Sample records for highly structured environment

  1. Hydrothermal performance of catalyst supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  2. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  3. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  4. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud

    PubMed Central

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-01-01

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16–480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM. DOI: http://dx.doi.org/10.7554/eLife.06664.001 PMID:25955969

  5. The Paralinear Oxidation of SiC in Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    SiC is proposed for structural applications in high pressure, high temperature. high gas velocity environments of turbine and rocket engines. These environments are typically composed of complex gas mixtures containing carbon dioxide, oxygen, water vapor, and nitrogen. It is known that the primary oxidant for SiC in these environments is water vapor.

  6. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  7. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  8. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  9. Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg

    2018-02-01

    The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.

  10. Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Sulyma, Peter

    2008-01-01

    The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

  11. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  12. Structured crowding and its effects on enzyme catalysis.

    PubMed

    Ma, Buyong; Nussinov, Ruth

    2013-01-01

    Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.

  13. Teamwork in high-risk environments analogous to space

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  14. Structural contingency theory and individual differences: examination of external and internal person-team fit.

    PubMed

    Hollenbeck, John R; Moon, Henry; Ellis, Aleksander P J; West, Bradley J; Ilgen, Daniel R; Sheppard, Lori; Porter, Christopher O L H; Wagner, John A

    2002-06-01

    This article develops and tests a structurally based, integrated theory of person-team fit. The theory developed is an extension of structural contingency theory and considers issues of external fit simultaneously with its examination of internal fit at the team level. Results from 80 teams working on an interdependent team task indicate that divisional structures demand high levels of cognitive ability on the part of teammembers. However, the advantages of high cognitive ability in divisional structures are neutralized when there is poor external fit between the structure and the environment. Instead, emotional stability becomes a critical factor among teammembers when a divisional structure is out of alignment with its environment. Individual differences seem to play little or no role in functional structures, regardless of the degree of external fit.

  15. High-temperature acoustic test facilities and methods

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1994-09-01

    The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

  16. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  17. Breaking the Waves: Routines and Rituals in Entrepreneurship Education

    ERIC Educational Resources Information Center

    Neergaard, Helle; Christensen, Dorthe Refslund

    2017-01-01

    Learning is related to the environment created for the learning experience. This environment is often highly routinized and involves a certain social structure, but in entrepreneurship education, such routinization and structure may actually counteract the learning goals. This article investigates how classroom routines and rituals impact on…

  18. Analysis of the effects of simulated synergistic LEO environment on solar panels

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  19. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE PAGES

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...

    2015-08-12

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  20. Mechanical behavior of precipitation hardenable steels exposed to highly corrosive environment

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1994-01-01

    Unexpected occurrences of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15 - 5 PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a 3.5 percent NaCl aqueous solution. The material selected for the study was 15 - 5 PH steel in the H 900 condition. The Slow Strain Rate technique was used to test the metallic specimens.

  1. Designing for fiber composite structural durability in hygrothermomechanical environment

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.

  2. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1.02 "Development of High Performance Large Single Shaped Reflectors" Paul Archer, C. Abegg, T. Le Goff, EADS/LV, Les Mureaux, France.

  3. Teacher Victimization in Authoritative School Environments.

    PubMed

    Kapa, Ryan R; Luke, Jeremy; Moulthrop, Dorothy; Gimbert, Belinda

    2018-04-01

    Victimization in schools is not limited to students. Teachers increasingly face threats and attacks from their students. An authoritative school environment, characterized by high structure and support, has been associated with lower rates of victimization. The purpose of this study was to explore the relationship between authoritative school environments and teacher victimization rates. Researchers examined public school teacher responses (N = 37,497) from the Schools and Staffing Survey regarding rules and issues facing the school community. Descriptive statistics were gathered, and a hierarchical regression technique was employed to assess the impact of a structured, supportive school environment on teacher victimization. Results indicate an authoritative school environment helped reduce rates of teacher victimization. White, female teachers are among the teachers most likely to experience violence from students. Enforcing school rules, by both teachers and administrators, is the most effective way to diminish episodes of teacher victimization. P-12 school personnel should emphasize the importance of enforcing school rules and reducing negative issues, such as student truancy and apathy within each school. As high levels of structure and support reduce instances of violence, these findings have important implications for school environments and teacher health. © 2018, American School Health Association.

  4. Structural Stigma and Hypothalamic-Pituitary-Adrenocortical Axis Reactivity in Lesbian, Gay, and Bisexual Young Adults

    PubMed Central

    Hatzenbuehler, Mark L.; McLaughlin, Katie A.

    2013-01-01

    Background Youth exposed to extreme adverse life conditions have blunted cortisol responses to stress. Purpose To examine whether growing up in highly stigmatizing environments similarly shapes stigmatized individuals’ physiological responses to identity-related stress. Methods We recruited 74 lesbian, gay, and bisexual young adults (mean age=23.68) from 24 states with varying levels of structural stigma surrounding homosexuality. State-level structural stigma was coded based on several dimensions, including policies that exclude sexual minorities from social institutions (e.g., same-sex marriage). Participants were exposed to a laboratory stressor, the Trier Social Stress Test (TSST), and neuroendocrine measures were collected. Results LGB young adults who were raised in highly stigmatizing environments as adolescents evidenced a blunted cortisol response following the TSST compared to those from low-stigma environments. Conclusions The stress of growing up in environments that target gays and lesbians for social exclusion may exert biological effects that are similar to traumatic life experiences. PMID:24154988

  5. Linking nurses' perceptions of patient care quality to job satisfaction: the role of authentic leadership and empowering professional practice environments.

    PubMed

    Spence Laschinger, Heather K; Fida, Roberta

    2015-05-01

    A model linking authentic leadership, structural empowerment, and supportive professional practice environments to nurses' perceptions of patient care quality and job satisfaction was tested. Positive work environment characteristics are important for nurses' perceptions of patient care quality and job satisfaction (significant factors for retention). Few studies have examined the mechanism by which these characteristics operate to influence perceptions of patient care quality or job satisfaction. A cross-sectional provincial survey of 723 Canadian nurses was used to test the hypothesized models using structural equation modeling. The model was an acceptable fit and all paths were significant. Authentic leadership had a positive effect on structural empowerment, which had a positive effect on perceived support for professional practice and a negative effect on nurses' perceptions that inadequate unit staffing prevented them from providing high-quality patient care. These workplace conditions predicted job satisfaction. Authentic leaders play an important role in creating empowering professional practice environments that foster high-quality care and job satisfaction.

  6. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  7. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    NASA Astrophysics Data System (ADS)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  8. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  9. Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.

    PubMed

    Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A

    2016-01-15

    A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes.

  10. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities

    NASA Astrophysics Data System (ADS)

    Na, Wongi S.; Lee, Hyeonseok

    2016-11-01

    In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.

  11. Hygrothermal behavior of polybenzimidazole

    DOE PAGES

    Liu, Peng; Mullins, Michael; Bremner, Tim; ...

    2016-04-11

    Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole] (PBI) is used in extremely high temperature harsh environment applications. It is a unique engineering material that is formed into parts by powder-sintering at temperatures as high as 500 °C. Recently, ever increasing demands for high temperature polymers have led to significant interest in PBI such that engineering guidelines could be established for its application in high temperature and highly humid environments. The goal of this work was to understand the material science of PBI in hot-wet environments at temperatures up to 288 °C. Thermal gravimetric analysis and mass spectrometry were employed to identify the degraded volatile products. Themore » molecular scale damping behavior of PBI was probed using dynamic mechanical analysis. The changes in tensile properties and fracture toughness due to environmental exposure were also characterized. Upon heating above 250 °C, moisture-containing PBI exhibits obvious molecular structure change. Evidence of crosslinking and degradation is observed. With 288 °C hot water treatment severe degradation of PBI is observed. As a result, fundamental structure-property relationships of PBI affected by these higher temperature, high moisture content environments are discussed.« less

  12. Virtual reality training improves students' knowledge structures of medical concepts.

    PubMed

    Stevens, Susan M; Goldsmith, Timothy E; Summers, Kenneth L; Sherstyuk, Andrei; Kihmm, Kathleen; Holten, James R; Davis, Christopher; Speitel, Daniel; Maris, Christina; Stewart, Randall; Wilks, David; Saland, Linda; Wax, Diane; Panaiotis; Saiki, Stanley; Alverson, Dale; Caudell, Thomas P

    2005-01-01

    Virtual environments can provide training that is difficult to achieve under normal circumstances. Medical students can work on high-risk cases in a realistic, time-critical environment, where students practice skills in a cognitively demanding and emotionally compelling situation. Research from cognitive science has shown that as students acquire domain expertise, their semantic organization of core domain concepts become more similar to those of an expert's. In the current study, we hypothesized that students' knowledge structures would become more expert-like as a result of their diagnosing and treating a patient experiencing a hematoma within a virtual environment. Forty-eight medical students diagnosed and treated a hematoma case within a fully immersed virtual environment. Student's semantic organization of 25 case-related concepts was assessed prior to and after training. Students' knowledge structures became more integrated and similar to an expert knowledge structure of the concepts as a result of the learning experience. The methods used here for eliciting, representing, and evaluating knowledge structures offer a sensitive and objective means for evaluating student learning in virtual environments and medical simulations.

  13. Evaluation of three thermal protection systems in a hypersonic high-heating-rate environment induced by an elevon deflected 30 deg

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Weinstein, I.

    1977-01-01

    Three thermal protection systems proposed for a hypersonic research airplane were subjected to high heating rates in the Langley 8 foot, high temperature structures tunnel. Metallic heat sink (Lockalloy), reusable surface insulation, and insulator-ablator materials were each tested under similar conditions. The specimens were tested for a 10 second exposure on the windward side of an elevon deflected 30 deg. The metallic heat sink panel exhibited no damage; whereas the reusable surface insulation tiles were debonded from the panel and the insulator-ablator panel eroded through its thickness, thus exposing the aluminum structure to the Mach 7 environment.

  14. The Interplay between Adolescent Needs and Secondary School Structures: Fostering Developmentally Responsive Middle and High School Environments across the Transition

    ERIC Educational Resources Information Center

    Ellerbrock, Cheryl R.; Kiefer, Sarah M.

    2013-01-01

    Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…

  15. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  16. Exploring Relationships between the Use of Affect in Science Instruction and the Pressures of a High-Stakes Testing Environment

    ERIC Educational Resources Information Center

    Jerome, Diane C.

    2010-01-01

    This study explored how science teachers and school administrators perceive the use of the affective domain during science instruction situated within a high-stakes testing environment. Through a multimethodological inquiry using phenomenology and critical ethnography, the researcher conducted semi-structured interviews with six fifth-grade…

  17. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  18. Open Learning Environments and the Impact of a Pedagogical Agent

    ERIC Educational Resources Information Center

    Clarebout, Geraldine; Elen, Jan

    2006-01-01

    Research reveals that in highly structured learning environments pedagogical agents can act as tools to direct students' learning processes by providing content or problem solving guidance. It has not yet been addressed whether pedagogical agents have a similar impact in more open learning environments that aim at fostering students' acquisition…

  19. Influence of media with different acidity on structure of FeNi nanotubes

    NASA Astrophysics Data System (ADS)

    Shumskaya, Alena; Kaniukov, Egor; Kutuzau, Maksim; Bundyukova, Victoria; Tulebayeva, Dinara; Kozlovskiy, Artem; Borgekov, Daryn; Kenzhina, Inesh; Zdorovets, Maxim

    2018-04-01

    A detailed analysis of the structure features of FeNi nanotubes exposed at environment with different acidity is carried out. It is demonstrated that the exposure of the nanostructures in the environment with high acidity causes the structure deformation, leading to sharply increasing of the presents of oxide phases and partial amorphization of nanotubes walls that determined the rate of FeNi nanotubes destruction. It was established that the evolution of the crystal structure parameters concerned with appearance of oxide phases and with formation of disorder regions as a result of oxidation processes.

  20. Composition for use in high-temperature hydrogen-fluorine environments and method for making the composition

    DOEpatents

    Kovach, L.; Holcombe, C.E.

    1980-08-22

    The present invention relates to a composition particularly suitable for use as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850/sup 0/K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.

  1. Composition for use in high-temperature hydrogen-fluorine environments and method for making the composition

    DOEpatents

    Kovach, Louis; Holcombe, Cressie E.

    1982-01-01

    The present invention relates to a composition particularly suitable for as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850.degree. K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.

  2. Analysis of a Small Vigorous Mesoscale Convective System in a Low-Shear Environment. Pt. 1; Formation, Echo Structure and Lightning Behavior

    NASA Technical Reports Server (NTRS)

    Knupp, Kevin; Geerts, Bart; Goodman, Steven J.

    1997-01-01

    The precipitation output was highly variable due to the transient nature of the intense convective elements. This result is attributed to the high Richardson number (175) of the environment, which is much higher than that of the typical MCS environment. The development of the stratiform precipitation was accomplished locally (in situ), and not be advection of from the convective region. In situ charging of the stratiform region is also supported by the observations.

  3. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  4. Overview of the Space Launch System Transonic Buffet Environment Test Program

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.

    2015-01-01

    Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.

  5. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    NASA Astrophysics Data System (ADS)

    Akristiniy, Vera A.; Dikova, Elena A.

    2018-03-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  6. Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.; hide

    2008-01-01

    Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment measurements to investigations of on-orbit anomalies in ISS systems.

  7. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities

    PubMed Central

    Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.

    2018-01-01

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134

  8. In vitro reconstruction of branched tubular structures from lung epithelial cells in high cell concentration gradient environment.

    PubMed

    Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming

    2015-01-27

    We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.

  9. The Application of High-Resolution Electron Microscopy to Problems in Solid State Chemistry: The Exploits of a Peeping TEM.

    ERIC Educational Resources Information Center

    Eyring, LeRoy

    1980-01-01

    Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)

  10. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.

    1990-01-01

    The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.

  11. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  12. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  13. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  14. Using a commodity high-definition television for collaborative structural biology

    PubMed Central

    Yennamalli, Ragothaman; Arangarasan, Raj; Bryden, Aaron; Gleicher, Michael; Phillips, George N.

    2014-01-01

    Visualization of protein structures using stereoscopic systems is frequently needed by structural biologists working to understand a protein’s structure–function relationships. Often several scientists are working as a team and need simultaneous interaction with each other and the graphics representations. Most existing molecular visualization tools support single-user tasks, which are not suitable for a collaborative group. Expensive caves, domes or geowalls have been developed, but the availability and low cost of high-definition televisions (HDTVs) and game controllers in the commodity entertainment market provide an economically attractive option to achieve a collaborative environment. This paper describes a low-cost environment, using standard consumer game controllers and commercially available stereoscopic HDTV monitors with appropriate signal converters for structural biology collaborations employing existing binary distributions of commonly used software packages like Coot, PyMOL, Chimera, VMD, O, Olex2 and others. PMID:24904249

  15. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    NASA Astrophysics Data System (ADS)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  16. Study the Current and Optimal Status of Teaching Environment at High Schools with Emphasis on Curriculum Experts' and Teachers' Viewpoints

    ERIC Educational Resources Information Center

    Parishani, Neda; Jafari, Seyed Ebrahim Mir Shah; Sharifian, Fereydoon; Farhadian, Mehrdad

    2016-01-01

    The purpose of present research was to study the current and optimal status of teaching environment at high schools in Iran with emphasis on curriculum experts and teachers' viewpoints. Research method was mixed method. In the qualitative part, experts' viewpoints were gathered through a semi-structured interview. In the quantitative part, 258…

  17. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    ERIC Educational Resources Information Center

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  18. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  19. Decision making in high-velocity environments: implications for healthcare.

    PubMed

    Stepanovich, P L; Uhrig, J D

    1999-01-01

    Healthcare can be considered a high-velocity environment and, as such, can benefit from research conducted in other industries regarding strategic decision making. Strategic planning is not only relevant to firms in high-velocity environments, but is also important for high performance and survival. Specifically, decision-making speed seems to be instrumental in differentiating between high and low performers; fast decision makers outperform slow decision makers. This article outlines the differences between fast and slow decision makers, identifies five paralyses that can slow decision making in healthcare, and outlines the role of a planning department in circumventing these paralyses. Executives can use the proposed planning structure to improve both the speed and quality of strategic decisions. The structure uses planning facilitators to avoid the following five paralyses: 1. Analysis. Decision makers can no longer afford the luxury of lengthy, detailed analysis but must develop real-time systems that provide appropriate, timely information. 2. Alternatives. Many alternatives (beyond the traditional two or three) need to be considered and the alternatives must be evaluated simultaneously. 3. Group Think. Decision makers must avoid limited mind-sets and autocratic leadership styles by seeking out independent, knowledgeable counselors. 4. Process. Decision makers need to resolve conflicts through "consensus with qualification," as opposed to waiting for everyone to come on board. 5. Separation. Successful implementation requires a structured process that cuts across disciplines and levels.

  20. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  1. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  2. Tropical Aquatic Archaea Show Environment-Specific Community Composition

    PubMed Central

    Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.

    2013-01-01

    The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota , a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729

  3. Wireless Sensor Applications in Extreme Aeronautical Environments

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  4. Environment and initial state engineered dynamics of quantum and classical correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng-Zhi, E-mail: czczwang@outlook.com; Li, Chun-Xian; Guo, Yu

    Based on an open exactly solvable system coupled to an environment with nontrivial spectral density, we connect the features of quantum and classical correlations with some features of the environment, initial states of the system, and the presence of initial system–environment correlations. Some interesting features not revealed before are observed by changing the structure of environment, the initial states of system, and the presence of initial system–environment correlations. The main results are as follows. (1) Quantum correlations exhibit temporary freezing and permanent freezing even at high temperature of the environment, for which the necessary and sufficient conditions are given bymore » three propositions. (2) Quantum correlations display a transition from temporary freezing to permanent freezing by changing the structure of environment. (3) Quantum correlations can be enhanced all the time, for which the condition is put forward. (4) The one-to-one dependency relationship between all kinds of dynamic behaviors of quantum correlations and the initial states of the system as well as environment structure is established. (5) In the presence of initial system–environment correlations, quantum correlations under local environment exhibit temporary multi-freezing phenomenon. While under global environment they oscillate, revive, and damp, an explanation for which is given. - Highlights: • Various interesting behaviors of quantum and classical correlations are observed in an open exactly solvable model. • The important effects of the bath structure on quantum and classical correlations are revealed. • The one-to-one correspondence between the type of dynamical behavior of quantum discord and the initial state is given. • Quantum correlations are given in the presence of initial qubits–bath correlations.« less

  5. New functional materials AC3B4O12 (Review)

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. N.; Volkova, O. S.

    2007-11-01

    The physical properties of perovskites of the type AC3B4O12, whose structure derives from simple perovskites ABO3, are reviewed. The A position is subject to strong structural distortions and splits into two new positions A and C. In the structure of AC3B4O12 vacancies and any cations with a large radius, irrespective of their charge state, can be present in the icosahedral environment of A: Na +, Cd2+, Ca2+, Sr2+, Y3+, Ln3+, and Nd4+. The C position in the square environment of oxygen can be occupied only by the Jahn-Teller cations Cu2+ and Mn3+. Transition and nontransition metal ions—Mn3+, Fe3+, Al3+, Cr3+, Ti4+, Mn4+, Ge4+, Ru4+, Ir4+, Ta5+, Nb5+, Ta5+, Sb5+—can occupy the B position in an octahedral environment. Some members of the family of complex perovskites possess properties which are characteristic for systems with heavy fermions; collinear and noncollinear magnetic structures with high ordering temperatures occur in these materials; tunneling magnetoresistance and high permittivity are observed. The diversity and unique properties make these materials attractive for practical applications.

  6. The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Gillian, Ronnie E.; Lotts, Christine G.

    1988-01-01

    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.

  7. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied.

  8. Highly-Parallel, Highly-Compact Computing Structures Implemented in Nanotechnology

    NASA Technical Reports Server (NTRS)

    Crawley, D. G.; Duff, M. J. B.; Fountain, T. J.; Moffat, C. D.; Tomlinson, C. D.

    1995-01-01

    In this paper, we describe work in which we are evaluating how the evolving properties of nano-electronic devices could best be utilized in highly parallel computing structures. Because of their combination of high performance, low power, and extreme compactness, such structures would have obvious applications in spaceborne environments, both for general mission control and for on-board data analysis. However, the anticipated properties of nano-devices mean that the optimum architecture for such systems is by no means certain. Candidates include single instruction multiple datastream (SIMD) arrays, neural networks, and multiple instruction multiple datastream (MIMD) assemblies.

  9. On the relationship between residue structural environment and sequence conservation in proteins.

    PubMed

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  10. Propagation environments [Chapter 4

    Treesearch

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...

  11. Teacher Victimization in Authoritative School Environments

    ERIC Educational Resources Information Center

    Kapa, Ryan R.; Luke, Jeremy; Moulthrop, Dorothy; Gimbert, Belinda

    2018-01-01

    Background: Victimization in schools is not limited to students. Teachers increasingly face threats and attacks from their students. An authoritative school environment, characterized by high structure and support, has been associated with lower rates of victimization. The purpose of this study was to explore the relationship between authoritative…

  12. Frequency modulation detection atomic force microscopy in the liquid environment

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.

    True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.

  13. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-05-11

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  14. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-03-31

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  15. Electrostatic antenna space environment interaction study

    NASA Technical Reports Server (NTRS)

    Katz, I.

    1981-01-01

    The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.

  16. Workplace empowerment and nurses' job satisfaction: a systematic literature review.

    PubMed

    Cicolini, Giancarlo; Comparcini, Dania; Simonetti, Valentina

    2014-10-01

    This systematic review aimed to synthesize and analyse the studies that examined the relationship between nurse empowerment and job satisfaction in the nursing work environment. Job dissatisfaction in the nursing work environment is the primary cause of nursing turnover. Job satisfaction has been linked to a high level of empowerment in nurses. We reviewed 596 articles, written in English, that examined the relationship between structural empowerment, psychological empowerment and nurses' job satisfaction. Twelve articles were included in the final analysis. A significant positive relation was found between empowerment and nurses' job satisfaction. Structural empowerment and psychological empowerment affect job satisfaction differently. A satisfying work environment for nurses is related to structural and psychological empowerment in the workplace. Structural empowerment is an antecedent of psychological empowerment and this relationship culminates in positive retention outcomes such as job satisfaction. This review could be useful for guiding leaders' strategies to develop and maintain an empowering work environment that enhances job satisfaction. This could lead to nurse retention and positive organisational and patient outcomes. © 2013 John Wiley & Sons Ltd.

  17. Design of a Micro Cable Tunnel Inspection Robot

    NASA Astrophysics Data System (ADS)

    Song, Wei; Liu, Lei; Zhou, Xiaolong; Wang, Chengjiang

    2016-11-01

    As the ventilation system in cable tunnel is not perfect and the environment is closed, it is easy to accumulate toxic and harmful gas. It is a serious threat to the life safety of inspection staff. Therefore, a micro cable tunnel inspection robot is designed. The whole design plan mainly includes two parts: mechanical structure design and control system design. According to the functional requirements of the tunnel inspection robot, a wheel arm structure with crawler type is proposed. Some sensors are used to collect temperature, gas and image and transmit the information to the host computer in real time. The result shows the robot with crawler wheel arm structure has the advantages of small volume, quick action and high performance-price ratio. Besides, it has high obstacle crossing and avoidance ability and can adapt to a variety of complex cable tunnel environment.

  18. The Classroom Environment and Students' Reports of Avoidance Strategies in Mathematics: A Multimethod Study.

    ERIC Educational Resources Information Center

    Turner, Julianne C.; Midgley, Carol; Meyer, Debra K.; Gheen, Margaret; Anderman, Eric M.; Kang, Yongjin; Patrick, Helen

    2002-01-01

    The relation between learning environment (perceptions of classroom goal structure and teachers' instructional discourse) and students' reported use of avoidance strategies (self-handicapping, avoidance of help seeking) and preference to avoid novelty in mathematics was examined. High incidence of motivational support was uniquely characteristic…

  19. High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment

    EPA Science Inventory

    Assessment of near-road air quality is challenging in urban environments which have roadside structures or elevated or cut road sections that may impact the dispersion of emissions. Emissions from vehicles operating on arterial roads also contribute to air pollution variability i...

  20. Determination of the neutralization depth of concrete under the aggressive environment influence

    NASA Astrophysics Data System (ADS)

    Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena

    2018-03-01

    Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.

  1. Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures.

    PubMed

    Sampaio, Miguel; Buciumeanu, Mihaela; Henriques, Bruno; Silva, Filipe S; Souza, Júlio C M; Gomes, José R

    2016-02-01

    In dentistry, prosthetic structures must be able to support masticatory loads combined with a high biocompatibility and wear resistance in the presence of a corrosive environment. In order to improve the simultaneous wear and corrosion response of highly biocompatible prosthetic structures, a veneering poly-ether-ether-ketone (PEEK) to Ti6Al4V substrate was assessed by tribocorrosion analyses under conditions mimicking the oral environment. Samples were synthesized by hot pressing the PEEK veneer onto Ti6Al4V cylinders. The tribocorrosion tests on Ti6Al4V or PEEK/Ti6Al4V samples were performed on a reciprocating ball-on-plate tribometer at 30N normal load, 1Hz and stroke length of 3mm. The tests were carried out in artificial saliva at 37°C. Open circuit potential (OCP) was measured before, during and after reciprocating sliding tests. The worn surfaces were characterized by scanning electron microscopy. The results revealed a lower wear rate on PEEK combined with a lower coefficient of friction (COF), when compared to Ti6Al4V. In fact, PEEK protected Ti6Al4V substrate against the corrosive environment and wear avoiding the release of metallic ions to the surrounding environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity

    PubMed Central

    Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio

    2014-01-01

    Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484

  3. [High-quality nursing health care environment: the patient safety perspective].

    PubMed

    Tu, Yu-Ching; Wang, Ruey-Hsia

    2011-06-01

    Patient safety is regarded as an important indicator of nursing care quality, and nurses hold frontline responsibility to maintain patient safety. Many countries now face healthcare provider shortfalls, and recognize a close correlation between adequate manpower and patient safety. Many healthcare organizations work to foster positive work environments in order to improve health service quality. The active participation and "buy in" of nurses, patients and policymakers are critical to maximize healthcare environment quality and improve patient safety. This article adopts Donabedian's theoretical "Structure-Process-Outcome" model of quality (Donabedian, 1988) and presumes all high-quality healthcare environment indicators to be linked to patient safety. In addition to raising public awareness regarding the influence of healthcare environment quality on patient safety, this research suggests certain indicators for tracking and assessing healthcare environment quality. Future research may design an empirical study based on these indicators to help further enhance healthcare environment quality and the professional development of nurses.

  4. Local structure of high-coercivity Fe-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Menushenkov, A. P.; Menushenkov, V. P.; Chernikov, R. V.; Sviridova, T. A.; Grishina, O. V.; Sidorov, V. V.

    2011-04-01

    Results of hard magnetic Fe-Ni-Al alloys after various thermal processing local structure researches by method of EXAFS-spectroscopy with use of synchrotron radiation at temperature 77 K are presented. It is established, that during cooling a firm solution with critical speed reorganization of a local environment of nickel relative to quickly tempered sample owing to stratification of a firm solution is observed. The subsequent aging at 780°C practically restores local structure, characteristic for quickly tempered sample, keeping thus rather high coercitive force.

  5. Effects of Link Annotations on Search Performance in Layered and Unlayered Hierarchically Organized Information Spaces.

    ERIC Educational Resources Information Center

    Fraser, Landon; Locatis, Craig

    2001-01-01

    Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…

  6. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.

    A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less

  7. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.; ...

    2016-10-25

    A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction (XRD) studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoringmore » the oxidation of metallic zirconium during exposure to steam at 350°C. Finally, the in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during early stages of corrosion, which can provide a better understanding the oxidation process.« less

  8. Exploring the relevance of gas-phase structures to biology: cold ion spectroscopy of the decapeptide neurokinin A.

    PubMed

    Pereverzev, A Y; Boyarkin, O V

    2017-02-01

    Linking the intrinsic tertiary structures of biomolecules to their native geometries is a central prerequisite for making gas-phase studies directly relevant to biology. The isolation of molecules in the gas phase eliminates hydrophilic interactions with solvents, to some extent mimicking a hydrophobic environment. Intrinsic structures therefore may resemble native ones for peptides that in vivo reside in a hydrophobic environment (e.g., binding pockets of receptors). In this study, we investigate doubly protonated neurokinin A (NKA) using IR-UV double resonance cold ion spectroscopy and find only five conformers of this decapeptide in the gas phase. In contrast, NMR data show that in aqueous solutions, NKA exhibits high conformational heterogeneity, which reduces to a few well-defined structures in hydrophobic micelles. Do the gas-phase structures of NKA resemble these native structures? The IR spectra reported here allow the validation of future structural calculations that may answer this question.

  9. Structural transformations of heat treated Co-less high entropy alloys

    NASA Astrophysics Data System (ADS)

    Mitrica, D.; Tudor, A.; Rinaldi, A.; Soare, V.; Predescu, C.; Berbecaru, A.; Stoiciu, F.; Badilita, V.

    2018-03-01

    Co is considered to be one of the main ingredients in superalloys. Co is considered a critical element and its substitution is difficult due to its unique ability to form high temperature stable structures with high mechanical and corrosion/oxidation resistance. High entropy alloys (HEA) represent a relatively new concept in material design. HEA are characterised by a high number of alloying elements, in unusually high proportion. Due to their specific particularities, high entropy alloys tend to form predominant solid solution structures that develop potentially high chemical, physical and mechanical properties. Present paper is studying Co-less high entropy alloys with high potential in severe environment applications. The high entropy alloys based on Al-Cr-Fe-Mn-Ni system were prepared by induction melting and casting under protective atmosphere. The as-cast specimens were heat treated at various temperatures to determine the structure and property behaviour. Samples taken before and after heat treatment were investigated for chemical, physical, structural and mechanical characteristics. Sigma phase composition and heat treatment parameters had major influence over the resulted alloy structure and properties.

  10. The high cost of conflict.

    PubMed

    Forté, P S

    1997-01-01

    Conflict is inevitable, especially in highly stressed environments. Clinical environments marked by nurse-physician conflict (and nurse withdrawal related to conflict avoidance) have been proven to be counterproductive to patients. Clinical environments with nurse-physician professional collegiality and respectful communication show decreased patient morbidity and mortality, thus enhancing outcomes. The growth of managed care, and the organizational turmoil associated with rapid change, makes it imperative to structure the health care environment so that conflict can be dealt with in a safe and healthy manner. Professional health care education programs and employers have a responsibility to provide interactive opportunities for multidisciplinary audiences through which conflict management skills can be learned and truly change the interpersonal environment. Professionals must be free to focus their energy on the needs of the patient, not on staff difficulties.

  11. New computing systems, future computing environment, and their implications on structural analysis and design

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Housner, Jerrold M.

    1993-01-01

    Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.

  12. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix.

    PubMed

    Sugimoto, Naoki

    2014-01-01

    How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described. © 2014 Elsevier Inc. All rights reserved.

  13. Evidence of a Structural Defect in Ice VII and the Side Chain Dependent Response of Small Model Peptides to Increased Pressure

    PubMed Central

    Scott, J. Nathan; Vanderkooi, Jane M.

    2014-01-01

    The effect of high pressure on the OH stretch of dilute HOD in D2O was examined using high pressure FTIR. It was found that at pressures directly above the ice VI to ice VII transition, ice VII displays a splitting in the OH absorption indicative of differing hydrogen bonding environments. This result is contrary to published structures of ice VII in which each OH oscillator should experience an identical electronic environment. The anomalous band was found to decrease in absorbance and finally disappear at ~43.0 kbar. In addition, the pressure response of the amide I′ and II′ bands of three small model peptides was examined. Analysis of these bands’ response to increased pressure indicates significant side chain dependence of their structural rearrangement, which may play a role in the composition of full length proteins of barophilic organisms. PMID:21740637

  14. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  15. Internal and External Scripts in Computer-Supported Collaborative Inquiry Learning

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Slotta, James D.

    2007-01-01

    We investigated how differently structured external scripts interact with learners' internal scripts with respect to individual knowledge acquisition in a Web-based collaborative inquiry learning environment. Ninety students from two secondary schools participated. Two versions of an external collaboration script (high vs. low structured)…

  16. The physical environment mediates male harm and its effect on selection in females.

    PubMed

    Yun, Li; Chen, Patrick J; Singh, Amardeep; Agrawal, Aneil F; Rundle, Howard D

    2017-07-12

    Recent experiments indicate that male preferential harassment of high-quality females reduces the variance in female fitness, thereby weakening natural selection through females and hampering adaptation and purging. We propose that this phenomenon, which results from a combination of male choice and male-induced harm, should be mediated by the physical environment in which intersexual interactions occur. Using Drosophila melanogaster , we examined intersexual interactions in small and simple (standard fly vials) versus slightly more realistic (small cages with spatial structure) environments. We show that in these more realistic environments, sexual interactions are less frequent, are no longer biased towards high-quality females, and that overall male harm is reduced. Next, we examine the selective advantage of high- over low-quality females while manipulating the opportunity for male choice. Male choice weakens the viability advantage of high-quality females in the simple environment, consistent with previous work, but strengthens selection on females in the more realistic environment. Laboratory studies in simple environments have strongly shaped our understanding of sexual conflict but may provide biased insight. Our results suggest that the physical environment plays a key role in the evolutionary consequences of sexual interactions and ultimately the alignment of natural and sexual selection. © 2017 The Author(s).

  17. Team dynamics in isolated, confined environments - Saturation divers and high altitude climbers

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Gregorich, Steven E.

    1992-01-01

    The effects of leadership dynamics and social organization factors on team performance under conditions of high altitude climbing and deep sea diving are studied. Teams of two to four members that know each other well and have a relaxed informal team structure with much sharing of responsibilities are found to do better than military teams with more than four members who do not know each other well and have a formal team structure with highly specialized rules. Professionally guided teams with more than four members, a formally defined team structure, and clearly designated role assignments did better than 'club' teams of more than four members with a fairly informal team structure and little role specialization.

  18. Effects of Hatchery Rearing on the Structure and Function of Salmonid Mechanosensory Systems.

    PubMed

    Brown, Andrew D; Sisneros, Joseph A; Jurasin, Tyler; Coffin, Allison B

    2016-01-01

    This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.

  19. Links among high-performance work environment, service quality, and customer satisfaction: an extension to the healthcare sector.

    PubMed

    Scotti, Dennis J; Harmon, Joel; Behson, Scott J

    2007-01-01

    Healthcare managers must deliver high-quality patient services that generate highly satisfied and loyal customers. In this article, we examine how a high-involvement approach to the work environment of healthcare employees may lead to exceptional service quality, satisfied patients, and ultimately to loyal customers. Specifically, we investigate the chain of events through which high-performance work systems (HPWS) and customer orientation influence employee and customer perceptions of service quality and patient satisfaction in a national sample of 113 Veterans Health Administration ambulatory care centers. We present a conceptual model for linking work environment to customer satisfaction and test this model using structural equations modeling. The results suggest that (1) HPWS is linked to employee perceptions of their ability to deliver high-quality customer service, both directly and through their perceptions of customer orientation; (2) employee perceptions of customer service are linked to customer perceptions of high-quality service; and (3) perceived service quality is linked with customer satisfaction. Theoretical and practical implications of our findings, including suggestions of how healthcare managers can implement changes to their work environments, are discussed.

  20. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  1. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  2. Students' Knowledge about the Internal Structure of Mice and Cockroaches in Their Environment

    ERIC Educational Resources Information Center

    Kilic, Selda

    2013-01-01

    The aim of this study is to determine 9th class students knowledge about the internal structures of mice and cockroaches using drawings. Drawings of 122 students from the 9th class of a high school in the center of Konya about the internal structures of mice and cockroaches have been analyzed. Drawings were analyzed independently by two…

  3. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    DTIC Science & Technology

    1974-08-01

    VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated

  4. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  5. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey

    PubMed Central

    Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-01-01

    ABSTRACT The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H2 and CH4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H2, which is poorly studied due to the rarity of these environments on Earth. PMID:28389534

  6. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey.

    PubMed

    Neubeck, Anna; Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-06-15

    The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H 2 and CH 4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria , Actinobacteria , Chloroflexi , and Acidobacteria , accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H 2 , which is poorly studied due to the rarity of these environments on Earth. Copyright © 2017 Neubeck et al.

  7. Relationships between High School Chemistry Students' Perceptions of a Constructivist Learning Environment and their STEM Career Expectations

    NASA Astrophysics Data System (ADS)

    Wild, Andrew

    2015-09-01

    Considerable attention has been devoted to factors affecting the persistence of women and historically underrepresented ethnic groups in their science education trajectories. The literature has focused more on structural factors that affect longitudinal outcomes rather than classroom experiences. This exploratory survey study described relationships among high school chemistry students' perceptions of a constructivist learning environment (CLE) and STEM career expectations. The sample included 693 students from 7 public high schools within the San Francisco Bay Area. Students' perceptions of a CLE predicted their expectations of entering a science career, but not engineering, computer, health, or mathematics-related careers. When all groups of students perceived the learning environment as more constructivist, they were more likely to expect science careers.

  8. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong

    2018-04-01

    The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

  9. Field testing of a lightweight relocatable structure in a desert environment

    NASA Astrophysics Data System (ADS)

    Kao, A.; Lane, S.; Carr, J. S.; Wahlgren, L.; Klause, P.

    1984-09-01

    This report describes the field tests of a commercially available, off-the-shelf lightweight relocatable structure (LRS) systems selected for possible military application in a theater or operations. The structural system selected for the field tests was a panelized system manufactured by Kelly Klosure, Inc. The purpose of the tests was to determine the constructibility and habitability of the building system. The tests are being conducted in two stages: Stage 1 tests were conducted in a desert environment, and Stage 2 tests are being conducted in a temperate environment. This report documents the results of the Stage 1 tests. The test results showed that the 20-ft-wide and 8-ft-high building can be erected manually by unskilled troop labor using only hand tools. However, for a 12-ft-high building assembled using 4- x 8-ft panels, a crane is needed to help lift assembled components for the erection. Based on overall constructibility and environmental performance, the fiberboard panel system is the better choice. Several modifications were made to the system during the field tests. It is recommended that these modifications be incorporated into system design and further field tests conducted before making a final evaluation.

  10. Measuring School Climate in High Schools: A Focus on Safety, Engagement, and the Environment

    ERIC Educational Resources Information Center

    Bradshaw, Catherine P.; Waasdorp, Tracy E.; Debnam, Katrina J.; Johnson, Sarah Lindstrom

    2014-01-01

    Background: School climate has been linked to multiple student behavioral, academic, health, and social-emotional outcomes. The US Department of Education (USDOE) developed a 3-factor model of school climate comprised of safety, engagement, and environment. This article examines the factor structure and measurement invariance of the USDOE model.…

  11. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

    PubMed

    Fletcher, Robert J; Robertson, Ellen P; Wilcox, Rebecca C; Reichert, Brian E; Austin, James D; Kitchens, Wiley M

    2015-09-07

    Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals. © 2015 The Author(s).

  12. Solar Terrestrial Physics: Present and Future

    NASA Technical Reports Server (NTRS)

    Butler, D. M. (Editor); Papadopoulos, K. (Editor)

    1984-01-01

    The following topics relating to solar-terrestrial interactions are considered: (1) reconnection of magnetic fields; (2) particle acceleration; (3) solar magnetic flux; (4) magnetohydrodynamic waves and turbulence in the Sun and interplanetary medium; (5) coupling of the solar wind to the magnetosphere; (6) coronal transients; (7) the connection between the magnetosphere and ionosphere; (8) substorms in the magnetosphere; (9) solar flares and the solar terrestrial environment; (10) shock waves in the solar terrestrial environment; (11) plasma transport and convection at high latitudes; and (12) high latitude ionospheric structure.

  13. Gravitational considerations with animal rhythms

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.

    1974-01-01

    As established in the laboratory and largely confirmed by others, simulated high-g environments influence growth and development of animals as small as or smaller than baby turtles, sometimes accelerating and sometimes decelerating these processes. High-g environments result in many functional changes or adjustments in feeding, metabolism, circulation, fluid balances, and structures for support, and influence life expectancy. An assembly of equipment suitable for measuring oxygen consumption of small mammals as influenced by chronic centrifugation and/or by day-night rhythms is discussed.

  14. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  15. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  16. The impact of the hospital work environment on social support from physicians in breast cancer care.

    PubMed

    Ansmann, Lena; Wirtz, Markus; Kowalski, Christoph; Pfaff, Holger; Visser, Adriaan; Ernstmann, Nicole

    2014-09-01

    Research on determinants of a good patient-physician interaction mainly disregards systemic factors, such as the work environment in healthcare. This study aims to identify stressors and resources within the work environment of hospital physicians that enable or hinder the physicians' provision of social support to patients. Four data sources on 35 German breast cancer center hospitals were matched: structured hospital quality reports and surveys of 348 physicians, 108 persons in hospital leadership, and 1844 patients. Associations between hospital structures, physicians' social resources as well as job demands and control and patients' perceived support from physicians have been studied in multilevel models. Patients feel better supported by their physicians in hospitals with high social capital, a high percentage of permanently employed physicians, and less physically strained physicians. The results highlight the importance of the work environment for a good patient-physician interaction. They can be used to develop interventions for redesigning the hospital work environment, which in turn may improve physician satisfaction, well-being, and performance and consequently the quality of care. Health policy and hospital management could create conditions conducive to better patient-physician interaction by strengthening the social capital and by increasing job security for physicians. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The Role Of Environment In Stellar Mass Growth

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2017-06-01

    In this talk I give a brief summary of methods to measure galaxy environment. I then discuss the dependence of stellar population properties on environmental density: it turns out that the latter are driven by galaxy mass, and galaxy environment only plays a secondary role, mostly at late times in low-mass galaxies. I show that this evidence has now been extended to stellar population gradients using the IFU survey SDSS/MaNGA that again turn out to be independent of environment, including central-satellite classification. Finally I present results from the DES, where the dependence of the stellar mass function with redshift and environmental density is explored. It is found that the fraction of massive galaxies is larger in high density environments than in low density environments. The low density and high density components converge with increasing redshift up to z 1.0 where the shapes of the mass function components are indistinguishable. This study shows how high density structures build up around massive galaxies through cosmic time, which sets new valuable constraints on galaxy formation models.

  18. Organizational culture and a safety-conscious work environment: The mediating role of employee communication satisfaction.

    PubMed

    Silla, Inmaculada; Navajas, Joaquin; Koves, G Kenneth

    2017-06-01

    A safety-conscious work environment allows high-reliability organizations to be proactive regarding safety and enables employees to feel free to report any concern without fear of retaliation. Currently, research on the antecedents to safety-conscious work environments is scarce. Structural equation modeling was applied to test the mediating role of employee communication satisfaction in the relationship between constructive culture and a safety-conscious work environment in several nuclear power plants. Employee communication satisfaction partially mediated the positive relationships between a constructive culture and a safety-conscious work environment. Constructive cultures in which cooperation, supportive relationships, individual growth and high performance are encouraged facilitate the establishment of a safety-conscious work environment. This influence is partially explained by increased employee communication satisfaction. Constructive cultures should be encouraged within organizations. In addition, managers should promote communication policies and practices that support a safety-conscious work environment. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  19. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  20. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  1. Correspondence

    PubMed Central

    Almli, Lynn M.; Srivastava, Amita; Fani, Negar; Kerley, Kimberly; Mercer, Kristina B.; Feng, Hao; Bradley, Bekh; Ressler, Kerry J.

    2014-01-01

    Follow-up and Extension of a Prior Genome-wide Association Study of Posttraumatic Stress Disorder: Gene × Environment Associations and Structural Magnetic Resonance Imaging in a Highly Traumatized African-American Civilian Population PMID:24576688

  2. Experiments in structural dynamics and control using a grid

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1985-01-01

    Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?

  3. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  4. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    PubMed

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common, tropical tree over multiple habitats and provide information for managers of a successional forest in a protected area.

  5. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be feasible. A variety of designs that have been designed, fabricated and tested will be presented

  6. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  7. Sonic environment of aircraft structure immersed in a supersonic jet flow stream

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.; Balena, F. J.; Soovere, J.

    1976-01-01

    Test methods for determining the sonic environment of aircraft structure that is immersed in the flow stream of a high velocity jet or that is subjected to the noise field surrounding the jet, were investigated. Sonic environment test data measured on a SCAT 15-F model in the flow field of Mach 1.5 and 2.5 jets were processed. Narrow band, lateral cross correlation and noise contour plots are presented. Data acquisition and reduction methods are depicted. A computer program for scaling the model data is given that accounts for model size, jet velocity, transducer size, and jet density. Comparisons of scaled model data and full size aircraft data are made for the L-1011, S-3A, and a V/STOL lower surface blowing concept. Sonic environment predictions are made for an engine-over-the-wing SST configuration.

  8. Assessing motivation for work environment improvements: internal consistency, reliability and factorial structure.

    PubMed

    Hedlund, Ann; Ateg, Mattias; Andersson, Ing-Marie; Rosén, Gunnar

    2010-04-01

    Workers' motivation to actively take part in improvements to the work environment is assumed to be important for the efficiency of investments for that purpose. That gives rise to the need for a tool to measure this motivation. A questionnaire to measure motivation for improvements to the work environment has been designed. Internal consistency and test-retest reliability of the domains of the questionnaire have been measured, and the factorial structure has been explored, from the answers of 113 employees. The internal consistency is high (0.94), as well as the correlation for the total score (0.84). Three factors are identified accounting for 61.6% of the total variance. The questionnaire can be a useful tool in improving intervention methods. The expectation is that the tool can be useful, particularly with the aim of improving efficiency of companies' investments for work environment improvements. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Detecting Corrosion Under Paint and Insulation

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2011-01-01

    Corrosion is a major concern at the Kennedy Space Center in Florida due to the proximity of the center to the Atlantic Ocean and to salt water lagoons. High humidity, salt fogs, and ocean breezes, provide an ideal environment in which painted steel structures become corroded. Maintenance of painted steel structures is a never-ending process.

  10. Learning to Cook: Production Learning Environment in Kitchens

    ERIC Educational Resources Information Center

    James, Susan

    2006-01-01

    Learning in workplaces is neither ad hoc nor informal. Such labels are a misnomer and do not do justice to the highly-structured nature and complexity of many workplaces where learning takes place. This article discusses the organisational and structural framework developed from a three-year doctoral study into how apprentice chefs construct their…

  11. Why are some plant-pollinator networks more nested than others?

    PubMed

    Song, Chuliang; Rohr, Rudolf P; Saavedra, Serguei

    2017-10-01

    Empirical studies have found that the mutualistic interactions forming the structure of plant-pollinator networks are typically more nested than expected by chance alone. Additionally, theoretical studies have shown a positive association between the nested structure of mutualistic networks and community persistence. Yet, it has been shown that some plant-pollinator networks may be more nested than others, raising the interesting question of which factors are responsible for such enhanced nested structure. It has been argued that ordered network structures may increase the persistence of ecological communities under less predictable environments. This suggests that nested structures of plant-pollinator networks could be more advantageous under highly seasonal environments. While several studies have investigated the link between nestedness and various environmental variables, unfortunately, there has been no unified answer to validate these predictions. Here, we move from the problem of describing network structures to the problem of comparing network structures. We develop comparative statistics, and apply them to investigate the association between the nested structure of 59 plant-pollinator networks and the temperature seasonality present in their locations. We demonstrate that higher levels of nestedness are associated with a higher temperature seasonality. We show that the previous lack of agreement came from an extended practice of using standardized measures of nestedness that cannot be compared across different networks. Importantly, our observations complement theory showing that more nested network structures can increase the range of environmental conditions compatible with species coexistence in mutualistic systems, also known as structural stability. This increase in nestedness should be more advantageous and occur more often in locations subject to random environmental perturbations, which could be driven by highly changing or seasonal environments. This synthesis of theory and observations could prove relevant for a better understanding of the ecological processes driving the assembly and persistence of ecological communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Leading and Managing the Competence-Based Curriculum: Conscripts, Volunteers and Champions at Work within the Departmentalised Environment of the Secondary School

    ERIC Educational Resources Information Center

    Downey, Christopher; Byrne, Jenny; Souza, Ana

    2013-01-01

    This article presents a sub-set of findings from a research project describing the experience of four case study schools which have implemented a competence-based curriculum (CBC) for students in their first year of secondary education. Secondary schools are highly departmentalised environments with organisational structures based primarily around…

  13. Inclusion of Immersive Virtual Learning Environments and Visual Control Systems to Support the Learning of Students with Asperger Syndrome

    ERIC Educational Resources Information Center

    Lorenzo, Gonzalo; Pomares, Jorge; Lledo, Asuncion

    2013-01-01

    This paper presents the use of immersive virtual reality systems in the educational intervention with Asperger students. The starting points of this study are features of these students' cognitive style that requires an explicit teaching style supported by visual aids and highly structured environments. The proposed immersive virtual reality…

  14. Architectural switches in plant thylakoid membranes.

    PubMed

    Kirchhoff, Helmut

    2013-10-01

    Recent progress in elucidating the structure of higher plants photosynthetic membranes provides a wealth of information. It allows generation of architectural models that reveal well-organized and complex arrangements not only on whole membrane level, but also on the supramolecular level. These arrangements are not static but highly responsive to the environment. Knowledge about the interdependency between dynamic structural features of the photosynthetic machinery and the functionality of energy conversion is central to understanding the plasticity of photosynthesis in an ever-changing environment. This review summarizes the architectural switches that are realized in thylakoid membranes of green plants.

  15. Structural analysis for preliminary design of High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Bhatia, Kumar G.

    1992-01-01

    In the preliminary design environment, there is a need for quick evaluation of configuration and material concepts. The simplified beam representations used in the subsonic, high aspect ratio wing platform are not applicable for low aspect ratio configurations typical of supersonic transports. There is a requirement to develop methods for efficient generation of structural arrangement and finite element representation to support multidisciplinary analysis and optimization. In addition, empirical data bases required to validate prediction methods need to be improved for high speed civil transport (HSCT) type configurations.

  16. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  17. Decentralized control experiments on the JPL flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Ossman, K.; Donne, J.; Boesch, M.; Ahmed, A.

    1990-01-01

    Decentralized control experiments were successfully demonstrated for the JPL/AFAL Flexible Structure. A simulation package using MATRIXx showed strong correlation between the simulations and experimental result, while providing a means for test and debug of the various control strategies. Implementation was simplified by a modular software design that was easily transported from the simulation environment to the experimental environment. Control designs worked well for suppression of the dominant modes of the structure. Static decentralized output feedback dampened the excited modes of the structure, but sometimes excited higher order modes upon startup of the controller. A second-order frequency shaping controller helped to eliminate excitation of the higher order modes by attenuating high frequencies in the control effort. However, it also resulted in slightly longer settling times.

  18. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package

    PubMed Central

    Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang

    2006-01-01

    Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074

  19. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  20. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  1. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  2. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  3. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  4. Use of high-rise structures for sustainable tourism

    NASA Astrophysics Data System (ADS)

    Vavilova, Tatiana Ya.; Vyshkin, Efim G.

    2018-03-01

    The paper deals with such issues as formation and development of the infrastructure of objects for serving tourists in urban environment and specially protected natural areas with particular focus on open tower structures - a type of object which is so popular in Russia. The authors systematize international experience of integrating watchtowers in natural and anthropogenic environment as well as specific features of their modern architectural solutions. A number of examples are given. Summing up the results of the analysis we have come to conclusion that in the field of tourism the most promising tendency in functional use of vertical structures is the demonstration of cultural and natural attractions. It is also noted that in national and natural parks objects of the tower type can be built for other purposes, e.g. for conducting research, monitoring weather conditions and emergency situations. It is shown that the development of infrastructure of high-rise buildings for educational tourism contributes to sustainable development of territories and settlements.

  5. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  6. Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.

    PubMed

    Lueking, Angela D; Yang, Ralph T; Rodriguez, Nelly M; Baker, R Terry K

    2004-02-03

    A series of graphite nanofibers (GNFs) that were subjected to various pretreatments were used to determine how modifications in the carbon structure formed during either synthesis or pretreatment steps results in active or inactive materials for hydrogen storage. The nanofibers possessing a herringbone structure and a high degree of defects were found to exhibit the best performance for hydrogen storage. These materials were exposed to several pretreatment procedures, including oxidative, reductive, and inert environments. Significant hydrogen storage levels were found for several in situ pretreatments. Examination of the nanofibers by high-resolution transmission electron microscopy (TEM) after pretreatment and subsequent hydrogen storage revealed the existence of edge attack and an enhancement in the generation of structural defects. These findings suggest that pretreatment in certain environments results in the creation of catalytic sites that are favorable toward hydrogen storage. The best pretreatment resulted in a 3.8% hydrogen release after exposure at 69 bar and room temperature.

  7. Studying light-harvesting models with superconducting circuits.

    PubMed

    Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas

    2018-03-02

    The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10 5 . We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

  8. Thermal structures: Four decades of progress

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1990-01-01

    Since the first supersonic flight in October 1947, the United States has designed, developed and flown flight vehicles within increasingly severe aerothermal environments. Over this period, major advances in engineering capabilities have occurred that will enable the design of thermal structures for high speed flight vehicles in the twenty-first century. Progress in thermal-structures is surveyed for the last four decades to provide a historical perspective for future efforts.

  9. Near Real Time Structural Health Monitoring with Multiple Sensors in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Todd, M.; Kuester, F.; Goldberg, D.; Lo, E.; Maher, R.

    2017-12-01

    A repeated near real time 3-D digital surrogate representation of critical engineered structures can be used to provide actionable data on subtle time-varying displacements in support of disaster resiliency. We describe a damage monitoring system of optimally-integrated complementary sensors, including Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical Systems (MEMS) accelerometers coupled with the GNSS (seismogeodesy), light multi-rotor Unmanned Aerial Vehicles (UAVs) equipped with high-resolution digital cameras and GNSS/IMU, and ground-based Light Detection and Ranging (LIDAR). The seismogeodetic system provides point measurements of static and dynamic displacements and seismic velocities of the structure. The GNSS ties the UAV and LIDAR imagery to an absolute reference frame with respect to survey stations in the vicinity of the structure to isolate the building response to ground motions. The GNSS/IMU can also estimate the trajectory of the UAV with respect to the absolute reference frame. With these constraints, multiple UAVs and LIDAR images can provide 4-D displacements of thousands of points on the structure. The UAV systematically circumnavigates the target structure, collecting high-resolution image data, while the ground LIDAR scans the structure from different perspectives to create a detailed baseline 3-D reference model. UAV- and LIDAR-based imaging can subsequently be repeated after extreme events, or after long time intervals, to assess before and after conditions. The unique challenge is that disaster environments are often highly dynamic, resulting in rapidly evolving, spatio-temporal data assets with the need for near real time access to the available data and the tools to translate these data into decisions. The seismogeodetic analysis has already been demonstrated in the NASA AIST Managed Cloud Environment (AMCE) designed to manage large NASA Earth Observation data projects on Amazon Web Services (AWS). The Cloud provides distinct advantages in terms of extensive storage and computing resources required for processing UAV and LIDAR imagery. Furthermore, it avoids single points of failure and allows for remote operations during emergencies, when near real time access to structures may be limited.

  10. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications inmore » building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO-SHM sensing system was tested in the simulated harsh environment for its multi-parameter monitoring performance and high-temperature survivability.« less

  11. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  12. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  13. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  14. A nonlinear model predictive control formulation for obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments

    NASA Astrophysics Data System (ADS)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2018-06-01

    This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.

  15. Space environment effects on polymers in low earth orbit

    NASA Astrophysics Data System (ADS)

    Grossman, E.; Gouzman, I.

    2003-08-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.

  16. Performance enhanced piezoelectric-based crack detection system for high temperature I-beam SHM

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhang, Haifeng

    2017-04-01

    This paper proposes an innovative sensing system for high temperature (up to 150°C) I-beam crack detection. The proposed system is based on the piezoelectric effect and laser sensing mechanisms, which is proved to be effective at high temperature environment (up to 150°C). Different from other high temperature SHM approaches, the proposed sensing system is employing a piezoelectric disk as an actuator and a laser vibrometer as a sensor for remote detection. Lab tests are carried out and the vibrational properties are studied to characterize the relationship between crack depth and sensor responses by analyzing the RMS of sensor responses. Instead of utilizing a pair of piezoelectric actuator and sensor, using the laser vibrometer will enable 1) a more flexible detection, which will not be limited to specific area or dimension, 2) wireless sensing, which lowers the risk of operating at high temperature/harsh environment. The proposed sensing system can be applied to engineering structures such as in nuclear power plant reactor vessel and heat pipe structures/systems.

  17. Effective Ninth-Grade Transition Programs Can Promote Student Success

    ERIC Educational Resources Information Center

    Roybal, Victoria; Thornton, Bill; Usinger, Janet

    2014-01-01

    The transition from middle into high school can be perilous for some students. High school freshmen fail at an alarming rate. In a general sense, the environment, expectations, structure, and culture of high schools are different from middle schools. However, school leaders can implement transition programs that may promote success of 9th graders.…

  18. Wear Resistance of Steels with Surface Nanocrystalline Structure Generated by Mechanical-Pulse Treatment.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha

    2017-12-01

    The influence of the surface mechanical-pulse treatment based on high-speed friction with a rapid cooling by the technological environment on the wear resistance of medium- and high-carbon steels was considered. The treatment due to a severe plastic deformation enabled obtaining the nanocrystalline structure with a grain size of 14-40 nm. A high positive effect of this treatment was obtained not only because of metal nanocrystallization but also thanks to other factors, namely, structural-phase transformations, carbon saturation of the surface due to decomposition of the coolant and the friction coefficient decrease. Higher carbon content leads to better strengthening of the surface, and its microhardness can reach 12 GPa.

  19. Structure of organic solids at low temperature and high pressure.

    PubMed

    Lee, Rachael; Howard, Judith A K; Probert, Michael R; Steed, Jonathan W

    2014-07-07

    This tutorial review looks at structural and supramolecular chemistry of molecular solids under extreme conditions, and introduces the instrumentation and facilities that enable single crystal diffraction studies on molecular crystals at both high pressure and low temperature. The equipment used for crystallography under extreme conditions is explored, particularly pressure cells such as the diamond anvil cell, and their mechanism of action, as well as the cryogenic apparatus which allows materials to be cooled to significantly low temperatures. The review also covers recent advances in the structural chemistry of molecular solids under extreme conditions with an emphasis on the use of single crystal crystallography in high pressure and low temperature environments to probe polymorphism and supramolecular interactions.

  20. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  1. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  2. A partnered approach for structured observation to assess the environment of a neighborhood with high diabetes rates.

    PubMed

    Kleinman, Lawrence C; Lutz, David; Plumb, Ellen J; Barkley, Pearl; Nazario, Hector R; Ramos, Michelle A; Horowitz, Carol R

    2011-01-01

    The Communities IMPACT Diabetes Center uses partnered methods to address diabetes-related conditions among African Americans and Latinos in East Harlem, New York. To describe a novel, partnered approach that integrates simultaneous structured observation by community and academic partners with "on-the-spot" resolution of differences to collect baseline data regarding the built and food environments in a two census tract area of East Harlem and present select findings. We designed an environmental assessment to explore characteristics of the environment related to walking and eating. We paired community and academic partners to assess each block, resolve any differences, and report results. Nearly one year later, we surveyed the data collectors and analyzed responses using standard qualitative methods. Key themes included connection to and characteristics of the community; interactions with partners; surprises and learning, and aspects of data collection. All but the first were common to academic and community partners. Relationships between partners were generally amiable. Both community-"I think it was very helpful, we made sure neither of us made mistakes, and helped each other when we could"-and academic-"I really enjoyed it . . . I learned a lot about the areas I surveyed"-partners were complimentary. Community partners' strengths included local knowledge of the community, whereas academic partners' focus on adherence to the specifications was critical. Structured observation identified many sidewalks in disrepair or obstructed, few benches, and highly variable times allocated for pedestrians to cross at cross walks. The partnered data collection was both successful and formative, building additional relationships and further capacity for ongoing partnership. Community partners saw their community in a new way, seeing, "little things that are important but people don't pay attention to." Structured observations added to our understanding of how an environment may contribute to diabetes.

  3. Relating structural growth environment to white spruce sapling establishment at the Forest-Tundra Ecotone

    NASA Astrophysics Data System (ADS)

    Maguire, A.; Boelman, N.; Griffin, K. L.; Jensen, J.; Hiers, E.; Johnson, D. M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    The effect of climate change on treeline position at the latitudinal Forest-Tundra ecotone (FTE) is poorly understood. While the FTE is expansive (stretching 13,000 km acros the panarctic), understanding relationships between climate and tree function may depend on very fine scale processes. High resolution tools are therefore needed to appropriately characterize the leading (northernmost) edge of the FTE. We hypothesized that microstructural metrics obtainable from lidar remote sensing may explain variation in the physical growth environment that governs sapling establishment. To test our hypothesis, we used terrestrial laser scanning (TLS) to collect highly spatially resolved 3-D structural information of white spruce (Picea glauca) saplings and their aboveground growth environment at the leading edge of a FTE in northern Alaska and Northwest Territories, Canada. Coordinates of sapling locations were extracted from the 3-D TLS data. Within each sampling plot, 20 sets of coordinates were randomly selected from regions where no saplings were present. Ground roughness, canopy roughness, average aspect, average slope, average curvature, wind shelter index, and wetness indexwere extracted from point clouds within a variable radius from all coordinates. Generalized linear models (GLM) were fit to determine which microstructural metrics were most strongly associated with sapling establishment. Preliminary analyses of three plots suggest that vegetation roughness, wetness index, ground roughness, and slope were the most important terrain metrics governing sapling presence (Figure 1). Comprehensive analyses will include eight plots and GLMs optimized for scale at which structural parameters affect sapling establishment. Spatial autocorrelation of sample locations will be accounted for in models. Because these analyses address how the physical growth environment affects sapling establishment, model outputs will provide information for improving understanding of the ecological processes that regulate treeline dynamics. Moreover, establishing relationships between the remotely sensed structural growth environment and tree establishment provides new ways of spatially scaling across larger areas to study ecological change at the FTE.

  4. Piloting a 'spatial isolation' index: the built environment and sexual and drug use risks to sex workers.

    PubMed

    Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate

    2014-05-01

    Employing innovative mapping and spatial analyses of individual and neighbourhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a 'spatial isolation index' in explaining exchanging sex for drugs and exchanging sex while high. Analyses drew on baseline interview and geographic data (January 2010-October 2011) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighbourhood environment data. An index measuring 'spatial isolation' was developed from seven indicators measuring features of the built environment within 50m buffers (e.g., industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Of 510 SWs, 328 worked in street-based/outdoor environments (e.g., streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs' main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Piloting a ‘Spatial Isolation’ Index: The Built Environment and Sexual and Drug Use Risks to Sex Workers

    PubMed Central

    Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate

    2014-01-01

    Background Employing innovative mapping and spatial analyses of individual and neighborhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a ‘spatial isolation index’ in explaining exchanging sex for drugs and exchanging sex while high. Methods Analyses drew on baseline interview and geographic data (Jan/10-Oct/11) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighborhood environment data. An index measuring ‘spatial isolation’ was developed from seven indicators measuring features of the built environment within 50m buffers (e.g. industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Results Of 510 SWs, 328 worked in street-based/outdoor environments (e.g. streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs’ main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. Conclusions The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. PMID:24433813

  6. Maintaining High Challenge and High Support for Diverse Learners

    ERIC Educational Resources Information Center

    Athanases, Steven

    2012-01-01

    As teachers, schools and school leaders work to better prepare California's culturally and linguistically diverse students, methods for doing so vary widely. One approach prioritizes safe spaces, welcoming environments, well-structured routines--school and classroom culture features essential for students' well-being. A second key priority, often…

  7. Free-space propagation of high-dimensional structured optical fields in an urban environment

    PubMed Central

    Lavery, Martin P. J.; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W.; Padgett, Miles J.; Marquardt, Christoph; Leuchs, Gerd

    2017-01-01

    Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment. PMID:29075663

  8. Free-space propagation of high-dimensional structured optical fields in an urban environment.

    PubMed

    Lavery, Martin P J; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W; Padgett, Miles J; Marquardt, Christoph; Leuchs, Gerd

    2017-10-01

    Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment.

  9. Properties of the moon and its environment from lunar magnetometer measurements

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1976-01-01

    Lunar analysis of data from a total of nine lunar magnetometers is described. Results obtained concerning electromagnetic, compositional, and structural properties of the lunar interior are discussed. Specific topics covered include: lunar magnetic permeability and iron abundance; limits on a highly conducting lunar core; lunar electrical conductivity; and internal structure inferred from conductivity and permeability results.

  10. Moisture properties

    Treesearch

    Roger M. Rowell

    2005-01-01

    Wood was designed by nature over millions of years to perform in a wet environment. The wood structure is formed in a water-saturated environment in the living tree, and the water in the living tree keeps the wood elastic and able to withstand environmental strain such as high wind loads. We cut down a tree, dry the wood, and mainly use it in its dry state. But wood in...

  11. Bringing the Global Scale to Education in Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Turner, D. P.

    2017-12-01

    Given the ominous trajectory of rapid global environmental change, environmental managers must grapple with global scale structures, processes, and concepts. The concept of the Anthropocene Epoch, albeit contested, is highly integrative across disciplines and temporal scales, and thus potentially helpful in the context of educating environmental managers. It can be framed temporally in terms of the geologic history of the global environment, the initiation and acceleration of anthropogenic impacts on the environment, and a future global environment that is highly dependent on human decisions. A key lesson from Earth's pre-human geologic history is that global climate has generally been linked to greenhouse gas concentrations, and many mass extinction events were associated with high greenhouse gas concentrations. The pervasive impacts of the contemporary technosphere on the biosphere point especially to the need to conserve biosphere capital. Scenarios of Earth's future environment, based on Earth system models, suggest that business-as-usual technologies and economic practices will set the stage for a biophysical environment that is hostile (if not inimical) to a high technology global civilization. These lessons can inform and inspire sub-global management efforts to mitigate and adapt to global environmental change.

  12. A reconfigurable robot with tensegrity structure using nylon artificial muscle

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.

    2016-04-01

    This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.

  13. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.

  14. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation

    PubMed Central

    Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri

    2017-01-01

    Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs. PMID:28878756

  15. Lightweight, Thermally Insulating Structural Panels

    NASA Technical Reports Server (NTRS)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  16. Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsu

    2017-08-01

    Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.

  17. Block scheduling: Instructional practices in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Richelsoph, Barry

    Proponents of block scheduling perceive this approach to be a 'structural lever' to invite and impel teachers to change their teaching (Marshak, 1997). This desired shift is supposed to be manifest in movement from the traditional classroom structure, focusing on the teacher as lecturer or transmitter of subject matter, to that of teacher as coach with students as active learners, engaged in a variety of activities involving them individually and collaboratively in their education (Canady & Rettig, 1995). Block scheduling changes the formal structure of the school day, but does it really change pedagogical practices in high school science classrooms? Fraser's Individualized Classroom Environment Questionnaire (ICEQ) the instrument used in this study of science classes in five block-scheduled high schools in Connecticut, incorporates the tenets for an enriched classroom environment in its five scales or constructs: Participation---Extent to which students are encouraged to participate rather than be passive learners; Personalization---Emphasis on opportunities for individual students to interact with the teacher and on concern for the personal welfare and social growth of the individual; Investigation---Emphasis on the skills and processes of inquiry and their use in problem solving and investigation. Independence---Extent to which students are allowed to make decisions and have control over their own learning environment and behavior; Differentiation---Emphasis on the selective treatment of students on the basis of ability, learning style, interests, and rate of working (Fraser, 1990). The results and conclusions from this research study suggested that the block-scheduled high school science classes that participated in this research do promote, to varying degrees, those tenets that define an enriched classroom environment. Both the teachers and their classes of students perceived opportunities for Participation, Personalization, and Investigation constructs as prevalent in science instruction. However, Independence and Differentiation, although existent to some extent, were perceived to occur less by both the teachers and the students in their classes. The provision of more class time alone was not enough to drive the tenets of these two constructs significantly.

  18. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    PubMed

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  19. Brownian dynamics simulation of protein diffusion in crowded environments

    NASA Astrophysics Data System (ADS)

    Mereghetti, Paolo; Wade, Rebecca C.

    2013-02-01

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. We first describe the development of a Brownian dynamics simulation methodology to investigate the dynamic and structural properties of protein solutions using atomic-detail protein structures. We then discuss insights obtained from applying this approach to simulation of solutions of a range of types of proteins.

  20. Environmental Determinants of Cardiovascular Disease.

    PubMed

    Bhatnagar, Aruni

    2017-07-07

    Many features of the environment have been found to exert an important influence on cardiovascular disease (CVD) risk, progression, and severity. Changes in the environment because of migration to different geographic locations, modifications in lifestyle choices, and shifts in social policies and cultural practices alter CVD risk, even in the absence of genetic changes. Nevertheless, the cumulative impact of the environment on CVD risk has been difficult to assess and the mechanisms by which some environment factors influence CVD remain obscure. Human environments are complex, and their natural, social, and personal domains are highly variable because of diversity in human ecosystems, evolutionary histories, social structures, and individual choices. Accumulating evidence supports the notion that ecological features such as the diurnal cycles of light and day, sunlight exposure, seasons, and geographic characteristics of the natural environment such as altitude, latitude, and greenspaces are important determinants of cardiovascular health and CVD risk. In highly developed societies, the influence of the natural environment is moderated by the physical characteristics of the social environments such as the built environment and pollution, as well as by socioeconomic status and social networks. These attributes of the social environment shape lifestyle choices that significantly modify CVD risk. An understanding of how different domains of the environment, individually and collectively, affect CVD risk could lead to a better appraisal of CVD and aid in the development of new preventive and therapeutic strategies to limit the increasingly high global burden of heart disease and stroke. © 2017 American Heart Association, Inc.

  1. "Over here, it's just drugs, women and all the madness": The HIV risk environment of clients of female sex workers in Tijuana, Mexico.

    PubMed

    Goldenberg, Shira M; Strathdee, Steffanie A; Gallardo, Manuel; Rhodes, Tim; Wagner, Karla D; Patterson, Thomas L

    2011-04-01

    HIV vulnerability depends upon social context. Based on broader debates in social epidemiology, political economy, and sociology of health, Rhodes' (2002) "risk environment" framework provides one heuristic for understanding how contextual features influence HIV risk, through different types of environmental factors (social, economic, policy, and physical) which interact at different levels of influence (micro, macro). Few data are available on the "risk environment" of male clients of female sex workers (FSWs); such men represent a potential "bridge" for transmission of HIV and other sexually transmitted infections from high- to low-prevalence populations. Using in-depth interviews (n = 30), we describe the HIV risk environment of male clients in Tijuana, Mexico, where disproportionately high HIV prevalence has been reported among FSWs and their clients. A number of environmental themes influence risky sex with FSWs and the interplay between individual agency and structural forces: social isolation and the search for intimacy; meanings and identities ascribed to Tijuana's Zona Roja (red light district) as a risky place; social relationships in the Zona Roja; and economic roles. Our findings suggest that clients' behaviors are deeply embedded in the local context. Using the HIV "risk environment" as our analytic lens, we illustrate how clients' HIV risks are shaped by physical, social, economic, and political factors. The linkages between these and the interplay between structural- and individual-level experiences support theories that view structure as both enabling as well as constraining. We discuss how the "embeddedness" of clients' experiences warrants the use of environmental interventions that address the circumstances contributing to HIV risk at multiple levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Vibration Isolation for Launch of a Space Station Orbital Replacement Unit

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark

    2004-01-01

    Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.

  3. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  4. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  5. The influences of family environment on personality traits.

    PubMed

    Nakao, K; Takaishi, J; Tatsuta, K; Katayama, H; Iwase, M; Yorifuji, K; Takeda, M

    2000-02-01

    In order to clarify the influences of family environment on the development of personality traits, 150 children (104 males and 46 females, mean age 13.2 +/- 2.4 years) who had been interviewed at the Child Guidance Clinic in Osaka were investigated. From 13 behavioral characteristics (activity, talkativeness, sociability, social skills, rule-keeping, will, aggression, emotional control, imagination, anxiety, maturity, intelligence, and neuroticism), factor analysis identified three personality traits: extraversion, maturity, and intellect. The effects of family environment (maternal and paternal participation in child rearing before and after 4years of age, child-rearing style, parental relationship, sibling relationship, number of siblings, birth order, and socioeconomic status) on these personality traits were examined based on a structural equation model. The results found, first, that extraversion was negatively associated with overprotection/interference and with maternal participation in child rearing. Maturity correlated with high socioeconomic status, appropriate child-rearing style, and paternal participation in child rearing. Intellect was related to high socioeconomic status and maternal participation in child rearing. Second, path analysis with selected variables revealed that 8% of variance in extraversion, 14% in maturity, and 10% in intellect was due to family environment. Third, children with high introversion or high intellect had stronger influences from family environment than did those with high extraversion or low intellect.

  6. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  7. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  8. Environmentally Preferred Coatings for Steel

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    NASA is responsible for a number of facilities and structures with metallic structural and nonstructural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner.

  9. Early-Type Galaxy Star Formation Histories in Different Environments

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  10. Band-like transport in highly crystalline graphene films from defective graphene oxides.

    PubMed

    Negishi, R; Akabori, M; Ito, T; Watanabe, Y; Kobayashi, Y

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm(2)/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  11. Band-like transport in highly crystalline graphene films from defective graphene oxides

    NASA Astrophysics Data System (ADS)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  12. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  13. Calibration of aero-structural reduced order models using full-field experimental measurements

    NASA Astrophysics Data System (ADS)

    Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.

    2017-03-01

    The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.

  14. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  15. Physical Conditions of Eta Car Complex Environment Revealed From Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Verner, E. M.; Bruhweiler, F.; Nielsen, K. E.; Gull, T.; Kober, G. Vieira; Corcoran, M.

    2006-01-01

    The very massive star, Eta Carinae, is enshrouded in an unusual complex environment of nebulosities and structures. The circumstellar gas gives rise to distinct absorption and emission components at different velocities and distances from the central source(s). Through photoionization modeling, we find that the radiation field from the more massive B-star companion supports the low ionization structure throughout the 5.54 year period. The radiation field of an evolved O-star is required to produce the higher ionization . emission seen across the broad maximum. Our studies utilize the HST/STIS data and model calculations of various regimes from doubly ionized species (T= 10,000K) to the low temperature (T = 760 K) conditions conductive to molecule formation (CH and OH). Overall analysis suggests the high depletion in C and O and the enrichment in He and N. The sharp molecular and ionic absorptions in this extensively CNO - processed material offers a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.

  16. Numerical simulation on the adaptation of forms in trabecular bone to mechanical disuse and basic multi-cellular unit activation threshold at menopause

    NASA Astrophysics Data System (ADS)

    Gong, He; Fan, Yubo; Zhang, Ming

    2008-04-01

    The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.

  17. Disturbance-mediated facilitation by an intertidal ecosystem engineer.

    PubMed

    Wright, Jeffrey T; Gribben, Paul E

    2017-09-01

    Ecosystem engineers facilitate communities by providing a structural habitat that reduces abiotic stress or predation pressure for associated species. However, disturbance may damage or move the engineer to a more stressful environment, possibly increasing the importance of facilitation for associated communities. In this study, we determined how disturbance to intertidal boulders (i.e., flipping) and the subsequent movement of a structural ecosystem engineer, the tube-forming serpulid worm Galeolaria caespitosa, from the bottom (natural state, low abiotic stress) to the top (disturbed state, high abiotic stress) surface of boulders influenced the importance of facilitation for intertidal communities across two intertidal zones. Theory predicts stronger relative facilitation should occur in the harsher environments of the top of boulders and the high intertidal zone. To test this prediction, we experimentally positioned boulders with the serpulids either face up or face down for 12 months in low and high zones in an intertidal boulder field. There were very different communities associated with the different boulders and serpulids had the strongest facilitative effects on the more stressful top surface of boulders with approximately double the species richness compared to boulders lacking serpulids. Moreover, within the serpulid matrix itself there was also approximately double the species richness (both zones) and abundance (high zone only) of small invertebrates on the top of boulders compared to the bottom. The high relative facilitation on the top of boulders reflected a large reduction in temperature by the serpulid matrix on that surface (up to 10°C) highlighting a key role for modification of the abiotic environment in determining the community-wide facilitation. This study has demonstrated that disturbance and subsequent movement of an ecosystem engineer to a more stressful environment increased the importance of facilitation and allowed species to persist that would otherwise be unable to survive in that environment. © 2017 by the Ecological Society of America.

  18. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    NASA Astrophysics Data System (ADS)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  19. Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment*

    PubMed Central

    Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.

    2013-01-01

    Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505

  20. Advanced Computational Modeling Approaches for Shock Response Prediction

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  1. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  2. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  3. ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Kenny, Jeremy; Murphy, John

    2009-01-01

    The ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. NASA Marshall Space Flight Center (MSFC) engineers were interested in the ALV-X1 launch because the First Stage motor and launch pad conditions, including a relativity short deflector ducting, provide a potential analogue to future Ares I launches. This paper presents the measured liftoff acoustics on the vehicle and tower. Those measured results are compared to predictions based upon the method described in NASA SP-8072 "Acoustic Loads Generated by the Propulsion System" and the Vehicle Acoustic Environment Prediction Program (VAEPP) which was developed by MSFC acoustics engineers. One-third octave band sound pressure levels will be presented. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions. Additionally, the ALV-X1 liftoff data can be scaled to define liftoff environments for the NASA Constellation program Ares vehicles. Vehicle liftoff noise is caused by the supersonic jet flow interaction with surrounding atmosphere or more simply, jet noise. As the vehicle's First Stage motor is ignited, an acoustic noise field is generated by the exhaust. This noise field persists due to the supersonic jet noise and reflections from the launch pad and tower, then changes as the vehicle begins to liftoff from the launch pad. Depending on launch pad and adjacent tower configurations, the liftoff noise is generally very high near the nozzle exit and decreases rapidly away from the nozzle. The liftoff acoustic time range of interest is typically 0 to 20 seconds after ignition. The exhaust plume thermo-fluid mechanics generates sound at approx.10 Hz to 20 kHz. Liftoff acoustic noise is usually the most severe dynamic environment for a launch vehicle or payload in the mid to high frequency range (approx.50 to 2000 Hz). This noise environment can induce high-level vibrations along the external surfaces of the vehicle and surrounding launch facility structures. The acoustic pressure fluctuations will induce severe vibrations in relatively large lightweight structures. Consequently, there is the potential for failure of the structure or attached electrical components. Due to these potential failures, the liftoff acoustic noise is one of the noise source inputs used to determine the vibro-acoustic qualification environment for a launch vehicle and its components.

  4. Local Crystal Structure of Antiferroelectric Bi2Mn4/3Ni2/3O6 in Commensurate and Incommensurate Phases Described by Pair Distribution Function (PDF) and Reverse Monte Carlo (RMC) Modeling.

    PubMed

    Szczecinski, Robert J; Chong, Samantha Y; Chater, Philip A; Hughes, Helen; Tucker, Matthew G; Claridge, John B; Rosseinsky, Matthew J

    2014-04-08

    The functional properties of materials can arise from local structural features that are not well determined or described by crystallographic methods based on long-range average structural models. The room temperature (RT) structure of the Bi perovskite Bi 2 Mn 4/3 Ni 2/3 O 6 has previously been modeled as a locally polar structure where polarization is suppressed by a long-range incommensurate antiferroelectric modulation. In this study we investigate the short-range local structure of Bi 2 Mn 4/3 Ni 2/3 O 6 , determined through reverse Monte Carlo (RMC) modeling of neutron total scattering data, and compare the results with the long-range incommensurate structure description. While the incommensurate structure has equivalent B site environments for Mn and Ni, the local structure displays a significantly Jahn-Teller distorted environment for Mn 3+ . The local structure displays the rock-salt-type Mn/Ni ordering of the related Bi 2 MnNiO 6 high pressure phase, as opposed to Mn/Ni clustering observed in the long-range average incommensurate model. RMC modeling reveals short-range ferroelectric correlations between Bi 3+ cations, giving rise to polar regions that are quantified for the first time as existing within a distance of approximately 12 Å. These local correlations persist in the commensurate high temperature (HT) phase, where the long-range average structure is nonpolar. The local structure thus provides information about cation ordering and B site structural flexibility that may stabilize Bi 3+ on the A site of the perovskite structure and reveals the extent of the local polar regions created by this cation.

  5. Execution environment for intelligent real-time control systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, Janos

    1987-01-01

    Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.

  6. Photogrammetry of the Map Instrument in a Cryogenic Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Hill, M.; Packard, E.; Pazar, R.

    2000-01-01

    MAP Instrument requirements dictated that the instruments Focal Plane Assembly (FPA) and Thermal Reflector System (TRS) maintain a high degree of structural integrity at operational temperatures (< 50K). To verify integrity at these extremes, an elaborate test fixture was constructed to provide a large cryogenic (< 20K) radiative environment and a mobile photogrammetry camera. This paper will discuss MAP's Instrument requirements, how those requirements were verified using photogrammetry, and the test setup used to provide the environment and camera movement needed to verify the instrument's requirements.

  7. Midwest Structural Sciences Center, 2006-2013

    DTIC Science & Technology

    2013-09-01

    for Technology High Speed Systems Division Air Force Research Laboratory This report is published in the interest of scientific and...also be used for making predictions of future flights. 2 Approved for public release; distribution unlimited. Fig. 1.1: Development of future high ...methods were developed to provide validation quality data for coupled high temperature and acoustic loading environments, and to quantitatively study

  8. Design, develop and test high temperature dynamic seals for the space shuttle's aerodynamic control surfaces

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.

  9. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    PubMed Central

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  10. Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants.

    PubMed

    Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud

    2016-02-05

    Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.

  11. Crystal structure analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin.

    PubMed

    Ganapathy, Jagadeesan; Palayam, Malathy; Pennathur, Gautam; Sanmargam, Aravindhan; Krishnasamy, Gunasekaran

    2018-06-20

    Hemoglobin (Hb) molecule consists of α2β2 dimers arranged in fashion having pseudo-222 symmetry. The subunits are composed of the specific functional prosthetic group "heme'' and a protein moiety "globin". Bird Hbs are functionally similar to mammalian Hbs and regulated by inositol pentaphosphate (IPP) but they are structurally dissimilar with mammalian Hbs in adaptation to vital environment such as high altitudes, high speed flights and oxygen affinity. The insufficient structural studies on avian Hbs limit us to understand their degree of adaptation to such critical environments. So far, detailed structural studies of bar-headed goose (BHG) and graylag goose (GLG) Hb structures were reported to expose their remarkable difference in molecular level adaptation. The striking contrasts to its close relative the bar headed goose, which lives at high altitude and capable of tolerating severe hypoxic environment is mainly due its structural features. The Great Cormorant (GCT) can fly and swim, the dual characteristic of GCT leads to study the details of adaptation of high oxygen affinity in avian species and to know about the role of amino acid substitutions at α1β1 interface, the crystal structure of Great cormorant is studied. The structure of GCT Hb has been solved at 3.5Å resolution and it is compared with the other high oxygen affinity Hb (graylag goose (GLG), bar headed goose (BHG) and human (HMN) hemoglobin) structures. To determine the crystal structure of Great Cormorant (GCT) Hemoglobin and to compare its three dimensional structure with other high and low oxygen affinity hemoglobin species to understand its characteristic features of high oxygen affinity. The GCT hemoglobin has been purified, crystallized and data sets were processed using iMosflm. The integrated data has been solved using Molecular replacement method using Graylag hemoglobin (1FAW) as the template. The structure refinement has been carried out using Refmac which reduced the Rwork and Rfree to 23% and 27% respectively. The structure has been deposited in Protein Data Bank with PDB code: 3WR1. The Great cormorant hemoglobin consists of 287 amino acids, two heme and one water molecule located in alpha heme site. The structure has been crystallized in a tetragonal system having half a molecule in the assymetric unit. In order to characterize the tertiary and quaternary structural differences, the structure of cormorant hemoglobin is compared with GLG, BHG and human Hb. The larger variation observed between GCT and human Hb indicates that GCT Hb differs remarkably from human. The α1β1 interface of Great cormorant Hb is similar to bar-headed goose Hb with few amino acid substitutions. It has been found that the interaction which is common among avian hemoglobins (α119 Pro- β55Leu) is altered by Ala 119 in GCT. This intra-dimer contact (α119 Pro - β 55 Leu) disruption leads to high oxygen affinity in BGH Hb. In cormorant, GLG and human the proline is unchanged but interestingly, in cormorant Hb, the β55 position was found to be Thr instead of Leu. Similar kind of substitutions (β 55 Leu - Ser) observed in Andean goose Hb structure leads to elevated oxygen affinity between Hb-O2. To our surprise, such type of substitution at β 55 (Thr) in cormorant Hb confirms that it is comparable with Andean goose Hb structure. Thus the sequence, structural differences at alpha, beta heme pocket and interface contacts confirms that GCT adopts high oxygen affinity conformation. The three dimensional structure of Great cormorant hemoglobin has been investigated to understand its unique structural features to adopt during hypoxia condition. The comparative studies of GCT's α, β heme pockets and the subunit interface with other Hbs reveal its similarities with goose Hbs. Also the loss of α119 - β55 contact in GCT and its unique mutation (Leu β55 Thr ) as in goose Hbs may play an important role in oxygen affinity. Thus by comparing the sequence and overall structural similarities with high and low oxygen affinity species, it appears that GCT has more possibilities to subsist with low oxygen demand. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  13. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    NASA Technical Reports Server (NTRS)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  14. CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, L. S.; Land, V.; Hyde, T. W., E-mail: lorin_matthews@baylor.edu

    2012-01-01

    Combining a particle-particle, particle-cluster, and cluster-cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster-cluster aggregation is significantly more effective than particle-cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, {phi}{sub {sigma}}, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregatesmore » are more compact, with larger {phi}{sub {sigma}}, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.« less

  15. Some experiences in aircraft aeroelastic design using Preliminary Aeroelastic Design of Structures (PAD)

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1984-01-01

    The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.

  16. Coral Reef Education and Australian High School Students

    ERIC Educational Resources Information Center

    Stepath, Carl M.

    2004-01-01

    Educational programs that focus on humans and their relationship to coral reefs are becoming necessary, as reef structures along the Queensland coast come under mounting ecological pressure. This paper reports on a PhD research project which investigated marine education and learning with high school students in coral reef environments along the…

  17. SCSD: The Project and the Schools. A Report from Educational Facilities Laboratories.

    ERIC Educational Resources Information Center

    Benet, James; And Others

    SCSD, a structurally coordinated school building components system, is a highly automated method of building new schools that creatively meet the needs of the ever changing educational environment through functional and flexible planning. Examples of why SCSD high schools are efficient, flexible, and spatially planned, are cited. Environmental…

  18. Living and Learning at the Intersection: Student Homelessness and Complex Policy Environments

    ERIC Educational Resources Information Center

    Pavlakis, Alexandra E.

    2014-01-01

    In urban districts, homeless and highly mobile students are an important contributor to achievement disparities-and their numbers are rising. To date there has been little inquiry into how broader education and housing policies shape the schooling experiences of homeless and highly mobile families. Using semi-structured interviews with 132 key…

  19. Video-Mediated Teacher Collaborative Inquiry: Focus on English Language Learners

    ERIC Educational Resources Information Center

    Baecher, Laura; Rorimer, Sarah; Smith, Leonore

    2012-01-01

    High school teachers today work in challenging, high-accountability instructional environments, striving to meet the needs of upwards of 100 learners per day. Rapidly growing numbers of English-language learners (ELLs) in U.S. classrooms have added to these pressures. Rather than using collaborative structures to face these challenges, the…

  20. Computer-Mediated Communication in a High School: The Users Shape the Medium--Part 1.

    ERIC Educational Resources Information Center

    Bresler, Liora

    1990-01-01

    This field study represents a departure from structured, or directed, computer-mediated communication as used in its natural environment, the computer lab. Using observations, interviews, and the computer medium itself, the investigators report how high school students interact with computers and create their own agendas for computer usage and…

  1. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  2. The f ( R ) halo mass function in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in anmore » environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.« less

  3. Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung

    2013-12-01

    An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.

  4. Objective and subjective measures of neighborhood environment (NE): relationships with transportation physical activity among older persons.

    PubMed

    Nyunt, Ma Shwe Zin; Shuvo, Faysal Kabir; Eng, Jia Yen; Yap, Keng Bee; Scherer, Samuel; Hee, Li Min; Chan, Siew Pang; Ng, Tze Pin

    2015-09-15

    This study examined the associations of subjective and objective measures of the neighbourhood environment with the transportation physical activity of community-dwelling older persons in Singapore. A modified version of the Neighborhood Environment Walkability Scale (NEWS) and Geographical Information System (GIS) measures of the built environment characteristics were related to the frequency of walking for transportation purpose in a study sample of older persons living in high-density apartment blocks within a public housing estate in Singapore. Relevant measured variables to assess the complex relationships among built environment measures and transportation physical activity were examined using structural equation modelling and multiple regression analyses. The subjective measures of residential density, street connectivity, land use mix diversity and aesthetic environment and the objective GIS measure of Accessibility Index have positively significant independent associations with transportation physical activity, after adjusting for demographics, socio-economic and health status. Subjective and objective measures are non-overlapping measures complementing each other in providing information on built environment characteristics. For elderly living in a high-density urban neighborhood, well connected street, diversity of land use mix, close proximity to amenities and facilities, and aesthetic environment were associated with higher frequency of walking for transportation purposes.

  5. Method and apparatus for conducting structural health monitoring in a cryogenic, high vibration environment

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)

    2013-01-01

    Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.

  6. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-12-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  7. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-11-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  8. Predicting emotional exhaustion among haemodialysis nurses: a structural equation model using Kanter's structural empowerment theory.

    PubMed

    Hayes, Bronwyn; Douglas, Clint; Bonner, Ann

    2014-12-01

    To test an explanatory model of the relationships between the nursing work environment, job satisfaction, job stress and emotional exhaustion for haemodialysis nurses, drawing on Kanter's theory of organizational empowerment. Understanding the organizational predictors of burnout (emotional exhaustion) in haemodialysis nurses is critical for staff retention and improving nurse and patient outcomes. Previous research has demonstrated high levels of emotional exhaustion among haemodialysis nurses, yet the relationships between nurses' work environment, job satisfaction, stress and emotional exhaustion in this population are poorly understood. A cross-sectional online survey. 417 nurses working in haemodialysis units completed an online survey between October 2011-April 2012 using validated measures of the work environment, job satisfaction, job stress and emotional exhaustion. Overall, the structural equation model demonstrated adequate fit and we found partial support for the hypothesized relationships. Nurses' work environment had a direct positive effect on job satisfaction, explaining 88% of the variance. Greater job satisfaction, in turn, predicted lower job stress, explaining 82% of the variance. Job satisfaction also had an indirect effect on emotional exhaustion by mitigating job stress. However, job satisfaction did not have a direct effect on emotional exhaustion. The work environment of haemodialysis nurses is pivotal to the development of job satisfaction. Nurses' job satisfaction also predicts their level of job stress and emotional exhaustion. Our findings suggest staff retention can be improved by creating empowering work environments that promote job satisfaction among haemodialysis nurses. © 2014 John Wiley & Sons Ltd.

  9. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    NASA Astrophysics Data System (ADS)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  10. Geological Mapping of the North Polar Region of Venus (V-1 Snegurochka Planitia): Significant Problems and Comparisons to the Earth's Archean

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:

  11. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment

    DOE PAGES

    Doss, Forrest William; Flippo, Kirk Adler; Merritt, Elizabeth Catherine

    2016-08-03

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg/cm 3) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (ΔU > 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with themore » primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. Finally, this analysis indicates shear-induced specific turbulent energies 10 3 – 10 4 times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.« less

  12. Presumed fair: ironic effects of organizational diversity structures.

    PubMed

    Kaiser, Cheryl R; Major, Brenda; Jurcevic, Ines; Dover, Tessa L; Brady, Laura M; Shapiro, Jenessa R

    2013-03-01

    This research tests the hypothesis that the presence (vs. absence) of organizational diversity structures causes high-status group members (Whites, men) to perceive organizations with diversity structures as procedurally fairer environments for underrepresented groups (racial minorities, women), even when it is clear that underrepresented groups have been unfairly disadvantaged within these organizations. Furthermore, this illusory sense of fairness derived from the mere presence of diversity structures causes high-status group members to legitimize the status quo by becoming less sensitive to discrimination targeted at underrepresented groups and reacting more harshly toward underrepresented group members who claim discrimination. Six experiments support these hypotheses in designs using 4 types of diversity structures (diversity policies, diversity training, diversity awards, idiosyncratically generated diversity structures from participants' own organizations) among 2 high-status groups in tests involving several types of discrimination (discriminatory promotion practices, adverse impact in hiring, wage discrimination). Implications of these experiments for organizational diversity and employment discrimination law are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  13. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes.

    PubMed

    Fernández, Leonardo D; Hernández, Cristián E; Schiaffino, M Romina; Izaguirre, Irina; Lara, Enrique

    2017-10-01

    The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The transition of ground-based space environmental effects testing to the space environment

    NASA Technical Reports Server (NTRS)

    Zaat, Stephen V.; Schaefer, Glen A.; Wallace, John F.

    1991-01-01

    The goal of the space flight program at the Center for Commercial Development of Space (CCDS)--Materials for Space Structures is to provide environmentally stable structural materials to support the continued humanization and commercialization of the space frontier. Information on environmental stability will be obtained through space exposure, evaluation, documentation, and subsequent return to the supplier of the candidate material for internal investigation. This program provides engineering and scientific service to space systems development firms and also exposes CCDS development candidate materials to space environments representative of in-flight conditions. The maintenance of a technological edge in space for NASA suggests the immediate search for space materials that maintain their structural integrity and remain environmentally stable. The materials being considered for long-lived space structures are complex, high strength/weight ratio composites. In order for these new candidate materials to qualify for use in space structures, they must undergo strenuous testing to determine their reliability and stability when subjected to the space environment. Ultraviolet radiation, atomic oxygen, debris/micrometeoroids, charged particles radiation, and thermal fatigue all influence the design of space structural materials. The investigation of these environmental interactions is the key purpose of this center. Some of the topics discussed with respect to the above information include: the Space Transportation System, mission planning, spaceborne experiments, and space flight payloads.

  15. Haemodialysis work environment contributors to job satisfaction and stress: a sequential mixed methods study.

    PubMed

    Hayes, Bronwyn; Bonner, Ann; Douglas, Clint

    2015-01-01

    Haemodialysis nurses form long term relationships with patients in a technologically complex work environment. Previous studies have highlighted that haemodialysis nurses face stressors related to the nature of their work and also their work environments leading to reported high levels of burnout. Using Kanters (1997) Structural Empowerment Theory as a guiding framework, the aim of this study was to explore the factors contributing to satisfaction with the work environment, job satisfaction, job stress and burnout in haemodialysis nurses. Using a sequential mixed-methods design, the first phase involved an on-line survey comprising demographic and work characteristics, Brisbane Practice Environment Measure (B-PEM), Index of Work Satisfaction (IWS), Nursing Stress Scale (NSS) and the Maslach Burnout Inventory (MBI). The second phase involved conducting eight semi-structured interviews with data thematically analyzed. From the 417 nurses surveyed the majority were female (90.9 %), aged over 41 years of age (74.3 %), and 47.4 % had worked in haemodialysis for more than 10 years. Overall the work environment was perceived positively and there was a moderate level of job satisfaction. However levels of stress and emotional exhaustion (burnout) were high. Two themes, ability to care and feeling successful as a nurse, provided clarity to the level of job satisfaction found in phase 1. While two further themes, patients as quasi-family and intense working teams, explained why working as a haemodialysis nurse was both satisfying and stressful. Nurse managers can use these results to identify issues being experienced by haemodialysis nurses working in the unit they are supervising.

  16. Development of μ-PIC with resistive electrodes using sputtered carbon

    NASA Astrophysics Data System (ADS)

    Yamane, Fumiya; Ochi, Atsuhiko; Homma, Yasuhiro; Yamauchi, Satoru; Nagasaka, Noriko; Hasegawa, Hiroaki; Kawamoto, Tatsuo; Kataoka, Yosuke; Masubuchi, Tatsuya

    2018-02-01

    The Micro Pixel Chamber (μ-PIC) has been developed for a hadron-collider experiment. The main purpose is detecting Minimum Ionizing Particles (MIP) under high-rate Highly Ionizing Particles (HIP) environment. In such an environment, sufficient gain to detect MIP is needed, but continuous sparks will be caused by high-rate HIP. To reduce sparks, cathodes are made of resistive material. In this report, sputtered carbon was used as a new resistive cathode. Gas gain >104 was achieved using an 55Fe source. This value is sufficient to detect MIP without GEM or other floating structures. Also, thanks to production improvement, pixels are well aligned in the entire detection area.

  17. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  18. Reduced native state stability in crowded cellular environment due to protein-protein interactions.

    PubMed

    Harada, Ryuhei; Tochio, Naoya; Kigawa, Takanori; Sugita, Yuji; Feig, Michael

    2013-03-06

    The effect of cellular crowding environments on protein structure and stability is a key issue in molecular and cellular biology. The classical view of crowding emphasizes the volume exclusion effect that generally favors compact, native states. Here, results from molecular dynamics simulations and NMR experiments show that protein crowders may destabilize native states via protein-protein interactions. In the model system considered here, mixtures of villin head piece and protein G at high concentrations, villin structures become increasingly destabilized upon increasing crowder concentrations. The denatured states observed in the simulation involve partial unfolding as well as more subtle conformational shifts. The unfolded states remain overall compact and only partially overlap with unfolded ensembles at high temperature and in the presence of urea. NMR measurements on the same systems confirm structural changes upon crowding based on changes of chemical shifts relative to dilute conditions. An analysis of protein-protein interactions and energetic aspects suggests the importance of enthalpic and solvation contributions to the crowding free energies that challenge an entropic-centered view of crowding effects.

  19. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  20. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  2. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    PubMed

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. On the design and structural analysis of jet engine fan blade structures

    NASA Astrophysics Data System (ADS)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  4. The Pressure-Induced Structural Response of A2Hf2O7 (A=Y, Sm, Eu, Gd, Dy, Yb) Compounds from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2016-12-01

    A2B2O7 (A, B= cations) compounds have structures that make their properties conducive to many applications; for example they are a proposed waste-form for actinides generated in the nuclear fuel cycle. This interest in part is due to their structural responses to extreme environments of high P, T, or under intense irradiation. Depending on their cationic radius ratio, ra/rb, A2B2O7 compounds either crystallize as pyrochlore (ra/rb=1.46-1.7) or "defect fluorite" (ra/rb>1.46). The structure types are similar: they are derivatives of ideal fluorite with two cations and 1/8 missing anions. In pyrochlore, the cations and anion vacancy are ordered. In "defect fluorite"-structured oxides, the cations and anion vacancies are random. A2B2O7 compounds rarely amorphize in extreme environments. Rather, they disorder and undergo phase transitions; this resistance to amorphization contributes to the durability of this potential actinide waste-form. Under high-pressure, A2B2O7 compounds are known to disorder or form a cottunite-like phase. Their radius ratio affects their response to extreme environments; "defect fluorite" type compounds tend to disorder, and pyrochlore type compounds tend to form the cottunite-like phase. We have examined six A2Hf2O7 compounds (A=Y, Sm, Eu, Gd, Dy, Yb) in situ to 50 GPa. By keeping the B-site constant (Hf), we examined the effect of a changing radius ratio on the pressure-induced structural response of hafnates. We used symmetric DACs, ruby fluorescence, stainless steel gaskets, and methanol: ethanol (4:1 by volume) pressure medium. We characterized these materials with in situ Raman spectroscopy at Stanford University, and synchrotron X-Ray Diffraction (XRD) at APS 16 BM-D and ALS 12.2.2. The compounds were pyrochlore structured (Sm, Eu, Gd) and "defect-fluorite" structured (Y, Dy, Yb) hafnates . These compounds undergo a slow phase transition to a high-pressure cotunnite-like phase between 18-30 GPa. They undergo disordering of their cation and anionic sites as pressure is increased. The pressure of their phase transitions correlates directly with their radius ratio. Our results are comparable to many high-pressure studies of rare earth zirconates and titanates, but contrast from previous experiments performed on rare earth hafnates, specifically La2Hf2O7.

  5. High Throughput Biodegradation-Screening Test To Prioritize and Evaluate Chemical Biodegradability.

    PubMed

    Martin, Timothy J; Goodhead, Andrew K; Acharya, Kishor; Head, Ian M; Snape, Jason R; Davenport, Russell J

    2017-06-20

    Comprehensive assessment of environmental biodegradability of pollutants is limited by the use of low throughput systems. These are epitomized by the Organisation for Economic Cooperation and Development (OECD) Ready Biodegradability Tests (RBTs), where one sample from an environment may be used to assess a chemical's ability to readily biodegrade or persist universally in that environment. This neglects the considerable spatial and temporal microbial variation inherent in any environment. Inaccurate designations of biodegradability or persistence can occur as a result. RBTs are central in assessing the biodegradation fate of chemicals and inferring exposure concentrations in environmental risk assessments. We developed a colorimetric assay for the reliable quantification of suitable aromatic compounds in a high throughput biodegradation screening test (HT-BST). The HT-BST accurately differentiated and prioritized a range of structurally diverse aromatic compounds on the basis of their assigned relative biodegradabilities and quantitative structure-activity relationship (QSAR) model outputs. Approximately 20 000 individual biodegradation tests were performed, returning analogous results to conventional RBTs. The effect of substituent group structure and position on biodegradation potential demonstrated a significant correlation (P < 0.05) with Hammett's constant for substituents on position 3 of the phenol ring. The HT-BST may facilitate the rapid screening of 100 000 chemicals reportedly manufactured in Europe and reduce the need for higher-tier fate and effects tests.

  6. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  7. Collective space of high-rise housing complex

    NASA Astrophysics Data System (ADS)

    Bakaeva, Tatyana

    2018-03-01

    The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  8. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  9. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  10. A Crystal Structure of a Dimer of the Antibiotic Ramoplanin Illustrates Membrane Positioning and a Potential Lipid II Docking Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamburger, J.; Hoertz, A; Lee, A

    2009-01-01

    The glycodepsipeptide antibiotic ramoplanin A2 is in late stage clinical development for the treatment of infections from Gram-positive pathogens, especially those that are resistant to first line antibiotics such as vancomycin. Ramoplanin A2 achieves its antibacterial effects by interfering with production of the bacterial cell wall; it indirectly inhibits the transglycosylases responsible for peptidoglycan biosynthesis by sequestering their Lipid II substrate. Lipid II recognition and sequestration occur at the interface between the extracellular environment and the bacterial membrane. Therefore, we determined the structure of ramoplanin A2 in an amphipathic environment, using detergents as membrane mimetics, to provide the most physiologicallymore » relevant structural context for mechanistic and pharmacological studies. We report here the X-ray crystal structure of ramoplanin A2 at a resolution of 1.4 {angstrom}. This structure reveals that ramoplanin A2 forms an intimate and highly amphipathic dimer and illustrates the potential means by which it interacts with bacterial target membranes. The structure also suggests a mechanism by which ramoplanin A2 recognizes its Lipid II ligand.« less

  11. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  12. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  13. A comparison of hardware description languages. [describing digital systems structure and behavior to a computer

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1978-01-01

    Several high level languages which evolved over the past few years for describing and simulating the structure and behavior of digital systems, on digital computers are assessed. The characteristics of the four prominent languages (CDL, DDL, AHPL, ISP) are summarized. A criterion for selecting a suitable hardware description language for use in an automatic integrated circuit design environment is provided.

  14. Enhancing AFLOW Visualization using Jmol

    NASA Astrophysics Data System (ADS)

    Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration

    The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings

  15. Statistical learning and language acquisition

    PubMed Central

    Romberg, Alexa R.; Saffran, Jenny R.

    2011-01-01

    Human learners, including infants, are highly sensitive to structure in their environment. Statistical learning refers to the process of extracting this structure. A major question in language acquisition in the past few decades has been the extent to which infants use statistical learning mechanisms to acquire their native language. There have been many demonstrations showing infants’ ability to extract structures in linguistic input, such as the transitional probability between adjacent elements. This paper reviews current research on how statistical learning contributes to language acquisition. Current research is extending the initial findings of infants’ sensitivity to basic statistical information in many different directions, including investigating how infants represent regularities, learn about different levels of language, and integrate information across situations. These current directions emphasize studying statistical language learning in context: within language, within the infant learner, and within the environment as a whole. PMID:21666883

  16. Road to School Reform: The Chicago Model.

    ERIC Educational Resources Information Center

    Crump, Debra

    Growing dissatisfaction makes major structural changes requiring legislative, popular initiatives, or the approval of governing authorities possible in U.S. schools. Schools raising academic achievement emphasize high student expectations, classroom management, positive feedback, tailored teaching strategies, professional work environments, and…

  17. Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—How Local Environmental Conditions Shape Nematode Structure and Function

    PubMed Central

    Ingels, Jeroen; Tchesunov, Alexei V.; Vanreusel, Ann

    2011-01-01

    The Gollum Channels and Whittard Canyon (NE Atlantic) are two areas that receive high input of organic matter and phytodetritus from euphotic layers, but they are typified by different trophic and hydrodynamic conditions. Sediment biogeochemistry was analysed in conjunction with structure and diversity of the nematode community and differences were tested between study areas, water depths (700 m vs 1000 m), stations, and sediment layers. The Gollum Channels and Whittard Canyon harboured high meiofauna abundances (1054–1426 ind. 10 cm−2) and high nematode diversity (total of 181 genera). Next to enhanced meiofauna abundance and nematode biomass, there were signs of high levels of organic matter deposition leading to reduced sedimentary conditions, which in turn structured the nematode community. Striking in this respect was the presence of large numbers of ‘chemosynthetic’ Astomonema nematodes (Astomonema southwardorum, Order Monhysterida, Family Siphonolaimidae). This genus lacks a mouth, buccal cavity and pharynx and possesses a rudimentary gut containing internal, symbiotic prokaryotes which have been recognised as sulphur-oxidising bacteria. Dominance of Astomonema may indicate the presence of reduced environments in the study areas, which is partially confirmed by the local biogeochemical environment. The nematode communities were mostly affected by sediment layer differences and concomitant trophic conditions rather than other spatial gradients related to study area, water depth or station differences, pointing to small-scale heterogeneity as the main source of variation in nematode structure and function. Furthermore, the positive relation between nematode standing stocks, and quantity and quality of the organic matter was stronger when hydrodynamic disturbance was greater. Analogically, this study also suggests that structural diversity can be positively correlated with trophic conditions and that this relation is tighter when hydrodynamic disturbance is greater. PMID:21629829

  18. Identifying Factors in Successful Transformations from Junior High to Middle School: A Multi-Case Study Analysis

    ERIC Educational Resources Information Center

    Shapiro, Michael N.

    2016-01-01

    This dissertation investigated the reasons that school districts chose to change the structure of their middle grades learning environments from the traditional junior high school to the newer middle school model. The study answers the following research questions: According to the perceptions of teachers, school and district administrators, and…

  19. Synchronous Teaching Techniques from the Perspective and Observation of Virtual High School Teachers: An Investigative Study

    ERIC Educational Resources Information Center

    O'Brien, Amy; Fuller, Richard

    2018-01-01

    This article describes how there are specific tools and techniques used by teachers in synchronous-live-virtual classroom environments. Those items were investigated in this article. Data was collected from semi-structured, one-on-one interviews conducted with a purposeful sample of twelve identified "highly-qualified" teachers at a…

  20. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, Gene H.; Smith, James L.; Sim, James W.

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  1. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments

    PubMed Central

    Zhang, Wei; Ma, Hong; Yang, Simon X.

    2016-01-01

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products. PMID:26999161

  2. VERS: a virtual environment for reconstructive surgery planning

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.

    1997-05-01

    The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.

  3. An Inexpensive, Stable, and Accurate Relative Humidity Measurement Method for Challenging Environments.

    PubMed

    Zhang, Wei; Ma, Hong; Yang, Simon X

    2016-03-18

    In this research, an improved psychrometer is developed to solve practical issues arising in the relative humidity measurement of challenging drying environments for meat manufacturing in agricultural and agri-food industries. The design in this research focused on the structure of the improved psychrometer, signal conversion, and calculation methods. The experimental results showed the effect of varying psychrometer structure on relative humidity measurement accuracy. An industrial application to dry-cured meat products demonstrated the effective performance of the improved psychrometer being used as a relative humidity measurement sensor in meat-drying rooms. In a drying environment for meat manufacturing, the achieved measurement accuracy for relative humidity using the improved psychrometer was ±0.6%. The system test results showed that the improved psychrometer can provide reliable and long-term stable relative humidity measurements with high accuracy in the drying system of meat products.

  4. Skeletal adaptation to external loads optimizes mechanical properties: fact or fiction

    NASA Technical Reports Server (NTRS)

    Turner, R. T.

    2001-01-01

    The skeleton adapts to a changing mechanical environment but the widely held concept that bone cells are programmed to respond to local mechanical loads to produce an optimal mechanical structure is not consistent with the high frequency of bone fractures. Instead, the author suggests that other important functions of bone compete with mechanical adaptation to determine structure. As a consequence of competing demands, bone architecture never achieves an optimal mechanical structure. c2001 Lippincott Williams & Wilkins, Inc.

  5. Injectable Ceramic Microcast Silicon Carbonitride (SiCN) Microelectromechanical System (MEMS) for Extreme Temperature Environments with Extension: Micro Packages for Nano-Devices

    DTIC Science & Technology

    2004-01-01

    pyrolyzed to produce the ceramic (SiCN) parts, or they may be retained in the polymeric state and used as high-temperature polymer /glass MEMS devices. Two...structure and the SU8 /wafer is weak due to the Teflon coating. (j) A free standing polymer structure results. The structure is then crosslinked and... polymer . Further efforts are necessary to identify the least damaging rinsing chemicals, that is, chemicals which would not contaminate polymerized

  6. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  7. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  8. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

    PubMed Central

    Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin

    2010-01-01

    The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs. PMID:20333304

  11. Rapid structural analysis of nanomaterials in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  12. High-resolution structure of the Escherichia coli ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  13. High-resolution structure of the Escherichia coli ribosome

    DOE PAGES

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.; ...

    2015-03-16

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  14. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    PubMed

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  15. Extension of an iterative closest point algorithm for simultaneous localization and mapping in corridor environments

    NASA Astrophysics Data System (ADS)

    Yue, Haosong; Chen, Weihai; Wu, Xingming; Wang, Jianhua

    2016-03-01

    Three-dimensional (3-D) simultaneous localization and mapping (SLAM) is a crucial technique for intelligent robots to navigate autonomously and execute complex tasks. It can also be applied to shape measurement, reverse engineering, and many other scientific or engineering fields. A widespread SLAM algorithm, named KinectFusion, performs well in environments with complex shapes. However, it cannot handle translation uncertainties well in highly structured scenes. This paper improves the KinectFusion algorithm and makes it competent in both structured and unstructured environments. 3-D line features are first extracted according to both color and depth data captured by Kinect sensor. Then the lines in the current data frame are matched with the lines extracted from the entire constructed world model. Finally, we fuse the distance errors of these line-pairs into the standard KinectFusion framework and estimate sensor poses using an iterative closest point-based algorithm. Comparative experiments with the KinectFusion algorithm and one state-of-the-art method in a corridor scene have been done. The experimental results demonstrate that after our improvement, the KinectFusion algorithm can also be applied to structured environments and has higher accuracy. Experiments on two open access datasets further validated our improvements.

  16. Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using 25Mg and 43Ca solid-state NMR: a DFT study.

    PubMed

    Gervais, Christel; Jones, Cameron; Bonhomme, Christian; Laurencin, Danielle

    2017-03-01

    With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25 Mg and 43 Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25 Mg and 43 Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.

  17. OpenStructure: a flexible software framework for computational structural biology.

    PubMed

    Biasini, Marco; Mariani, Valerio; Haas, Jürgen; Scheuber, Stefan; Schenk, Andreas D; Schwede, Torsten; Philippsen, Ansgar

    2010-10-15

    Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure consists primarily of a set of libraries written in C++ with a cleanly designed application programmer interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the requirements for high efficiency and ease of use. Powerful selection queries and the notion of entity views to represent these selections greatly facilitate the development and implementation of algorithms on structural data. The modular integration of computational core methods with powerful visualization tools makes OpenStructure an ideal working and development environment. Several applications, such as the latest versions of IPLT and QMean, have been implemented based on OpenStructure-demonstrating its value for the development of next-generation structural biology algorithms. Source code licensed under the GNU lesser general public license and binaries for MacOS X, Linux and Windows are available for download at http://www.openstructure.org. torsten.schwede@unibas.ch Supplementary data are available at Bioinformatics online.

  18. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.

    PubMed

    Robinson, Aaron C; Castañeda, Carlos A; Schlessman, Jamie L; García-Moreno, E Bertrand

    2014-08-12

    An artificial charge pair buried in the hydrophobic core of staphylococcal nuclease was engineered by making the V23E and L36K substitutions. Buried individually, Glu-23 and Lys-36 both titrate with pKa values near 7. When buried together their pKa values appear to be normal. The ionizable moieties of the buried Glu-Lys pair are 2.6 Å apart. The interaction between them at pH 7 is worth 5 kcal/mol. Despite this strong interaction, the buried Glu-Lys pair destabilizes the protein significantly because the apparent Coulomb interaction is sufficient to offset the dehydration of only one of the two buried charges. Save for minor reorganization of dipoles and water penetration consistent with the relatively high dielectric constant reported by the buried ion pair, there is no evidence that the presence of two charges in the hydrophobic interior of the protein induces any significant structural reorganization. The successful engineering of an artificial ion pair in a highly hydrophobic environment suggests that buried Glu-Lys pairs in dehydrated environments can be charged and that it is possible to engineer charge clusters that loosely resemble catalytic sites in a scaffold protein with high thermodynamic stability, without the need for specialized structural adaptations.

  19. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgunova, Ekaterina, E-mail: ekaterina.morgunova@ki.se; Gray, Fiona C.; MacNeill, Stuart A.

    2009-10-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs. The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from themore » halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R{sub free} = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells.« less

  20. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein

    PubMed Central

    Robinson, Aaron C.; Castañeda, Carlos A.; Schlessman, Jamie L.; García-Moreno E., Bertrand

    2014-01-01

    An artificial charge pair buried in the hydrophobic core of staphylococcal nuclease was engineered by making the V23E and L36K substitutions. Buried individually, Glu-23 and Lys-36 both titrate with pKa values near 7. When buried together their pKa values appear to be normal. The ionizable moieties of the buried Glu–Lys pair are 2.6 Å apart. The interaction between them at pH 7 is worth 5 kcal/mol. Despite this strong interaction, the buried Glu–Lys pair destabilizes the protein significantly because the apparent Coulomb interaction is sufficient to offset the dehydration of only one of the two buried charges. Save for minor reorganization of dipoles and water penetration consistent with the relatively high dielectric constant reported by the buried ion pair, there is no evidence that the presence of two charges in the hydrophobic interior of the protein induces any significant structural reorganization. The successful engineering of an artificial ion pair in a highly hydrophobic environment suggests that buried Glu–Lys pairs in dehydrated environments can be charged and that it is possible to engineer charge clusters that loosely resemble catalytic sites in a scaffold protein with high thermodynamic stability, without the need for specialized structural adaptations. PMID:25074910

  1. Characterization of interdigitated electrode piezoelectric fiber composites under high electrical and mechanical loading

    NASA Astrophysics Data System (ADS)

    Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.

    1996-05-01

    The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.

  2. High-temperature investigation on morphology, phase and size of iron/iron-oxide core–shell nanoclusters for radiation nanodetector

    NASA Astrophysics Data System (ADS)

    Khanal, Lokendra Raj; Williams, Thomas; Qiang, You

    2018-06-01

    Iron/iron-oxide (Fe–Fe3O4) core–shell nanoclusters (NCs) synthesized by a cluster deposition technique were subjected to a study of their high temperature structural and morphological behavior. Annealing effects have been investigated up to 800 °C in vacuum, oxygen and argon environments. The ~18 nm average size of the as-prepared NCs increases slowly in temperatures up to 500 °C in all three environments. The size increases abruptly in the argon environment but slowly in vacuum and oxygen when annealed at 800 °C. The x-ray diffraction (XRD) studies have shown that the iron core remains in the core–shell NCs only when they were annealed in the vacuum. A dramatic change in the surface morphology, an island like structure and/or a network like pattern, was observed at the elevated temperature. The as-prepared and annealed samples were analyzed using XRD, scanning electron microscopy and imageJ software for a close inspection of the temperature aroused properties. This work presents the temperature induced size growth mechanism, oxidation kinetics and phase transformation of the NCs accompanied by cluster aggregation, particle coalescence, and diffusion.

  3. Design of inclined loaded drilled shafts in high-plasticity clay environment.

    DOT National Transportation Integrated Search

    2011-05-01

    Drilled shaft foundations are principally used to support many structures such as bridge piers, towers, : buildings, transmission towers, and roadway cable barriers. This research focuses on the use of drilled shafts : in the cable median barrier sys...

  4. Safe, High-Performance, Sustainable Precast School Design

    ERIC Educational Resources Information Center

    Finsen, Peter I.

    2011-01-01

    School design utilizing integrated architectural and structural precast and prestressed concrete components has gained greater acceptance recently for numerous reasons, including increasingly sophisticated owners and improved learning environments based on material benefits such as: sustainability, energy efficiency, indoor air quality, storm…

  5. Combining high fidelity simulations and real data for improved small-footprint waveform lidar assessment of vegetation structure (Invited)

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; Wu, J.; Asner, G. P.

    2010-12-01

    Our understanding of vegetation complexity and biodiversity, from a remote sensing perspective, has evolved from 2D species diversity to also include 3D vegetation structural diversity. Attempts at using image-based approaches for structural assessment have met with reasonable success, but 3D remote sensing technologies, such as radar and light detection and ranging (lidar), are arguably more adept at sensing vegetation structure. While radar-derived structure metrics tend to break down at high biomass levels, novel waveform lidar systems present us with new opportunities for detailed and scalable structural characterization of vegetation. These sensors digitize the entire backscattered energy profile at high spatial and vertical resolutions and often at off-nadir angles. Research teams at Rochester Institute of Technology (RIT) and Carnegie Institution for Science have been using airborne data from the Carnegie Airborne Observatory (CAO) to assess vegetation structure and variation in savanna ecosystems in and around the Kruger National Park, South Africa. It quickly became evident that (i) pre-processing of small-footprint waveform data is a critical step prior to testing scientific hypotheses, (ii) a number of assumptions of how vegetation structure is expressed in these 3D signals need to be evaluated, and very importantly (iii) we need to re-evaluate our linkages between coarse in-field measurements, e.g., volume, biomass, leaf area index (LAI), and metrics derived from waveform lidar. Research has progressed to the stage where we have evaluated various pre-processing steps, e.g., convolution via the Wiener filter, Richardson-Lucy, and non-negative least squares algorithms, and the coupling of waveform voxels to tree structure in a simulation environment. This was done in the MODTRAN-based Digital Imaging and Remote Sensing Image Generation (DIRSIG) simulation environment, developed at RIT. We generated "truth" cross-section datasets of detailed virtual trees in this environment and evaluated inversion approaches to tree structure estimation. Various outgoing pulse widths, tree structures, and a noise component were included as part of the simulation effort. Results, for example, have shown that the Richardson-Lucy algorithm outperforms other approaches in terms of retrieval of known structural information, that our assumption regarding the position of the ground surface needs re-evaluation, and has shed light on herbaceous biomass and waveform interactions and the impact of outgoing pulse width on assessments. These efforts have gone a long way in providing a solid foundation for analysis and interpretation of actual waveform data from the savanna study area. We expect that newfound knowledge with respect to waveform-target interactions from these simulations will also aid efforts to reconstruct 3D trees from real data and better describe associated structural diversity. Results will be presented at the conference.

  6. Bioerosion structures in high-salinity marine environments: Evidence from the Al-Khafji coastline, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Alharbi, Talal; Richiano, Sebastián

    2018-05-01

    Salinity is one the major stress factors that controls the biotic activities in marine environments. In general, the mixture with fresh-water has been mention as a great stress factor, but the opposite, i.e. high-salinity conditions, is less developed in the ichnological literature. Along the Al-Khafji coastline, Saudi Arabia, hard substrates (constituted by gastropods, bivalves and coral skeletons) contain diverse and abundant bioerosion traces and associated encrusters. Field and laboratory observations allowed the recognition of eight ichnospecies belong to the ichnogenera Gastrochaenolites, Entobia, Oichnus, Caulostrepsis and Trypanites, which can be attributed to various activities produced by bivalves, sponges, gastropods and annelids. The borings demonstrate two notable ichnological boring assemblages, namely, Entobia-dominated and Gastrochaenolites-dominated assemblages. The highly diversified bioerosion and encrustation in the studied hard organic substrate indicate a long exposition period of organic substrate with slow to moderate rate of deposition in a restricted (high-salinity) marine environment. This bioerosion study shows that high-salinity, at least for the study area, is not an important controlling factor for ichnology.

  7. A Partnered Approach for Structured Observation to Assess the Environment of a Neighborhood With High Diabetes Rates

    PubMed Central

    Kleinman, Lawrence C.; Lutz, David; Plumb, Ellen J.; Barkley, Pearl; Nazario, Hector R.; Ramos, Michelle A.; Horowitz, Carol R.

    2012-01-01

    Background The Communities IMPACT Diabetes Center uses partnered methods to address diabetes-related conditions among African Americans and Latinos in East Harlem, New York. Objectives To describe a novel, partnered approach that integrates simultaneous structured observation by community and academic partners with “on-the-spot” resolution of differences to collect baseline data regarding the built and food environments in a two census tract area of East Harlem and present select findings. Methods We designed an environmental assessment to explore characteristics of the environment related to walking and eating. We paired community and academic partners to assess each block, resolve any differences, and report results. Nearly one year later, we surveyed the data collectors and analyzed responses using standard qualitative methods. Results Key themes included connection to and characteristics of the community; interactions with partners; surprises and learning, and aspects of data collection. All but the first were common to academic and community partners. Relationships between partners were generally amiable. Both community—“I think it was very helpful, we made sure neither of us made mistakes, and helped each other when we could”—and academic–“I really enjoyed it … I learned a lot about the areas I surveyed”—partners were complimentary. Community partners’ strengths included local knowledge of the community, whereas academic partners’ focus on adherence to the specifications was critical. Structured observation identified many sidewalks in disrepair or obstructed, few benches, and highly variable times allocated for pedestrians to cross at cross walks. Conclusions The partnered data collection was both successful and formative, building additional relationships and further capacity for ongoing partnership. Community partners saw their community in a new way, seeing, “little things that are important but people don’t pay attention to.” Structured observations added to our understanding of how an environment may contribute to diabetes. PMID:22080773

  8. The nature of H α-selected galaxies along the large-scale structure at z = 0.4 revealed by Subaru Hyper Suprime-Cam survey

    NASA Astrophysics Data System (ADS)

    Koyama, Yusei; Hayashi, Masao; Tanaka, Masayuki; Kodama, Tadayuki; Shimakawa, Rhythm; Yamamoto, Moegi; Nakata, Fumiaki; Tanaka, Ichi; Suzuki, Tomoko L.; Tadaki, Ken-ichi; Nishizawa, Atsushi J.; Yabe, Kiyoto; Toba, Yoshiki; Lin, Lihwai; Jian, Hung-Yu; Komiyama, Yutaka

    2018-01-01

    We present the environmental dependence of color, stellar mass, and star formation (SF) activity in Hα-selected galaxies along the large-scale structure at z = 0.4 hosting twin clusters in the DEEP2-3 field, discovered by the Subaru Strategic Program of Hyper Suprime-Cam (HSC SSP). By combining photo-z-selected galaxies and Hα emitters selected with broadband and narrowband (NB) data from the recent data release of HSC SSP (DR1), we confirm that galaxies in higher-density environments or galaxies in cluster central regions show redder colors. We find that there still remains a possible color-density and color-radius correlation even if we restrict the sample to Hα-selected galaxies, probably due to the presence of massive Hα emitters in denser regions. We also find a hint of increased star formation rates (SFR) amongst Hα emitters toward the highest-density environment, again primarily driven by the excess of red/massive Hα emitters in high-density environments, while their specific SFRs do not significantly change with environment. This work demonstrates the power of the HSC SSP NB data for studying SF galaxies across environments in the distant universe.

  9. Fiber-Optic Sensor-Based Remote Acoustic Emission Measurement in a 1000 °C Environment.

    PubMed

    Yu, Fengming; Okabe, Yoji

    2017-12-14

    Recently, the authors have proposed a remote acoustic emission (AE) measurement configuration using a sensitive fiber-optic Bragg grating (FBG) sensor. In the configuration, the FBG sensor was remotely bonded on a plate, and an optical fiber was used as the waveguide to propagate AE waves from the adhesive point to the sensor. The previous work (Yu et al., Smart Materials and Structures 25 (10), 105,033 (2016)) has clarified the sensing principle behind the special remote measurement system that enables accurate remote sensing of AE signals. Since the silica-glass optical fibers have a high heat-resistance exceeding 1000 °C, this work presents a preliminary high-temperature AE detection method by using the optical fiber-based ultrasonic waveguide to propagate the AE from a high-temperature environment to a room-temperature environment, in which the FBG sensor could function as the receiver of the guided wave. As a result, the novel measurement configuration successfully achieved highly sensitive and stable AE detection in an alumina plate at elevated temperatures in the 100 °C to 1000 °C range. Due to its good performance, this detection method will be potentially useful for the non-destructive testing that can be performed in high-temperature environments to evaluate the microscopic damage in heat-resistant materials.

  10. Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh

    2018-03-01

    The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).

  11. Probing Human Telomeric DNA and RNA Topology and Ligand Binding in a Cellular Model by Using Responsive Fluorescent Nucleoside Probes.

    PubMed

    Manna, Sudeshna; Panse, Cornelia H; Sontakke, Vyankat A; Sangamesh, Sarangamath; Srivatsan, Seergazhi G

    2017-08-17

    The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hierarchical Porous Carbon Materials Derived from Sheep Manure for High-Capacity Supercapacitors.

    PubMed

    Zhang, Caiyun; Zhu, Xiaohong; Cao, Min; Li, Menglin; Li, Na; Lai, Liuqin; Zhu, Jiliang; Wei, Dacheng

    2016-05-10

    3 D capacitance: Hierarchical porous carbon-based electrode materials with a composite structure are prepared from a biomass waste by a facile carbonization and activation process without using any additional templates. Benefiting from the composite structure, the ions experience a variety of environments, which contribute significantly to the excellent electrochemical properties of supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2017-05-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  14. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE PAGES

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  15. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  16. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  17. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.

    PubMed Central

    Hummer, G; García, A E; Soumpasis, D M

    1995-01-01

    A computationally efficient method to describe the organization of water around solvated biomolecules is presented. It is based on a statistical mechanical expression for the water-density distribution in terms of particle correlation functions. The method is applied to analyze the hydration of small nucleic acid molecules in the crystal environment, for which high-resolution x-ray crystal structures have been reported. Results for RNA [r(ApU).r(ApU)] and DNA [d(CpG).d(CpG) in Z form and with parallel strand orientation] and for DNA-drug complexes [d(CpG).d(CpG) with the drug proflavine intercalated] are described. A detailed comparison of theoretical and experimental data shows positional agreement for the experimentally observed water sites. The presented method can be used for refinement of the water structure in x-ray crystallography, hydration analysis of nuclear magnetic resonance structures, and theoretical modeling of biological macromolecules such as molecular docking studies. The speed of the computations allows hydration analyses of molecules of almost arbitrary size (tRNA, protein-nucleic acid complexes, etc.) in the crystal environment and in aqueous solution. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 9 FIGURE 12 FIGURE 13 PMID:7542034

  18. Effective strategies for nurse retention in acute hospitals: a mixed method study.

    PubMed

    Van den Heede, Koen; Florquin, Mieke; Bruyneel, Luk; Aiken, Linda; Diya, Luwis; Lesaffre, Emmanuel; Sermeus, Walter

    2013-02-01

    The realization of an organizational context that succeeds to retain nurses within their job is one of the most effective strategies of dealing with nursing shortages. First, to examine the impact of nursing practice environments, nurse staffing and nurse education on nurse reported intention to leave the hospital. Second, to provide understanding of which best practices in the organization of nursing care are being implemented to provide sound practice environments and to retain nurses. 3186 bedside nurses of 272 randomly selected nursing units in 56 Belgian acute hospitals were surveyed. A GEE logistic regression analysis was used to estimate the impact of organization of nursing care on nurse reported intention to leave controlling for differences in region (Walloon, Flanders, and Brussels), hospital characteristics (technology level, teaching status, and size) and nurse characteristics (experience, gender, and age). For the second objective, in-depth semi-structured interviews with the chief nursing officers of the three high and three low performing hospitals on reported intention to leave were held. 29.5% of Belgian nurses have an intention-to-leave the hospital. Patient-to-nurse staffing ratios and nurse work environments are significantly (p<0.05) associated with intention-to-leave. Interviews with Chief Nurse Officers revealed that high performing hospitals showing low nurse retention were--in contrast to the low performing hospitals--characterized by a flat organization structure with a participative management style, structured education programs and career opportunities for nurses. This study, together with the international body of evidence, suggests that investing in improved nursing work environments is a key strategy to retain nurses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Lynn, D.; Carter, J. R.; Hommels, L. B. A.; Robinson, D.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Nishimura, R.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Allport, P. P.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Arai, Y.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Grillo, A. A.; Martinez-McKinney, F.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Schumacher, D.; Seiden, A.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Paganis, S.; Jinnouchi, O.; Motohashi, K.; Todome, K.; Yamaguchi, D.; Hara, K.; Hagihara, M.; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti i Garcia, S.; Soldevila, U.

    2014-11-01

    We have been developing a novel radiation-tolerant n+-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.

  20. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  1. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  2. High performance structural laminate composite material for use to 1000.degree. F. and above, apparatus for and method of manufacturing same, and articles made with same

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C. (Inventor); Biggs, Jr., Robert William (Inventor); Bodepudi, Venu Prasad (Inventor); Cranston, John A. (Inventor)

    2003-01-01

    A novel materials technology has been developed and demonstrated for providing a high modulus composite material for use to 1000.degree. F. and above. This material can be produced at 5-20% of the cost of refractory materials, and has higher structural properties. This technology successfully resolves the problem of thermal shock or ply lift, which limits traditional high temperature laminates (such as graphite/polyimide and graphite/phenolic) to temperatures of 550-650.degree. F. in thicker (0.25 and above) laminates. The technology disclosed herein is an enabling technology for the nose for the External Tank (ET) of the Space Shuttle, and has been shown to be capable of withstanding the severe environments encountered by the nose cone through wind tunnel testing, high temperature subcomponent testing, and full scale structural, dynamic, acoustic, and damage tolerance testing.

  3. Long Time-lapse Nanoscopy with Spontaneously Blinking Membrane Probes

    PubMed Central

    Takakura, Hideo; Zhang, Yongdeng; Erdmann, Roman S.; Thompson, Alexander D.; Lin, Yu; McNellis, Brian; Rivera-Molina, Felix; Uno, Shin-nosuke; Kamiya, Mako; Urano, Yasuteru; Rothman, James E.; Bewersdorf, Joerg; Schepartz, Alanna; Toomre, Derek

    2017-01-01

    Long time-lapse, diffraction-unlimited super-resolution imaging of cellular structures and organelles in living cells is highly challenging, as it requires dense labeling, bright, highly photostable dyes, and non-toxic conditions. We developed a set of high-density, environment-sensitive (HIDE) membrane probes based on HMSiR that assemble in situ and enable long time-lapse, live cell nanoscopy of discrete cellular structures and organelles with high spatio-temporal resolution. HIDE-enabled nanoscopy movies are up to 50x longer than movies obtained with labeled proteins, reveal the 2D dynamics of the mitochondria, plasma membrane, and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum in living cells. These new HIDE probes also facilitate the acquisition of live cell, two-color, super-resolution images, greatly expanding the utility of nanoscopy to visualize processes and structures in living cells. PMID:28671662

  4. PubChem atom environments.

    PubMed

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log-log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization procedure for atom types, functional groups, and tautomeric/resonance forms based on atom environments is possible. The complete sets of atom types and atom environments are supplied as supporting information.

  5. Future directions of electron crystallography.

    PubMed

    Fujiyoshi, Yoshinori

    2013-01-01

    In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.

  6. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.

    PubMed

    Lee, Donghwa; Myung, Hyun

    2014-07-11

    In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.

  7. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407

  8. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  9. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  10. Electronically conductive ceramics for high temperature oxidizing environments

    DOEpatents

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  11. RM Methods for Multiple Fare Structure Environments

    DTIC Science & Technology

    2008-06-01

    110 9 LIST OF FIGURES 1 INTRODUCTION Figure 1-1: Revenue Losses due to Overprotection and Dilution... overprotection or dilution. If an airline’s objective is to focus on high-yield business travelers and charge only a single high fare for the...Lost Revenue from Customer Surplus Captured Revenue Rejected Passengers Overprotection Dilution Figure 1-1: Revenue Losses due to Overprotection

  12. Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Bird, R. K.; Sankaran, S. N.

    2003-01-01

    Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (gamma-TiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of gamma-TiAl alloys make them attractive candidates for durable lightweight hot structure and thermal protection systems at temperatures as high as 871 C. However, oxidation significantly degrades gamma-TiAl alloys under the high-temperature service conditions associated with the RLV operating environment. This paper discusses ongoing efforts at NASA Langley Research Center to develop durable ultrathin coatings for protecting gamma-TiAl alloys from high-temperature oxidation environments. In addition to offering oxidation protection, these multifunctional coatings are being engineered to provide thermal control features to help minimize heat input into the hot structures. This paper describes the coating development effort and discusses the effects of long-term high-temperature exposures on the microstructure of coated and uncoated gamma-TiAl alloys. The alloy of primary consideration was the Plansee alloy gamma-Met, but limited studies of the newer alloy gamma-Met-PX were also included. The oxidation behavior of the uncoated materials was evaluated over the temperature range of 704 C to 871 C. Sol-gel-based coatings were applied to the gamma-TiAl samples by dipping and spraying, and the performance evaluated at 871 C. Results showed that the coatings improve the oxidation resistance, but that further development is necessary.

  13. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  14. The volcano-sedimentary succession of Upper Permian in Wuli area, central Qinghai-Tibetan Plateau: Sedimentology, geochemistry and paleogeography

    NASA Astrophysics Data System (ADS)

    Liu, Shengqian; Jiang, Zaixing; Gao, Yi

    2017-04-01

    Detailed observations on cores and thin sections well documented a volcano-sedimentary succession from Well TK2, which is located in Wuli area, central Qinghai-Tibetan Plateau. The TK2 volcano-sedimentary succession reflects an active sedimentary-tectonic setting in the north margin of North Qiangtang-Chamdo terrane in the late Permian epoch. Based on the observation and recognition on lithology and mineralogy, the components of TK2 succession are mainly volcanic and volcaniclastic rocks and four main lithofacies are recognized, including massive volcanic lithofacies (LF1), pyroclastic tuff lithofacies (LF2), tuffaceous sandstone lithofacies (LF3) and mudstone lithofacies (LF4). LF1 is characterized by felsic components, massive structure and porphyrotopic structure with local flow structure, which indicates submarine intrusive domes or extrusion-fed lavas that formed by magma ascents via faults or dykes. Meanwhile, its eruption style may reflect a relative high pressure compensation level (PCL) that mainly determined by water depth, which implies a deep-water environment. LF2 is composed of volcanic lapilli or ash and featured with massive structure, parallel bedding and various deformed laminations including convolve structure, slide deformation, ball-and-pillow structure, etc.. LF2 indicates the sedimentation of initial or reworked explosive products not far away from volcano centers, reflecting the proximal accumulation of volcano eruption-fed clasts or their resedimentation as debris flows. In addition, the submarine volcano eruptions may induced earthquakes that facilitate the resedimentation of unconsolidated sediments. LF3 contains abundant pyroclastic components and is commonly massive with rip-up mudstone clasts or usually interbedded with LF4. In addition, typical flute casts, scour structures and graded beddings in thin-interbedded layers of sandstone and mudstone are commonly observed, which also represents the sedimentation of debris flows or turbidity flows in a relative deep-water environment. LF4 indicates suspension deposits of distal turbidity sediments in deeper-water setting, which is mainly tuffaceous and ordinary mudstone, commonly interbedded with thin pyroclastic layers. Geochemically, the felsic volcanic rocks belong to tholeiitic to calc-alkaline series, exhibiting characteristics of right-leaning rare earth element (REE) patterns with conspicuous Eu negative anomalies, enrichments in large ion lithophile elements (LILEs) and depletions in high field-strength elements (HFSEs), which reflect an island arc environment that corresponds to the late-Permian subduction of slabs. The TK2 volcanic-sedimentary succession reveals a submarine volcano-dominated depositional model and proves the existence of a deeper water environment, at least in a restricted zone of Wuli area. However, the traditional sedimentary and paleogeographic knowledges are mostly about coal-forming transitional facies in stable environment. Therefore, the proposing of a deep-water volcano-sedimentary model will provide a further comprehension of paleogeography in southern Qinghai at late-Permian, which will also supplement the previous cognition of stable ocean-land transitional environments and provide a new sight to the paleogeographic framework of late-Permian in North Qiangtang-Chamdo terrane.

  15. Environmental change mediates mate choice for an extended phenotype, but not for mate quality.

    PubMed

    Head, Megan L; Fox, Rebecca J; Barber, Iain

    2017-01-01

    Sexual cues, including extended phenotypes, are expected to be reliable indicators of male genetic quality and/or provide information on parental quality. However, the reliability of these cues may be dependent on stability of the environment, with heterogeneity affecting how selection acts on such traits. Here, we test how environmental change mediates mate choice for multiple sexual traits, including an extended phenotype--the structure of male-built nests - in stickleback fish. First, we manipulated the dissolved oxygen (DO) content of water to create high or low DO environments in which male fish built nests. Then we recorded the mate choice of females encountering these males (and their nests), under either the same or reversed DO conditions. Males in high DO environments built more compact nests than those in low DO conditions and males adjusted their nest structure in response to changing conditions. Female mate choice for extended phenotype (male nests) was environmentally dependent (females chose more compact nests in high DO conditions), while female choice for male phenotype was not (females chose large, vigorous males regardless of DO level). Examining mate choice in this dynamic context suggests that females evaluate the reliability of multiple sexual cues, taking into account environmental heterogeneity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  16. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  17. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm.

    PubMed

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-11-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.

  18. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  19. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CJ Larkin; JD Edington; BJ Close

    2006-02-21

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less

  20. Evaluation of Prototype Head Shield for Hazardous Material Tank Car

    DOT National Transportation Integrated Search

    1976-12-01

    The structural integrity of a prototype tank car head shield for hazardous material railroad tank cars was evaluated under conditions of freight car coupling at moderate to high speeds. This is one of the most severe environments encountered in norma...

  1. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  2. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions

    PubMed Central

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2017-01-01

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10–40 nm range. Similarly, a 30–150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. PMID:28283574

  3. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.

    PubMed

    Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C

    2013-02-04

    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.

  4. The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage

    PubMed Central

    Jonker, Arjan; Yu, Peiqiang

    2016-01-01

    Alfalfa (Medicago sativa L.) is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems. PMID:27223279

  5. The Role of Proanthocyanidins Complex in Structure and Nutrition Interaction in Alfalfa Forage.

    PubMed

    Jonker, Arjan; Yu, Peiqiang

    2016-05-23

    Alfalfa (Medicago sativa L.) is one of the main forages grown in the world. Alfalfa is a winter hardy, drought tolerant, N-fixing legume with a good longevity, high yield, high nutrient levels, high digestibility, unique structural to non-structural components ratio, high dry matter intake, and high animal productivity per hectare. However, its main limitation is its excessively rapid initial rate of protein degradation in the rumen, which results in pasture bloat and inefficient use of protein with consequent excessive excretions of nitrogen into the environment. Proanthocyanidins are secondary plant metabolites that can bind with protein and thereby reduce the rate and extent of ruminal protein degradation. However, these secondary metabolites do not accumulate in alfalfa. This review aims to firstly describe the events involved in the rapid release of protein from alfalfa and its effect on ruminant nutrition, environmental pollution, and pasture bloat; secondly, to describe occurrence, structure, functions and benefits of moderate amounts of proanthocyanidin; and finally, to describe the development of alfalfa which accumulates moderate amounts of proanthocyanidins. The emphasis of this review focuses on the role of proanthocyanidins compounds in structure and nutrition interaction in ruminant livestock systems.

  6. Ground/bonding for Large Space System Technology (LSST). [of metallic and nonmetallic structures

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.

  7. Structured analysis and modeling of complex systems

    NASA Technical Reports Server (NTRS)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  8. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    PubMed Central

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  9. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  10. Attitudes and perceptions of radiographers applying lead (Pb) protection in general radiography: An ethnographic study.

    PubMed

    Hayre, C M; Blackman, S; Carlton, K; Eyden, A

    2018-02-01

    Since the discovery of X-rays by Rontgen in 1895, lead (Pb) has been used to limit ionising radiation for both operators and patients due to its high density and high atomic number (Z = 82). This study explores the attitudes and perceptions of diagnostic radiographers applying Pb protection during general radiographic examinations, an area underexplored within a contemporary radiographic environment(s). This paper presents findings from a wider ethnographic study undertaken in the United Kingdom (UK). The use of participant observation and semi-structured interviews were the methods of choice. Participant observation enabled the overt researcher to uncover whether Pb remained an essential tool for radiographers. Semi-structured interviews later supported or refuted the limited use of Pb protection by radiographers. These methods enabled the construction of original phenomena within the clinical environment. Two themes are discussed. Firstly, radiographers, underpinned by their own values and beliefs towards radiation risk, identify a dichotomy of applying Pb protection. The cessation of Pb may be linked to cultural myths, relying on 'word of mouth' of peers and not on the existing evidence-base. Secondly, radiographers acknowledge that protecting pregnant patients may be primarily a 'personal choice' in clinical environments, which can alter if a patient requests 'are you going to cover me up?' This paper concludes by affirming the complexities surrounding Pb protection in clinical environments. It is proposed that the use of Pb protection in general radiography may become increasingly fragmented in the future if radiographers continue rely on cultural norms. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  11. High performance pipelined multiplier with fast carry-save adder

    NASA Technical Reports Server (NTRS)

    Wu, Angus

    1990-01-01

    A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.

  12. Coaxial test fixture

    DOEpatents

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  13. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  14. Behavior treatment: general considerations.

    PubMed

    Gardner, William I

    2005-01-01

    The principal goal of behavior treatment for retarded clients is that of modifying behavior as it occurs in a given environment in such a manner that it becomes more appropriate to that environment. The therapeutic or change agents can involve a variety of persons other than the counselor, teacher, and client--this may include parents, peers, work supervisors and others who can provide supportive influences. Education and rehabilitation programs should be tailored to the occupational and social environment of the retarded client and designed to teach those behavior patterns that are relevant to that environment. Additionally, the work tasks for which retarded clients are trained should be highly structured and routine. Excessive demand for adaptability or decision making is a major cause of training failure for retarded clients.

  15. Tether Elevator Crawler Systems (TECS)

    NASA Technical Reports Server (NTRS)

    Swenson, Frank R.

    1987-01-01

    One of the needs of the experimenters on the space station is access to steady and controlled-variation microgravity environments. A method of providing these environments is to place the experiment on a tether attached to the space station. This provides a high degree of isolation from structural oscillations and vibrations. Crawlers can move these experiments along the tethers to preferred locations, much like an elevator. This report describes the motion control laws developed for these crawlers and the testing of laboratory models of these tether elevator crawlers.

  16. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  17. Reusable high-temperature heat pipes and heat pipe panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Ransone, Philip O. (Inventor)

    1989-01-01

    A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap.

  18. QUEST/Ada (Query Utility Environment for Software Testing) of Ada: The development of a program analysis environment for Ada

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1988-01-01

    A history of the Query Utility Environment for Software Testing (QUEST)/Ada is presented. A fairly comprehensive literature review which is targeted toward issues of Ada testing is given. The definition of the system structure and the high level interfaces are then presented. The design of the three major components is described. The QUEST/Ada IORL System Specifications to this point in time are included in the Appendix. A paper is also included in the appendix which gives statistical evidence of the validity of the test case generation approach which is being integrated into QUEST/Ada.

  19. Enabling aspects of fiber optic acoustic sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.

    2013-05-01

    The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.

  20. Crew behavior and performance in space analog environments

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  1. Theoretical Neuroanatomy:Analyzing the Structure, Dynamics,and Function of Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Seth, Anil K.; Edelman, Gerald M.

    The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more.

  2. Investigating the 3D Structure of the Winds of Hot Supergiants

    NASA Astrophysics Data System (ADS)

    Klement, Robert

    2018-04-01

    An observational effort targeting supergiant stars of spectral classes B and A has been started using the VEGA high spectral resolution visible beam combiner at the CHARA array. The H-alpha emission from the structured stellar winds was resolved with respect to the surrounding continuum, showing signs of inhomogenities in the circumstellar environments as well as temporal variability on different time scales. We have begun a radiative transfer modelling effort to investigate the clumpy structure of the stellar winds and the origin of the inhomogenities, probably linked to the stellar photosphere features.

  3. Opening Session Addresses Presented at the Army Symposium on Solid Mechanics, 1980 - Designing for Extremes: Environment, Loading, and Structural Behavior Held at Cape Cod, Massachusetts, 30 September-2 October 1980

    DTIC Science & Technology

    1980-09-01

    Structural Behavior".4- D) , o 1413 MDfs or INOVSISSSOLETE UNCLASSIFIED tL?& SECURITY CLASSIFICATION Of THIS PAGE (,"en Dote Entered) .4 UNCLASSIFIED...BEHAVIOR, DEVELOP IMPROVED PLAS- TICS LASER HARDENING • PROVIDE MATERIALS AND STRUCTURES TECH- NOLOGY BASE TO MEET HIGH ENERGY LASER THREAT DAMAGE...technology at this " cutting -edge" have been consistently responsible for the many facets of the technological advantage this country needs on a continuing

  4. Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.

    2016-12-01

    The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  5. Unsteady bio-fluid dynamics in flying and swimming

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  6. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    PubMed Central

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  7. Interactions between the Space Station and the environment: A preliminary assessment of EMI

    NASA Technical Reports Server (NTRS)

    Murphy, G. B.; Garrett, Henry B.

    1990-01-01

    A review of the interactions between proposed Space Station systems/payloads and the environment that contribute to electromagnetic interference was performed. Seven prime sources of interference have been identified. These are: The Space Station power system; active experiments such as beam injection; ASTROMAG; ram and wake density gradients; pick up ions produced by vented or offgassed clouds; waves produced by current loops that include the plasma and structure; arcing from high voltage solar arrays (or possible ESD in polar orbit). This review indicates that: minimizing leakage current from the 20 kHz power system to the structure; keeping the surfaces of the Space Station structure, arrays, and radiators nonconducting; minimizing venting of payloads or systems to non-operational periods; careful placement of payloads sensitive to magnetic field perturbations or wake noise; and designing an operational timeline compatible with experiment requirement are the most effective means of minimizing the effects of this interference. High degrees of uncertainty exist in the estimates of magnitudes of gas emission induced EMI, radiation of 20 kHz and harmonics, ASTROMAG induced interference, and arc threshold/frequency of the solar array. These processes demand further attention so that mitigation efforts are properly calibrated.

  8. Determining the drivers of population structure in a highly urbanized landscape to inform conservation planning.

    PubMed

    Thomassen, Henri A; Harrigan, Ryan J; Semple Delaney, Kathleen; Riley, Seth P D; Serieys, Laurel E K; Pease, Katherine; Wayne, Robert K; Smith, Thomas B

    2018-02-01

    Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human-dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. © 2017 Society for Conservation Biology.

  9. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; hide

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high latitude, the ISS wake may produce a spacecraft charging environment similar to that experienced by the DMSP and Freja satellites (800 to 100 km altitude polar orbits), especially during geo-magnetic disturbances (12-14). ISS is also subject to magnetic induction voltages (VxB L) on conducting structure, a result of high velocity flight through Earth's magnetic field. The magnitude of the magnetic induction voltage varies with location on ISS, as well as the relative orientation of the vehicle velocity vector and planetary magnetic field vector, leading to maximum induction voltages at high latitude (15). The space environment factors, natural and induced, that have had the largest impact on pre-launch ISS flight hardware verification and flight operations during the first two years of ISS flight operations are listed below and grouped according to the physical and chemical processes driving their interaction with ISS materials.

  10. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  11. Using managerial role motivation theory to predict career success.

    PubMed

    Holland, M G; Black, C H; Miner, J B

    1987-01-01

    Managerial role motivation theory has proved to be useful for understanding executive performance in a wide range of highly structured organizational environments. Consistent results of studies indicate that the theory may be useful for understanding managerial behavior and predicting performance in health care organizations.

  12. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOEpatents

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  13. Organizational Effectiveness in Higher Education: Faculty Informal Structure as Social Capital

    ERIC Educational Resources Information Center

    Dose, Jennifer J.

    2012-01-01

    Higher education institutions encounter complex external environments, requiring increasing responsiveness and innovation. Research on social capital has demonstrated that highly connected employee relational networks are more creative, effective, and exhibit higher member satisfaction. The present study examines one college to demonstrate how…

  14. Polysaccharide Thin Films – Buildup and Hydration

    USDA-ARS?s Scientific Manuscript database

    Plating, painting and the application of enamel are common anti-corrosion treatments by providing a barrier of resistant material between the damaging environment and the structural material. Coatings start failing rapidly if scratched or damaged because “pitting” occurs at high rates in cracks or p...

  15. Mangrove forests

    Treesearch

    Ariel E. Lugo; Ernesto Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  16. Data Architecture in an Open Systems Environment.

    ERIC Educational Resources Information Center

    Bernbom, Gerald; Cromwell, Dennis

    1993-01-01

    The conceptual basis for structured data architecture, and its integration with open systems technology at Indiana University, are described. Key strategic goals guiding these efforts are discussed: commitment to improved data access; migration to relational database technology, and deployment of a high-speed, multiprotocol network; and…

  17. The role of disulfide bond in hyperthermophilic endocellulase.

    PubMed

    Kim, Han-Woo; Ishikawa, Kazuhiko

    2013-07-01

    The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.

  18. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  19. Blast Load Simulator Experiments for Computational Model Validation: Report 1

    DTIC Science & Technology

    2016-08-01

    involving the inclusion of non-responding box-type structures in a BLS simulated blast environment. The BLS is a highly tunable com- pressed-gas-driven...Blast Load Simulator (BLS) to evaluate its suitability for a future effort involving the inclusion of non-responding box-type structures located in...Recommendations Preliminary testing indicated that inclusion of the grill and diaphragm striker resulted in a decrease in peak pressure of about 12

  20. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus.

    PubMed

    Hancock, R

    2018-04-01

    The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.

  1. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  2. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  3. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  4. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  5. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  6. Recent Loads Calibration Experience With a Delta Wing Airplane

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.; Kuhl, Albert E.

    1977-01-01

    Aircraft which are designed for supersonic and hypersonic flight are evolving with delta wing configurations. An integral part of the evolution of all new aircraft is the flight test phase. Included in the flight test phase is an effort to identify and evaluate the loads environment of the aircraft. The most effective way of examining the loads environment is to utilize calibrated strain gages to provide load magnitudes. Using strain gage data to accomplish this has turned out to be anything but a straightforward task. The delta wing configuration has turned out to be a very difficult type of wing structure to calibrate. Elevated structural temperatures result in thermal effects which contaminate strain gage data being used to deduce flight loads. The concept of thermally calibrating a strain gage system is an approach to solving this problem. This paper will address how these problems were approached on a program directed toward measuring loads on the wing of a large, flexible supersonic aircraft. Structural configurations typical of high-speed delta wing aircraft will be examined. The temperature environment will be examined to see how it induces thermal stresses which subsequently cause errors in loads equations used to deduce the flight loads.

  7. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  8. Extremophiles: developments of their special functions and potential resources.

    PubMed

    Fujiwara, Shinsuke

    2002-01-01

    Extremophilles are valuable resources in biotechnology. Enzymes from extremophiles are expected to fill the gap between biological and chemical processes due to their unusual properties. Especially enzymes from hyperthermophiles that can grow at above 90 degrees C were devoted owing to its extraordinary thermostability and denaturant tolerance. Screening trials of hyperthermophilic microorganisms were performed by a number of microbiologists and various unique strains were isolated from natural environments. One of the most successful uses of thermostable enzymes was DNA polymerase in the polymerase chain reaction (PCR). Thermostable enzymes are used in the chemical, food, pharmaceutical, paper and textile industries. Recombinant forms of thermostable enzymes that have been expressed in Escherichia coli are commonly utilized in industrial applications however their enzymatic characteristics and tertiary structure are different from the native ones produced in the original strains. In vitro heat treatment induces a structural conversion of the recombinant protein to its natural form. High temperature itself plays an important role in determining the specific characteristics and tertiary structure of the enzyme. Recent studies have revealed that hyperthermophiles can grow under numerous conditions not only in geothermal or deep-sea thermal environments. Technological advances have allowed DNA to be isolated from natural environments. Now genes could be isolated from microorganisms that have not been cultured. In this review, innovative approaches to hunt genes from natural environments without pure culturing of microorganisms are also discussed.

  9. Creep resistance. [of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Malu, M.; Purushothaman, S.

    1976-01-01

    High-temperature structural applications usually require creep resistance because some average stress is maintained for prolonged periods. Alloy and microstructural design guidelines for creep resistance are presented through established knowledge on creep behavior and its functional dependences on alloy microstructure. Important considerations related to creep resistance of alloys as well as those that are harmful to high-temperature properties are examined. Although most of the creep models do not predict observed creep behavior quantitatively, they are sophisticated enough to provide alloy or microstructural design guidelines. It is shown that creep-resistant microstructures are usually in conflict with microstructures that improve such other properties as stress rupture ductility. Greater understanding of the effects of environments on creep and stress rupture behavior of materials is necessary before one can optimally design alloys for applications in different environments.

  10. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions.

    PubMed

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-08-22

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  11. Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann

    2018-07-01

    Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.

  12. Sequence composition and environment effects on residue fluctuations in protein structures

    NASA Astrophysics Data System (ADS)

    Ruvinsky, Anatoly M.; Vakser, Ilya A.

    2010-10-01

    Structure fluctuations in proteins affect a broad range of cell phenomena, including stability of proteins and their fragments, allosteric transitions, and energy transfer. This study presents a statistical-thermodynamic analysis of relationship between the sequence composition and the distribution of residue fluctuations in protein-protein complexes. A one-node-per-residue elastic network model accounting for the nonhomogeneous protein mass distribution and the interatomic interactions through the renormalized inter-residue potential is developed. Two factors, a protein mass distribution and a residue environment, were found to determine the scale of residue fluctuations. Surface residues undergo larger fluctuations than core residues in agreement with experimental observations. Ranking residues over the normalized scale of fluctuations yields a distinct classification of amino acids into three groups: (i) highly fluctuating-Gly, Ala, Ser, Pro, and Asp, (ii) moderately fluctuating-Thr, Asn, Gln, Lys, Glu, Arg, Val, and Cys, and (iii) weakly fluctuating-Ile, Leu, Met, Phe, Tyr, Trp, and His. The structural instability in proteins possibly relates to the high content of the highly fluctuating residues and a deficiency of the weakly fluctuating residues in irregular secondary structure elements (loops), chameleon sequences, and disordered proteins. Strong correlation between residue fluctuations and the sequence composition of protein loops supports this hypothesis. Comparing fluctuations of binding site residues (interface residues) with other surface residues shows that, on average, the interface is more rigid than the rest of the protein surface and Gly, Ala, Ser, Cys, Leu, and Trp have a propensity to form more stable docking patches on the interface. The findings have broad implications for understanding mechanisms of protein association and stability of protein structures.

  13. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  14. Effects of environment and frequency on the fatigue behavior of the spallation neutron source (SNS) target container material - 316 LN stainless steel

    NASA Astrophysics Data System (ADS)

    Tian, Hongbo

    As the candidate target container material of the new Spallation Neutron Source (SNS) being designed and constructed at the Oak Ridge National Laboratory (ORNL), Type 316 low-carbon nitrogen-added (LN) stainless steel (SS) will operate in an aggressive environment, subjected to intense fluxes of high-energy protons and neutrons while exposed to liquid mercury. The current project is oriented toward materials studies regarding the effects of test environment and frequency on the fatigue behavior of 316 LN SS. In order to study the structural applications of this material and improve the fundamental understanding of the fatigue damage mechanisms, fatigue tests were performed in air and mercury environments at various frequencies and R ratios (R = sigma min/sigmamax, sigmamin and sigmamax are the applied minimum and maximum stresses, respectively). Fatigue data were developed for the structural design and engineering applications of this material. Specifically, high-cycle fatigue tests, fatigue crack-propagation tests, and ultrahigh cycle fatigue tests up to 10 9 cycles were conducted in air and mercury with test frequencies from 10 Hz to 700 Hz. Microstructure characterizations were performed using optical microscopy (OM), scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). It was found that mercury doesn't seem to have a large impact on the crack-initiation behavior of 316 LN SS. However, the crack-propagation mechanisms in air and mercury are different in some test conditions. Transgranular cracks seem to be the main mechanism in air, and intergranular in mercury. A significant specimen self-heating effect was found during high-cycle faituge. Theoretical calculation was performed to predict temperature responses of the material subjected to cyclic deformation. The predicted cyclic temperature evolution seems to be in good agreement with the experimental results.

  15. Field assessment of the impacts of landscape structure on different-sized airborne particles in residential areas of Beijing, China

    NASA Astrophysics Data System (ADS)

    Fan, Shuxin; Li, Xiaopeng; Han, Jing; Cao, Yu; Dong, Li

    2017-10-01

    In high-density metropolis, residential areas are important human living environments. Aimed at investigating the impacts of landscape structure on the levels of different-sized airborne particle in residential areas, we conducted field monitoring of the levels of TSP, PM10, PM2.5 and PM1 using mobile traverses in 18 residential areas during the daytime in winter (Dec. 2015-Feb. 2016) and summer (Jun.-Aug. 2016) in Beijing, China. The net concentration differences (d) of the four-sized particles (dTSP, dPM10, dPM2.5 and dPM1) between residential environments and nearby corresponding urban backgrounds, which can be regarded as the reduction of particle concentration in residential environments, were calculated. The effects and relative contributions of different landscape structure parameters on these net concentration differences were further investigated. Results showed that the distribution of particle concentrations has great spatial variation in urban environments. Within the residential environment, there were overall lower concentrations of the four-sized particles compared with the nearby urban background. The net concentration differences of the four-sized particles were all significantly different among the 18 studied residential areas. The average dTSP, dPM10, dPM2.5 and dPM1 reached 18.92, 12.28, 2.01 and 0.53 μg/m3 in summer, and 9.91, 7.81, 1.39 and 0.38 μg/m3 in winter, respectively. The impacts and relative contribution of different landscape structure parameters on the reductions of TSP, PM10, PM2.5 and PM1 in residential environments differed and showed seasonal variation. Percentage of vegetation cover (PerVC) and building cover (PerBC) had the greatest impact. A 10% increase in PerVC would increase about 5.03, 8.15, 2.16 and 0.20 μg/m3 of dTSP, dPM10, dPM2.5 and dPM1 in summer, and a 10% increase in PerBC would decreased about 41.37, 16.54, 2.47 and 0.95 μg/m3 of them in winter. Increased vegetation coverage and decreased building construction were found to be conducive to ameliorate airborne particle levels in residential environments. Moreover, landscape structure parameters can be served as indicators for predicting the potential particle reduction at local scale.

  16. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anticipatory Counseling for Adolescents of Divorced Parents.

    ERIC Educational Resources Information Center

    Camiletti, Yolanda; Quant, Valerie

    1983-01-01

    Reviews the difficulties and coping strategies of adolescent children of divorced parents. Describes a counseling group for eight high school students which was effective in helping students understand their feelings and control their anger. The school setting can provide a structured, secure environment to implement anticipatory guidance. (JAC)

  18. Improved catalysts by low-G processing

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Picklesimer, E. A.

    1977-01-01

    The advantages of space for manufacturing more perfect microcrystalline morphologies and structures will be investigated. Production of smaller silver and palladium crystals with enhanced catalytic properties is discussed. The elimination of convection accompanying electrodeposition of fine metallic powders at high overvoltages in a low gravity environment is outlined.

  19. High-throughput screening of chemicals as functional substitutes using structure-based classification models

    EPA Science Inventory

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...

  20. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui

    2017-04-01

    Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.

  1. The Properties of HPMC:PEO Extended Release Hydrophilic Matrices and their Response to Ionic Environments.

    PubMed

    Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D

    2017-05-01

    Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.

  2. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    PubMed

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  3. Acoustic and Vibration Environment for Crew Launch Vehicle Mobile Launcher

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.

    2007-01-01

    A launch-induced acoustic environment represents a dynamic load on the exposed facilities and ground support equipment (GSE) in the form of random pressures fluctuating around the ambient atmospheric pressure. In response to these fluctuating pressures, structural vibrations are generated and transmitted throughout the structure and to the equipment items supported by the structure. Certain equipment items are also excited by the direct acoustic input as well as by the vibration transmitted through the supporting structure. This paper presents the predicted acoustic and vibration environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. The predicted acoustic environment depicted in this paper was calculated by scaling the statistically processed measured data available from Saturn V launches to the anticipated environment of the CLV launch. The scaling was accomplished by using the 5-segment Solid Rocket Booster (SRB) engine parameters. Derivation of vibration environment for various Mobile Launcher (ML) structures throughout the base and tower was accomplished by scaling the Saturn V vibration environment.

  4. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    NASA Astrophysics Data System (ADS)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.

  5. Critical Issues in Hydrogen Assisted Cracking of Structural Alloys

    DTIC Science & Technology

    2006-01-01

    does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking

  6. An Overview of Hardware for Protein Crystallization in a Magnetic Field.

    PubMed

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-11-16

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed.

  7. Reverse Ecology: from systems to environments and back.

    PubMed

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  8. Quantum optics in a high impedance environment

    NASA Astrophysics Data System (ADS)

    Puertas, Javier; Gheeraert, Nicolas; Krupko, Yuriy; Dassonneville, Remy; Planat, Luca; Foroughui, Farshad; Naud, Cecile; Guichard, Wiebke; Buisson, Olivier; Florens, Serge; Roch, Nicolas; Snyman, Izak

    Understanding light matter interaction remains a key topic in fundamental physics. Its strength is imposed by the fine structure constant, α. For most atomic and molecular systems α =e2/ℏc 4 πɛo = 1 / 137 << 1 , giving weak interactions. When dealing with superconducting artificial atoms, α is either proportional to 1 /Zc (magnetic coupling) or Zc (electric coupling), where Zc is the characteristic impedance of the environment. Recent experiments followed the first approach, coupling a flux qubit to a low impedance environment, demonstrating strong interaction (α 1). In our work, we reached the large α regime, following a complementary approach: we couple electrically a transmon qubit to an array of 5000 SQUIDs. This metamaterial provides high characteristic impedance ( 3 kΩ), in-situ flux tunability and full control over its dispersion relation. In this new regime, all usual approximations break down and new phenomena such as frequency conversion at the single photon level are expected.

  9. An Overview of Hardware for Protein Crystallization in a Magnetic Field

    PubMed Central

    Yan, Er-Kai; Zhang, Chen-Yan; He, Jin; Yin, Da-Chuan

    2016-01-01

    Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction), research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field) and progress in this area. Future prospects in this field will also be discussed. PMID:27854318

  10. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  11. Inverse Analysis of Cavitation Impact Phenomena on Structures

    DTIC Science & Technology

    2007-07-02

    can occur within different types of dynamic water environments of structures. Case study analyses using experimental data are used to demonstrate the...cavitation impact phenomena, and ultimately, with cavitation erosion of structures within turbulent water environments. 02-07-2007 Memorandum Report...of dynamic water environments of structures. Case study analyses using experimental data are used to demonstrate the fundamentals of various aspects

  12. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologiesmore » that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.« less

  13. Advances in structural and functional analysis of membrane proteins by electron crystallography

    PubMed Central

    Wisedchaisri, Goragot; Reichow, Steve L.; Gonen, Tamir

    2011-01-01

    Summary Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. PMID:22000511

  14. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    PubMed

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Design and manufacturing of the CFRP lightweight telescope structure

    NASA Astrophysics Data System (ADS)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  16. Methods for Determining the Optimum Design of Structures Protected from Aerodynamic Heating and Application to Typical Boost-Glide or Reentry Flight Paths

    NASA Technical Reports Server (NTRS)

    Harris, Robert S., Jr.; Davidson, John R.

    1962-01-01

    General equations are developed for the design of efficient structures protected from thermal environments typical of those encountered in boost-glide or atmospheric-reentry conditions. The method is applied to insulated heat-sink stressed-skin structures and to internally cooled insulated structures. Plates loaded in compression are treated in detail. Under limited conditions of plate buckling, high loading, and short flight periods, and for aluminum structures only, the weights of both configurations are nearly equal. Load parameters are found and are similar to those derived in previous investigations for the restricted case of a constant equilibrium temperature at the outside surface of the insulation.

  17. Using FLUKA to Calculate Spacecraft: Single Event Environments: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Boeder, Paul; Reddell, Brandon

    2009-01-01

    The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.

  18. Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments: Alginolytic guilds from cold sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos, Marina N.; Lozada, Mariana; Anselmino, Luciano E.

    Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate assimilation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The goal of this work was to gain insight into the structure and functional traits of the alginolytic communities from sediments of cold coastal environments. Sediment metagenomes from high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homolog sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including membersmore » of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. Temperature and salinity were correlated to the variation in community structure. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments had a higher proportion of novel members. Examination of the gene context of the alginate lyase homologs revealed distinct patterns according to the phylogenetic origin of the scaffolds, with evidence of evolutionary relationships among lineages. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.« less

  19. Combustion of Metals in Reduced-Gravity and Extra Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    Branch, M.C.; Abbud-Madrid, A.; Daily, J. W.

    1999-01-01

    The combustion of metals is a field with important practical applications in rocket propellants, high-temperature flames, and material synthesis. Also, the safe operation of metal containers in high-pressure oxygen systems and with cryogenic fuels and oxidizers remains an important concern in industry. The increasing use of metallic components in spacecraft and space structures has also raised concerns about their flammability properties and fire suppression mechanisms. In addition, recent efforts to embark on unmanned and manned planetary exploration, such as on Mars, have also renewed the interest in metal/carbon-dioxide combustion as an effective in situ resource utilization technology. In spite of these practical applications, the understanding of the combustion properties of metals remains far behind that of the most commonly used fuels such as hydrocarbons. The lack of understanding is due to the many problems unique to metal- oxidizer reactions such as: low-temperature surface oxidation prior to ignition, heterogeneous reactions, very high combustion temperatures, product condensation, high emissivity of products, and multi-phase interactions. Very few analytical models (all neglecting the influence of gravity) have been developed to predict the burning characteristics and the flame structure details. Several experimental studies attempting to validate these models have used small metal particles to recreate gravity-free conditions. The high emissivity of the flames, rapid reaction, and intermittent explosions experienced by these particles have made the gathering of any useful information on burning rates and flame structure very difficult. The use of a reduced gravity environment is needed to clarify some of the complex interactions among the phenomena described above. First, the elimination of the intrusive buoyant flows that plague all combustion phenomena is of paramount importance in metal reactions due to the much higher temperatures reached during combustion. Second, a low-gravity environment is absolutely essential to remove the destructive effect of gravity on the shape of a molten metal droplet in order to study a spherically symmetric condition with large bulk samples. The larger size of the spherical metal droplet and the longer burning times available in reduced gravity extend the spatial and temporal dimensions to permit careful probing of the flame structure and dynamics. Third, the influence of the radiative heat transfer from the solid oxides can be studied more carefully by generating a stagnant spherical shell of condensed products undisturbed by buoyancy.

  20. Development of Multi-Layered Floating Floor for Cabin Noise Reduction

    NASA Astrophysics Data System (ADS)

    Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung

    2017-12-01

    Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.

  1. Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars

    USGS Publications Warehouse

    Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.

    2004-01-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest. ?? 2004 Elsevier Inc. All rights reserved.

  2. Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro

    2004-09-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest.

  3. XRD and XAS structural study of CuAlO2 under high pressure.

    PubMed

    Pellicer-Porres, J; Segura, A; Ferrer-Roca, Ch; Polian, A; Munsch, P; Kim, D

    2013-03-20

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  4. XRD and XAS structural study of CuAlO2 under high pressure

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Ferrer-Roca, Ch; Polian, A.; Munsch, P.; Kim, D.

    2013-03-01

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  5. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  6. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  7. Highly porous 3D nanofiber scaffold using an electrospinning technique.

    PubMed

    Kim, Geunhyung; Kim, WanDoo

    2007-04-01

    A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly(epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. (c) 2006 Wiley Periodicals, Inc.

  8. The architecture and artistic features of high-rise buildings in USSR and the United States of America during the first half of the twentieth century

    NASA Astrophysics Data System (ADS)

    Golovina, Svetlana; Oblasov, Yurii

    2018-03-01

    Skyscraper is a significant architectural structure in the world's largest cities. The appearance of a skyscraper in the city's architectural composition enhances its status, introduces dynamics into the shape of the city, modernizes the existing environment. Its architectural structure which can have both expressive triumphal forms and ascetic ones. For a deep understanding of the architecture of high-rise buildings must be considered by several criteria. Various approaches can be found in the competitive development of high-rise buildings in Moscow and the US cities in the middle of the twentieth century In this article we will consider how and on the basis of what the architectural decisions of high-rise buildings were formed.

  9. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  10. Evaluation of a metal fuselage panel selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Wennhold, W. F.

    1974-01-01

    The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.

  11. Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39

    NASA Technical Reports Server (NTRS)

    Welch, Peter J.

    1990-01-01

    The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.

  12. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure.

    PubMed

    Yang, Xiao; Li, Huijian; Ahuja, Rajeev; Kang, Taewon; Luo, Wei

    2017-06-14

    We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH 2 in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H 2 . But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH 2 can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H 2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H 2 at high pressure. The electronic structural study on fcc type Pd x Rh 1-x H 2 indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.

  13. Knowledge-based fragment binding prediction.

    PubMed

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.

  14. Knowledge-based Fragment Binding Prediction

    PubMed Central

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    We report on the identification of dynamic flaring non-potential structures on quiet Sun (QS) supergranular network scales. Data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory allow for the high spatial and temporal resolution of this diverse class of compact structures. The rapidly evolving non-potential events presented here, with lifetimes <10 minutes, are on the order of 10″ in length. Thus, they contrast significantly with well-known active region (AR) non-potential structures such as high-temperature X-ray and EUV sigmoids (>100″) and micro-sigmoids (>10″) with lifetimes on the order of hours to days. The photospheric magnetic field environment derivedmore » from the Helioseismic and Magnetic Imager shows a lack of evidence for these flaring non-potential fields being associated with significant concentrations of bipolar magnetic elements. Of much interest to our events is the possibility of establishing them as precursor signatures of eruptive dynamics, similar to notions for AR sigmoids and micro-sigmoids, but associated with uneventful magnetic network regions. We suggest that the mixed network flux of QS-like magnetic environments, though unresolved, can provide sufficient free magnetic energy for flaring non-potential plasma structuring. The appearance of non-potential magnetic fields could be a fundamental process leading to self-organized criticality in the QS-like supergranular network and contribute to coronal heating, as these events undergo rapid helicial and vortical relaxations.« less

  16. Lakshmi Planum, Venus - Characteristics and models of origin

    NASA Technical Reports Server (NTRS)

    Roberts, Kari M.; Head, James W.

    1990-01-01

    The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.

  17. Lakshmi Planum, Venus - Characteristics and models of origin

    NASA Astrophysics Data System (ADS)

    Roberts, Kari M.; Head, James W.

    1990-12-01

    The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.

  18. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    PubMed

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  19. Oxytocin conditions trait-based rule adherence

    PubMed Central

    De Dreu, Carsten K.W.

    2017-01-01

    Abstract Rules, whether in the form of norms, taboos or laws, regulate and coordinate human life. Some rules, however, are arbitrary and adhering to them can be personally costly. Rigidly sticking to such rules can be considered maladaptive. Here, we test whether, at the neurobiological level, (mal)adaptive rule adherence is reduced by oxytocin—a hypothalamic neuropeptide that biases the biobehavioural approach-avoidance system. Participants (N = 139) self-administered oxytocin or placebo intranasally, and reported their need for structure and approach-avoidance sensitivity. Next, participants made binary decisions and were given an arbitrary rule that demanded to forgo financial benefits. Under oxytocin, participants violated the rule more often, especially when they had high need for structure and high approach sensitivity. Possibly, oxytocin dampens the need for a highly structured environment and enables individuals to flexibly trade-off internal desires against external restrictions. Implications for the treatment of clinical disorders marked by maladaptive rule adherence are discussed. PMID:27664999

  20. Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics.

    PubMed

    Esbah, Hayriye; Deniz, Bulent; Kara, Baris; Kesgin, Birsen

    2010-06-01

    Bafa Lake Nature Park is one of Turkey's most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural-natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.

  1. Historical changes in the structure and functioning of the benthic community in the lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Pranovi, Fabio; Da Ponte, Filippo; Torricelli, Patrizia

    2008-03-01

    One of the main challenges in environmental management is how to manage the dynamics of natural environments. In this context, having information about historical changes of the structure of the biological communities could represent a useful tool to improve management strategies, contributing to refine the policy objectives, since it gives reference states with which to compare the present. The Venice lagoon represents an interesting case study, since it is a highly dynamic, but sensitive, environment which requires the adoption of prudent management. In its recent history the lagoon ecosystem has been exposed to different kinds of disturbance, from the discharge of pollutants and nutrients, to the invasion of alien species and the exploitation of its biological resources by using highly impacting fishing gears. The analysis of available data about the macro-benthic community, from 1935 to 2004, allows the description of changes of the community structure over almost 70 years, showing a sharp decrease in its diversity. In order to obtain information about its functioning, it is necessary to know how these changes have affected processes at the community and system level. In shallow water ecosystems, as the control is mainly due to the benthic compartment, variations in the structure of the benthic community can induce modifications in processes at different hierarchical levels. The trophic structure analysis has revealed major changes during the period; from a well-assorted structure in 1935, to an herbivore-detritivore dominated one in the 1990s, and finally to a filter feeder dominated structure during the last decade. This has produced variations in the secondary production and it has induced modifications in the type of the ecosystem control. These changes are discussed in the light of the dynamics of the main driving forces.

  2. Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure

    PubMed Central

    Cooper, Vaughn S.; Hatcher, Philip J.; Verheyde, Bart; Carlier, Aurélien; Vandamme, Peter

    2017-01-01

    The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence. PMID:28430818

  3. Active Control of NITINOL-Reinforced Structural Composites

    DTIC Science & Technology

    1992-10-12

    useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES

  4. Creating CHAOS for Smart, Troubled High-Riskers

    ERIC Educational Resources Information Center

    Grimes, Rich

    2006-01-01

    The acronym CHAOS (Caring, Honesty, Accountability, Ownership, and Success), provides the foundation, structure, and relational components for an environment with all school community members focused on one essential goal--the success of all students. In this article, the author discusses the plight of "troubled" students and discusses the need to…

  5. The Capstone Strategy Course: What Might Real Integration Look Like?

    ERIC Educational Resources Information Center

    Kachra, Ariff; Schnietz, Karen

    2008-01-01

    The traditional master of business administration (MBA) capstone strategy course is intended to integrate the prior course work of the MBA program but is doing this less and less well in today's high-velocity and complex business environment. The traditional strategy course structures, emphasizing formulation-implementation and the…

  6. The Ecology of Role Play: Intentionality and Cultural Evolution

    ERIC Educational Resources Information Center

    Papadopoulou, Marianna

    2012-01-01

    This study examines the evolutionary function of children's pretence. The everyday, cultural environment that children engage with is of a highly complex structure. Human adaptation, thus, becomes, by analogy, an equally complex process that requires the development of life skills. Whilst in role play children engage in "mimesis" and…

  7. Development of LIDAR-guided sprayer to synchronize spray outputs with canopy structures

    USDA-ARS?s Scientific Manuscript database

    Variable-rate application is an effective way for nursery and orchard growers to reduce pesticide use and potential contaminations to the environment. To realize this goal, an intelligent air-assisted sprayer implementing a high speed laser scanning sensor (LIDAR) was developed to vary spray output ...

  8. ALES: An Innovative Argument-Learning Environment

    ERIC Educational Resources Information Center

    Abbas, Safia; Sawamura, Hajime

    2010-01-01

    This paper presents the development of an Argument-Learning System (ALES). The idea is based on the AIF (argumentation interchange format) ontology using "Walton theory". ALES uses different mining techniques to manage a highly structured arguments repository. This repository was designed, developed and implemented by the authors. The aim is to…

  9. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia.

    PubMed

    Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M

    2013-12-01

    Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.

  10. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  11. Single room occupancy (SRO) hotels as mental health risk environments among impoverished women: the intersection of policy, drug use, trauma, and urban space.

    PubMed

    Knight, Kelly R; Lopez, Andrea M; Comfort, Megan; Shumway, Martha; Cohen, Jennifer; Riley, Elise D

    2014-05-01

    Due to the significantly high levels of comorbid substance use and mental health diagnosis among urban poor populations, examining the intersection of drug policy and place requires a consideration of the role of housing in drug user mental health. In San Francisco, geographic boundedness and progressive health and housing polices have coalesced to make single room occupancy hotels (SROs) a key urban built environment used to house poor populations with co-occurring drug use and mental health issues. Unstably housed women who use illicit drugs have high rates of lifetime and current trauma, which manifests in disproportionately high rates of post-traumatic stress disorder (PTSD), anxiety, and depression when compared to stably housed women. We report data from a qualitative interview study (n=30) and four years of ethnography conducted with housing policy makers and unstably housed women who use drugs and live in SROs. Women in the study lived in a range of SRO built environments, from publicly funded, newly built SROs to privately owned, dilapidated buildings, which presented a rich opportunity for ethnographic comparison. Applying Rhodes et al.'s framework of socio-structural vulnerability, we explore how SROs can operate as "mental health risk environments" in which macro-structural factors (housing policies shaping the built environment) interact with meso-level factors (social relations within SROs) and micro-level, behavioral coping strategies to impact women's mental health. The degree to which SRO built environments were "trauma-sensitive" at the macro level significantly influenced women's mental health at meso- and micro-levels. Women who were living in SROs which exacerbated fear and anxiety attempted, with limited success, to deploy strategies on the meso- and micro-level to manage their mental health symptoms. Study findings underscore the importance of housing polices which consider substance use in the context of current and cumulative trauma experiences in order to improve quality of life and mental health for unstably housed women. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Study of different atmospheric environments associated to storms development in the Madeira Island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago do

    The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 - 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects causing significant precipitation over the Island.

  13. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  14. Structural perturbations on huntingtin N17 domain during its folding on 2D-nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Leili; Feng, Mei; Zhou, Ruhong; Luan, Binquan

    2017-09-01

    A globular protein’s folded structure in its physiological environment is largely determined by its amino acid sequence. Recently, newly discovered transformer proteins as well as intrinsically disordered proteins may adopt the folding-upon-binding mechanism where their secondary structures are highly dependent on their binding partners. Due to the various applications of nanomaterials in biological sensors and potential wearable devices, it is important to discover possible conformational changes of proteins on nanomaterials. Here, through molecular dynamics simulations, we show that the first 17 residues of the huntingtin protein (HTT-N17) exhibit appreciable differences during its folding on 2D-nanomaterials, such as graphene and MoS2 nanosheets. Namely, the protein is disordered on the graphene surface but is helical on the MoS2 surface. Despite that the amphiphilic environment at the nanosheet-water interface promotes the folding of the amphipathic proteins (such as HTT-N17), competitions between protein-nanosheet and intra-protein interactions yield very different protein conformations. Therefore, as engineered binding partners, nanomaterials might significantly affect the structures of adsorbed proteins.

  15. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  16. Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere.

    PubMed

    Kato, Shunsuke; Ammann, Markus; Huthwelker, Thomas; Paun, Cristina; Lampimäki, Markus; Lee, Ming-Tao; Rothensteiner, Matthäus; van Bokhoven, Jeroen A

    2015-02-21

    The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.

  17. Turbulent times: effects of turbulence and violence exposure in adolescence on high school completion, health risk behavior, and mental health in young adulthood.

    PubMed

    Boynton-Jarrett, Renée; Hair, Elizabeth; Zuckerman, Barry

    2013-10-01

    Turbulent social environments are associated with health and developmental risk, yet mechanisms have been understudied. Guided by a life course framework and stress theory, this study examined the association between turbulent life transitions (including frequent residential mobility, school transitions, family structure disruptions, and homelessness) and exposure to violence during adolescence and high school completion, mental health, and health risk behaviors in young adulthood. Participants (n = 4834) from the U.S. National Longitudinal Survey of Youth, 1997 cohort were followed prospectively from age 12-14 years for 10 years. We used structural equation models to investigate pathways between turbulence and cumulative exposure to violence (CEV), and high school completion, mental health, and health risk behaviors, while accounting for early life socio-demographics, family processes, and individual characteristics. Results indicated that turbulence index was associated with cumulative exposure to violence in adolescence. Both turbulence index and cumulative exposure to violence were positively associated with higher health risk behavior, poorer mental health, and inversely associated with high school completion. These findings highlight the importance of considering the cumulative impact of turbulent and adverse social environments when developing interventions to optimize health and developmental trajectory for adolescents transitioning into adulthood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nanochannel structures in W enhance radiation tolerance

    DOE PAGES

    Qin, Wenjing; Ren, Feng; Doerner, Russell P.; ...

    2018-04-23

    Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less

  19. Nanochannel structures in W enhance radiation tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wenjing; Ren, Feng; Doerner, Russell P.

    Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less

  20. Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Brady, Michael P.; Muralidharan, Govindarajan

    This paper overviews recent advances in developing novel alloy design concepts of creep-resistant, alumina-forming Fe-base alloys, including both ferritic and austenitic steels, for high-temperature structural applications in fossil-fired power generation systems. Protective, external alumina-scales offer improved oxidation resistance compared to chromia-scales in steam-containing environments at elevated temperatures. Alloy design utilizes computational thermodynamic tools with compositional guidelines based on experimental results accumulated in the last decade, along with design and control of the second-phase precipitates to maximize high-temperature strengths. The alloys developed to date, including ferritic (Fe-Cr-Al-Nb-W base) and austenitic (Fe-Cr-Ni-Al-Nb base) alloys, successfully incorporated the balanced properties of steam/water vapor-oxidationmore » and/or ash-corrosion resistance and improved creep strength. Development of cast alumina-forming austenitic (AFA) stainless steel alloys is also in progress with successful improvement of higher temperature capability targeting up to ~1100°C. Current alloy design approach and developmental efforts with guidance of computational tools were found to be beneficial for further development of the new heat resistant steel alloys for various extreme environments.« less

  1. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires.

    PubMed

    Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang

    2015-12-01

    This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.

  2. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior High School Textbooks

    NASA Astrophysics Data System (ADS)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua; Chang, Huey-Por

    2017-07-01

    From a social semiotic perspective, image designs in science textbooks are inevitably influenced by the sociocultural context in which the books are produced. The learning environments of Australia and Taiwan vary greatly. Drawing on social semiotics and cognitive science, this study compares classificational images in Australian and Taiwanese junior high school science textbooks. Classificational images are important kinds of images, which can represent taxonomic relations among objects as reported by Kress and van Leeuwen (Reading images: the grammar of visual design, 2006). An analysis of the images from sample chapters in Australian and Taiwanese high school science textbooks showed that the majority of the Taiwanese images are covert taxonomies, which represent hierarchical relations implicitly. In contrast, Australian classificational images included diversified designs, but particularly types with a tree structure which depicted overt taxonomies, explicitly representing hierarchical super-ordinate and subordinate relations. Many of the Taiwanese images are reminiscent of the specimen images in eighteenth century science texts representing "what truly is", while more Australian images emphasize structural objectivity. Moreover, Australian images support cognitive functions which facilitate reading comprehension. The relationships between image designs and learning environments are discussed and implications for textbook research and design are addressed.

  3. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  4. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Etherington, J.; Thomas, D.; Maraston, C.; ...

    2016-01-04

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less

  5. Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures.

    PubMed

    Knight, V Bleu; Serrano, Elba E

    2017-01-01

    Biomaterial scaffolds have the potential to enhance neuronal development and regeneration. Understanding the genetic responses of astrocytes and neurons to biomaterials could facilitate the development of synthetic environments that enable the specification of neural tissue organization with engineered scaffolds. In this study, we used high throughput transcriptomic and imaging methods to determine the impact of a hydrogel, PuraMatrix™, on human glial cells in vitro . Parallel studies were undertaken with cells grown in a monolayer environment on tissue culture polystyrene. When the Normal Human Astrocyte (NHA) cell line is grown in a hydrogel matrix environment, the glial cells adopt a structural organization that resembles that of neuronal-glial cocultures, where neurons form clusters that are distinct from the surrounding glia. Statistical analysis of next generation RNA sequencing data uncovered a set of genes that are differentially expressed in the monolayer and matrix hydrogel environments. Functional analysis demonstrated that hydrogel-upregulated genes can be grouped into three broad categories: neuronal differentiation and/or neural plasticity, response to neural insult, and sensory perception. Our results demonstrate that hydrogel biomaterials have the potential to transform human glial cell identity, and may have applications in the repair of damaged brain tissue.

  6. Drove roads: Keystone structures that promote ant diversity in Mediterranean forest landscapes

    NASA Astrophysics Data System (ADS)

    Azcárate, Francisco M.; Seoane, Javier; Castro, Sara; Peco, Begoña

    2013-05-01

    Drove roads are the traditional corridors used by pastoralists for seasonal movements of livestock (transhumance). They cover a considerable land area in Mediterranean countries and, although they are an obvious source of landscape diversity, their influence on the diversity and composition of animal assemblages has not been documented. Ant communities were studied on four active drove roads, two in forests (submediterranean and conifer) and two in open environments (croplands and rangelands). They were compared with the respective matrix communities and their contribution to local species richness was evaluated. The effects were heavily dependent on the open or closed nature of the matrix. In forest environments, drove roads increased ant species richness at the local scale, acting as clear keystone structures. Their species richness and functional diversity were highest on the fine scale, species composition was different, and a slight edge effect in the matrix was detected. In contrast, drove roads had little or even a negative effect in open environment locations. We conclude that drove roads have a high conservation value for ants in Mediterranean forest environments, in addition to their importance as reservoirs of plant biodiversity and generators of ecological goods and services.

  7. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  8. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function.

    PubMed

    Banach, Mateusz; Konieczny, Leszek; Roterman, Irena

    2014-10-21

    In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Environmentally Preferable Coatings for Structural Steel Project

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  10. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  11. Development and Validation of the Scan of Postgraduate Educational Environment Domains (SPEED): A Brief Instrument to Assess the Educational Environment in Postgraduate Medical Education

    PubMed Central

    Schönrock-Adema, Johanna; Visscher, Maartje; Raat, A. N. Janet; Brand, Paul L. P.

    2015-01-01

    Introduction Current instruments to evaluate the postgraduate medical educational environment lack theoretical frameworks and are relatively long, which may reduce response rates. We aimed to develop and validate a brief instrument that, based on a solid theoretical framework for educational environments, solicits resident feedback to screen the postgraduate medical educational environment quality. Methods Stepwise, we developed a screening instrument, using existing instruments to assess educational environment quality and adopting a theoretical framework that defines three educational environment domains: content, atmosphere and organization. First, items from relevant existing instruments were collected and, after deleting duplicates and items not specifically addressing educational environment, grouped into the three domains. In a Delphi procedure, the item list was reduced to a set of items considered most important and comprehensively covering the three domains. These items were triangulated against the results of semi-structured interviews with 26 residents from three teaching hospitals to achieve face validity. This draft version of the Scan of Postgraduate Educational Environment Domains (SPEED) was administered to residents in a general and university hospital and further reduced and validated based on the data collected. Results Two hundred twenty-three residents completed the 43-item draft SPEED. We used half of the dataset for item reduction, and the other half for validating the resulting SPEED (15 items, 5 per domain). Internal consistencies were high. Correlations between domain scores in the draft and brief versions of SPEED were high (>0.85) and highly significant (p<0.001). Domain score variance of the draft instrument was explained for ≥80% by the items representing the domains in the final SPEED. Conclusions The SPEED comprehensively covers the three educational environment domains defined in the theoretical framework. Because of its validity and brevity, the SPEED is promising as useful and easily applicable tool to regularly screen educational environment quality in postgraduate medical education. PMID:26413836

  12. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    PubMed

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  13. Paclitaxel-Loaded pH-Sensitive Liposome: New Insights on Structural and Physicochemical Characterization.

    PubMed

    Monteiro, Liziane O F; Malachias, Ângelo; Pound-Lana, Gwenaelle; Magalhães-Paniago, Rogério; Mosqueira, Vanessa C F; Oliveira, Mônica C; de Barros, André Luís B; Leite, Elaine A

    2018-05-22

    A long-circulating and pH-sensitive liposome containing paclitaxel (SpHL-PTX) was recently developed by our group. Once in an acidic environment, for example, tumors, these liposomes undergo destabilization, releasing the encapsulated drug. In this way, the aim of this study was to evaluate the molecular and supramolecular interactions between the lipid bilayer and PTX in similar biological environment conditions. High-sensitivity analyses of SpHL-PTX structures were obtained by the small-angle X-ray scattering technique combined with other techniques such as dynamic light scattering, asymmetric flow field-flow fractionation, transmission electron microscopy, and high-performance liquid chromatography. The results showed that PTX incorporation in the liposomal bilayer clearly leads to changes in supramolecular organization of dioleoylphosphatidylethanolamine (DOPE) molecules, inducing the formation of more ordered structures. Changes in supramolecular organization were observed at lower pH, indicating that pH sensitivity was preserved even in the presence of fetal bovine serum proteins. Furthermore, morphological and physicochemical characterization of SpHL-PTX evidenced the formation of nanosized dispersion suitable for intravenous administration. In conclusion, a stable nanosized dispersion of PTX was obtained at pH 7.4 with suitable parameters for intravenous administration. At lower pH conditions, the pH sensitivity of the system was clearly evidenced by changes in the supramolecular organization of DOPE molecules, which is crucial for the delivery of PTX into the cytoplasm of the targeted cells. In this way, the results obtained by different techniques confirm the feasibility of SpHL as a promising tool to PTX delivery in acidic environments, such as tumors.

  14. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  15. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  16. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  17. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    DTIC Science & Technology

    2015-11-05

    the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M

  18. Adapting high-level language programs for parallel processing using data flow

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1988-01-01

    EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.

  19. Non-Markovian generalization of the Lindblad theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter

    2007-02-01

    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.

  20. Case Study Investigations of Large-Amplitude Inertia-Gravity Wave Environments and Mesoscale Structures

    NASA Technical Reports Server (NTRS)

    Bosart, Lance F.

    2001-01-01

    The research effort supported by NASA Grant NAG5-7469, awarded to the University at Albany, State University of New York (UA/SUNY), comprises the following two projects: (1) the observational study of large-amplitude inertia-gravity wave environments over the continental United States; and (2) the definition of opportunities and issues in extratropical cyclone dynamics and related phenomenological studies that may be addressed using high-resolution global datasets produced by the Data Assimilation Office (DAO) at the NASA/Goddard Space Flight Center.

  1. Structural and Functional Studies of Archaeal Viruses*

    PubMed Central

    Lawrence, C. Martin; Menon, Smita; Eilers, Brian J.; Bothner, Brian; Khayat, Reza; Douglas, Trevor; Young, Mark J.

    2009-01-01

    Viruses populate virtually every ecosystem on the planet, including the extreme acidic, thermal, and saline environments where archaeal organisms can dominate. For example, recent studies have identified crenarchaeal viruses in the hot springs of Yellowstone National Park and other high temperature environments worldwide. These viruses are often morphologically and genetically unique, with genomes that show little similarity to genes of known function, complicating efforts to understand their viral life cycles. Here, we review progress in understanding these fascinating viruses at the molecular level and the evolutionary insights coming from these studies. PMID:19158076

  2. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  3. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  4. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  5. Interfacial chemical reactions between MoS2 lubricants and bearing materials

    NASA Technical Reports Server (NTRS)

    Zabinski, J. S.; Tatarchuk, B. J.

    1989-01-01

    XPS and conversion-electron Moessbauer spectroscopy (CEMS) were used to examine iron that was deposited on the basal plane of MoS2 single crystals and subjected to vacuum annealing, oxidizing, and reducing environments. Iron either intercalated into the MoS2 structure or formed oriented iron sulfides, depending on the level of excess S in the MoS2 structure. CEMS data demonstrated that iron sulfide crystal structures preferentially aligned with respect to the MoS2 basal plane, and that alignment (and potentially adhesion) could be varied by appropriate high-temperature annealing procedures.

  6. An integrated framework for high level design of high performance signal processing circuits on FPGAs

    NASA Astrophysics Data System (ADS)

    Benkrid, K.; Belkacemi, S.; Sukhsawas, S.

    2005-06-01

    This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.

  7. Nurses' role transition from the clinical ward environment to the critical care environment.

    PubMed

    Gohery, Patricia; Meaney, Teresa

    2013-12-01

    To explore the experiences of nurses moving from the ward environment to the critical care environment. Critical care areas are employing nurses with no critical care experience due to staff shortage. There is a paucity of literature focusing on the experiences of nurses moving from the ward environment to the critical care environment. A Heideggerian phenomenology research approach was used in this study. In-depth semi structured interviews, supported with an interview guide, were conducted with nine critical care nurses. Data analysis was guided by Van Manen (1990) approach to phenomenological analysis. Four main themes emerged: The highs and lows, you need support, theory-practice gap, struggling with fear. The participants felt ill prepared and inexperienced to work within the stressful and technical environment of critical care due to insufficient education and support. The study findings indicated that a variety of feelings and emotions are experienced by ward nurses who move into the stressful and technical environment of critical care due to insufficient skills and knowledge. More education and support is required to improve this transition process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. From surface to intracellular non-invasive nanoscale study of living cells impairments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewald, Dr. Maxime; Tetard, Laurene; Elie-Caille, Dr. Cecile

    Among the enduring challenges in nanoscience, subsurface characterization of live cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale (1,2,3). However, measurements in liquid environments remain complex (4,5,6,7), in particular in the subsurface domain. Here we introduce liquid-Mode Synthesizing Atomic Force Microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach for living cellmore » nanoscale imaging, l-MSAFM, in their physiological environment or in presence of a chemical stress agent confirmed the loss of inner structures induced by glyphosate. The ability to monitor the cell's inner response to external stimuli, non-destructively and in real time, has the potential to unveil critical nanoscale mechanisms of life science.« less

  9. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

    PubMed Central

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-01-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646

  10. Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures.

    PubMed

    Wu, Cen; Jiang, Yu; Ren, Jie; Cui, Yuehua; Ma, Shuangge

    2018-02-10

    Identification of gene-environment (G × E) interactions associated with disease phenotypes has posed a great challenge in high-throughput cancer studies. The existing marginal identification methods have suffered from not being able to accommodate the joint effects of a large number of genetic variants, while some of the joint-effect methods have been limited by failing to respect the "main effects, interactions" hierarchy, by ignoring data contamination, and by using inefficient selection techniques under complex structural sparsity. In this article, we develop an effective penalization approach to identify important G × E interactions and main effects, which can account for the hierarchical structures of the 2 types of effects. Possible data contamination is accommodated by adopting the least absolute deviation loss function. The advantage of the proposed approach over the alternatives is convincingly demonstrated in both simulation and a case study on lung cancer prognosis with gene expression measurements and clinical covariates under the accelerated failure time model. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories

    PubMed Central

    Schütz, Marlies H.

    2017-01-01

    ABSTRACT Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input–output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in ‘niche’ branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment. PMID:29097849

  12. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories.

    PubMed

    Schütz, Marlies H

    2017-07-03

    Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input-output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in 'niche' branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment.

  13. From surface to intracellular non-invasive nanoscale study of living cells impairments

    NASA Astrophysics Data System (ADS)

    Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E.

    2014-07-01

    Among the enduring challenges in nanoscience, subsurface characterization of living cells holds major stakes. Developments in nanometrology for soft matter thriving on the sensitivity and high resolution benefits of atomic force microscopy have enabled detection of subsurface structures at the nanoscale. However, measurements in liquid environments remain complex, in particular in the subsurface domain. Here we introduce liquid-mode synthesizing atomic force microscopy (l-MSAFM) to study both the inner structures and the chemically induced intracellular impairments of living cells. Specifically, we visualize the intracellular stress effects of glyphosate on living keratinocytes skin cells. This new approach, l-MSAFM, for nanoscale imaging of living cell in their physiological environment or in presence of a chemical stress agent could resolve the loss of inner structures induced by glyphosate, the main component of a well-known pesticide (RoundUp™). This firsthand ability to monitor the cell’s inner response to external stimuli non-destructively and in liquid, has the potential to unveil critical nanoscale mechanisms of life science.

  14. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    PubMed Central

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-01-01

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469

  15. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  16. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  17. Anomalous Current-Voltage Characteristics in Suspended Carbon Nanotubes in Various Gas Environments

    NASA Astrophysics Data System (ADS)

    Amer, Moh; Bushmaker, Adam; Cronin, Steve

    2011-03-01

    Electrically-heated suspended, carbon nanotubes (CNTs) exhibiting negative differential conductance in the high bias regime experience a sudden drop in current (or ``kink'') in various gaseous environments. We study the effect of different gas molecules on these I - V characteristics while simultaneously monitoring the changes in the nanotube vibrational structure under high bias voltages using Raman spectroscopy. When the nanotube is electrically biased at the kink, the G band Raman mode is observed to downshift, as is typical of electrically heated devices. However, the G band frequency at the kink (ωGkink) lies in the narrow range between 1575 and 1579 cm-1 for all samples measured, regardless of gas environment. The voltage at which the kink occurs depends on the type of the gas environment with the following dependence: VkinkAr

  18. Structural Engineering Managers - Innovation Challenges for their Skills

    NASA Astrophysics Data System (ADS)

    Linkeschová, D.; Tichá, A.

    2015-11-01

    The profession of a structural engineer is highly responsible, because the consequences of a structural engineer's errors result not only in economic damage to the property and often irreversible damage to the environment, they can also lead to direct loss of lives. In the current turbulent, dynamically developing society the managerial methods of structural engineers should not stagnate at the level of the last century applications. This paper deals with the challenges which the ongoing century poses to structural engineers and managers. It compares the results of research regarding the current state of managerial skills of structural engineers in Czech building companies to the defined skills of the 21st century's managers according to the global research programme ITL Research and according to the Vision for the Future of Structural Engineering, drawn up by Structural Engineering Institute - SEI ASCE.

  19. Parental perception of built environment characteristics and built environment use among Latino families: a cross-sectional study.

    PubMed

    Heerman, William J; Mitchell, Stephanie J; Thompson, Jessica; Martin, Nina C; Sommer, Evan C; van Bakergem, Margaret; Taylor, Julie Lounds; Buchowski, Maciej S; Barkin, Shari L

    2016-11-22

    Perception of undesirable features may inhibit built environment use for physical activity among underserved families with children at risk for obesity. To examine the association of perceived availability, condition, and safety of the built environment with its self-reported use for physical activity, we conducted a cross-sectional analysis on baseline data from a randomized controlled trial. Adjusted Poisson regression was used to test the association between the primary independent variables (perceived availability, physical condition, and safety) with the primary outcome of self-reported use of built environment structures. Among 610 parents (90% Latino) of preschool-age children, 158 (26%) reported that there were no available built environment structures for physical activity in the neighborhood. The use of built environment structures was associated with the perceived number of available structures (B = 0.34, 95% CI 0.31, 0.37, p < 0.001) and their perceived condition (B = 0.19, 95% CI 0.12, 0.27, p = 0.001), but not with perceived safety (B = 0.00, 95% CI -0.01, 0.01, p = 0.7). In this sample of underserved families, perceived availability and condition of built environment structures were associated with use rather than perceived safety. To encourage physical activity among underserved families, communities need to invest in the condition and availability of built environment structures. Registered at ClinicalTrials.gov ( NCT01316653 ) on March 11, 2011.

  20. Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?

    NASA Technical Reports Server (NTRS)

    Moore, Greg; Chainyk, Mike; Schiermeier, John

    2004-01-01

    The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.

  1. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  2. Analysis of Textile Composite Structures Subjected to High Temperature Oxidizing Environment

    DTIC Science & Technology

    2010-08-01

    process in a polymer is a combination of the diffusion of oxygen and its consumption by reaction, which also results in the creation of by-products...based on the work by Pochiraju et al[24-26] in which they used the conservation of mass law for diffusion with a term to model the rate of consumption ...Oxidation of C/SiC Composites, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics Materials and Structures, Cocoa Beach

  3. Housing, the Neighborhood Environment, and Physical Activity among Older African Americans

    PubMed Central

    Hannon, Lonnie; Sawyer, Patricia; Allman, Richard M.

    2013-01-01

    This study examines the association of neighborhood environment, as measured by housing factors, with physical activity among older African Americans. Context is provided on the effects of structural inequality as an inhibitor of health enhancing neighborhood environments. The study population included African Americans participating in the UAB Study of Aging (n=433). Participants demonstrated the ability to walk during a baseline in-home assessment. The strength and independence of housing factors were assessed using neighborhood walking for exercise as the outcome variable. Sociodemographic data, co-morbid medical conditions, and rural/urban residence were included as independent control factors. Homeownership, occupancy, and length of residency maintained positive associations with neighborhood walking independent of control factors. Housing factors appear to be predictive of resident engagement in neighborhood walking. Housing factors, specifically high rates of homeownership, reflect functional and positive neighborhood environments conducive for physical activity. Future interventions seeking to promote health-enhancing behavior should focus on developing housing and built-environment assets within the neighborhood environment. PMID:23745172

  4. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  5. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  6. Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    2004-01-01

    Many structural materials rely on the formation of chromia, silica or alumina as a protective layer when exposed in high temperature oxidizing environments. The presence of these oxide layers provides a protective diffusion barrier which slows down further oxidation. In atmospheres containing water vapor, however, reactions to form volatile hydroxide species occur which remove the surface oxide, thus, lowering the protective capability of the oxide scale. This paper summarizes the current understanding of volatility of chromia, silica and alumina in water vapor containing combustion environments. In addition unanswered questions in each system are discussed. Th current paper represents an update on the considerable information learned in the past five years for these systems.

  7. Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili

    2017-12-01

    Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.

  8. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and vegetation in the measurement area. The differences of the daily cycle of air temperature and surface temperature in these four scenarios show a significant impact of urban man-made structures on the dynamics of urban thermal environment.

  9. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems

    PubMed Central

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q.; Pelletier, Bernard; Payri, Claude E.; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms. PMID:28197130

  10. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    PubMed

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.

  11. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland.

    PubMed

    Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Arni; Räsänen, Katja

    2013-09-01

    Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments - favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.

  12. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland

    PubMed Central

    Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Árni; Räsänen, Katja

    2013-01-01

    Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow. PMID:24223263

  13. Lamont-Doherty's Secondary School Field Research Program: Institutionalizing outreach to secondary school students at a soft-money research institute

    NASA Astrophysics Data System (ADS)

    Sambrotto, R.

    2015-12-01

    The Secondary School Field Research Program is a field and laboratory internship for high school students at the Lamont-Doherty Earth Observatory. Over the past 11 years it has grown into a significant program, engaging approximately 50 high school and college students each summer, most of them from ethnic and economic groups that are under-represented in the STEM fields. The internships are based on research-driven science questions on estuarine physics, chemistry, ecology and the paleo-environment. Field studies are linked to associated laboratory analyses whose results are reported by the students as a final project. For the past two years, we have focused on the transition to an institutional program, with sustainable funding and organizational structures. At a grant-driven institution whose mission is largely restricted to basic research, institutionalization has not been an easy task. To leverage scarce resources we have implemented a layered structure that relies on near-peer mentoring. So a typical research team might include a mix of new and more experienced high school students, a college student, a high school science teacher and a Lamont researcher as a mentor. Graduates of the program are employed to assist with administration. Knowledge and best practices diffuse through the organization in an organic, if not entirely structured, fashion. We have found that a key to long-term funding has been survival: as we have sustained a successful program and developed a model adapted to Lamont's unique environment, we have attracted longer term core financing on which grant-driven extensions can be built. The result is a highly flexible program that is student-centered in the context of a broader research culture connecting our participants with the advantages of working at a premier soft-money research institution.

  14. Potential for on-orbit manufacture of large space structures using the pultrusion process

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.

    1987-01-01

    On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.

  15. Predicting New Materials for Hydrogen Storage Application

    PubMed Central

    Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer

    2009-01-01

    Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed.

  16. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides

    NASA Astrophysics Data System (ADS)

    Grossutti, Michael; Dutcher, John

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly important example of confined water, with differences in polysaccharide structure providing different spatially confined environments for water adsorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, monodisperse phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA) and chitosan. We find similarities between water structuring in the two linear polysaccharides, and significant differences for phytoglycogen. In particular, the phytoglycogen nanoparticles exhibited high network water connectivity, and a large increase in the fraction of multimer water clusters with increasing RH, whereas the water structure for HA and chitosan was found to be insensitive to changes in RH. These measurements provide unique insight into the relationship between the chain architecture and hydration of polysaccharides.

  17. Visualizing Viral Protein Structures in Cells Using Genetic Probes for Correlated Light and Electron Microscopy

    PubMed Central

    Ou, Horng D.; Deerinck, Thomas J.; Bushong, Eric; Ellisman, Mark H.; O’Shea, Clodagh C.

    2015-01-01

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host’s cellular environment, their natural in-situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940’s and subsequent application to cells in the 1950’s. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in-situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. PMID:26066760

  18. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments.

    PubMed

    Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J

    2018-06-01

    The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.

  20. Design of a high-temperature experiment for evaluating advanced structural materials

    NASA Technical Reports Server (NTRS)

    Mockler, Theodore T.; Castro-Cedeno, Mario; Gladden, Herbert J.; Kaufman, Albert

    1992-01-01

    This report describes the design of an experiment for evaluating monolithic and composite material specimens in a high-temperature environment and subject to big thermal gradients. The material specimens will be exposed to aerothermal loads that correspond to thermally similar engine operating conditions. Materials evaluated in this study were monolithic nickel alloys and silicon carbide. In addition, composites such as tungsten/copper were evaluated. A facility to provide the test environment has been assembled in the Engine Research Building at the Lewis Research Center. The test section of the facility will permit both regular and Schlieren photography, thermal imaging, and laser Doppler anemometry. The test environment will be products of hydrogen-air combustion at temperatures from about 1200 F to as high as 4000 F. The test chamber pressure will vary up to 60 psia, and the free-stream flow velocity can reach Mach 0.9. The data collected will be used to validate thermal and stress analysis models of the specimen. This process of modeling, testing, and validation is expected to yield enhancements to existing analysis tools and techniques.

Top