S. I. engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, A.; Ishii, K.; Sasaki, T.
1989-01-01
A combustion flame visualization system, for use as an engine diagnostics tool, was developed in order to evaluate combustion chamber shapes in the development stage of mass-produced spark ignition (S.I.) engines. The system consists of an image converter camera and a computer-aided image processing system. The system is capable of high speed photography (10,000 fps) at low intensity light (1,000 cd/m/sup 2/), and of real-time display of the raw images of combustion flames. By using this system, flame structure estimated from the brightness level on a photograph and direction of flame propagation in a mass-produced 4-valve engine were measured. Itmore » was observed that the difference in the structure and the propagation of the flame in the cases of 4-valve and quasi-2-valve combustion chambers, which has the same in the pressure diagram, were detected. The quasi-2-valve configuration was adopted in order to improve swirl intensity.« less
Richtmyer-Meshkov instability in shock-flame interactions
NASA Astrophysics Data System (ADS)
Massa, Luca; Pallav Jha Collaboration
2011-11-01
Shock-flame interactions occur in supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer- Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a non-zero pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth for high wave numbers. A non-hydrodynamic flame representation leads to the definition of an additional scaling Peclet number, the effects of which are investigated. It is found that an increased flame-contact separation destabilizes the contact discontinuity by augmenting the tangential shear.
One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames
NASA Astrophysics Data System (ADS)
Athanassiou, E. K.; Grass, R. N.; Stark, W. J.
2010-05-01
Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.
Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames
NASA Astrophysics Data System (ADS)
Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin
2017-05-01
Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2005-01-01
Researchers from NASA Glenn Research Center s Combustion Branch and the Ohio Aerospace Institute (OAI) have developed a transferable calibration standard for an optical technique called spontaneous Raman scattering (SRS) in high-pressure flames. SRS is perhaps the only technique that provides spatially and temporally resolved, simultaneous multiscalar measurements in turbulent flames. Such measurements are critical for the validation of numerical models of combustion. This study has been a combined experimental and theoretical effort to develop a spectral calibration database for multiscalar diagnostics using SRS in high-pressure flames. However, in the past such measurements have used a one-of-a-kind experimental setup and a setup-dependent calibration procedure to empirically account for spectral interferences, or crosstalk, among the major species of interest. Such calibration procedures, being non-transferable, are prohibitively expensive to duplicate. A goal of this effort is to provide an SRS calibration database using transferable standards that can be implemented widely by other researchers for both atmospheric-pressure and high-pressure (less than 30 atm) SRS studies. A secondary goal of this effort is to provide quantitative multiscalar diagnostics in high pressure environments to validate computational combustion codes.
2009-06-30
the flamelet solution is indictated in Figure 2. The increase of strain rate enhances the heat and species transport close to the flame front, which...any other aspect c this burden to Department of Defense, Washington Headquarters Services. Directorate for Information Operations and Reports (0704...of design attributes (e.g., injection port size and location, center post recess distance, etc.) and operating conditions (e.g., chamber pressure
Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2003-01-01
In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.
Understanding and predicting soot generation in turbulent non-premixed jet flames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hai; Kook, Sanghoon; Doom, Jeffrey
2010-10-01
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogatemore » fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.« less
Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C
NASA Technical Reports Server (NTRS)
Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to the presence of luminous soot particles under fuel-lean conditions when smoke-point conditions are approached. This is very similar to earlier findings concerning differences between laminar smoke- and sootpoint flame lengths in still environments.
A LES-CMC formulation for premixed flames including differential diffusion
NASA Astrophysics Data System (ADS)
Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas
2018-05-01
A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.
Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets
NASA Astrophysics Data System (ADS)
Asaithambi, Rajapandiyan
Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the flame base. Mass-fraction of the hydroperoxyl radical, HO2, peaks in magnitude upstream of the flame's stabilization point indicating autoignition. A flame structure similar to a triple-flame, with a lean premixed flame and a rich premixed flame flanking a thick diffusion flame is identified by the flame index. Radicals formed in the shear layer ahead of ignition and oxygen from the coflow do not get fully consumed by the flame and are transported along the edges of the flame brush into the core of the jet. Ignition delays from a well-stirred reactor model and an autoigniting diffusion flame model are able predict the lift-off height of the turbulent flame. The local entrainment rate was observed to increase with axial distance until the flame stabilization point and then decrease downstream. Data from probes placed along the flame reveals a highly turbulent flow field with variable composition at a given location. In general however, it is observed that the turbulent kinetic energy (TKE) is very high in cold fuel rich mixtures and is lowest in hot fuel lean mixtures. Autoignition occurs at the most-reactive hot and lean mixture fractions where the TKE is the lowest.
Finite-rate chemistry effects in a Mach 2 reacting flow
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) are combined and applied to a supersonic flame. For the first time, simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are obtained with a 'single' excimer laser in a supersonic-lifted hydrogen-air diffusion flame. In the supersonic flame, a small amount of reaction occurs upstream of the lifted flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and high total enthalpy fluctuations lead to nonequilibrium values of temperature, and major and minor species concentrations. Combustion occurs farther downstream of the lifted region where slow three-body recombination reactions result in superequilibrium OH concentrations that depress the temperatures below their equilibrium values. Farther downstream, ambient air entrainment contaminates flame properties.
Response mechanisms of attached premixed flames subjected to harmonic forcing
NASA Astrophysics Data System (ADS)
Shreekrishna
The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the vicinity of typical screech frequencies in gas turbine combustors. The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures. Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.
Ozbek, N; Baysal, A
2015-02-01
The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.
High pressure optical combustion probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, S.D.; Richards, G.A.
1995-06-01
The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less
NASA Astrophysics Data System (ADS)
Lipatnikov, Andrei N.; Chomiak, Jerzy; Sabelnikov, Vladimir A.; Nishiki, Shinnosuke; Hasegawa, Tatsuya
2018-01-01
Data obtained in 3D direct numerical simulations of statistically planar, 1D weakly turbulent flames characterised by different density ratios σ are analysed to study the influence of thermal expansion on flame surface area and burning rate. Results show that, on the one hand, the pressure gradient induced within a flame brush owing to heat release in flamelets significantly accelerates the unburned gas that deeply intrudes into the combustion products in the form of an unburned mixture finger, thus causing large-scale oscillations of the burning rate and flame brush thickness. Under the conditions of the present simulations, the contribution of this mechanism to the creation of the flame surface area is substantial and is increased by σ, thus implying an increase in the burning rate by σ. On the other hand, the total flame surface areas simulated at σ = 7.53 and 2.5 are approximately equal. The apparent inconsistency between these results implies the existence of another thermal expansion effect that reduces the influence of σ on the flame surface area and burning rate. Investigation of the issue shows that the flow acceleration by the combustion-induced pressure gradient not only creates the flame surface area by pushing the finger tip into the products, but also mitigates wrinkling of the flame surface (the side surface of the finger) by turbulent eddies. The latter effect is attributed to the high-speed (at σ = 7.53) axial flow of the unburned gas, which is induced by the axial pressure gradient within the flame brush (and the finger). This axial flow acceleration reduces the residence time of a turbulent eddy in an unburned zone of the flame brush (e.g. within the finger). Therefore, the capability of the eddy for wrinkling the flamelet surface (e.g. the side finger surface) is weakened owing to a shorter residence time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufferand, H.; Tosatto, L.; La Mantia, B.
2009-08-15
The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less
Flame dynamics in a micro-channeled combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk; Markides, Christos N.
2015-01-22
The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modesmore » of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of existence of the chaotic flame increases. The frequency of re-ignition of successive flames decreases at higher flow rates and increases at higher temperatures. The data and results from this study will not only help the development of new micro-power generation devices, but they will also serve as a validation case for combustion models capable of predicting flame behavior in the presence of strong thermal and flow boundary layers, a situation common to many industrial applications.« less
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-06-14
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.
Effect of W/O Emulsion Fuel Properties on Spray Combustion
NASA Astrophysics Data System (ADS)
Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco
This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-01-01
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250
NASA Astrophysics Data System (ADS)
Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal
2017-11-01
We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).
Flame imaging using planar laser induced fluorescence of sulfur dioxide
NASA Astrophysics Data System (ADS)
Honza, Rene; Ding, Carl-Philipp; Dreizler, Andreas; Böhm, Benjamin
2017-09-01
Laser induced fluorescence of sulfur dioxide (SO2-PLIF) has been demonstrated as a useful tool for flame imaging. Advantage was taken from the strong temperature dependence of the SO2 fluorescence signal. SO2 fluorescence intensity increases by more than one order of magnitude if the temperature changes from ambient conditions to adiabatic flame temperatures of stoichiometric methane-air flames. This results in a steep gradient of SO2-PLIF intensities at the reaction zone and therefore can be used as a reliable flame marker. SO2 can be excited electronically using the fourth-harmonic of an Nd:YAG laser at 266 nm. This is an attractive alternative to OH-LIF, a well-recognized flame front marker, because no frequency-doubled dye lasers are needed. This simplifies the experimental setup and is advantageous for measurements at high repetition rates where dye bleaching can become an issue. To prove the performance of this approach, SO2-PLIF measurements were performed simultaneously with OH-PLIF on laminar premixed methane-air Bunsen flames for equivalence ratios between 0.9 and 1.25. These measurements were compared to 1D laminar flamelet simulations. The SO2 fluorescence signal was found to follow the temperature rise of the flame and is located closer to the steep temperature gradient than OH. Finally, the combined SO2- and OH-PLIF setup was applied to a spark ignition IC-engine to visualize the development of the early flame kernel.
Laser-based investigations in gas turbine model combustors
NASA Astrophysics Data System (ADS)
Meier, W.; Boxx, I.; Stöhr, M.; Carter, C. D.
2010-10-01
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field-flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.
Importance of turbulence-chemistry interactions at low temperature engine conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
Importance of turbulence-chemistry interactions at low temperature engine conditions
Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu
2017-06-08
The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less
Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Hicks, Yolanda Royce
1996-01-01
The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations. OH was selected for measurement because it is a major combustion intermediate, playing a key role in the chemistry of combustion, and because its presence within the flame zone can serve as a qualitative marker of flame temperature. All images were taken in the environment of actual engines during flight, using actual jet fuel. The results of the PLIF study led directly to the modification of a fuel injector.
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Dong, Chunlei; Wirasaputra, Alvianto; Luo, Qinqin; Liu, Shumei; Yuan, Yanchao; Zhao, Jianqing; Fu, Yi
2016-01-01
It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM) for curing diglycidyl ether of bisphenol A (DGEBA), the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %). To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one. PMID:28774127
McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi
2015-11-06
In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less
Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame
Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.
2016-01-01
Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194
DEMONSTRATION BULLETIN: FLAME REACTOR - HORSEHEAD RESOURCE DEVELOPMENT COMPANY, INC.
The Horsehead Resource Development Company, Inc. (HRD) Flame Reactor is a patented and proven high temperature thermal process designed to safely treat industrial residues and wastes containing metals. During processing, the waste material is introduced into the hottest portio...
Model-based estimation of adiabatic flame temperature during coal gasification
NASA Astrophysics Data System (ADS)
Sarigul, Ihsan Mert
Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential effect on adiabatic flame temperature.
Quantifying real-gas effects on a laminar n-dodecane - air premixed flame
NASA Astrophysics Data System (ADS)
Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan
2015-11-01
With the increasing demand for higher efficiencies in aircraft gas-turbine engines, there has been a progressive march towards high pressure-ratio cycles. Under these conditions, the aviation fuel, Jet A, is injected into the combustor at supercritical pressures. In this work, we study and quantify the effects of transcriticality on a 1D freely propagating laminar n-dodecane - air premixed flame. The impact of the constitutive state relations arising from the Ideal Gas equation of state(EOS) and Peng-Robinson EOS on flame structure and propagation is presented. The effects of real-gas models of transport properties, such as viscosity on laminar flame speed, are also presented.
Applications of multi-spectral imaging: failsafe industrial flame detector
NASA Astrophysics Data System (ADS)
Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath
2016-05-01
Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.
Planar measurements of soot volume fraction and OH in a JP-8 pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.
2009-07-15
The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less
Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu
2013-08-21
Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.
Shock wave and flame front induced detonation in a rapid compression machine
NASA Astrophysics Data System (ADS)
Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.
2018-05-01
The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.
This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results weremore » compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting ethylbenzene flames. The presence of this radical was significantly reduced as ethanol concentration was increased in the flames, and this effect in combination with the lower carbon to oxygen ratios and the enhanced formation of carbon monoxide, are likely what allowed higher equivalence ratios to be reached without forming soot. (author)« less
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixturesmore » having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide evidence that the leading points model can provide useful predictions of turbulent flame speed over a wide range of operating conditions and flow geometries.« less
Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame
NASA Astrophysics Data System (ADS)
Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi
2011-10-01
We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.
Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.
2005-10-01
Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.
Caracterisation experimentale et numerique de la flamme de carburants synthetiques gazeux
NASA Astrophysics Data System (ADS)
Ouimette, Pascale
The goal of this research is to characterize experimentally and numerically laminar flames of syngas fuels made of hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). More specifically, the secondary objectives are: 1) to understand the effects of CO2 concentration and H2/CO ratio on NOx emissions, flame temperature, visible flame height, and flame appearance; 2) to analyze the influence of H2/CO ratio on the lame structure, and; 3) to compare and validate different H2/CO kinetic mechanisms used in a CFD (computational fluid dynamics) model over different H2/CO ratios. Thus, the present thesis is divided in three chapters, each one corresponding to a secondary objective. For the first part, experimentations enabled to conclude that adding CO2 diminishes flame temperature and EINOx for all equivalence ratios while increasing the H2/CO ratio has no influence on flame temperature but increases EINOx for equivalence ratios lower than 2. Concerning flame appearance, a low CO2 concentration in the fuel or a high H2/CO ratio gives the flame an orange color, which is explained by a high level of CO in the combustion by-products. The observed constant flame temperature with the addition of CO, which has a higher adiabatic flame temperature, is mainly due to the increased heat loss through radiation by CO2. Because NOx emissions of H2/CO/CO 2 flames are mainly a function of flame temperature, which is a function of the H2/CO ratio, the rest of the thesis concentrates on measuring and predicting species in the flame as a good prediction of species and heat release will enable to predict NOx emissions. Thus, for the second part, different H2/CO fuels are tested and major species are measured by Raman spectroscopy. Concerning major species, the maximal measured H 2O concentration decreases with addition of CO to the fuel, while the central CO2 concentration increases, as expected. However, at 20% of the visible flame height and for all fuels tested herein, the measured CO2 concentration is lower than its stoechiometric value while the measured H2O already reached its stoechiometric concentration. The slow chemical reactions necessary to produce CO2 compared to the ones forming H2O could explain this difference. For the third part, a numerical model is created for a partially premixed flame of 50% H 2 / 50% CO. This model compares different combustion mechanisms and shows that a reduced kinetic mechanism reduces simulation times while conserving the results quality of more complex kinetic schemes. This numerical model, which includes radiation heat losses, is also validated for a large range of fuels going from 100% H2 to 5% H2 / 95% CO. The most important recommendation of this work is to include a NOx mechanism to the numerical model in order to eventually determine an optimal fuel. It would also be necessary to validate the model over a wide range for different parameters such as equivalence ratio, initial temperature and initial pressure.
Formulation of intumescent flame retardant coatings containing natural-based tea saponin.
Qian, Wei; Li, Xiang-Zhou; Wu, Zhi-Ping; Liu, Yan-Xin; Fang, Cong-Cong; Meng, Wei
2015-03-18
Natural product tea saponin (TS), extracted from the nutshell of camellia (Camellia oleifera Abel, Theaceae), was introduced into intumescent flame retardant formulations as blowing agent and carbon source. The formulations of the flame retardant system were optimized to get the optimum proportion of TS, and intumescent flame retardant coatings containing tea saponin (TS-IFRCs) were then prepared. It was found that TS can significantly affect the combustion behavior and the thermal stability of TS-IFRCs evaluated by cone calorimetry and simultaneous thermal analyzer, respectively. It was shown that TS, degraded to water vapor and carbon at high temperatures, can combine with other components to form a well-developed char layer. The char layer was supposed to inhibit erosion upon exposure to heat and oxygen and enhance the flame retardancy of TS-IFRCs. In addition, the smoke release of TS-IFRCs was also studied, which provided a low amount of smoke production.
Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames
NASA Astrophysics Data System (ADS)
Lietz, Christopher; Raman, Venkatramanan
2014-11-01
In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Kolody, Mark R.; Curran, Jerome P.; Trejo, David; Reinschmidt, Ken; Kim, Hyung-Jin
2009-01-01
A 20-year life cycle cost analysis was performed to compare the operational life cycle cost, processing/turnaround timelines, and operations manpower inspection/repair/refurbishment requirements for corrosion protection of the Kennedy Space Center launch pad flame deflector associated with the existing cast-in-place materials and a newer advanced refractory ceramic material. The analysis compared the estimated costs of(1) continuing to use of the current refractory material without any changes; (2) completely reconstructing the flame trench using the current refractory material; and (3) completely reconstructing the flame trench with a new high-performance refractory material. Cost estimates were based on an analysis of the amount of damage that occurs after each launch and an estimate of the average repair cost. Alternative 3 was found to save $32M compared to alternative 1 and $17M compared to alternative 2 over a 20-year life cycle.
Thermal and mechanical behavior of flame retardant epoxy-polyesterurethane blends
NASA Astrophysics Data System (ADS)
Patel, R. H.; Hirani, A. V.; Kachhia, P. H.
2016-05-01
Polyesterurethanes are used in different applications due to their unique combination of the properties like toughness, flexibility, solvent resistance, etc. Nowadays flame retardant properties of polymers are of commercial interest because of their potential use in high performance applications. In the present study attempts have been taken to improve the flame retardant properties of conventional epoxy resin by incorporating phosphorus based polyesterurethane. Polyesterurethane has been synthesized in the laboratory and characterized by chemical and instrumental analysis techniques. Thermal stability and char value of the blends have been determined using thermogravimetric analysis technique. Limiting Oxygen Index (LOI) and UL-94 test methods have been used to determine the flame retardant properties of neat polymer and their blends in film form. Mechanical properties like tensile strength, elongation and impact resistance of the blends have been found out. Polyblend of epoxy resin with phosphorus based polyesterurethane has improved flame retardant properties compare to neat epoxy resin.
Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing
2018-01-23
Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.
Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance
NASA Astrophysics Data System (ADS)
Chen, Jian; Huang, Wei; Jiang, Shu-Bin; Li, Xiao-Yan; An, You; Li, Chuang; Gao, Xiao-Ling; Chen, Hong-Bing
2017-01-01
Ethylene propylene diene monomer (EPDM) compounds with good flame-retardant and γ-ray radiation resistant properties were prepared by adding complex flame retardants and phenathrene. The resultant EPDM formulations have a long time to ignition (TTI >46 s), a low peak heat release rate (PHRR 341 kW/m2) and a high limited oxygen index (LOI >30). Effects of γ-ray radiation on the resultant flame-retardant EPDM was investigated. The formulated EPDM is a crosslinking dominated polymer under γ-ray radiation. The γ-ray radiation resistant property of EPDM was enhanced by adding phenanthrene. Elongation at break of EPDM formulated with phenanthrene could retain 91% after being irradiated to 0.3 MGy and still retains 40% elongation even after being irradiated to 0.9 MGy, which is much better the control. It is expected that the formulated flame-retardant and radiation resistant EPDM materials could meet the requirements for use in radiation environments.
NASA Astrophysics Data System (ADS)
Rubtsov, N. M.; Seplyarskii, B. S.; Troshin, K. Ya.; Chernysh, V. I.; Tsvetkov, G. I.
2011-10-01
Using high-speed digital color cinematography, we studied the propagation of a laminar spherical flame in stoichiometric mixtures of hydrogen, methane, and pentane with air in the presence of additives at atmospheric pressure in constant-volume reactors, and derived quantitative data on the time of formation of a stable flame front. Cellular flames caused by gas-dynamic instability attributable to convective flows arising during the afterburning of gas were observed in hydrocarbon-air stoichiometric mixtures diluted with inert additives. It was found that the effect of additives of carbon dioxide and argon (>10%) and minor additives of CCl4 on the combustion of hydrocarbons, and of propylene on the combustion of hydrogen-rich mixtures, lead to periods of delay in the development of a laminar spherical flame; in addition, additives of propylene promote the combustion of hydrogen poor mixtures.
Han, Yong; Chen, Yingjun; Ahmad, Saud; Feng, Yanli; Zhang, Fan; Song, Wenhuai; Cao, Fang; Zhang, Yanlin; Yang, Xin; Li, Jun; Zhang, Gan
2018-06-05
Inefficient coal combustion is a significant source of elemental carbon (EC) air pollution in China, but there is a limited understanding of EC's formation processes. In this study, high time-resolved particle number size distributions (PNSDs) and size-resolved chemical compositions were obtained from the combustion of four bituminous coals burned in a quartz tube furnace at 500 and 800 °C. Based on the distinct characteristics of PNSD, the flaming stage was divided into the first-flaming stage (with a PNSD peak at 0.3-0.4 μm) and the second-flaming stage (with a PNSD peak at 0.1-0.15 μm). For the size-segregated EC and OC measurements, more soot-EC was observed in particles larger than 0.3 μm, whereas the smaller ones possessed more char-EC. The results indicated that gas-phase and direct-conversion EC generation mechanisms dominate different burning stages. The analysis of 16 parent PAHs showed more high-molecular-weight PAHs in the second-flaming stage particles, which supports the idea of different formation processes for char-EC and soot-EC. For all four coals, the PNSD and chemical compositions shared a similar trend, confirming that the different formation processes of EC in different flaming stages were common. This study provides novel information concerning EC formation.
A counterflow diffusion flame study of branched octane isomers
Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; ...
2012-09-25
Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed modelmore » reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.« less
Guo, Kun; Donose, Bogdan C; Soeriyadi, Alexander H; Prévoteau, Antonin; Patil, Sunil A; Freguia, Stefano; Gooding, J Justin; Rabaey, Korneel
2014-06-17
Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.
The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure
2009-09-28
S L, on all scales, including that of the laminar flame thickness, presents a number of both experimental and numerical challenges. Hereafter, we...fuel preconditioning, compression of the overall system, or propagation of large-scale shocks . Probing such regimes experimentally requires either...reactions are modeled using the first-order Arrhenius kinetics dY dt ≡ ẇ = −AρY exp ( − Q RT ) , (5) where A is the pre-exponential factor, Q is the
Edge attachment study for fire-resistant canopies
NASA Technical Reports Server (NTRS)
Wintermute, G. E.
1982-01-01
Twenty-two resin systems were evaluated in laminate form for possible use as edge attachment material for fire-resistant canopies. The evaluation uncovered an unexpected development when the laminates were subjected to an intense flame: (1) the high-heat-resistant materials could withstand the flame test quite well, but experienced rapid heat transfer through the test specimen; (2) the laminates which exhibited a low rate of heat transfer were materials which lost strength rapidly in the presence of the flame by decomposition, delamination, and blistering.
Mixing in Gas Phase Turbulent Jets
1988-01-01
jet centerline with about 4 ZD per line 81 5-14 Comparison of flame lengths reported by Dahm et al. (1984) with those estimated from the measured PDFs...the flame length studies of Weddell (1952) and Dahm et al. (1984) . Their work points to Re 0 M 3,000 as the threshold where the degree of molecular...increased abundance at high C/C, however, offsets - 84 - part of the 8% loss in mean concentration when a flame length is estimated from the measured PDF
Investigation of the formation of gaseous sodium sulfate in a doped methane-oxygen flame
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Miller, R. A.; Kohl, F. J.; Fryburg, G. C.
1977-01-01
Na2SO4(g) formation was measured at atmospheric pressure in CH4-O2 flames, with high pressure, free-jet expansion, mass spectrometric sampling used to identify and measure reaction products. Measured composition profiles of reaction products for a doped 9.5 mole ratio O2/CH4 flame are presented. Weight percentages of reactants were 4.7 CH4, 89.0 O2, 3.5 H2O, 2.0 SO2 and 0.35 NaCl.
NASA Astrophysics Data System (ADS)
Kumar, Praveen
The demand for sustainable alternative fuels is ever-increasing in the power generation, transportation, and energy sectors due to the inherent non-sustainable characteristics and political constraints of current energy resources. A number of alternative fuels derived from cellulosic biomass, algae, or waste are being considered, along with the conversion of electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving attention recently because it is a non-carbon fuel that is readily produced in large quantities, stored and transported with current infrastructure, and is often a byproduct of biomass or waste conversion processes. However, pure or anhydrous ammonia combustion is severely challenging due to its high auto-ignition temperature (650 °C), low reactivity, and tendency to promote NOx formation. As such, the present study focuses on two major aspects of the ammonia combustion. The first is an applied investigation of the potential to achieve pure NH3 combustion with low levels of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO and NH3 are collected for a wide range of operating conditions. The second major focus of this work is on fundamental investigation of NO x formation mechanisms in flames with high levels of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared with numerically predicted flames using complex chemical kinetics within CHEMKIN and reacting CFD codes i.e., UNICORN. From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and (3) GRI-Mech3.0 in laminar premixed H2/NH 3 flames, the Tian and Konnov mechanisms are found to capture the reduction in measured flame speeds with increasing NH3 in the fuel mixture, both qualitatively and quantitatively. The NOx predictions by all the three chemical mechanisms are observed to be in fairly good agreement with the measured NOx, qualitatively, however predictions are found to be 3 to 4 times higher than the measurements for both lean and rich H 2/NH3 premixed flames. For laminar H2/NH3 diffusion flames, detailed 2-D comparisons of in-situ NO measurements with the 2-D simulated NO using the Tian, GRI-Mech3.0 and modified GRI-Mech chemical mechanisms are performed and found to differ from the measured NO by approximately an order of magnitude. For NH3 seeded H2/air diffusion flames, GRI-Mech3.0 seemed to overpredict NO by more than an order of magnitude and failed to capture the fundamental flame characteristics, such as the flame length variation with increasing NH3 in the fuel mixture. On the other hand, the predicted NO profiles by the Tian mechanism were not only found to be in better agreement with the measured NO, but they also captured the in-flame NO distribution as well, both qualitatively and quantitatively. Overall, the Tian mechanism is found to be the superior chemical mechanism to capture the NOx formation chemistry in NH3 seeded flames.
BROMINATED FLAME RETARDANTS: WHAT WE KNOW, AND WHAT WE DON’T
Brominated flame retardants (BFRs) represent a large and diverse class of high volume industrial chemicals which have been developed to provide fire safety. There are many other BFRs which have been used and are under development. Historically, polybrominated biphenyls (PBBs) ...
Innovative green technique for preparing of flame retardant cotton
USDA-ARS?s Scientific Manuscript database
Due to its environmentally benign character, microwave-assisted or supercritical carbon dioxide high pressure reactors are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this paper, an innovative approach for preparation of flame retardant cotton fabric ...
Numerical simulation of turbulent stratified flame propagation in a closed vessel
NASA Astrophysics Data System (ADS)
Gruselle, Catherine; Lartigue, Ghislain; Pepiot, Perrine; Moureau, Vincent; D'Angelo, Yves
2012-11-01
Reducing pollutants emissions while keeping a high combustion efficiency and a low fuel consumption is an important challenge for both gas turbine (GT) and internal combustion engines (ICE). To fulfill these new constraints, stratified combustion may constitute an efficient strategy. A tabulated chemistry approach based on FPI combined to a low-Mach number method is applied in the analysis of a turbulent propane-air flame with equivalence ratio (ER) stratification, which has been studied experimentally by Balusamy [S. Balusamy, Ph.D Thesis, INSA-Rouen (2010)]. Flame topology, along with flame velocity statistics, are well reproduced in the simulation, even if time-history effects are not accounted for in the tabulated approach. However, these effects may become significant when exhaust gas recirculation (EGR) is introduced. To better quantify them, both ER and EGR-stratified two-dimensional flames are simulated using finite-rate chemistry and a semi-detailed mechanism for propane oxidation. The numerical implementation is first investigated in terms of efficiency and accuracy, with a focus on splitting errors. The resulting flames are then analyzed to investigate potential extensions of the FPI technique to EGR stratification.
Characteristics of a Strongly-Pulsed Non-Premixed Jet Flame in Cross-flow
NASA Astrophysics Data System (ADS)
Gamba, Mirko; Clemens, Noel T.; Ezekoye, Ofodike A.
2006-11-01
The effects of large-amplitude, high-frequency harmonic forcing of turbulent nonpremixed hydrogen/methane jet flames in cross-flow (JFICF) are investigated experimentally. Flame lengths, penetration lengths, and mixing characteristics are studied using flame luminosity imaging, planar laser Mie scattering visualization and particle image velocimetry. Mean jet Reynolds numbers of 1,600 and 3,250 (peak Re ˜2,500--6,500) with corresponding mean momentum flux ratios, r, of 1.9 and 3.7 (peak r ˜2.6--8.3) are considered. Forcing frequencies of 100 Hz and 300 Hz with amplitudes of ˜60%--300% are investigated. Consistent with previous work, a drastic decrease in flame length and soot emission, an increase in flame penetration and an improved jet fuel/cross-flow air mixing are observed for the larger forcing amplitude cases. Partial pre-mixing induced by near-field reverse flow, near-field vortex/vortex interaction and large-scale stirring, rendered stronger by large forcing amplitudes and frequencies, are thought to play a key role on the observed effects.
NASA Technical Reports Server (NTRS)
Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der
2001-01-01
Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for simulation of flame lift-off and blowout.
Experimental criteria for the determination of fractal parameters of premixed turbulent flames
NASA Astrophysics Data System (ADS)
Shepherd, I. G.; Cheng, Robert K.; Talbot, L.
1992-10-01
The influence of spatial resolution, digitization noise, the number of records used for averaging, and the method of analysis on the determination of the fractal parameters of a high Damköhler number, methane/air, premixed, turbulent stagnation-point flame are investigated in this paper. The flow exit velocity was 5 m/s and the turbulent Reynolds number was 70 based on a integral scale of 3 mm and a turbulent intensity of 7%. The light source was a copper vapor laser which delivered 20 nsecs, 5 mJ pulses at 4 kHz and the tomographic cross-sections of the flame were recorded by a high speed movie camera. The spatial resolution of the images is 155 × 121 μm/pixel with a field of view of 50 × 65 mm. The stepping caliper technique for obtaining the fractal parameters is found to give the clearest indication of the cutoffs and the effects of noise. It is necessary to ensemble average the results from more than 25 statistically independent images to reduce sufficiently the scatter in the fractal parameters. The effects of reduced spatial resolution on fractal plots are estimated by artificial degradation of the resolution of the digitized flame boundaries. The effect of pixel resolution, an apparent increase in flame length below the inner scale rolloff, appears in the fractal plots when the measurent scale is less than approximately twice the pixel resolution. Although a clearer determination of fractal parameters is obtained by local averaging of the flame boundaries which removes digitization noise, at low spatial resolution this technique can reduce the fractal dimension. The degree of fractal isotropy of the flame surface can have a significant effect on the estimation of the flame surface area and hence burning rate from two-dimensional images. To estimate this isotropy a determination of the outer cutoff is required and three-dimensional measurements are probably also necessary.
DNS of a turbulent lifted DME jet flame
Minamoto, Yuki; Chen, Jacqueline H.
2016-05-07
A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less
Transition of carbon nanostructures in heptane diffusion flames
NASA Astrophysics Data System (ADS)
Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui
2017-02-01
The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.
NASA Astrophysics Data System (ADS)
Suresha, Suhas; Sujith, R. I.; Emerson, Benjamin; Lieuwen, Tim
2016-10-01
The flame or flow behavior of a turbulent reacting wake is known to be fundamentally different at high and low values of flame density ratio (ρu/ρb ), as the flow transitions from globally stable to unstable. This paper analyzes the nonlinear dynamics present in a bluff-body stabilized flame, and identifies the transition characteristics in the wake as ρu/ρb is varied over a Reynolds number (based on the bluff-body lip velocity) range of 1000-3300. Recurrence quantification analysis (RQA) of the experimentally obtained time series of the flame edge fluctuations reveals that the time series is highly aperiodic at high values of ρu/ρb and transitions to increasingly correlated or nearly periodic behavior at low values. From the RQA of the transverse velocity time series, we observe that periodicity in the flame oscillations are related to periodicity in the flow. Therefore, we hypothesize that this transition from aperiodic to nearly periodic behavior in the flame edge time series is a manifestation of the transition in the flow from globally stable, convective instability to global instability as ρu/ρb decreases. The recurrence analysis further reveals that the transition in periodicity is not a sudden shift; rather it occurs through an intermittent regime present at low and intermediate ρu/ρb . During intermittency, the flow behavior switches between aperiodic oscillations, reminiscent of a globally stable, convective instability, and periodic oscillations, reminiscent of a global instability. Analysis of the distribution of the lengths of the periodic regions in the intermittent time series and the first return map indicate the presence of type-II intermittency.
Two-stage autoignition and edge flames in a high pressure turbulent jet
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-07-04
A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less
[Toxicity of selected brominated aromatic compounds].
Szymańska, J A
1996-01-01
Flame retardants are added to plastic materials, textiles, wood, hydraulic liquids etc. for reducing their inflammability. These substances reduce the heat and carbon monoxide formation in case of fire. They are added in high amounts, even up to 30% of product mass (e.g. plastic material). The production of brominated flame retardants has been steadily rising in the last 20 years, e.g. in the 1990s the world production of polybromodiphenyl ethers (PBDE) reached 40,000 tons annually. Mainly polybrominated flame retardants are produced, e.g. polybromobiphenyls (PBB), PBDE, hexabromobenzene (HBB). Their toxicity is low or nil, the DL 50 values are over 1 g/kg. However, when administered in low doses over longer time periods they can cause changes leading to porphyria. The information on the toxicity of polybrominated flame retardants for humans is derived mainly from the accident in Michigan, where PBB contamination of fodder for farm animals occurred with consequent contamination of food. In consumers of contaminated food cutaneous changes and neurological and muscular symptoms were noted. Polybrominated flame retardants can be metabolized and undergo biodegradation mainly trough debromination. The data on the toxicity of debromination products point to di- and tribromobenzenes, some of which are highly hepatotoxic. In acute poisoning hepatocellular damage manifest itself as necrotic changes in experimental animals receiving 0.1-0.8 of DL 50 of di- or tribromobenzene. After repeated administration of lower doses the hepatocellular damage assumes the features of porphyrogenic injury. In the environment polybrominated flame retardants can be transformed by various factors (high temperature during fire accidents, incomplete incineration of waste) to polybrominated dibenzodioxins of dibenzofurans whose lethal doses can in extreme cases be 0.001 mg for 1 kg body weight.
Invited Review. Combustion instability in spray-guided stratified-charge engines. A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fansler, Todd D.; Reuss, D. L.; Sick, V.
2015-02-02
Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less
Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam
NASA Technical Reports Server (NTRS)
Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.
2007-01-01
Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce to the risk of a piloted transition to flaming.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During a walkdown of Launch Pad 39B, the STS-114 crew pauses for a photograph in the flame trench underneath the pad. The flame trench, built with concrete and refractory brick, bisects the pad at ground level. It is 490 feet long, 58 feet wide and 42 feet deep. The flame deflector system includes an inverted, V-shaped steel structure covered with a high-temperature concrete material five inches thick that extends across the center of the flame trench. One side of the V receives and deflects the flames from the Orbiter main engines; the opposite side deflects the flames from the Solid Rocket Boosters. There are also two movable deflectors at the top of the trench to provide additional protection to Shuttle hardware from the Solid Rocket Booster flames. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31. The crew is at KSC for Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad.
BROMINATED FLAME RETARDANTS: WHAT WE KNOW, AND WHAT WE DON�T
Brominated flame retardants (BFRs) represent a large and diverse class of high volume industrial chemicals which have been developed to provide fire safety. There are many other BFRs which have been used and are under development. Historically, polybrominated biphenyls (PBBs) w...
BROMINATED FLAME RETARDANTS: WHY DO WE CARE?
Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...
Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect...
Develop of innovative technologies for flame resistant cotton fabrics at USDA
USDA-ARS?s Scientific Manuscript database
Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carb...
Development of innovative technologies for flame resistant cotton fabrics at USDA
USDA-ARS?s Scientific Manuscript database
Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carbo...
Joo, Peter H; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus
2015-03-01
The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.
Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike
2008-11-01
The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.
Assessment of PLIF-Based Heat Release Rate Markers using DNS of Highly Turbulent Premixed Flames
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Zhang, Peiyu; Wabel, Timothy; Steinberg, Adam; Wang, Haiou; Hawkes, Evatt
2017-11-01
Planar Laser Induced Fluorescence (PLIF) remains the most common measurement tool for describing turbulent flame topologies. However, the interpretation of the images obtained from such experiments can be obscured due to various experimental constraints, such as the finite laser thickness, the application of intensifier, etc. Synthetic-PLIF images are constructed in this study to understand the effects of various experimental reality using direct numerical simulations. Two DNS databases of highly turbulent premixed methane flames are employed, to generate the synthetic PLIF images. The thickness of the laser sheet and optical blur parameters are systematically varied to study their effects on the implied reactive layer thickness, topological correspondence with heat release rates, as well as the resolved scales of the flames. It is found that the optical blur can have a significant influence on the measured layer thickness, and significant discrepancy between the DNS and the synthetic PLIF arises when the laser thickness is approximately twice the size of the reactive layers.
NASA Astrophysics Data System (ADS)
Peng, Sha; Zhou, Ming; Liu, Feiyan; Zhang, Chang; Liu, Xueqing; Liu, Jiyan; Zou, Liyong; Chen, Jia
2017-08-01
Flame-retardant polyvinyl alcohol (PVA) membranes with high transparency and flexibility were prepared by mixing an aqueous solution of a phosphorus-containing acrylic acid (AOPA) with PVA. The reaction between AOPA and PVA, the transparency, the crystallinity and the flexibility of the membrane were investigated with Fourier transform infrared spectrometry (FTIR), UV-vis light transmittance, X-ray diffraction and tensile tests, respectively. The limited oxygen index (LOI) and vertical flame (UL 94 VTM), microscale combustion calorimetry, thermogravimetric analysis (TGA) and TGA-FTIR were employed to evaluate the flame retardancy as well as to reveal the corresponding mechanisms. Results showed that PVA containing 30 wt% of AOPA can reach the UL 94 VTM V0 rating with an LOI of 27.3% and retain 95% of the original transparency of pure PVA. Adding AOPA reduces crystallinity of PVA, while the flexibility is increased. AOPA depresses the thermal degradation of PVA and promotes char formation during combustion. The proposed decomposition mechanism indicates that AOPA acts mainly in the condensed phase.
NASA Astrophysics Data System (ADS)
Zhang, Weizhou; Ren, Jiawei; Wei, Ting; Guo, Weihong
2018-02-01
In this paper, the synergistic effect of ammonium polyphosphate (APP) and expandable graphite (EG) on flame-retarded poly(butylene terephthalate) (PBT) was systermically investigated using limiting oxygen index (LOI), UL-94 testing, microscale combustion calorimetry (MCC), thermal-gravimetric analysis (TGA) and scanning electronic microscopy (SEM). PBT composites containing 20 wt% of APP: EG (1:3) combinations exhibits a high LOI value of 29.8 and reaches V-0 rating in UL-94 testing, indicating that the flame retardant property is greatly enhanced compared to the composites solely with APP or EG. SEM images show that the combination of APP and EG could promote the formation of a compact char layer. The compact char layer protects the PBT resin efficiently by preventing penetration of heat flux inside the matrix and retards the decomposition of PBT, consequently improves the thermal stability of PBT materials as revealed by TGA. All of the results demonstrate that APP and EG are high efficiency synergists for improving the flame retardation of PBT materials.
Quantitative NO-LIF imaging in high-pressure flames
NASA Astrophysics Data System (ADS)
Bessler, W. G.; Schulz, C.; Lee, T.; Shin, D.-I.; Hofmann, M.; Jeffries, J. B.; Wolfrum, J.; Hanson, R. K.
2002-07-01
Planar laser-induced fluorescence (PLIF) images of NO concentration are reported in premixed laminar flames from 1-60 bar exciting the A-X(0,0) band. The influence of O2 interference and gas composition, the variation with local temperature, and the effect of laser and signal attenuation by UV light absorption are investigated. Despite choosing a NO excitation and detection scheme with minimum O2-LIF contribution, this interference produces errors of up to 25% in a slightly lean 60 bar flame. The overall dependence of the inferred NO number density with temperature in the relevant (1200-2500 K) range is low (<±15%) because different effects cancel. The attenuation of laser and signal light by combustion products CO2 and H2O is frequently neglected, yet such absorption yields errors of up to 40% in our experiment despite the small scale (8 mm flame diameter). Understanding the dynamic range for each of these corrections provides guidance to minimize errors in single shot imaging experiments at high pressure.
Flame speed enhancement of solid nitrocellulose monopropellant coupled with graphite at microscales
NASA Astrophysics Data System (ADS)
Jain, S.; Yehia, O.; Qiao, L.
2016-03-01
The flame-speed-enhancement phenomenon of a solid monopropellant (nitrocellulose) using a highly conductive thermal base (graphite sheet) was demonstrated and studied both experimentally and theoretically. A propellant layer ranging from 20 μm to 170 μm was deposited on the top of a 20-μm thick graphite sheet. Self-propagating oscillatory combustion waves were observed, with average flame speed enhancements up to 14 times the bulk value. The ratio of the fuel-to-graphite layer thickness affects not only the average reaction front velocities but also the period and the amplitude of the combustion wave oscillations. To better understand the flame-speed enhancement and the oscillatory nature of the combustion waves, the coupled nitrocellulose-graphite system was modeled using one-dimensional energy conservation equations along with simple one-step chemistry. The period and the amplitude of the oscillatory combustion waves were predicted as a function of the ratio of the fuel-to-graphite thickness (R), the ratio of the graphite-to-fuel thermal diffusivity (α0), and the non-dimensional inverse adiabatic temperature rise (β). The predicted flame speeds and the characteristics of the oscillations agree well with the experimental data. The new concept of using a highly conductive thermal base such as carbon-based nano- and microstructures to enhance flame propagation speed or burning rate of propellants and fuels could lead to improved performance of solid and liquid rocket motors, as well as of the alternative energy conversion microelectromechanical devices.
Analysis of Reaction Mechanisms in Flames Using Combined - and Lif-Spectroscopy
NASA Astrophysics Data System (ADS)
Brockhinke, Andreas; Nau, Patrick; Köhler, Markus; Kohse-Höinghaus, Katharina
2009-06-01
Laser-based non-intrusive diagnostic techniques are firmly established as the most versatile tools to study high-temperature gas-phase reactions in general and combustion processes in particular. While fossil fuels remain the most important primary energy carriers, alternative fuels gain in importance. Usually, these fuels contain significant amounts of oxygen, nitrogen and sulphur, leading to different reaction pathways than in the established combustion of hydrocarbons. In order to minimize the formation of pollutants and hazardous compounds (soot, CO, NO_{x}) and increase efficiency, a deeper understanding of these reaction processes is essential. Optical measurements, in particular Cavity Ring-Down Spectroscopy (CRDS) and Laser Induced Fluorescence spectroscopy (LIF), have proven to be well suited for quantitative radical measurements in flames (e.g. OH, ^1CH_2, C_2, HCO). Both techniques provide high sensitivity and selectivity. Our revised experimental setup is designed for quasi-simultaneous measurements, combining the positive features of both complementary techniques. In addition, invasive methods like mass-spectrometry are performed in order to gain a complete understanding of the flame species. In this contribution, we will focus on the quantitative determination of important minor species such as CN, NH_2, CH and formaldehyde in low-pressure flat flames. In addition to investigations of flames with hydrocarbon fuels, we present the first optical measurements in morpholine- and ethylamine-flames. Aim of these measurements is to study the conversion of fuel nitrogen to NO_{x}. Experimental results will be compared with numerical CHEMKIN-II simulations.
Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance
NASA Astrophysics Data System (ADS)
Sung, Meagan
Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.
Plasma-assisted combustion in lean, high-pressure, preheated air-methane mixtures
NASA Astrophysics Data System (ADS)
Sommerer, Timothy; Herbon, John; Saddoughi, Seyed; Deminsky, Maxim; Potapkin, Boris
2013-09-01
We combine a simplified physical model with a detailed plasma-chemical reaction mechanism to analyze the use of plasmas to improve flame stability in a gas turbine used for electric power generation. For this application the combustion occurs in a lean mixture of air and methane at high pressure (18.6 atm) and at ``preheat'' temperature 700 K, and the flame zone is both recirculating and turbulent. The system is modeled as a sequence of reactors: a pulsed uniform plasma (Boltzmann), an afterglow region (plug-flow), a flame region (perfectly-stirred), and a downstream region (plug-flow). The plasma-chemical reaction mechanism includes electron-impact on the feedstock species, relaxation in the afterglow to neutral molecules and radicals, and methane combustion chemistry (GRI-Mech 3.0), with extensions to properly describe low-temperature combustion 700-1000 K [M Deminsky et al., Chem Phys 32, 1 (2013)]. We find that plasma treatment of the incoming air-fuel mixture can improve the stability of lean flames, expressed as a reduction in the adiabatic flame temperature at lean blow-out, but that the plasma also generates oxides of nitrogen at the preheat temperature through the reactions e + N2 --> N + N and N + O2 --> NO + O. We find that flame stability is improved with less undesirable NOx formation when the plasma reduced-electric-field E/ N is smaller. A portion of this work was supported by the US Dept of Energy under Award Number DE-FC26-08NT05868.
The effect of weld stresses on weld quality. [stress fields and metal cracking
NASA Technical Reports Server (NTRS)
Chihoski, R. A.
1972-01-01
A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Coffman, Brekke E.; Coffman, Brekke E.; Curran, Jerome P.; Kolody, Mark R.; Whitten, Mary; Perisich, Steven;
2009-01-01
When space vehicles are launched, extreme heat, exhaust, and chemicals are produced and these form a very aggressive exposure environment at the launch complex. The facilities in the launch complex are exposed to this aggressive environment. The vehicle exhaust directly impacts the flame deflectors, making these systems very susceptible to high wear and potential failure. A project was formulated to develop or identify new materials or systems such that the wear and/or damage to the flame deflector system, as a result of the severe environmental exposure conditions during launches, can be mitigated. This report provides a survey of potential protective coatings for the refractory concrete lining on the steel base structure on the flame deflectors at Kennedy Space Center (KSC).
Carbon dioxide UV laser-induced fluorescence in high-pressure flames
NASA Astrophysics Data System (ADS)
Bessler, W. G.; Schulz, C.; Lee, T.; Jeffries, J. B.; Hanson, R. K.
2003-07-01
Laser-induced fluorescence (LIF) of carbon dioxide is investigated with excitation between 215 and 255 nm with spectrally resolved detection in 5-40 bar premixed CH 4/O 2/Ar and CH 4/air flat-flames at fuel/air ratios between 0.8 and 1.9. The LIF signal consists of a broad (200-450 nm) continuum with a faint superimposed structure, and this signal is absent in similar H 2/O 2/Ar flames. There is strong evidence this signal arises from CO 2, as the signal variations with excitation wavelength, equivalence ratio and flame temperature all correlate with CO 2 absorption cross-sections. The signal is linear with pressure and laser fluence within the investigated ranges.
Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements
NASA Technical Reports Server (NTRS)
VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone
1997-01-01
The recent ban on the production of bromotrifluoromethane (CF3Br) because of its high stratospheric ozone depletion potential has led to interest in finding alternative agents for fire extinguishing applications. Some of the promising alternatives are fluorinated hydrocarbons. A clear understanding of the effects of CF3Br and alternative chemical suppressants on diffusion flames is therefore necessary in the selection of alternative suppressants for use in normal and microgravity. The flame inhibition effects of halogen compounds have been studied extensively in premixed systems. The effect of addition of halocarbons (carbon-halogen compounds) to diffusion flames has been studied experimentally in coflow configurations and in counterflow gaseous and liquid-pool flames. Halogenated compounds are believed to inhibit combustion by scavenging hydrogen radicals to form the relatively unreactive compound HF, or through a catalytic recombination cycle involving HBr to form H2. Comparisons between halogens show that bromine inhibition is significantly more effective than chlorine or fluorine. Although fluorinated compounds are only slightly more effective inhibitors on a mass basis than nitrogen, they are more effective on a volume basis and are easily stored in liquid form. The objectives of this study are (a) to determine the stability limits of laminar jet diffusion flames with respect to inhibitor concentration in both normal and microgravity, and (b) to investigate the structure of halocarbon-inhibited flames. In the initial phase of this project, visual diagnostics were used to observe the structure and behavior of normal and microgravity flames. The initial observations showed significant changes in the structure of the flames with the addition of halocarbons to the surrounding environment, as discussed below. Furthermore, the study established that the flames are more stable relative to the addition of halocarbons in microgravity than in normal gravity. Visual diagnostics of flames are, however, necessarily limited to detection of radiative emission in the visible range, and offer only qualitative information about the nature of the processes in the flame. In particular, the study sought to understand the structure of the inhibitor-perturbed flames with regard to temperature and species concentration in the outer region of the flame. Whereas thermocouple measurements can be used in ground based studies, their implementation in drop-tower rigs is limited. A possible approach to determine the temperature field around the flame is to use interferometric techniques. The implementation and testing of a shear-plate interferometry technique is described below.
NASA Astrophysics Data System (ADS)
Idicheria, Cherian Alex
An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL < 6, but are substantially larger for xL > 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture fraction characteristics were investigated in nonreacting and reacting jets with a PLMS diagnostic system developed for the UT-Austin 1.25-second drop tower. (Abstract shortened by UMI.)
Electrical Aspects of Impinging Flames
NASA Astrophysics Data System (ADS)
Chien, Yu-Chien
This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.
Launch Pad Flame Trench Refractory Materials
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary
2010-01-01
The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of failure mechanisms, load response, ejected material impact evaluation, and repair design analysis (environmental and structural assessment, induced environment from solid rocket booster plume, loads summary, and repair integrity), assessment of risk posture for flame trench debris, and justification of flight readiness rationale. Although the configuration of the launch pad, water and exhaust direction, and location of the Mobile Launcher Platform between the flame trench and the flight hardware should protect the Space Vehicle from debris exposure, loss of material could cause damage to a major element of the ground facility (resulting in temporary usage loss); and damage to other facility elements is possible. These are all significant risks that will impact ground operations for Constellation and development of new refractory material systems is necessary to reduce the likelihood of the foreign object debris hazard during launch. KSC is developing an alternate refractory material for the launch pad flame trench protection system, including flame deflector and flame trench walls, that will withstand launch conditions without the need for repair after every launch, as is currently the case. This paper will present a summary of the results from industry surveys, trade studies, life cycle cost analysis, and preliminary testing that have been performed to support and validate the development, testing, and qualification of new refractory materials.
NASA Astrophysics Data System (ADS)
Graziano, Tyler J.
An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.
Brominated flame retardants (BFRs) are used as additive or reactive components in a variety of polymers including high-impact polystyrene and epoxy resins, commercial products such as computers, electronics and electrical equipment, thermal insulation, textiles and furniture foam...
USDA-ARS?s Scientific Manuscript database
In an effort to create the environmentally-friendly flame retardants (FRs) for cotton cellulose, two phosphoramidates derivatives, tetraethyl piperazine-1,4-diyldiphosphonate (PDP) and diethyl 4-methylpiperazin-1-ylphosphoramidate (PAP), have been developed. Both were synthesized in high yield and ...
Nanoenergetics and High Hydrogen Content Materials for Space Propulsion
2012-09-01
carried out in an effort to determine the mechanisms that account for the effect of catalysts. Diffusion flame lengths , crystal burn times, and...times. The diffusion flame length was found to increase proportionally with the propellant’s burning rate. The findings of this experimental study
Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment
ERIC Educational Resources Information Center
Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James
2010-01-01
The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…
TURBULENT FLAME REACTOR STUDIES OF CHLORINATED HYDROCARBON DESTRUCTION EFFICIENCY
Four mixtures of C1 and C2 chlorinated hydrocarbons, diluted in heptane, were burned in a Turbulent Flame Reactor (TFR) under high and low oxygen conditions. Emissions of undestroyed feed, stable organic by-products, carbon monoxide, carbon dioxide and oxyg...
Detection of Organophosphate Flame Retardants in Furniture Foam and US House Dust
Stapleton, Heather M.; Klosterhaus, Susan; Eagle, Sarah; Fuh, Jennifer; Meeker, John D.; Blum, Arlene; Webster, Thomas F.
2009-01-01
Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the increased use of alternate flame retardant chemicals to meet flammability standards. However, it has been difficult to determine which chemical formulations are currently being used in high volumes to meet flammability standards since the use of flame retardant formulations in consumer products is not transparent (i.e. not provided to customers). To investigate chemicals being used as replacements for PentaBDE in polyurethane foam, we analyzed foam samples from 26 different pieces of furniture purchased in the United States primarily between 2003 and 2009 using gas chromatography mass spectrometry. Samples included foam from couches, chairs, mattress pads, pillows, and, in one case, foam from a sound proofing system of a laboratory grade dust sieve. Fifteen of the foam samples contained the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP; 1–5% by weight), four samples contained tris(1-chloro-2-propyl) phosphate (TCPP; 0.5 –2.2 % by weight), one sample contained brominated chemicals found in a new flame retardant mixture called Firemaster 550 (4.2% by weight), and one foam sample collected from a futon likely purchased prior to 2004 contained PentaBDE (0.5% by weight). Due to the high frequency of detection of the chlorinated phosphate compounds in furniture foam, we analyzed extracts from 50 house dust samples collected between 2002 and 2007 in the Boston, MA area for TDCPP, TCPP, and another high volume use organophosphate-based flame retardant used in foam, triphenylphosphate (TPP). Detection frequencies for TDCPP and TPP in the dust samples were >96% and were log normally distributed, similar to observations for PBDEs. TCPP was positively detected in dust in only 24% of the samples, but detection was significantly limited by a co-elution problem. The geometric mean concentrations for TCPP, TDCPP and TPP in house dust were 570, 1890, and 7360 ng/g, respectively, and maximum values detected in dust were 5490, 56,080 and 1,798,000 ng/g, respectively. These data suggest that levels of these organophosphate flame retardants are comparable, or in some cases, greater than, levels of PBDEs in house dust. The high prevalence of these chemicals in foam and the high concentrations measured in dust (as high as 1.8 mg/g), warrant further studies to evaluate potential health effects from dust exposure, particularly for children. PMID:19848166
Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
You, Jiaping; Yang, Yue
2016-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).
Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline
NASA Astrophysics Data System (ADS)
Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou
2018-06-01
Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.
Holmes, Christopher; Gates, James C; Smith, Peter G R
2014-12-29
This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.
Rubber-like materials derived from biosourced phenolic resins
NASA Astrophysics Data System (ADS)
Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.
2017-07-01
The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Ermakov, A. N.; Shlyakhov, R. A.
2010-12-01
In this work are given results of analyzing processes of production of nitrogen oxides (NO x ) and afterburning of CO when firing natural gas at combined-cycle gas-turbine plants. It is shown that for suppressing emissions of the said microcomponents it is necessary to lower temperature in hot local zones of the flame in which NOx is formed, and, in so doing, to avoid chilling of cold flame zones that prevents afterburning of CO. The required lowering of the combustion temperature can be provided by combustion of mixtures of methane with steam, with high mixing uniformity that ensures the same and optimum fraction of the steam "ballast" in each microvolume of the flame. In addition to chilling, the steam ballast makes it possible to maintain a fairly high concentration of hydroxil radicals in the flame zone as well, and this provides high burning out of fuel and reduction in carbon monoxide emissions (active steam ballast). Due to this fact the fraction of steam when firing its mixtures with methane in a gas-turbine plant can be increased up to the weight ratio 4: 1. In this case, the concentrations of NO x and CO in emissions can be reduced to ultra-low values (less than 3 ppm).
Modeling and Simulation of Swirl Stabilized Turbulent Non-Premixed Flames
NASA Astrophysics Data System (ADS)
Badillo-Rios, Salvador; Karagozian, Ann
2017-11-01
Flame stabilization is an important design criterion for many combustion chambers, especially at lean conditions and/or high power output, where insufficient stabilization can result in dangerous oscillations and noisy or damaged combustors. At high flow rates, swirling flow can offer a suitable stabilization mechanism, although understanding the dynamics of swirl-stabilized turbulent flames remains a significant challenge. Utilizing the General Equation and Mesh Solver (GEMS) code, which solves the Navier-Stokes equations along with the energy equation and five species equations, 2D axisymmetric and full 3D parametric studies and simulations are performed to guide the design and development of an experimental swirl combustor configuration and to study the effects of swirl on statistically stationary combustion. Results show that as the momentum of air is directed into the inner air inlet rather than the outer inlet of the swirl combustor, the central recirculating region becomes stronger and more unsteady, improving mixing and burning efficiency in that region. A high temperature region is found to occur as a result of burning of the trapped fuel from the central toroidal vortex. The effects of other parameters on flowfield and flame-stabilization dynamics are explored. Supported by ERC, Inc. (PS150006) and AFOSR (Dr. Chiping Li).
High performance cellular level agent-based simulation with FLAME for the GPU.
Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela
2010-05-01
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.
Processing Raman Spectra of High-Pressure Hydrogen Flames
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.
Schillaci, Domenico; Napoli, Edoardo Marco; Cusimano, Maria Grazia; Vitale, Maria; Ruberto, Andgiuseppe
2013-10-01
Essential oils from six different populations of Origanum vulgare subsp. hirtum were compared for their antibiofilm properties. The six essential oils (A to F) were characterized by a combination of gas chromatography with flame ionization detector and gas chromatography with mass spectrometer detector analyses. All oils showed weak activity against the planktonic form of a group of Staphylococcus aureus strains and against a Pseudomonas aeruginosa ATCC 15442 reference strain. The ability to inhibit biofilm formation was investigated at sub-MIC levels of 200, 100, and 50 m g/ml by staining sessile cells with safranin. Sample E showed the highest average effectiveness against all tested strains at 50 m g/ml and had inhibition percentages ranging from 30 to 52%. In the screening that used preformed biofilm from the reference strain P. aeruginosa, essential oils A through E were inactive at 200 m g/ml; F was active with a percentage of inhibition equal to 53.2%. Oregano essential oil can inhibit the formation of biofilms of various food pathogens and food spoilage organisms.
Metal flame spray coating protects electrical cables in extreme environment
NASA Technical Reports Server (NTRS)
Brady, R. D.; Fox, H. A.
1967-01-01
Metal flame spray coating prevents EMF measurement error in sheathed instrumentation cables which are externally attached to cylinders which were cooled on the inside, but exposed to gamma radiation on the outside. The coating provides a thermoconductive path for radiation induced high temperatures within the cables.
Bis(2-ethylhexyl) tetrabromophthalate (TBPH), is a high production volume chemical classified as an alternative flame retardant (FR), which replaces legacy FRs withdrawn from US markets dues to health and environmental concerns. This study provides experimental data on the bioacc...
Comparative study of through-air bonded and thermal calendered nonwovens
USDA-ARS?s Scientific Manuscript database
Over the years there has been increasing interest in developing flame retardant (FR) cotton-based nonwovens. Whereas majority of the work has been done with high loft nonwovens, since this has been of interest to bedding and home furnishing industry, the effect of web density on flame retardancy is ...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 182.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hose having high resistance to salt water, petroleum oils, heat and vibration, may be used. Such hose... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
46 CFR 119.450 - Vent pipes for fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tubing or hose having high resistance to salt water, petroleum oils, heat and vibration, may be used... installed or equipped to prevent the accidental contamination of the fuel by water under normal operating... flame arresters. The flame screens must consist of a single screen of corrosion resistant wire of at...
Turbulent flame propagation and combustion in spark ignition engines
NASA Technical Reports Server (NTRS)
Beretta, G. P.; Rashidi, M.; Keck, J. C.
1983-01-01
Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.
Silicon halide-alkali metal flames as a source of solar grade silicon
NASA Technical Reports Server (NTRS)
Olsen, D. B.; Miller, W. J.
1979-01-01
The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.
Flame Stabilization on Microscopic Scale of Wet Biogas with Microflame
NASA Astrophysics Data System (ADS)
Ida, Tamio; Fuchihata, Manabu; Mizuno, Satoru
Harvesting, transportation, energy conversion and the high-efficient utilization, cascade method and market formation besides become with the indispensable element in order to utilize the biomass resource. There are two type biogases; it is gasified gas from dried biomass by partially combustion and wet biogas from wet biomass by methane fermentation, especially from the livestock excrement resources. This paper discusses an experimental study for flame stabilization on microscopic scale with wet biogas (mainly 0.6CH4+0.4CO2). In this study, the microflame with the wet biogas fuels are formed by the diffusion flame on the coppered straight pipes of inner diameter 0.02mm ˜ 1.5mm. This study is obtained stability mapping on microscopic scale of formed microflame by wet biogas fuels. The flame stability limit conditions on microscopic scale of wet biogas is drawn with blow off and extinction flame double limit lines. It is suggested that minimum mixing spatial scale change by the each mixing ratio of the wet biogas.
Pollutant emissions from flat-flame burners at high pressures
NASA Technical Reports Server (NTRS)
Maahs, H. G.; Miller, I. M.
1980-01-01
Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivashinsky, G.I.
1993-01-01
During the period under review, significant progress was been made in studying the intrinsic dynamics of premixed flames and the problems of flame-flow interaction. (1) A weakly nonlinear model for Bunsen burner stabilized flames was proposed and employed for the simulation of three-dimensional polyhedral flames -- one of the most graphic manifestations of thermal-diffusive instability in premixed combustion. (2) A high-precision large-scale numerical simulation of Bunsen burner tip structure was conducted. The results obtained supported the earlier conjecture that the tip opening observed in low Lewis number systems is a purely optical effect not involving either flame extinction or leakagemore » of unburned fuel. (3) A one-dimensional model describing a reaction wave moving through a unidirectional periodic flow field is proposed and studied numerically. For long-wavelength fields the system exhibits a peculiar non-uniqueness of possible propagation regimes. The transition from one regime to another occurs in a manner of hysteresis.« less
NASA Astrophysics Data System (ADS)
Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn
2018-03-01
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.
High fidelity chemistry and radiation modeling for oxy -- combustion scenarios
NASA Astrophysics Data System (ADS)
Abdul Sater, Hassan A.
To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.
Effects of electric field on micro-scale flame properties of biobutanol fuel
Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong
2016-01-01
With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428