Evidence of active region imprints on the solar wind structure
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.
1995-01-01
A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics
Filament winding technique, experiment and simulation analysis on tubular structure
NASA Astrophysics Data System (ADS)
Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.
2018-04-01
Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.
Interdisciplinary design study of a high-rise integrated roof wind energy system
NASA Astrophysics Data System (ADS)
Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.
2012-10-01
Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.
The structure of the inner heliosphere from Pioneer Venus and IMP observations
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.
Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.
NASA Technical Reports Server (NTRS)
Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.
1981-01-01
A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.
Probing the clumpy winds of giant stars with high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern
2016-04-01
Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.
C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.
2015-12-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.
Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes
NASA Technical Reports Server (NTRS)
Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.
2010-01-01
Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.
NASA Astrophysics Data System (ADS)
Poddaeva, O.; Churin, P.; Fedosova, A.; Truhanov, S.
2018-03-01
Studies of aerodynamics of bridge structures are an actual problem. Such attention is paid to the study of wind influence on bridge structures not at all by chance; a large number of cases of loss of stability of such structures are known under the influence of wind up to their complete destruction. The development of non-contact systems of measuring equipment allows solving this problem with a high level of accuracy and reliability. This article presents the results of experimental studies of wind impact on a two-span bridge using specialized measuring system based on high-precision laser displacement sensors.
NASA Technical Reports Server (NTRS)
Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.;
2016-01-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS
NASA Technical Reports Server (NTRS)
Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.;
2009-01-01
We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
NASA Astrophysics Data System (ADS)
Kim, S.; Adams, D. E.; Sohn, H.
2013-01-01
As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.
Effect of rain on Ku-band scatterometer wind measurements
NASA Technical Reports Server (NTRS)
Spencer, Michael; Shimada, Masanobu
1991-01-01
The impact of precipitation on scatterometer wind measurements is investigated. A model is developed which includes the effects of rain attenuation, rain backscatter, and storm horizontal structure. Rain attenuation is found to be the dominant error source at low radar incidence angles and high wind speeds. Volume backscatter from the rain-loaded atmosphere, however, is found to dominate for high incidence angles and low wind speeds.
A case study of the Santa Ana winds in the San Gabriel mountains
Michael A. Fosberg
1965-01-01
Santa Ana wind structure varies between the high main ridges, the foothills, and the canyon bottoms. In each of these regions, a typical pattern characterizes the Santa Ana. Strong steady wind, at the high levels are determined almost completely by the large scale weather patterns. lntermediate canyons and ridges are affected by Santa Ana winds only when the foehn is...
Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)
NASA Astrophysics Data System (ADS)
Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea
2018-04-01
Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Washimi, H.
1999-06-01
The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.
Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.; Wright, Alan D.
2010-01-01
Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.
Implications of L1 Observations for Slow Solar Wind Formation by Solar Reconnection
NASA Technical Reports Server (NTRS)
Kepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M.
2016-01-01
While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasi periodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slowwind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hour long, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.
NASA Astrophysics Data System (ADS)
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis
NASA Technical Reports Server (NTRS)
Ladkany, Samaan G.
1998-01-01
Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
Wind load effects on high rise buildings in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.
2018-04-01
Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.
Offshore Wind Turbines Subjected to Hurricanes
NASA Astrophysics Data System (ADS)
Amirinia, Gholamreza
Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.
Optimization of monitoring and inspections in the life-cycle of wind turbines
NASA Astrophysics Data System (ADS)
Hanish Nithin, Anu; Omenzetter, Piotr
2016-04-01
The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
Impedance-based structural health monitoring of wind turbine blades
NASA Astrophysics Data System (ADS)
Pitchford, Corey; Grisso, Benjamin L.; Inman, Daniel J.
2007-04-01
Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind turbine technology must be improved before the potential of wind power can be fully realized. Wind turbine blades are one of the key components in improving this technology. Blade failure is very costly because it can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful damage detection system incorporated into wind turbines could extend blade life and allow for less conservative designs. A damage detection method which has shown promise on a wide variety of structures is impedance-based structural health monitoring. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recently, advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. This paper investigates the feasibility of implementing such an onboard system inside of turbine blades as an in-field method of damage detection. Viability of onboard detection is accomplished by running a series of tests to verify the capability of the method on an actual wind turbine blade section from an experimental carbon/glass/balsa composite blade developed at Sandia National Laboratories.
Eta Carinae: Viewed from Multiple Vantage Points
NASA Technical Reports Server (NTRS)
Gull, Theodore
2007-01-01
The central source of Eta Carinae and its ejecta is a massive binary system buried within a massive interacting wind structure which envelops the two stars. However the hot, less massive companion blows a small cavity in the very massive primary wind, plus ionizes a portion of the massive wind just beyond the wind-wind boundary. We gain insight on this complex structure by examining the spatially-resolved Space Telescope Imaging Spectrograph (STIS) spectra of the central source (0.1") with the wind structure which extends out to nearly an arcsecond (2300AU) and the wind-blown boundaries, plus the ejecta of the Little Homunculus. Moreover, the spatially resolved Very Large Telescope/UltraViolet Echelle Spectrograph (VLT/UVES) stellar spectrum (one arcsecond) and spatially sampled spectra across the foreground lobe of the Homunculus provide us vantage points from different angles relative to line of sight. Examples of wind line profiles of Fe II, and the.highly excited [Fe III], [Ne III], [Ar III] and [S III)], plus other lines will be presented.
NASA Astrophysics Data System (ADS)
Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.
2007-08-01
We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.
Final Report: An Undergraduate Minor in Wind Energy at Iowa State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
James McCalley
This report describes an undergraduate minor program in wind energy that has been developed at Iowa State University. The minor program targets engineering and meteorology students and was developed to provide interested students with focused technical expertise in wind energy science and engineering, to increase their employability and ultimate effectiveness in this growing industry. The report describes the requirements of the minor program and courses that fulfill those requirements. Five new courses directly addressing wind energy have been developed. Topical descriptions for these five courses are provided in this report. Six industry experts in various aspects of wind energy sciencemore » and engineering reviewed the wind energy minor program and provided detailed comments on the program structure, the content of the courses, and the employability in the wind energy industry of students who complete the program. The general consensus is that the program is well structured, the course content is highly relevant, and students who complete it will be highly employable in the wind energy industry. The detailed comments of the reviewers are included in the report.« less
Project "Convective Wind Gusts" (ConWinG)
NASA Astrophysics Data System (ADS)
Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo
2017-04-01
Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost similar occurrence probabilities. A laboratory experiment with an impinging jet simulating the downdraft was performed to investigate the propagation of a gust within built environment. The aim is to investigate the interaction of the resulting convective gusts along the near-surface layers with different urban structures - from single street canyons up to more complex block array structures. It was shown that high velocities are conserved within street canyons over longer distances compared to open terrain conditions. In addition, the experiments revealed the ratio of building height to downdraft size as a crucial factor with regard to vertical velocities at roof level and the pressure distribution on the facades.
The structure of the solar wind in the inner heliosphere
NASA Astrophysics Data System (ADS)
Lee, Christina On-Yee
2010-12-01
This dissertation is devoted to expanding our understanding of the solar wind structure in the inner heliosphere and variations therein with solar activity. Using spacecraft observations and numerical models, the origins of the large-scale structures and long-term trends of the solar wind are explored in order to gain insights on how our Sun determines the space environments of the terrestrial planets. I use long term measurements of the solar wind density, velocity, interplanetary magnetic field, and particles, together with models based on solar magnetic field data, to generate time series of these properties that span one solar rotation (˜27 days). From these time series, I assemble and obtain the synoptic overviews of the solar wind properties. The resulting synoptic overviews show that the solar wind around Mercury, Venus, Earth, and Mars is a complex co-rotating structure with recurring features and occasional transients. During quiet solar conditions, the heliospheric current sheet, which separates the positive interplanetary magnetic field from the negative, usually has a remarkably steady two- or four-sector structure that persists for many solar rotations. Within the sector boundaries are the slow and fast speed solar wind streams that originate from the open coronal magnetic field sources that map to the ecliptic. At the sector boundaries, compressed high-density and the related high-dynamic pressure ridges form where streams from different coronal source regions interact. High fluxes of energetic particles also occur at the boundaries, and are seen most prominently during the quiet solar period. The existence of these recurring features depends on how long-lived are their source regions. In the last decade, 3D numerical solar wind models have become more widely available. They provide important scientific tools for obtaining a more global view of the inner heliosphere and of the relationships between conditions at Mercury, Venus, Earth, and Mars. When I compare the model results with observations for periods outside of solar wind disturbances, I find that the models do a good job of simulating at least the steady, large-scale, ambient solar wind structure. However, it remains a challenge to accurately model the solar wind during active solar conditions. During these times, solar transients such as coronal mass ejections travel through interplanetary space and disturb the ambient solar wind, producing a far less predictable and modelable space environment. However, such conditions may have the greatest impact on the planets - especially on their atmospheres and magnetospheres. I therefore also consider the next steps in modeling, toward including active conditions.
The solar wind in the third dimension
NASA Technical Reports Server (NTRS)
Neugebauer, M.
1995-01-01
For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind, Because of the highly successful Ulysses mission, the moment of truth is now here. This talk summarizes the principal differences between the high and low latitude solar winds at the declining phase of the solar-activity cycle and between the Ulysses observations and expectations.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Feng, X. S.
2015-12-01
CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness
Structure of protoplanetary discs with magnetically driven winds
NASA Astrophysics Data System (ADS)
Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.
2018-04-01
We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.
Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang
2017-01-01
Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915
Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region
NASA Astrophysics Data System (ADS)
Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.
2014-12-01
This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.
Investigating the 3D Structure of the Winds of Hot Supergiants
NASA Astrophysics Data System (ADS)
Klement, Robert
2018-04-01
An observational effort targeting supergiant stars of spectral classes B and A has been started using the VEGA high spectral resolution visible beam combiner at the CHARA array. The H-alpha emission from the structured stellar winds was resolved with respect to the surrounding continuum, showing signs of inhomogenities in the circumstellar environments as well as temporal variability on different time scales. We have begun a radiative transfer modelling effort to investigate the clumpy structure of the stellar winds and the origin of the inhomogenities, probably linked to the stellar photosphere features.
Covariance analyses of satellite-derived mesoscale wind fields
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Vonder Haar, T. H.
1979-01-01
Statistical structure functions have been computed independently for nine satellite-derived mesoscale wind fields that were obtained on two different days. Small cumulus clouds were tracked at 5 min intervals, but since these clouds occurred primarily in the warm sectors of midlatitude cyclones the results cannot be considered representative of the circulations within cyclones in general. The field structure varied considerably with time and was especially affected if mesoscale features were observed. The wind fields on the 2 days studied were highly anisotropic with large gradients in structure occurring approximately normal to the mean flow. Structure function calculations for the combined set of satellite winds were used to estimate random error present in the fields. It is concluded for these data that the random error in vector winds derived from cumulus cloud tracking using high-frequency satellite data is less than 1.75 m/s. Spatial correlation functions were also computed for the nine data sets. Normalized correlation functions were considerably different for u and v components and decreased rapidly as data point separation increased for both components. The correlation functions for transverse and longitudinal components decreased less rapidly as data point separation increased.
Towards a mature offshore wind energy technology - guidelines from the opti-OWECS project
NASA Astrophysics Data System (ADS)
Kühn, M.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.; Cockerill, T. T.; Harrison, R.; Ferguson, M. C.; Göransson, B.; Harland, L. A.; Vugts, J. H.; Wiecherink, R.
1999-01-01
The article reviews the main results of the recent European research project Opti-OWECS (Structural and Economic Optimisation of Bottom-Mounted Offshore Wind Energy Converters'), which has significantly improved the understanding of the requirements for a large-scale utilization of offshore wind energy. An integrated design approach was demonstrated for a 300 MW offshore wind farm at a demanding North Sea site. Several viable solutions were obtained and one was elaborated to include the design of all major components. Simultaneous structural and economic optimization took place during the different design stages. An offshore wind energy converter founded on a soft-soft monopile was tailored with respect to the distinct characteristics of dynamic wind and wave loading. The operation and maintenance behaviour of the wind farm was analysed by Monte Carlo simulations. With an optimized maintenance strategy and suitable hardware a high availability was achieved. Based upon the experience from the structural design, cost models for offshore wind farms were developed and linked to a European database of the offshore wind energy potential. This enabled the first consistent estimate of cost of offshore wind energy for entire European regions.
Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143
NASA Astrophysics Data System (ADS)
Pounds, Ken
2013-10-01
Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.
Ion Ramp Structure of Bow shocks and Interplanetary Shocks: Differences and Similarities
NASA Astrophysics Data System (ADS)
Goncharov, O.; Safrankova, J.; Nemecek, Z.; Koval, A.; Szabo, A.; Prech, L.; Zastenker, G. N.; Riazantseva, M.
2017-12-01
Collisionless shocks play a significant role in the solar wind interaction with the Earth. Fast forward shocks driven by coronal mass ejections or by interaction of fast and slow solar wind streams can be encountered in the interplanetary space, whereas the bow shock is a standing fast reverse shock formed by an interaction of the supersonic solar wind with the Earth magnetic field. Both types of shocks are responsible for a transformation of a part of the energy of the directed solar wind motion to plasma heating and to acceleration of reflected particles to high energies. These processes are closely related to the shock front structure. In present paper, we compares the analysis of low-Mach number fast forward interplanetary shocks registered in the solar wind by the DSCOVR, WIND, and ACE with observations of bow shock crossings observed by the Cluster, THEMIS, MMS, and Spektr-R spacecraft. An application of the high-time resolution data facilitates further discussion on formation mechanisms of both types of shocks.
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
Accretion disc wind variability in the states of the microquasar GRS 1915+105
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.
2012-03-01
Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.
High coronal structure of high velocity solar wind stream sources
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Krieger, A. S.; Roelof, E. C.; Gold, R. E.
1977-01-01
It is shown analytically that the transition from a high-speed stream source to the ambient coronal conditions is quite rapid in longitude in the high corona. This sharp eastern coronal boundary for the solar wind stream sources is strongly suggested by the solar wind 'dwells' which appear in plots of solar wind velocity against constant-radial-velocity-approximation source longitudes. The possibility of a systematic velocity-dependent effect in the constant-radial-velocity approximation, which would cause this boundary to appear sharper than it is, is investigated. A velocity-dependent interplanetary propagation effect or a velocity-dependent 'source altitude' are two possible sources of such a systematic effect. It is shown that, for at least some dwells, significant interplanetary effects are not likely. The variation of the Alfvenic critical radius in solar wind dwells is calculated, showing that the high-velocity stream originates from a significantly lower altitude than the ambient solar wind.
NASA Technical Reports Server (NTRS)
Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.;
2016-01-01
The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.
A coronal hole and its identification as the source of a high velocity solar wind stream
NASA Technical Reports Server (NTRS)
Krieger, A. S.; Timothy, A. F.; Roelof, E. C.
1973-01-01
X-ray images of the solar corona showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale heights within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole. Wind measurements for the appropriate period were traced back to the sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
Highly Structured Wind in Vela X-1
NASA Technical Reports Server (NTRS)
Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger
2008-01-01
We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.
Integrated monitoring of wind plant systems
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong
2008-03-01
Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.
Opening the CHOCBOX: clumpy stellar winds in Cyg X-1
NASA Astrophysics Data System (ADS)
Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration
2017-10-01
Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.
focuses on high-fidelity simulation of wind plant aerodynamics using large-eddy simulation. Particularly Applications (SOWFA), a coupled fluid-structure-controls simulation tool specifically for wind plants. Matt's
Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind
NASA Technical Reports Server (NTRS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-01-01
Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.
FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.
Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less
NASA Technical Reports Server (NTRS)
Bresnahan, D. L.
1972-01-01
An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... Safety Analysis Reports for Nuclear Power Plants: LWR Edition,'' on a proposed new section to its... revised position on the treatment of the high winds external hazard for certain RTNSS structures, systems... winds external hazard for certain RTNSS structures, systems and components (SSCs). This position differs...
NASA Astrophysics Data System (ADS)
García-Arredondo, F.; Frank, Adam
2004-01-01
We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch (AGB) star and a jet blown by an orbiting companion. The jet or ``collimated fast wind'' is assumed to originate from an accretion disk that forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet, a more disordered outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime, the jet dominates and will drive a highly collimated, narrow-waisted outflow. We compare our results with scenarios described by Soker & Rappaport and extrapolate to the structures observed in planetary nebulae (PNs) and symbiotic stars.
Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
NASA Astrophysics Data System (ADS)
Hu, Yaqi; He, Erming
2017-12-01
Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.
Substorm occurrence rates, substorm recurrence times, and solar wind structure
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Yakymenko, Kateryna
2017-03-01
Two collections of substorms are created: 28,464 substorms identified with jumps in the SuperMAG AL index in the years 1979-2015 and 16,025 substorms identified with electron injections into geosynchronous orbit in the years 1989-2007. Substorm occurrence rates and substorm recurrence-time distributions are examined as functions of the phase of the solar cycle, the season of the year, the Russell-McPherron favorability, the type of solar wind plasma at Earth, the geomagnetic-activity level, and as functions of various solar and solar wind properties. Three populations of substorm occurrences are seen: (1) quasiperiodically occurring substorms with recurrence times (waiting times) of 2-4 h, (2) randomly occurring substorms with recurrence times of about 6-15 h, and (3) long intervals wherein no substorms occur. A working model is suggested wherein (1) the period of periodic substorms is set by the magnetosphere with variations in the actual recurrence times caused by the need for a solar wind driving interval to occur, (2) the mesoscale structure of the solar wind magnetic field triggers the occurrence of the random substorms, and (3) the large-scale structure of the solar wind plasma is responsible for the long intervals wherein no substorms occur. Statistically, the recurrence period of periodically occurring substorms is slightly shorter when the ram pressure of the solar wind is high, when the magnetic field strength of the solar wind is strong, when the Mach number of the solar wind is low, and when the polar-cap potential saturation parameter is high.
Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study
NASA Technical Reports Server (NTRS)
Szabo, Adam; Koval, A
2008-01-01
The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.
Heavy ion composition in the inner heliosphere: Predictions for Solar Orbiter
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Livi, S. A.; Galvin, A. B.; Kistler, L. M.; Raines, J. M.; Allegrini, F.; Collier, M. R.; Zurbuchen, T.
2014-12-01
The Heavy Ion Sensor (HIS) on SO, with its high time resolution, will provide the first ever solar wind and surpathermal heavy ion composition and 3D velocity distribution function measurements inside the orbit of Mercury. These measurements will provide us the most in depth examination of the origin, structure and evolution of the solar wind. The near co-rotation phases of the orbiter will enable the most accurate mapping of in-situ structures back to their solar sources. Measurements of solar wind composition and heavy ion kinetic properties enable characterization of the sources, transport mechanisms and acceleration processes of the solar wind. This presentation will focus on the current state of in-situ studies of heavy ions in the solar wind and their implications for the sources of the solar wind, the nature of structure and variability in the solar wind, and the acceleration of particles. Additionally, we will also discuss opportunities for coordinated measurements across the payloads of Solar Orbiter and Solar Probe in order to answer key outstanding science questions of central interest to the Solar and Heliophysics communities.
Winds from the S-Star Cluster Reduce the Accretion Rate onto Sgr A*
NASA Astrophysics Data System (ADS)
Yusef-Zadeh, Farhad; Wardle, M.; Roberts, D. A; Haggard, Daryl; Lacy, John H.; Royster, Marc; Cotton, William D.
2014-06-01
High-resolution radio continuum images of the region within a few arcseconds of Sgr A* at wavelengths of 7 and 12 mm show three new radio structures. One is a 2-3'' hollow teardrop-shaped structure centered on Sgr A*. Highly blue-shifted [NeII] and [FeIII] line emission is detected along the boundary of this teardrop-shaped bubble, ~2.2'' south of Sgr A*. The second structure is a faint, incomplete ring surrounding Sgr A* with typical surface brightness at 7 mm of ~0.1 mJy per ~0.04'' x 0.08'' beam. This partial ring coincides with the outer boundary of the S-star cluster which consists of ~30 B dwarfs orbiting within 1'' of Sgr A*. Lastly, on a scale of ~20'' to the N of Sgr A*, a balloon-shaped structure is detected.We interpret that the new morphological and kinematic structures result from the dynamical effects of a combined cluster wind. This wind is created at a rate ~3 x 10^{-5} solar mass per year by the merging of individual stellar winds from the B stars in the S-star cluster. What is significant about this interpretation is that the expanding wind excludes the shocked winds from O and WR stars in the central parsec of the Galaxy. Meanwhile Sgr A* accretes material from within the S cluster at a rate less than or equal 3 x 10^{-7} solar mass per year, thus explaining the low luminosity of Sgr A* without the ejection of a large fraction of the accreted material.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Owens, B. C.; Griffith, D. T.
2014-06-01
The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.
Using the orbiting companion to trace WR wind structures in the 29d WC8d + O8-9IV binary CV Ser
NASA Astrophysics Data System (ADS)
David-Uraz, Alexandre; Moffat, Anthony F. J.
2011-07-01
We have used continuous, high-precision, broadband visible photometry from the MOST satellite to trace wind structures in the WR component of CV Ser over more than a full orbit. Most of the small-scale light-curve variations are likely due to extinction by clumps along the line of sight to the O companion as it orbits and shines through varying columns of the WR wind. Parallel optical spectroscopy from the Mont Megantic Observatory is used to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
Aly, Aly Mousaad
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.
2014-01-01
Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, Raymond A.
2011-04-01
Wind turbine systems are attracting considerable attention due to concerns regarding global energy consumption as well as sustainability. Advances in wind turbine technology promote the tendency to improve efficiency in the structure that support and produce this renewable power source, tending toward more slender and larger towers, larger gear boxes, and larger, lighter blades. The structural design optimization process must account for uncertainties and nonlinear effects (such as wind-induced vibrations, unmeasured disturbances, and material and geometric variabilities). In this study, a probabilistic monitoring approach is developed that measures the response of the turbine tower to stochastic loading, estimates peak demand, and structural resistance (in terms of serviceability). The proposed monitoring system can provide a real-time estimate of the probability of exceedance of design serviceability conditions based on data collected in-situ. Special attention is paid to wind and aerodynamic characteristics that are intrinsically present (although sometimes neglected in health monitoring analysis) and derived from observations or experiments. In particular, little attention has been devoted to buffeting, usually non-catastrophic but directly impacting the serviceability of the operating wind turbine. As a result, modal-based analysis methods for the study and derivation of flutter instability, and buffeting response, have been successfully applied to the assessment of the susceptibility of high-rise slender structures, including wind turbine towers. A detailed finite element model has been developed to generate data (calibrated to published experimental and analytical results). Risk assessment is performed for the effects of along wind forces in a framework of quantitative risk analysis. Both structural resistance and wind load demands were considered probabilistic with the latter assessed by dynamic analyses.
Synthesis of line profiles from models of structured winds
NASA Technical Reports Server (NTRS)
Puls, J.; Feldmeier, A.; Springmann, U. W. E.; Owocki, S. P.; Fullerton, A. W.
1994-01-01
On the basis of a careful analysis of resonance line formation (both for singlets and doublets) in structured winds, present time dependent models of the line driven winds of hot stars are shown to be able to explain a number of observational features with respect to variability and structure: they are (in principle) able to reproduce the black and broad troughs (without any artificial 'turbulence velocity') and the 'blue edge variability' observed in saturate resonance lines: they might explain the 'long lived narrow absorption components' often observed in unsaturated lines at high velocities; they predict a relation between the 'edge velocity' of UV-lines and the radiation temperature of the observed X-ray emission. As a first example of the extent to which theoretical models can be constrained by comparisons between observations and profiles calculated by spectrum synthesis from structured winds, we show here that models with deep-seated onset of structure formation (approximately greater than 1.1 R(sub *)) produce resonance lines which agree qualitatively with observational findings; in contrast, the here presented models with structure formation only well out in the wind (approximately greater than 1.6 R(sub *) fail in this respect.
Imaging the Top of the Solar Corona and the Young Solar Wind
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.
2016-12-01
We present the first direct visual evidence of the quasi-stationary breakup of solar coronal structure and the rise of turbulence in the young solar wind, directly in the future flight path of Solar Probe. Although the corona and, more recently, the solar wind have both been observed directly with Thomson scattered light, the transition from the corona to the solar wind has remained a mystery. The corona itself is highly structured by the magnetic field and the outflowing solar wind, giving rise to radial "striae" - which comprise the familiar streamers, pseudostreamers, and rays. These striae are not visible in wide-field heliospheric images, nor are they clearly delineated with in-situ measurements of the solar wind. Using careful photometric analysis of the images from STEREO/HI-1, we have, for the first time, directly observed the breakup of radial coronal structure and the rise of nearly-isotropic turbulent structure in the outflowing slow solar wind plasma between 10° (40 Rs) and 20° (80 Rs) from the Sun. These observations are important not only for their direct science value, but for predicting and understanding the conditions expected near SPP as it flies through - and beyond - this final frontier of the heliosphere, the outer limits of the solar corona.
SWICS/Ulysses and MASS/wind observations of solar wind sulfur charge states
NASA Technical Reports Server (NTRS)
Cohen, C. M. S.; Galvin, A. B.; Hamilton, D. C.; Gloeckler, G.; Geiss, J.; Bochsler, P.
1995-01-01
As Ulysses journeys from the southern to the northern solar pole, the newly launched Wind spacecraft is monitoring the solar wind near 1 AU, slightly upstream of the Earth. Different solar wind structures pass over both spacecraft as coronal holes and other features rotate in and out of view. Ulysses and Wind are presently on opposing sides of the sun allowing us to monitor these streams for extended periods of time. Composition measurements made by instruments on both spacecraft provide information concerning the evolution and properties of these structures. We have combined data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and the high mass resolution spectrometer (MASS) on Wind to determine the charge state distribution of sulfur in the solar wind. Both instruments employ electrostatic deflection with time-of-flight measurement. The high mass resolution of the MASS instrument (M/Delta-M approximately 100) allows sulfur to be isolated easily while the stepping energy/charge selection provides charge state information. SWICS measurements allow the unique identification of heavy ions by their mass and mass/charge with resolutions of M/Delta-M approximately 3 and M/q/Delta(M/q) approximately 20. The two instruments complement each other nicely in that MASS has the greater mass resolution while SWICS has the better mass/charge resolution and better statistics.
Evaluation of wind/tornado-generated missile impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, M.K.; Walls, J.C.
1993-09-01
Simplified empirical formulae and some tabular data for the design/evaluation of structure barriers to resist wind/tornado generated missiles impact are presented in this paper. The scope is limited to the missiles defined by UCRL-15910 which are to be considered for moderate and high hazard facilities only. The method presented herein are limited to consideration of local effects on the barrier, i.e., the barrier must be capable of stopping the missile, and the barrier must no cause the generation of secondary missiles due to scabbing. Overall structural response to missile impact and structural effects derived from wind pressure are not addressedmore » in this paper.« less
Tracing WR wind structures by using the orbiting companion in the 29d WC8d + O8-9IV binary CV Ser
NASA Astrophysics Data System (ADS)
David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André Nicolas; Lange, Nicholas
2011-01-01
We have obtained continuous, high-precision, broadband visible photometry from the MOST satellite of CV Ser over more than a full orbit in order to link the small-scale light-curve variations to extinction due to wind structures in the WR component, thus permitting us to trace these structures. The light-curve presented unexpected characteristics, in particular eclipses with a varying depth. Parallel optical spectroscopy from the Mont Megantic Observatory and Dominion Astrophysical Observatory was obtained to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.
NASA Technical Reports Server (NTRS)
Massa, Derck; West, D. (Technical Monitor)
2002-01-01
We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasizes the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in turns of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.
NASA Technical Reports Server (NTRS)
Massa, D.; Oliversen, R. (Technical Monitor)
2002-01-01
We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in terms of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.
Optimization of monopiles for offshore wind turbines.
Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard
2015-02-28
The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Libin; Ren, Jianxing
2018-01-01
Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.
Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi
2004-01-01
Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Differential Velocity Between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, S. T.; Steinberg, J. T.; Sakurai, T.
2003-01-01
Pressure balance structures (PBSs) are a common high plasma beta feature in high latitude, high speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high latitude, high speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high speed, high latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.
2015-12-01
We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.
Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures
NASA Astrophysics Data System (ADS)
Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.
2015-12-01
Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.
Nonlinear model predictive control of a vortex-induced vibrations bladeless wind turbine
NASA Astrophysics Data System (ADS)
Azadi Yazdi, E.
2018-07-01
In this paper, a nonlinear model predictive controller (NMPC) is proposed for a vortex-induced vibrations bladeless wind turbine (BWT). The BWT consists of a long rigid cylinder mounted on a flexible beam. The nonlinear dynamic model of the transverse vibrations of the BWT is obtained under the fluctuating lift force due to periodically shedding vortices. The NMPC method is used to design a controller that achieves maximum energy production rate. It is observed that the power generation of the NMPC drops in high wind speeds due to a mismatch between the vortex shedding frequency and the structural natural frequency. Therefore, a secondary gain-scheduling (GS) controller is proposed to virtually increase the natural frequency of the structure to match the vortex shedding frequency for high winds. Although previous studies predicted the output power of the studied BWT to be less than 100 W, with the proposed GS-NMPC scheme the output power reaches the value of 1 kW. Therefore, the capability of the BWT as a renewable energy generation device was highly underestimated in the literature. The computed values of the aero-mechanical efficiency suggest the BWT as a major competitor to the conventional wind turbines.
NASA Technical Reports Server (NTRS)
Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi
2002-01-01
Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to magnetic discontinuities in PBSs. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Suess, Steven T.; Sakurai, T.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Ulysses observations have shown that pressure balance structures (PBSs) are a common feature in high-latitude, fast solar wind near solar minimum. Previous studies of Ulysses/SWOOPS plasma data suggest these PBSs may be remnants of coronal polar plumes. Here we find support for this suggestion in an analysis of PBS magnetic structure. We used Ulysses magnetometer data and applied a minimum variance analysis to discontinuities. We found that PBSs preferentially contain tangential discontinuities, as opposed to rotational discontinuities and to non-PBS regions in the solar wind. This suggests that PBSs contain structures like current sheets or plasmoids that may be associated with network activity at the base of plumes.
NASA Astrophysics Data System (ADS)
Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Kinzel, Michael
2011-11-01
Using large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layers (NBL, MCBL), we analyze the impact of coherent turbulence structure of the atmospheric surface layer on the short-time statistics that are commonly collected from wind turbines. The incoming winds are conditionally sampled with a filtering and thresholding algorithm into high/low horizontal and vertical velocity fluctuation coherent events. The time scales of these events are ~5 - 20 blade rotations and are roughly twice as long in the MCBL as the NBL. Horizontal velocity events are associated with greater variability in rotor power, lift and blade-bending moment than vertical velocity events. The variability in the industry standard 10 minute average for rotor power, sectional lift and wind velocity had a standard deviation of ~ 5% relative to the ``infinite time'' statistics for the NBL and ~10% for the MCBL. We conclude that turbulence structure associated with atmospheric stability state contributes considerable, quantifiable, variability to wind turbine statistics. Supported by NSF and DOE.
ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca
Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-lossmore » rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.« less
Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae
NASA Technical Reports Server (NTRS)
Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.
1996-01-01
The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent absence of a substantial shift in the wind ionization mixture of gamma Ara, and the normal nature of its photospheric spectrum, suggests wind-compression as the likely dominant cause for the observed equatorial density enhancements.
Stephen D White; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey
2015-01-01
Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to inform silvicultural practices. Canopy disturbances are often classified along a gradient ranging from highly localized, gap-scale events to stand-replacing events. Wind storms such as downbursts, derechos, and low intensity tornadoes typically...
Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.
2004-01-01
The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
NASA Astrophysics Data System (ADS)
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
NASA Astrophysics Data System (ADS)
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative arrangement of the wind turbines in the domain.
NASA Astrophysics Data System (ADS)
Schafhirt, S.; Kaufer, D.; Cheng, P. W.
2014-12-01
In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.
Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.
Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis
2014-06-24
To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.
NASA Astrophysics Data System (ADS)
Aguilera, Victor; Escribano, Ruben; Herrera, Liliana
2009-08-01
Autotrophic and heterotrophic nanoplankton and microplankton vary widely in quantity and composition in coastal upwelling zones, causing a highly heterogeneous distribution of food resources for higher trophic levels. Here, we assessed daily changes in size-fractioned biomass and community structure of nanoplankton and microplankton at two upwelling sites off northern Chile, Mejillones (23°S) and Chipana (21°S), during summer 2006, winter 2006 and summer 2007 as related to changes in oceanographic conditions upon upwelling variation. We found highly-significant changes in quantity and community structure (species diversity and richness) of both nanoplankton and microplankton fractions after 3-5 days of observations. These changes were coupled to an intermittent upwelling regime reflected in the alongshore component of the wind. After a few days the whole community was modified in terms of species and size structure. Over-imposing this variability, during winter 2006 there was a strong perturbation of remote origin that substantially impacted temperature, oxygenation and stratification of the water column. This "abnormal" warming event altered the upwelling regime, but its impact on abundance and composition of the nanoplankton and microplankton fractions was uncertain. Over the short-time scale however, we found a strong coupling between daily changes in the alongshore component of wind and nanoplankton and microplankton abundances and their structure. All these findings indicate that despite the high biological productivity of this upwelling region, high frequency variation induced by wind forcing may be a major regulator of food resources (quantity and quality) for primary consumers, such as zooplankton, fish larvae and benthic organisms in the near-shore area. This high frequency variation may also impose a key constrain for prey-predator encounter rates and survival of short-lived zooplankton and invertebrate and fish larvae in the upwelling zone.
Performance characteristics of aerodynamically optimum turbines for wind energy generators
NASA Technical Reports Server (NTRS)
Rohrbach, C.; Worobel, R.
1975-01-01
This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.
The most intense current sheets in the high-speed solar wind near 1 AU
NASA Astrophysics Data System (ADS)
Podesta, John J.
2017-03-01
Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1
Towards uncovering the structure of power fluctuations of wind farms
NASA Astrophysics Data System (ADS)
Liu, Huiwen; Jin, Yaqing; Tobin, Nicolas; Chamorro, Leonardo P.
2017-12-01
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations ΦP exhibit a power-law decay proportional to f-5 /3 -2 in the region corresponding to the turbulence inertial subrange and at relatively large scales, ΦP˜f-2 . Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
Towards uncovering the structure of power fluctuations of wind farms.
Liu, Huiwen; Jin, Yaqing; Tobin, Nicolas; Chamorro, Leonardo P
2017-12-01
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations Φ_{P} exhibit a power-law decay proportional to f^{-5/3-2} in the region corresponding to the turbulence inertial subrange and at relatively large scales, Φ_{P}∼f^{-2}. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
Structural Dynamic Behavior of Wind Turbines
NASA Technical Reports Server (NTRS)
Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III
2009-01-01
The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).
A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters
NASA Astrophysics Data System (ADS)
Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.
2017-12-01
A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.
Initialization of a mesoscale model for April 10, 1979, using alternative data sources
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1984-01-01
A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.
Turbulent Structure Under Short Fetch Wind Waves
2015-12-01
1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval
Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods
NASA Astrophysics Data System (ADS)
Lu, Hongya; Zeng, Pan; Lei, Liping
2018-03-01
Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-12-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew
To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less
Solar wind and high energy particle effects in the middle atmosphere
NASA Technical Reports Server (NTRS)
Lastovicka, Jan
1989-01-01
The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.
2015-03-01
The effects of vortex translation and radial vortex structure in the distribution of boundary layer winds in the inner core of mature tropical cyclones are examined using a high-resolution slab model and a multilevel model. It is shown that the structure and magnitude of the wind field (and the corresponding secondary circulation) depends sensitively on the radial gradient of the gradient wind field above the boundary layer. Furthermore, it is shown that vortex translation creates low wave number asymmetries in the wind field that rotate anticyclonically with height. A budget analysis of the steady state wind field for both models was also performed in this study. Although the agradient force drives the evolution of the boundary layer wind field for both models, it is shown that the manner in which the boundary layer flow responds to this force differs between the two model representations. In particular, the inner core boundary layer flow in the slab model is dominated by the effects of horizontal advection and horizontal diffusion, leading to the development of shock structures in the model. Conversely, the inner core boundary layer flow in the multilevel model is primarily influenced by the effects of vertical advection and vertical diffusion, which eliminates shock structures in this model. These results further indicate that special care is required to ensure that qualitative applications from slab models are not unduly affected by the neglect of vertical advection. This article was corrected on 31 MAR 2015. See the end of the full text for details.
Ain't no Crab, PWN Got a Brand New Bag: Correlated Radio and X-ray Structures in Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Roberts, M. S. E.; Lyutikov, M.; Gaensler, B. M.; Brogan, C. L.; Tam, C. R.; Romani, R. W.
2005-04-01
The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary and rapidly moving, now show clear morphological relationships between structures in the radio and X-ray with radio intensity variations on the order of unity. We present high-resolution X-ray and radio images of several PWN of both types and discuss the morphological relationships between the two wavebands.
Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin
2016-02-23
Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.
Shelf Circulation Induced by an Orographic Wind Jet
NASA Astrophysics Data System (ADS)
Ràfols, Laura; Grifoll, Manel; Jordà, Gabriel; Espino, Manuel; Sairouní, Abdel; Bravo, Manel
2017-10-01
The dynamical response to cross-shelf wind-jet episodes is investigated. The study area is located at the northern margin of the Ebro Shelf, in the Northwestern (NW) Mediterranean Sea, where episodes of strong northwesterly wind occur. In this case, the wind is channeled through the Ebro Valley and intensifies upon reaching the sea, resulting in a wind jet. The wind-jet response in terms of water circulation and vertical density structure is investigated using a numerical model. The numerical outputs agree with water current observations from a high-frequency radar. Additionally, temperature, sea level, and wind measurements are also used for the skill assessment of the model. For the wind-jet episodes, the numerical results show a well-defined two-layer circulation in the cross-shelf direction, with the surface currents in the direction of the wind. This pattern is consistent with sea level set-down due to the wind effect. The comparison of the vertical structure response for different episodes revealed that the increase of stratification leads to an onshore displacement of the transition from inner shelf to mid-shelf. In general, the cross-shelf momentum balance during a wind-jet episode exhibits a balance between the frictional terms and the pressure gradient in shallow waters, shifting to a balance between the Coriolis force and the wind stress terms in deeper waters.
X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.
2018-02-01
PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.
Impact of red giant/AGB winds on active galactic nucleus jet propagation
NASA Astrophysics Data System (ADS)
Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.
2017-10-01
Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Franks, P. J. S.; Johnson, K. S.; Girton, J. B.
2016-02-01
The Southern Ocean is under the influence of strong atmospheric synoptic activity and contains some of the oceans deepest mixed layers. Deep mixed layers can transport phytoplankton below the euphotic zone, and phytoplankton growth is hypothesized to be co-limited by iron and light. Atmospheric forcing drives changes in the mixed-layer depth (MLD) that influence light levels and nutrient input to the euphotic zone. In summer, when the MLD is shallow and close to the euphotic depth, high satellite Chl-a correlate with high winds, consistent with wind-driven entrainment that can potentially increase nutrient concentrations in the euphotic zone. However, correlations between Chl-a and diurnal winds are largest at zero time lag. High winds can inject nutrients on short timescales (< 1 day), but in situ incubation experiments after iron addition indicate phytoplankton growth on slightly longer timescales (> 3-4 days), suggesting that the correlations are not a result of growth. High winds can also entrain Chl-a from a subsurface Chl-a maximum. Novel bio-optical sensors mounted on elephant seals and autonomous floats allow us to examine the vertical structure of Chl-a in the Southern Ocean. In this study, we investigate the occurrence of subsurface Chl-a maxima. We find that surface Chl-a is a relatively good proxy for depth-integrated Chl-a within the euphotic zone but gives an inadequate representation of biomass within the mixed layer, particularly in the summer. Subsurface Chl-a maxima are not uncommon and may occur in all seasons. Chl-a maxima that correlate with particle backscattering in summer and fall are found near the base of the mixed layer, closer to the nutrient maximum than the light maximum, suggesting that nutrient limitation (i.e., essentially iron) can play a greater role than light limitation in governing productivity, and that high winds potentially entrain a subsurface Chl-a maximum into the summer mixed layer.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
MHD Wind Models in X-Ray Binaries and AGN
NASA Astrophysics Data System (ADS)
Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis
2017-08-01
Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.
Experimental application of OMA solutions on the model of industrial structure
NASA Astrophysics Data System (ADS)
Mironov, A.; Mironovs, D.
2017-10-01
It is very important and sometimes even vital to maintain reliability of industrial structures. High quality control during production and structural health monitoring (SHM) in exploitation provides reliable functioning of large, massive and remote structures, like wind generators, pipelines, power line posts, etc. This paper introduces a complex of technological and methodical solutions for SHM and diagnostics of industrial structures, including those that are actuated by periodic forces. Solutions were verified on a wind generator scaled model with integrated system of piezo-film deformation sensors. Simultaneous and multi-patch Operational Modal Analysis (OMA) approaches were implemented as methodical means for structural diagnostics and monitoring. Specially designed data processing algorithms provide objective evaluation of structural state modification.
Simple model of cable-stayed bridge deck subjected to static wind loading
NASA Astrophysics Data System (ADS)
Kang, Yi-Lung; Wang, Yang Cheng
1997-05-01
Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.
Community Wind: Once Again Pushing the Envelope of Project Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
bolinger, Mark A.
In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008)more » and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.« less
The steady-state flow quality in a model of a non-return wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Eckert, W. T.; Kelly, M. W.
1972-01-01
The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.
NASA Astrophysics Data System (ADS)
Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying
2018-06-01
The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
Shock-like structures in the tropical cyclone boundary layer
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.
2013-06-01
This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).
The Østerild Balconies Experiment
NASA Astrophysics Data System (ADS)
Karagali, I.; Mann, J.; Dellwik, E.; Simon, E.; Vasiljevic, N.; Larsen, G. C.
2017-12-01
The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. One of the main objectives of the NEWA project is to carry out large-scale field experiments at a high spatial and temporal resolution, and provide a significant upgrade to the experimental databases currently available. The Østerild balconies experiment obtained high resolution measurements over an extended horizontal plane to quantify the effect of unevenly forested terrain on the mean wind field. The experiment was performed, between April 12 and August 12 2016, at the Østerild test station for large wind turbines, where DTU Wind Energy operates two 250 m tall meteorological towers, located in northern Denmark. During the first stage of the measurement campaign, a simple balcony-type structure was installed at a height of 50 m above local ground level (AGL), in each of the towers. A wind scanning lidar was placed on each of the balconies, thus the two instruments were simultaneously scanning an area thereby making it possible to reconstruct the wind field and quantify the wind speed variability in a horizontal plane. During the second phase of the experiment, the balconies were raised at the height of 200 m AGL, in order to verify and study the weaker imprint of surface heterogeneity on mean winds but also to study the large-scale spatial and temporal statistics of winds. The aim of the present study is to present the analyses of the measurements to obtain the horizontal wind field reconstruction and the preliminary results of the average wind flow patterns in relation to the terrain characteristics, during the period of available measurements.
Controls on wind abrasion patterns through a fractured bedrock landscape
NASA Astrophysics Data System (ADS)
Perkins, J. P.; Finnegan, N. J.
2017-12-01
Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic steering. Conversely, smaller particles, which comprise the bulk of wind-transported material in lower velocity settings, can be fully deflected along fracture paths. Wind-abraded landforms therefore likely reflect a competition between the material skeleton of the landscape and the strength of the flow that shapes it.
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.
Investigation of wind behaviour around high-rise buildings
NASA Astrophysics Data System (ADS)
Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil
2017-09-01
A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
Latitude dependence of solar wind velocity observed at not less than 1 AU
NASA Technical Reports Server (NTRS)
Mitchell, D. G.; Roelof, E. C.; Wolfe, J. H.
1981-01-01
The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1 AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, the velocity structure observed at different spacecraft was examined for latitudinal dependence and compared with coronal structure in soft X-rays and H-alpha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. Several examples of sharp nonmeridional stream boundaries in interplanetary space (about 5 deg latitude in width), often directly associated with features in coronal X-rays and H-alpha were found.
Hubble space telescope observations and geometric models of compact multipolar planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong
2014-05-20
We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less
Airfoil family design for large offshore wind turbine blades
NASA Astrophysics Data System (ADS)
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
Solar Cycle Variation and Multipoint Studies of ICME Properties
NASA Technical Reports Server (NTRS)
Russell, C. T.
2005-01-01
The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.
Turbulence and entrainment length scales in large wind farms.
Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F
2017-04-13
A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Turbulence and entrainment length scales in large wind farms
2017-01-01
A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265028
Wind/tornado design criteria, development to achieve required probabilistic performance goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, D.S.
1991-06-01
This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less
Wind/tornado design criteria, development to achieve required probabilistic performance goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, D.S.
This paper describes the strategy for developing new design criteria for a critical facility to withstand loading induced by the wind/tornado hazard. The proposed design requirements for resisting wind/tornado loads are based on probabilistic performance goals. The proposed design criteria were prepared by a Working Group consisting of six experts in wind/tornado engineering and meteorology. Utilizing their best technical knowledge and judgment in the wind/tornado field, they met and discussed the methodologies and reviewed available data. A review of the available wind/tornado hazard model for the site, structural response evaluation methods, and conservative acceptance criteria lead to proposed design criteriamore » that has a high probability of achieving the required performance goals.« less
Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N; Sethuraman, Latha; Jonkman, Jason
Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using anmore » Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.« less
NASA Astrophysics Data System (ADS)
Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.
2015-04-01
The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.
NASA Astrophysics Data System (ADS)
Momtaz, Ali Ajilian; Abdollahian, Mohamadreza Akhavan; Farshidianfar, Anooshiravan
2017-12-01
In recent years, construction of tall buildings has been of great interest. Use of lightweight materials in such structures reduces stiffness and damping, making the building more influenced by wind loads. Moreover, tall buildings of more than 30 to 40 stories, depending on the geographical location, the wind effects are more influential than earthquakes. In addition, the complexity of the effects of wind flow on the structure due to the interaction of the fluid flow and solid body results in serious damages to the structure by eliminating them. Considering the importance of the issue, the present study investigates the phenomenon of wind-induced vibration on high-rise buildings, taking into account the effects of vortices created by the fluid flow and the control of this phenomenon. To this end, the governing equations of the structure, the fluid flow and the tuned mass damper (TMD) are first introduced, and their coefficient values are extracted according to the characteristics of ACT skyscraper in Japan. Then, these three coupled equations are solved using a program coded in MATLAB. After validation of the results, the effects of wind loads are analyzed and considered with regard to the effects of vortices and the use of TMD, and are compared with the results of the state where no vortices are considered. Generally, the results of this study point out the significance of vibrations caused by vortices in construction of engineering structures as well as the appropriate performance of a TMD in reducing oscillations in tall buildings.
The average solar wind in the inner heliosphere: Structures and slow variations
NASA Technical Reports Server (NTRS)
Schwenn, R.
1983-01-01
Measurements from the HELIOS solar probes indicated that apart from solar activity related disturbances there exist two states of the solar wind which might result from basic differences in the acceleration process: the fast solar wind (v 600 kms(-)1) emanating from magnetically open regions in the solar corona and the "slow" solar wind (v 400 kms(-)1) correlated with the more active regions and its mainly closed magnetic structures. In a comprehensive study using all HELIOS data taken between 1974 and 1982 the average behavior of the basic plasma parameters were analyzed as functions of the solar wind speed. The long term variations of the solar wind parameters along the solar cycle were also determined and numerical estimates given. These modulations appear to be distinct though only minor. In agreement with earlier studies it was concluded that the major modulations are in the number and size of high speed streams and in the number of interplanetary shock waves caused by coronal transients. The latter ones usually cause huge deviations from the averages of all parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios
2015-10-30
The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.
A wind turbine hybrid simulation framework considering aeroelastic effects
NASA Astrophysics Data System (ADS)
Song, Wei; Su, Weihua
2015-04-01
In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-06-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.
Systems Engineering 2015 Workshop | Wind | NREL
Dhert, University of Michigan High-Fidelity Aerodynamic Shape Optimization for Wind Turbines Kristian ; Different design approaches are applied to determine the shape as well as the structural composition of the turbine that also found a significant trade-off between the lighter blades and a heavier tower moving from
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
[Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer
NASA Technical Reports Server (NTRS)
Stiles, Bryan; Pollard, Brian
2000-01-01
The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.
Magnetic Fields and Flows in Open Magnetic Structures
NASA Technical Reports Server (NTRS)
Jones, Harrlson P.
2004-01-01
Open magnetic structures connect the solar surface to the heliosphere and are thus of great interest in solar-terrestrial physics. This talk is primarily an observational review of what is known about magnetic fields and particularly flows in such regions with special focus on coronal holes and origins of the fast solar wind. First evidence of the connection between these two features was seen in correlations of Skylab data with in situ measurements of the solar wind soon after the discovery of coronal holes, which are now known to emanate from unipolar magnetic regions at the photosphere. Subsequently many observations of have been made, ranging from oscillations in the underlying photosphere and chromosphere, to possible beginnings of the solar wind as observed by Doppler shifts in high chromospheric and transition-region lines, to coronagraphic time-lapse studies of outward-moving blobs of material which perhaps trace elements of solar-wind plasma. Some of the many unresolved and controversial issues regarding details of these observations and their association with the solar wind will be discussed.
NASA Astrophysics Data System (ADS)
Dorman, C. E.; Koracin, D.
2002-12-01
The importance of winds in driving the coastal ocean has long been recognized. Pre-World War II literature links wind stress and wind stress curl to coastal ocean responses. Nevertheless, direct measurements plausibly representative of a coastal area are few. Multiple observations on the scale of the simplest mesoscale atmospheric structure, such as the cross-coast variation along a linear coast, are even less frequent. The only wind measurements that we are aware of in a complicated coastal area backed by higher topography are in the MMS sponsored, Santa Barbara Channel/Santa Marina basin study. Taking place from 1994 to present, this study had an unheard of dense surface automated meteorological station array of up to 5 meteorological buoys, 4 oil platforms, 2 island stations, and 11 coastal stations within 1 km of the beach. Most of the land stations are maintained by other projects. Only a large, a well funded project with backed by an agency with the long-view could dedicate the resources and effort into filling the mesoscale "holes" and maintaining long-term, remotely located stations. The result of the MMS funded project is a sufficiently dense surface station array to resolve the along-coast and cross-coast atmospheric mesoscale wind structure. Great temporal and spatial variation is found in the wind, wind stress and the wind stress curl, during the extended summer season. The MM5 atmospheric mesoscale model with appropriate boundary layer physics and high-resolution horizontal and vertical grid structure successfully simulates the measured wind field from large scale down to the lower end of the mesoscale. Atmospheric models without appropriate resolution and boundary layer physics fail to capture significant mesoscale wind features. Satellite microwave wind measurements generally capture the offshore synoptic scale temporal and spatial scale in twice-a-day snap shots but fail in the crucial, innermost coastal waters and the diurnal scale.
Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas
2011-09-13
An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.
Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation
NASA Astrophysics Data System (ADS)
Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti
2017-10-01
Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.
Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4
NASA Technical Reports Server (NTRS)
Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.
2004-01-01
NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical stoins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and have helped us learn more about why this storm didn't develop.
Impact of vertical wind shear on roll structure in idealized hurricane boundary layers
NASA Astrophysics Data System (ADS)
Wang, Shouping; Jiang, Qingfang
2017-03-01
Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.
Atmospheric structure favoring high sea surface temperatures in the western equatorial Pacific
NASA Astrophysics Data System (ADS)
Wirasatriya, Anindya; Kawamura, Hiroshi; Shimada, Teruhisa; Hosoda, Kohtaro
2016-10-01
We investigated the atmospheric processes over high sea surface temperature called Hot Event (HE) in the western equatorial Pacific from climatological analysis and a case study of the HE which began on 28 May 2003 (hereafter, HE030528). Climatological analysis shows that during the development stage of HE, solar radiation inside the HE area is higher than its climatology and wind speed is lower than the decay stage. During the decay stage, strong westerly wind often occurs inside HE area. The case study of HE030528 shows that the suppressed convection above high SST area resulted from the deep convection from the northern and southern areas outside HE. The suppressed convection created a band-shaped structure of low cloud cover along HE area increasing solar radiation during the development stage. Thus, the theory of "remote convection" was supported for the HE030528 formation mechanisms. The large sea level pressure gradient magnitude between the southern side of the terrain gap and the northern coast of the Solomon Islands, through which strong wind blew, indicated the role of land topography for the increase of wind speed during the decay of HE030528. Moreover, surface wind had an important role to influence the variability of solar radiation during the occurrence of HE030528 by controlling the water vapor supply in the upper troposphere through surface evaporation and surface convergence variation. Thus, surface wind was the key factor for HE030528 occurrence. The representativeness of HE030528 and the possible relation between HE and Madden-Julian Oscillation are also discussed.
Research of low cost wind generator rotors
NASA Technical Reports Server (NTRS)
Fertis, D. G.; Ross, R. S.
1978-01-01
A feasibility program determined that it would be possible to significantly reduce the cost of manufacturing wind generator rotors by making them of cast urethane. Several high modulus urethanes which were structurally tested were developed. A section of rotor was also cast and tested showing the excellent aerodynamic surface which results. A design analysis indicated that a cost reduction of almost ten to one can be achieved with a small weight increase to achieve the same structural integrity as expected of current rotor systems.
Reponse dynamique des structures sous charges de vent
NASA Astrophysics Data System (ADS)
Gani, Ferawati
The main purpose of this research is to assemble numerical tools that allows realistic dynamic study of structures under wind loading. The availability of such numerical tools is becoming more important for the industry, following previous experiences in structural damages after extreme wind events. The methodology of the present study involves two main steps: (i) preparing the wind loading according to its spatial and temporal correlations by using digitally generated wind or real measured wind; (ii) preparing the numerical model that captures the characteristics of the real structures and respects all the necessary numerical requirements to pursue transient dynamic analyses. The thesis is presented as an ensemble of four articles written for refereed journals and conferences that showcase the contributions of the present study to the advancement of transient dynamic study of structures under wind loading, on the wind model itself (the first article) and on the application of the wind study on complex structures (the next three articles). The articles presented are as follows: (a) the evaluation of three-dimensional correlations of wind, an important issue for more precise prediction of wind loading for flexible and line-like structures, the results presented in this first article helps design engineers to choose a more suitable models to define three-dimensional wind loading; (b) the refinement of design for solar photovoltaic concentrator-tracker structure developed for utility scale, this study addressed concerns related strict operational criteria and fatigue under wind load for a large parabolic truss structure; (c) the study of guyed towers for TLs, the applicability of the static-equivalent method from the current industry documents for the design of this type of flexible TL support was questioned, a simplified method to improve the wind design was proposed; (d) the fundamental issue of nonlinear behaviour under extreme wind loading for single-degree-of-freedom systems is evaluated here, the use of real measured hurricane and winter storm have highlighted the possible interest of taking into account the ductility in the extreme wind loading design. The present research project has shown the versatility of the use of the developed wind study methodology to solve concerns related to different type of complex structures. In addition, this study proposes simplified methods that are useful for practical engineers when there is the need to solve similar problems. Key words: nonlinear, dynamic, wind, guyed tower, parabolic structure, ductility.
Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions
NASA Astrophysics Data System (ADS)
Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves
2012-05-01
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.
Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, Ted
2010-01-01
The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
High-Order Numerical Simulations of Wind Turbine Wakes
NASA Astrophysics Data System (ADS)
Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.
2017-05-01
Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.
Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.
2014-01-01
This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.
NASA Astrophysics Data System (ADS)
Cao, Bochao
Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.
NASA Technical Reports Server (NTRS)
Musick, H. Brad
1993-01-01
The objectives of this research are: to develop and test predictive relations for the quantitative influence of vegetation canopy structure on wind erosion of semiarid rangeland soils, and to develop remote sensing methods for measuring the canopy structural parameters that determine sheltering against wind erosion. The influence of canopy structure on wind erosion will be investigated by means of wind-tunnel and field experiments using structural variables identified by the wind-tunnel and field experiments using model roughness elements to simulate plant canopies. The canopy structural variables identified by the wind-tunnel and field experiments as important in determining vegetative sheltering against wind erosion will then be measured at a number of naturally vegetated field sites and compared with estimates of these variables derived from analysis of remotely sensed data.
Structural Testing Laboratory Video Transcript | Wind | NREL
be able to structurally validate wind turbine blades and components. Ryan Beach, Structural Engineer weeks. Scott Hughes: Since 1990, NREL has tested over 200 wind turbine blades with over 10,000 strain blades. Text on Screen: Learn more about NREL's structural research facilities at nrel.gov/wind
NASA Astrophysics Data System (ADS)
Dhadly, Manbharat; Conde, Mark
2017-06-01
It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark
In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community windmore » projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than tax incentive, the Section 1603 grant alone reduces (but does not eliminate) the need for tax appetite among project owners. All of these policy changes can be particularly useful to community wind projects, and have helped to support the different financial structures mentioned above. This special report - which is distilled from a longer Berkeley Lab report - briefly describes just two of these innovative new financing structures: the sale/leaseback structure used in Minnesota and the intrastate offering conducted in South Dakota. Readers interested in more detail on these two structures, as well as the other three projects not covered here, are encouraged to reference the full Berkeley Lab report.« less
An investigation of turbulence structure in a low-Reynolds-number incompressible turbulent boundary
NASA Technical Reports Server (NTRS)
White, B. R.; Strataridakis, C. J.
1987-01-01
An existing high turbulence intensity level (5%) atmospheric boundary-layer wind tunnel has been successfully converted to a relatively low level turbulence (0.3%) wind tunnel through extensive modification, testing, and calibration. A splitter plate was designed, built, and installed into the wind-tunnel facility to create thick, mature, two-dimensional turbulent boundary layer flow at zero pressure gradient. Single and cross hot-wire measurements show turbulent boundary layer characteristics of good quality with unusually large physical size, i.e., viscous sublayer of the order of 1 mm high. These confirm the potential ability of the tunnel to be utilized for future high-quality near-wall turbulent boundary layer measurements. It compares very favorably with many low turbulence research tunnels.
HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.
We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less
Assessment of Global Wind Energy Resource Utilization Potential
NASA Astrophysics Data System (ADS)
Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.
2017-09-01
Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.
Conducting experimental investigations of wind influence on high-rise constructions
NASA Astrophysics Data System (ADS)
Poddaeva, Olga I.; Fedosova, Anastasia N.; Churin, Pavel S.; Gribach, Julia S.
2018-03-01
The design of buildings with a height of more than 100 meters is accompanied by strict control in determining the external loads and the subsequent calculation of building structures, which is due to the uniqueness of these facilities. An important factor, the impact of which must be carefully studied at the stage of development of project documentation, is the wind. This work is devoted to the problem of studying the wind impact on buildings above 100 meters. In the article the technique of carrying out of experimental researches of wind influence on high-rise buildings and constructions, developed in the Educational-research-and-production laboratory on aerodynamic and aeroacoustic tests of building designs of NRU MGSU is presented. The publication contains a description of the main stages of the implementation of wind tunnel tests. The article presents the approbation of the methodology, based on the presented algorithm, on the example of a high-rise building under construction. This paper reflects the key requirements that are established at different stages of performing wind impact studies, as well as the results obtained, including the average values of the aerodynamic pressure coefficients, total forces and aerodynamic drag coefficients. Based on the results of the work, conclusions are presented.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-01-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518
The clumpy absorber in the high-mass X-ray binary Vela X-1
Grinberg, V.; Hell, N.; El Mellah, I.; ...
2017-12-15
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less
The clumpy absorber in the high-mass X-ray binary Vela X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinberg, V.; Hell, N.; El Mellah, I.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less
NASA Astrophysics Data System (ADS)
Stray, Nora H.; Espy, Patrick J.
2018-06-01
This paper examines the influence of neutral dynamics on the high latitude ionosphere. Using a longitudinal chain of ionosondes at high northern latitudes (52°-65° N), planetary wave-like structures were observed in the spatial structure of the peak electron density in the ionosphere. Longitudinal wavenumbers S0, S1 and S2 have been extracted from these variations of the F layer. The observed wave activity in wavenumber one and two does not show any significant correlation with indices of magnetic activity, suggesting that this is not the primary driver. In addition, the motion of the S1 ionospheric wave structures parallels that of the S1 planetary waves observed in the winds of the mesosphere-lower-thermosphere derived from a longitudinal array of SuperDARN meteor-radar wind measurements. The time delay between the motions of the wave structures would indicate a indirect coupling, commensurate with the diffusion to the ionosphere of mesospheric atomic oxygen perturbations.
HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Lieberman, Ruth S.
1999-01-01
Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.
Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars.
She, C Y
2001-09-20
It is well known that scattering lidars, i.e., Mie, aerosol-wind, Rayleigh, high-spectral-resolution, molecular-wind, rotational Raman, and vibrational Raman lidars, are workhorses for probing atmospheric properties, including the backscatter ratio, aerosol extinction coefficient, temperature, pressure, density, and winds. The spectral structure of molecular scattering (strength and bandwidth) and its constituent spectra associated with Rayleigh and vibrational Raman scattering are reviewed. Revisiting the correct name by distinguishing Cabannes scattering from Rayleigh scattering, and sharpening the definition of each scattering component in the Rayleigh scattering spectrum, the review allows a systematic, logical, and useful comparison in strength and bandwidth between each scattering component and in receiver bandwidths (for both nighttime and daytime operation) between the various scattering lidars for atmospheric sensing.
Simultaneous observation of Pc 3-4 pulsations in the solar wind and in the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.; Luehr, H.; Acuna, M. H.
1987-01-01
The equatorially orbiting Active Magnetospheric Particle Tracer Explorers CCE and IRM satellites have made numerous observations of Pc 3-4 magnetic field pulsations (10-s to 100-s period) simultaneously at locations upstream of the earth's bow shock and inside the magnetosphere. These observations show solar wind/IMF control of two categories of dayside magnetospheric pulsations. Harmonically structured, azimuthally polarized pulsations are commonly observed from L = 4 to 9 in association with upstream waves. More monochromatic compressional pulsations are clearly evident on occasion, with periods identical to those observed simultaneously in the solar wind. The observations reported here are consistent with a high-latitude (cusp) entry mechanism for wave energy related to harmonically structured pulsations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-08-26
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.« less
Smart structure for small wind turbine blade
NASA Astrophysics Data System (ADS)
Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.
2013-08-01
Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.
Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
2017-11-13
A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less
Voyager observations of solar wind proton temperature - 1-10 AU
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Lazarus, A. J.
1982-01-01
Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.
Solar wind structure out of the ecliptic plane over solar cycles
NASA Astrophysics Data System (ADS)
Sokol, J. M.; Bzowski, M.; Tokumaru, M.
2017-12-01
Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Bingbin; Karr, Dale G.; Song, Huimin
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. Finally, the use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.« less
NASA Technical Reports Server (NTRS)
Tzvi, G. C.
1986-01-01
A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.
1985-01-01
Between November 6 and December 1, 1980 series of rocket observations were obtained from two sites in northern Scandinavia (68 deg N) as part of the Energy Budget Campaign, revealing the presence of significant vertical and temporal changes in the wind structure. These changes coincided with different geomagnetic conditions, i.e. quiet and enhanced. Large amounts of rocket data were gathered from high latitudes over such a short interval of time. Prior to November 16 the meridional wind component above 60 km was found to be positive (southerly), while the magnitude of the zonal wind component incresed with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves, which suggest gravity wave activity. These waves increase in length from 1 km near 30 km to over 12 km near 80 km. The observational techniques employed Andoya (69 deg N), Norway, and Esrange (67.9 deg N), Sweden, consisted of chaff foil, instrumented rigid spheres, chemical trails, inflatable spheres and parachutes.
NASA Astrophysics Data System (ADS)
Di Matteo, Simone; Villante, Umberto
2016-04-01
The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.
Multidisciplinary Computational Aerodynamics
2013-10-01
flat plate. These wings exhibit large aspect ratio and a highly corrugated structure. Several wind tunnel studies have shown possible advantages...Advances in Turbines Aero-thermo-mechanical Design and Analysis”, IGT Institute, Vancouver, June 2011 Rizzetta: Invited Seminar, University of...pressure turbines for high- altitude aircraft, distributed-roughness transition, flapping wing aerodynamics and laser turrets. Flow Structure and Unsteady
Hanson, Jacob J; Lorimer, Craig G
2007-07-01
Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.
Latitude-Dependent Effects in the Stellar Wind of Eta Carinae
NASA Technical Reports Server (NTRS)
Smith, Nathan; Davidson, Kris; Gull, Theodore R.; Ishibashi, Kazunori; Hillier, D. John
2002-01-01
The Homunculus reflection nebula around eta Carinae provides the rare opportunity to observe the spectrum of a star from more than one direction. In the case of eta Car, the nebula's geometry is known well enough to infer how wind profiles vary with latitude. We present STIS spectra of several positions in the Homunculus, showing directly that eta Car has an aspherical and axisymmetric stellar wind. P Cygni absorption in Balmer lines depends on latitude, with relatively high velocities and strong absorption near the polar axis. Stronger absorption at high latitudes is surprising, and it suggests higher mass flux toward the poles, perhaps resulting from equatorial gravity darkening on a rotating star. Reflected profiles of He I lines are more puzzling, and offer clues to eta Car's wind geometry and ionization structure. During eta Car's high-excitation state in March 2000, the wind had a fast, dense polar wind, with higher ionization at low latitudes. Older STIS data obtained since 1998 reveal that this global stellar-wind geometry changes during eta Car's 5.5 year cycle, and may suggest that this star s spectroscopic events are shell ejections. Whether or not a companion star triggers these outbursts remains ambiguous. The most dramatic changes in the wind occur at low latitudes, while the dense polar wind remains relatively undisturbed during an event. The apparent stability of the polar wind also supports the inferred bipolar geometry. The wind geometry and its variability have critical implications for understanding the 5.5 year cycle and long-term variability, but do not provide a clear alternative to the binary hypothesis for generating eta Car s X-rays.
NASA Technical Reports Server (NTRS)
Krieger, A. S.; Nolte, J. T.; Sullivan, J. D.; Lazarus, A. J.; Mcintosh, P. S.; Gold, R. E.; Roelof, E. C.
1975-01-01
The large-scale structure of the corona and the interplanetary medium during Carrington rotations 1601-1607 is discussed relative to recurrent high-speed solar wind streams and their coronal sources. Only streams A, C, D, and F recur on more than one rotation. Streams A and D are associated with coronal holes, while C and F originate in the high corona (20-50 solar radii) over faint X-ray emissions. The association of the streams with holes is confirmed by earlier findings that there are no large equatorial holes without an associated high-speed stream and that the area of the equatorial region of coronal holes is highly correlated with the maximum velocity observed in the associated stream near 1 AU.
Gusts and Shear in an Idealized LES-modeled Hurricane
NASA Astrophysics Data System (ADS)
Worsnop, R.; Lundquist, J. K.; Bryan, G. H.; Damiani, R.; Musial, W.
2016-12-01
Tropical cyclone winds can cause extreme loading and damage to coastal structures such as buildings and energy infrastructure. Offshore wind energy development is underway along the US East Coast where hurricanes pose a substantial risk. Understanding wind gusts, gust factor, shear, and veer in the hurricane boundary layer (HBL) can help manufacturers assess risk and design wind turbines to better withstand these extreme wind conditions. Because of the paucity of observational data at low-levels (200 m and below), we use the Cloud Model Version I (CM1) large-eddy simulation numerical model to simulate high spatial- (10 m) and temporal- (0.1 s) resolution data. This unique dataset is used to answer the following questions: do severe mean wind speeds and gusts that exceed current design limits occur?; how does the gust factor vary with distance from the eye?; and lastly, how does wind direction vary horizontally and with height? We find that mean winds and gusts near the eyewall can exceed current turbine design thresholds of 50 m s-1 and 70 m s-1, respectively. Gust factors are greatest at the eye-eyewall interface just inward of the peak gust location and can exceed the 1.4 value used to convert a 50 m s-1 reference wind speed to a 50-year 3-second gust. Strong veer (15-30 degrees) across a 120 m-layer suggests that veer should be assessed against standard design prescriptions. Lastly, wind directions can shift 10-25 degrees in durations shorter than 10 minutes, which can challenge structures designed to endure winds from a consistent direction for periods longer than 10 minutes, including wind turbines.
The use of wind tunnel facilities to estimate hydrodynamic data
NASA Astrophysics Data System (ADS)
Hoffmann, Kristoffer; Tophøj Rasmussen, Johannes; Hansen, Svend Ole; Reiso, Marit; Isaksen, Bjørn; Egeberg Aasland, Tale
2016-03-01
Experimental laboratory testing of vortex-induced structural oscillations in flowing water is an expensive and time-consuming procedure, and the testing of high Reynolds number flow regimes is complicated due to the requirement of either a large-scale or high-speed facility. In most cases, Reynolds number scaling effects are unavoidable, and these uncertainties have to be accounted for, usually by means of empirical rules-of-thumb. Instead of performing traditional hydrodynamic measurements, wind tunnel testing in an appropriately designed experimental setup may provide an alternative and much simpler and cheaper framework for estimating the structural behavior under water current and wave loading. Furthermore, the fluid velocities that can be obtained in a wind tunnel are substantially higher than in a water testing facility, thus decreasing the uncertainty from scaling effects. In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.
Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model
NASA Technical Reports Server (NTRS)
Elgin, Stephen D.; Sutliff, Thomas J.
1993-01-01
The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.
Working Group on Ice Forces (4th) State-of-the-Art Report Held in Iowa City, Iowa in 1986.
1989-02-01
INTRODUCTION When droplets generated from sea water fly in cold air, cool and hit an object, spray ice will form. Spray ice causes hazards and...or spray generated by waves hitting the structure. Wind-generated spray forms as a result of direct whipping of wave crests by the wind and of bursting...Spray generated by waves hitting a structure, on the other hand, can result in very high liquid water contents. Values of up to 5 kgm -3 have been
NASA Technical Reports Server (NTRS)
Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.
2006-01-01
The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.
6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...
6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA
Tornado and extreme wind design criteria for nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-12-01
Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; ...
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. Finally, the use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.« less
Skip J. Van Bloem; Ariel E. Lugo; Peter G. Murphy
2006-01-01
Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes...
Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1993-01-01
The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.
UV line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1992-01-01
The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.
Masden, Elizabeth A; Haydon, Daniel T; Fox, Anthony D; Furness, Robert W
2010-07-01
Proposals for wind farms in areas of known importance for breeding seabirds highlight the need to understand the impacts of these structures. Using an energetic modelling approach, we examine the effects of wind farms as barriers to movement on seabirds of differing morphology. Additional costs, expressed in relation to typical daily energetic expenditures, were highest per unit flight for seabirds with high wing loadings, such as cormorants. Taking species-specific differences into account, costs were relatively higher in terns, due to the high daily frequency of foraging flights. For all species, costs of extra flight to avoid a wind farm appear much less than those imposed by low food abundance or adverse weather, although such costs will be additive to these. We conclude that adopting a species-specific approach is essential when assessing the impacts of wind farms on breeding seabird populations, to fully anticipate the effects of avoidance flights. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sauder, Heather Scot
To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.
The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear
NASA Technical Reports Server (NTRS)
Ritchie, Elizabeth A.
2003-01-01
The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.
Structured Slow Solar Wind Variability: Streamer-blob Flux Ropes and Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Higginson, A. K.; Lynch, B. J.
2018-05-01
The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. presented a numerical magnetohydrodynamic simulation that showed interchange magnetic reconnection is ubiquitous and most likely responsible for releasing much of the slow solar wind, in particular along topological features known as the Separatrix-Web (S-Web). Here, we continue our analysis, focusing on two specific aspects of structured slow solar wind variability. The first type is present in the slow solar wind found near the heliospheric current sheet (HCS), and the second we predict should be present everywhere S-Web slow solar wind is observed. For the first type, we examine the evolution of three-dimensional magnetic flux ropes formed at the top of the helmet streamer belt by reconnection in the HCS. For the second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfvén wave (TAW), which propagates along an S-Web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known “streamer blob” observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet and the potential for particle acceleration, as well as the interchange reconnection scenarios that may generate TAWs in the solar corona. We discuss predictions from our simulation results for the dynamic slow solar wind in the extended corona and inner heliosphere.
Assessing the Impacts of Low Level Jets over Wind Turbines
NASA Astrophysics Data System (ADS)
Gutierrez Rodriguez, Walter; Araya, Guillermo; Ruiz-Columbie, Arquimedes; Tutkun, Murat; Castillo, Luciano
2015-11-01
Low Level Jets (LLJs) are defined as regions of relatively strong winds in the lower part of the atmosphere. They are a common feature over the Great Plains in the United States. This paper is focused on the determination of the static/dynamic impacts that real LLJs in West Texas have over wind turbines and wind farms. High-frequency (50Hz) observational data from the 200-m meteorological tower (Reese, Texas) have been input as inflow conditions into the NREL FAST code in order to evaluate the LLJ's structural impacts on a typical wind turbine. Then, the effect of the LLJ on the wind turbine's wake is considered to evaluate the overall impact on the wind farm. It has been observed that during a LLJ event the levels of turbulence intensity and turbulence kinetic energy are significantly much lower than those during unstable conditions. Also, low-frequency oscillations prevail during stable conditions when LLJs are present, as opposed to high-frequency oscillations which are more prevalent during unstable conditions. Additionally, in LLJs the energy concentrates in particular frequencies that stress the turbine whereas turbine signals show frequencies that are also present in the incoming wind. Grants: NSF-CBET #1157246, NSF-CMMI #1100948, NSF-PIRE # NSF-OISE-1243482.
Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads
NASA Astrophysics Data System (ADS)
Kang, J.; Yi, Z. Z.; Choi, S. G.
2017-12-01
This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.
NASA Astrophysics Data System (ADS)
Conde, M. G.; Anderson, C.; Hecht, J. H.
2011-12-01
Numerous observations of thermospheric neutral winds at altitudes of 240 km and higher clearly show wind structures occurring at auroral latitudes in response to magnetospheric forcing. It is also known from observations that magnetospheric forcing is not a major driver of winds down at mesopause heights and below. Because it is difficult to measure winds in the intervening "transition region" between these height regimes, very little is known about how deeply the magnetospherically driven neutral wind structures penetrate into the lower thermosphere, what factors affect this penetration, and what consequences it may have for transport of chemical species. Here we will show neutral wind maps obtained at F-region and E-region heights in the auroral zone using Fabry-Perot Doppler spectroscopy of the 630 nm and 558 nm optical emissions. Although thermospheric neutral winds are smoothed by viscosity and inertia, observed responses to magnetospheric forcing still include wind responses on time scales as short as 10 minutes or less, and on length scales shorter than 100 km horizontally and 5 km vertically. The data also show that the degree of penetration of magnetospheric forcing into the lower thermospheric wind field is highly variable from day to day. Signatures of magnetospheric forcing are sometimes seen at altitudes as low as 120 km, whereas at other times the E-region does not seem to respond at all. Possible links will be explored between this variability and the day to day differences seen in the column integrated thermospheric [O]/[N2] ratio over Alaska.
Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling
Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.
2015-01-01
Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless, considering a GDEM2 hs-derived wind sheltering potential improved the modeled lake temperature root mean square error for non-forested lakes by 0.72 °C compared to a commonly used wind sheltering model based on lake area alone. While results from this study show promise, the limitations of near-global GDEM2 data in timeliness, temporal and spatial resolution, and vertical accuracy were apparent. As hydrodynamic modeling and high-resolution topographic mapping efforts both expand, future remote sensing-derived vegetation structure data must be improved to meet wind sheltering accuracy requirements to expand our understanding of lake processes.
Research and analysis on response characteristics of bracket-line coupling system under wind load
NASA Astrophysics Data System (ADS)
Jiayu, Zhao; Qing, Sun
2018-01-01
In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
Application of tuned mass dampers in high-rise construction
NASA Astrophysics Data System (ADS)
Teplyshev, Vyacheslav; Mylnik, Alexey; Pushkareva, Maria; Agakhanov, Murad; Burova, Olga
2018-03-01
The article considers the use of tuned mass dampers in high-rise construction for significant acceleration and amplitude of vibrations of the upper floors under dynamic wind influences. The susceptibility of people to accelerations in high-rise buildings and possible means of reducing wind-induced fluctuations in buildings are analyzed. The statistics of application of tuned mass dampers in high-rise construction all over the world is presented. The goal of the study is to identify an economically attractive solution that allows the fullest use of the potential of building structures in high-rise construction, abandoning the need to build massive frames leading to over-consumption of materials.
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Static and Dynamic Analysis in Design of Exoskeleton Structure
NASA Astrophysics Data System (ADS)
Ivánkova, Ol'ga; Méri, Dávid; Vojteková, Eva
2017-10-01
This paper introduces a numerical experiment of creating the load bearing system of a high rise building. When designing the high-rise building, it is always an important task to find the right proportion between the height of the building and its perceptive width from the various angles of street view. Investigated high rise building in this article was designed according to these criteria. The load bearing structure of the analysed object consists of a reinforced core, plates and steel tubes of an exoskeleton. Eight models of the building were created using the spatial variant of FEM in Scia Engineer Software. Individual models varied in number and dimensions of diagrids in the exoskeleton. In the models, loadings due to the own weight, weight of external glass cladding, and due to the wind according to the Standard, have been considered. The building was loaded by wind load from all four main directions with respect to its shape. Wind load was calculated using the 3D wind generator, which is a part of the Scia Engineer Software. For each model the static analysis was performed. Its most important criterion was the maximum or minimum horizontal displacement (rotation) of the highest point of the building. This displacement was compared with the limit values of the displacement of the analysed high-rise building. By step-by-step adding diagrids and optimizing their dimensions the building model was obtained that complied with the criteria of the Limit Serviceability State. The last model building was assessed also for the Ultimate Limit State. This model was loaded also by seismic loads for comparison with the load due to the wind.
Preconditioning of Interplanetary Space Due to Transient CME Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temmer, M.; Reiss, M. A.; Hofmeister, S. J.
Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less
Saturn's equatorial jet structure from Cassini/ISS
NASA Astrophysics Data System (ADS)
García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo
2010-05-01
Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.
High temperature co-axial winding transformers
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.; Novotny, Donald W.
1993-01-01
The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
Improved stud configurations for attaching laminated wood wind turbine blades
NASA Technical Reports Server (NTRS)
Fadoul, J. R.
1985-01-01
A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.
Large-scale wind turbine structures
NASA Technical Reports Server (NTRS)
Spera, David A.
1988-01-01
The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.
NASA Astrophysics Data System (ADS)
van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.
2016-09-01
This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.
Radio and submillimetre observations of wind structure in zeta Puppis
NASA Astrophysics Data System (ADS)
Blomme, R.; van de Steene, G. C.; Prinja, R. K.; Runacres, M. C.; Clark, J. S.
2003-09-01
We present radio and submillimetre observations of the O4I(n)f star zeta Pup, and discuss structure in the outer region of its wind ( ~ 10-100 R_*). The properties of bremsstrahlung, the dominant emission process at these wavelengths, make it sensitive to structure and allow us to study how the amount of structure changes in the wind by comparing the fluxes at different wavelengths. Possible forms of structure at these distances include Corotating Interaction Regions (CIRs), stochastic clumping, a disk or a polar enhancement. As the CIRs are azimuthally asymmetric, they should result in variability at submillimetre or radio wavelengths. To look for this variability, we acquired 3.6 and 6 cm observations with the Australia Telescope Compact Array (ATCA), covering about two rotational periods of the star. We supplemented these with archive observations from the NRAO Very Large Array (VLA), which cover a much longer time scale. We did not find variability at more than the +/-20% level. The long integration time does allow an accurate determination of the fluxes at 3.6 and 6 cm. Converting these fluxes into a mass loss rate, we find dot {M} = 3.5 x 10-6 Msun/yr. This value confirms the significant discrepancy with the mass loss rate derived from the Hα profile, making zeta Pup an exception to the usually good agreement between the Hα and radio mass loss rates. To study the run of structure as a function of distance, we supplemented the ATCA data by observing zeta Pup at 850 mu m with the James Clerk Maxwell Telescope (JCMT) and at 20 cm with the VLA. A smooth wind model shows that the millimetre fluxes are too high compared to the radio fluxes. While recombination of helium in the outer wind cannot be discounted as an explanation, the wealth of evidence for structure strongly suggests this as the explanation for the discrepancy. Model calculations show that the structure needs to be present in the inner ~ 70 R_* of the wind, but that it decays significantly, or maybe even disappears, beyond that radius.
Validating a magnetic reconnection model for the magnetopause
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-01-01
Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.
Kalman filter based data fusion for neutral axis tracking in wind turbine towers
NASA Astrophysics Data System (ADS)
Soman, Rohan; Malinowski, Pawel; Ostachowicz, Wieslaw; Paulsen, Uwe S.
2015-03-01
Wind energy is seen as one of the most promising solutions to man's ever increasing demands of a clean source of energy. In particular to reduce the cost of energy (COE) generated, there are efforts to increase the life-time of the wind turbines, to reduce maintenance costs and to ensure high availability. Maintenance costs may be lowered and the high availability and low repair costs ensured through the use of condition monitoring (CM) and structural health monitoring (SHM). SHM allows early detection of damage and allows maintenance planning. Furthermore, it can allow us to avoid unnecessary downtime, hence increasing the availability of the system. The present work is based on the use of neutral axis (NA) for SHM of the structure. The NA is tracked by data fusion of measured yaw angle and strain through the use of Extended Kalman Filter (EKF). The EKF allows accurate tracking even in the presence of changing ambient conditions. NA is defined as the line or plane in the section of the beam which does not experience any tensile or compressive forces when loaded. The NA is the property of the cross section of the tower and is independent of the applied loads and ambient conditions. Any change in the NA position may be used for detecting and locating the damage. The wind turbine tower has been modelled with FE software ABAQUS and validated on data from load measurements carried out on the 34m high tower of the Nordtank, NTK 500/41 wind turbine.
3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.
2017-12-01
WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A
2017-09-01
Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase carbon sequestration potential. © 2017 by the Ecological Society of America.
Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun
NASA Astrophysics Data System (ADS)
1999-02-01
"The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds ranging from 30,000 km/h at the surface to over 3 million km/h, the solar wind "grows" much faster than grass". "Looking at the spot where the solar wind actually appears is extremely important", says co-author Dr. Philippe Lemaire of the Institut d'Astrophysique Spatiale in Orsay, France. The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on SOHO detected the solar wind by observing the ultraviolet spectrum over a large area of the solar north polar region. The SUMER instrument was built under the leadership of Dr. Klaus Wilhelm at the Max-Planck-Institut für Aeronomie in Lindau, Germany, with key contributions from the Institut d'Astrophysique Spatiale in Orsay, France, the NASA Goddard Space Flight Center in Greenbelt, Maryland, and the University of California at Berkeley, with financial support from German, French, US and Swiss national agencies. "Identification of the detailed structure of the source region of the fast solar wind is an important step in solving the solar wind acceleration problem. We can now focus our attention on the plasma conditions and the dynamic processes seen in the corners of the magnetic field structures", says Dr. Wilhelm, also co-author of the Science paper. A spectrum results from the separation of light into its component colours, which correspond to different wavelengths. Blue light has a shorter wavelength and is more energetic than red. A spectrum is similar to what is seen when a prism separates white light into a rainbow of distinct colours. By analysing light this way, astronomers learn a great deal about the object emitting the light, such as its temperature, chemical composition, and motion. The ultraviolet light observed by SUMER is actually invisible to the human eye and cannot penetrate the Earth's atmosphere. The hot gas in the solar wind source region emits light at certain ultraviolet wavelengths. When the hot gas flows towards Earth, as it does in the solar wind, the wavelengths of the ultraviolet light emitted become shorter, a phenomenon called Doppler shift. This is similar to the way an ambulance siren appears to change tone as it speeds by. When the ambulance moves towards us, its sound is compressed to a shorter wavelength, resulting in a higher tone. As it moves away, its sound is stretched to a longer wavelength, resulting in a lower tone. Motion towards us, away from the solar surface, was detected as blueshifts and identified as the beginning of the solar wind. SOHO operates at a special vantage point 1.5 million kilometres out in space, on the sunward side of the Earth. The project is an international collaboration between ESA and NASA. SOHO was launched on an Atlas rocket from Cape Canaveral Air Station, Florida, in December 1995 and is operated from the Goddard Space Flight Center in Greenbelt, Maryland.
NASA Astrophysics Data System (ADS)
Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.
2015-06-01
We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.
The Third Solar Wind Conference: A summary
NASA Technical Reports Server (NTRS)
Russell, C. T.
1974-01-01
The Third Solar Wind Conference consisted of nine sessions. The following subjects were discussed: (1) solar abundances; (2) the history and evolution of the solar wind; (3) the structure and dynamics of the solar corona; (4) macroscopic and microscopic properties of the solar wind; (5) cosmic rays as a probe of the solar wind; (6) the structure and dynamics of the solar wind; (7) spatial gradients; (8) stellar winds; and (9) interactions with objects in the solar wind. The invited and contributed talks presented at the conference are summarized.
A comparison of solar wind streams and coronal structure near solar minimum
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.
1977-01-01
Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.
Stability characteristics of the mesopause region above the Andes
NASA Astrophysics Data System (ADS)
Yang, F.; Liu, A. Z.
2017-12-01
The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.
Leveraging the Polar Cap: Ground-Based Measurements of the Solar Wind
NASA Astrophysics Data System (ADS)
Urban, K. D.; Gerrard, A. J.; Weatherwax, A. T.; Lanzerotti, L. J.; Patterson, J. D.
2016-12-01
In this study, we look at and identify relationships between solar wind quantities that have previously been shown to have direct access into the very high-latitude polar cap as measured by ground-based riometers and magnetometers in Antarctica: ultra-low frequency (ULF) power in the interplanetary magnetic field (IMF) Bz component and solar energetic proton (SEP) flux (Urban [2016] and Patterson et al. [2001], respectively). It is shown that such solar wind and ground-based observations can be used to infer the hydromagnetic structure and magnetospheric mapping of the polar cap region in a data-driven manner, and that high-latitude ground-based instrumentation can be used to infer concurrent various state parameters of the geospace environment.
A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations
NASA Astrophysics Data System (ADS)
Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing
2017-09-01
A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.
Design and optimization of resistance wire electric heater for hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir
2012-06-01
The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Nielsen, K.E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D.J.; Owocki. S.; Okazaki, A.T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.l"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II D originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Astrophysics Data System (ADS)
Gull, Theodore R.; Nielsen, K. E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D. J.; Owocki, S.; Okazaki, A. T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.1"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II]) originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
Gradient-Based Optimization of Wind Farms with Different Turbine Heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
Optimal sensor placement for modal testing on wind turbines
NASA Astrophysics Data System (ADS)
Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph
2016-09-01
The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.
Impact of Wind Shear Characteristics on Roll Structure in Idealized Hurricane Boundary Layers
NASA Astrophysics Data System (ADS)
Wang, S.; Jiang, Q.
2016-12-01
The hurricane boundary layer (HBL) is well known for its critical role in evolutions of tropical cyclones (TCs) as the air-sea interaction represents both the most important source and sink of the moist available energy and the kinetic energy, respectively. One of the frequently occurring features in the HBL is horizontal roll vortices, which have quasi-two dimensional coherent and banded structure extending from the surface to the top of the HBL. It is believed that this highly coherent structure, caused by the inflection point instability in the basic wind profiles, plays an important role in organizing turbulent transport. To understand this role, large-eddy simulations are conducted to investigate how the wind shear characteristics such as the shear strength and inflection-point level can impact the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind profile nudging approach is used in the simulations to maintain the required mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential. The most robust rolls are produced in a simulation with the highest inflection-point level and strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40% in the middle of the boundary layer.
The physics of galactic winds driven by active galactic nuclei
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André; Quataert, Eliot
2012-09-01
Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important physics.
A dynamic processes study of PM retention by trees under different wind conditions.
Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan
2018-02-01
Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flow Sources of The Solar Wind Stream Structieres
NASA Astrophysics Data System (ADS)
Lotova, N. A.; Obridko, V. N.; Vladimirskii, K. V.
The large-scale stream structure of the solar wind flow was studied at the main acceler- ation area of 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomy observations of radio wave scattering on near-solar plasmas (large radio telescopes of the P.N.Lebedev Physical Institute were used); mor- phology of the WLC as revealed by the SOHO optical solar corona observations; solar magnetic field strength and configuration computed using the Wilcox Solar Observa- tory data. Experimental data of 1997-1998 years on the position of the transition, tran- sonic region of the solar wind flow were used as a parameter reflecting the intensity of the solar plasmas acceleration process. Correlation studies of these data combined with the magnetic field strength at the solar corona level revealed several types of the solar wind streams differing in the final result, the velocity at large distances from the Sun. Besides of the well-known flows stemming from the polar coronal holes, high-speed streams were observed arising in lateral areas of the streamer structures in contrast to the main body of the streamers, being a known source of the slow solar wind. The slowest streams arise at areas of mixed magnetic field structure compris- ing both open and closed (loop-like) filed lines. In the white-light corona images this shows extensive areas of bright amorphous luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less
NASA Astrophysics Data System (ADS)
Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio
2016-10-01
We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.
Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands
NASA Astrophysics Data System (ADS)
Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge
2013-11-01
The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.
Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A.; Peiffer, Antoine; Schlipf, David
This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less
The Origins of Magnetic Structure in the Corona and Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
2010-01-01
One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at two special locations: photospheric polarity inversions lines. (non-potentiality observed as a filament channel) and coronal hole boundaries, (observed as the slow solar wind). This characteristic feature of the closed-field corona is highly unexpected given that its magnetic field is continuously tangled by photospheric motions. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. I propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries inversion lines and coronal holes, creating both filament channels and the slow wind. We describe how the helicity is injected and transported and calculate the relevant rates. I argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field. This work has been supported by the NASA HTP, SR&T, and LWS programs.
Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations
NASA Astrophysics Data System (ADS)
Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod
2016-11-01
Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
NASA Astrophysics Data System (ADS)
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahn, T.; Rolfes, R.; Jonkman, J.
A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine supportmore » structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.« less
NASA Astrophysics Data System (ADS)
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
Structure Function Scaling Exponent and Intermittency in the Wake of a Wind Turbine Array
NASA Astrophysics Data System (ADS)
Aseyev, Aleksandr; Ali, Naseem; Cal, Raul
2015-11-01
Hot-wire measurements obtained in a 3 × 3 wind turbine array boundary layer are utilized to analyze high order structure functions, intermittency effects as well as the probability density functions of velocity increments at different scales within the energy cascade. The intermittency exponent is found to be greater in the far wake region in comparison to the near wake. At hub height, the intermittency exponent is found to be null. ESS scaling exponents of the second, fourth, and fifth order structure functions remain relatively constant as a function of height in the far-wake whereas in the near-wake these highly affected by the passage of the rotor thus showing a dependence on physical location. When comparing with proposed models, these generally over predict the structure functions in the far wake region. The pdf distributions in the far wake region display wider tails compared to the near wake region, and constant skewness hypothesis based on the local isotropy is verified in the wake. CBET-1034581.
Control of Next Generation Aircraft and Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2010-01-01
The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.
[Effects of synoptic type on surface ozone pollution in Beijing].
Tang, Gui-qian; Li, Xin; Wang, Xiao-ke; Xin, Jin-yuan; Hu, Bo; Wang, Li-li; Ren, Yu-fen; Wang, Yue-Si
2010-03-01
Ozone (O), influenced by meteorological factors, is a primary gaseous photochemical pollutant during summer to fall in Beijing' s urban ambient. Continuous monitoring during July to September in 2008 was carried out at four sites in Beijing. Analyzed with synoptic type, the results show that the ratios of pre-low cylonic (mainly Mongolia cyclone) and pre-high anticylonic to total weather conditions are about 42% and 20%, illustrating the high-and low-ozone episodes, respectively. At the pre-low cylonic conditions, high temperature, low humidity, mountain and valley winds caused by local circulation induce average hourly maximum ozone concentration (volume fraction) up to 102.2 x 10(-9), negative correlated with atmospheric pressure with a slope of -3.4 x 10(-9) Pa(-1). The time of mountain wind changed to valley wind dominates the diurnal time of maximum ozone, generally around 14:00. At the pre-high anticylonic conditions, low temperature, high humidity and systematic north wind induce average hourly maximum ozone concentration (volume fraction) only 49.3 x 10(-9), the diurnal time of maximum ozone is deferred by continuous north wind till about 16:00. The consistency of photochemical pollution in Beijing region shows that good correlation exists between synoptic type and ozone concentration. Therefore, getting an eye on the structure and evolution of synoptic type is of great significances for forecasting the photochemical pollution.
Background and system description of the Mod 1 wind turbine generator
NASA Technical Reports Server (NTRS)
Ernst, E. H.
1978-01-01
The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.
First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission
NASA Astrophysics Data System (ADS)
Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric
2017-12-01
We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.
Turbulence effects on a full-scale 2.5 MW horizontal axis wind turbine
NASA Astrophysics Data System (ADS)
Chamorro, Leonardo; Lee, Seung-Jae; Olsen, David; Milliren, Chris; Marr, Jeff; Arndt, Roger; Sotiropoulos, Fotis
2012-11-01
Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Turbulence is the common driving mechanism that triggers instabilities on these quantities. We investigate the complex response of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the EOLOS Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the wind velocity, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine. The structure of the fluctuating turbine power and instantaneous stresses are studied in detail. Important insights about the role of turbulent and coherent motions as well as strong intermittent gusts will be discussed. Funding was provided by Department of Energy DOE (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).
The design of low cost structures for extensive ground arrays
NASA Technical Reports Server (NTRS)
Franklin, H. A.; Leonard, R. S.
1980-01-01
The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contributemore » to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.« less
ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.
2016-01-20
Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) andmore » obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas.« less
Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications
NASA Technical Reports Server (NTRS)
Barrows, Danny A.
2006-01-01
Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.
DOT National Transportation Integrated Search
2011-08-01
Traffic signal and high-mast poles are used by transportation agencies to control and illuminate intersections; their structural design is governed by national specifications. High-mast poles are luminaire supports located near highway interchanges t...
New insights on the interaction between atmospheric flow and a full-scale 2.5 MW wind turbine
NASA Astrophysics Data System (ADS)
Chamorro, L. P.; Lee, S.; Olsen, D.; Milliren, C.; Marr, J.; Arndt, R.; Sotiropoulos, F.
2012-12-01
Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Atmospheric turbulence is the common driving mechanism that triggers instabilities on these quantities. Reducing the effects of the fluctuating flow on wind turbines is quite challenging due to the wide variety of length scales present in the boundary layer flow. Each group of these scales, which range from the order of a millimeter to kilometer and larger, plays a characteristic and distinctive role on the performance and structural reliability of wind turbines. This study seeks to contribute toward the understanding on the complex scale-to-scale interaction between wind turbine and flow turbulence. Novel insights into the physical mechanisms that govern the flow/turbine interaction will be discussed. To tackle the problem, we investigate the unsteady behavior of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the Eolos Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the approach wind velocity at several heights, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine performance and its physical structure. The spectral distribution of the fluctuating turbine power and instantaneous stresses will be discussed in detail. Characteristic length scales playing a key role on the dynamics of the wind turbine as well as the distinctive effects of flow coherent motions and strong intermittent gusts will also be addressed. Funding was provided by the U.S. Department of Energy (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).
The Solar Wind Ion Analyzer for MAVEN
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.
2015-12-01
The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.
NASA Astrophysics Data System (ADS)
Ozbay, Ahmet
A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV measurement results. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the power generation performance, dynamic wind loads and wake interferences of the wind turbines for higher total power yield and better durability of the wind turbines sited in atmospheric boundary layer (ABL) winds.
Shade material evaluation using a cattle response model and meteorological instrumentation.
Eigenberg, Roger A; Brown-Brandl, Tami M; Nienaber, John A
2010-11-01
Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in conjunction with meteorological measurements to estimate relative effectiveness of various shade materials. Shade structures were 3.6 m by 6.0 m by 3.0 m high at the peak and 2.0 m high at the sides. Polyethylene shade cloth was used in three of the comparisons and consisted of effective coverings of 100%, 60% with a silver reflective coating, and 60% black material with no reflective coating. Additionally, one of the structures was fitted with a poly snow fence with an effective shade of about 30%. Each shade structure contained a solar radiation meter and a black globe thermometer to measure radiant energy received under the shade material. Additionally, meteorological data were collected as a non-shaded treatment and included temperature, humidity, wind speed, and solar radiation. Data analyses was conducted using a physiological model based on temperature, humidity, solar radiation and wind speed; a second model using black globe temperatures, relative humidity, and wind speed was used as well. Analyses of the data revealed that time spent in the highest stress category was reduced by all shade materials. Moreover, significant differences (P < 0.05) existed between all shade materials (compared to no-shade) for hourly summaries during peak daylight hours and for 'full sun' days.
Shade material evaluation using a cattle response model and meteorological instrumentation.
Eigenberg, Roger A; Brown-Brandl, Tami M; Nienaber, John A
2009-11-01
Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in conjunction with meteorological measurements to estimate relative effectiveness of various shade materials. Shade structures were 3.6 m by 6.0 m by 3.0 m high at the peak and 2.0 m high at the sides. Polyethylene shade cloth was used in three of the comparisons and consisted of effective coverings of 100%, 60% with a silver reflective coating, and 60% black material with no reflective coating. Additionally, one of the structures was fitted with a poly snow fence with an effective shade of about 30%. Each shade structure contained a solar radiation meter and a black globe thermometer to measure radiant energy received under the shade material. Additionally, meteorological data were collected as a non-shaded treatment and included temperature, humidity, wind speed, and solar radiation. Data analyses was conducted using a physiological model based on temperature, humidity, solar radiation and wind speed; a second model using black globe temperatures, relative humidity, and wind speed was used as well. Analyses of the data revealed that time spent in the highest stress category was reduced by all shade materials. Moreover, significant differences (P < 0.05) existed between all shade materials (compared to no-shade) for hourly summaries during peak daylight hours and for 'full sun' days.
Shade material evaluation using a cattle response model and meteorological instrumentation.
Eigenberg, Roger A; Brown-Brandl, Tami M; Nienaber, John A
2010-09-01
Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in conjunction with meteorological measurements to estimate relative effectiveness of various shade materials. Shade structures were 3.6 m x 6.0 m x 3.0 m high at the peak and 2.0 m high at the sides. Polyethylene shade cloth was used in three of the comparisons and consisted of effective coverings of 100%, 60% with a silver reflective coating, and 60% black material with no reflective coating. Additionally, one of the structures was fitted with a poly snow fence with an effective shade of about 30%. Each shade structure contained a solar radiation meter and a black globe thermometer to measure radiant energy received under the shade material. Additionally, meteorological data were collected as a non-shaded treatment and included temperature, humidity, wind speed, and solar radiation. Data analyses was conducted using a physiological model based on temperature, humidity, solar radiation and wind speed; a second model using black globe temperatures, relative humidity, and wind speed was used as well. Analyses of the data revealed that time spent in the highest stress category was reduced by all shade materials. Moreover, significant differences (P < 0.05) existed between all shade materials (compared to no-shade) for hourly summaries during peak daylight hours and for 'full sun' days.
High Resolutions Studies of the Structure of the Solar Atmosphere
1992-06-30
Pairs in the Solar Wind", submitted to J. Geophys. Res., July 20, 1992. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of Active...Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in
One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy
NASA Astrophysics Data System (ADS)
Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria
2015-04-01
In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.
NASA Astrophysics Data System (ADS)
Li, G.; Arnold, L.; Miao, B.; Yan, Y.
2011-12-01
G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.
Design, fabrication, and test of a composite material wind turbine rotor blade
NASA Technical Reports Server (NTRS)
Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.
1977-01-01
The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.
Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean
2013-06-17
can create copious amounts of sea spray. We anticipate that structures placed in shallow water— wind turbines or drilling rigs, for instance— will...anticipate that structures placed in shallow water— wind turbines or drilling rigs, for instance—will, therefore, experience more episodes of freezing...concentrations of wind -generated sea spray and the resulting spray icing on offshore structures, such as wind turbines and exploration, drilling, and production
Aerodynamic profiling of terminal building using computational fluid dynamics approach
NASA Astrophysics Data System (ADS)
Vidhya, S.; Pradeep Kumar, R.; Hareesh, M.; Sekar, S. K.
2017-11-01
A case study of isolated building is studied using ANSYS CFX and SAP2000. The plan idea of 30m by 60m is chosen for terminal building. The model is subjected to different wind incidence from 0° to 90° and 45° with 30° interval for 55m/s wind speed. By using tributary area method, the forces at the each mesh node are summed up to get corresponding wind force at that joint within that area. The best effective structural system is determined by designing the structure for each wind incidence. Wind analysis and design is carried out for increasing wind speed above 55m/s to identify the collapse pattern of structure. External supporting members are suggested to withstand that maximum wind speed.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2017-04-01
The increasing demand for carbon neutral energy in a challenging economic environment is a driving factor for erecting ever larger wind turbines in harsh environments using novel wind turbine blade (WTBs) designs characterized by high flexibilities and lower buckling capacities. To counteract resulting increasing of operation and maintenance costs, efficient structural health monitoring systems can be employed to prevent dramatic failures and to schedule maintenance actions according to the true structural state. This paper presents a novel methodology for classifying structural damages using vibrational responses from a single sensor. The method is based on statistical classification using Bayes' theorem and an advanced statistic, which allows controlling the performance by varying the number of samples which represent the current state. This is done for multivariate damage sensitive features defined as partial autocorrelation coefficients (PACCs) estimated from vibrational responses and principal component analysis scores from PACCs. Additionally, optimal DSFs are composed not only for damage classification but also for damage detection based on binary statistical hypothesis testing, where features selections are found with a fast forward procedure. The method is applied to laboratory experiments with a small scale WTB with wind-like excitation and non-destructive damage scenarios. The obtained results demonstrate the advantages of the proposed procedure and are promising for future applications of vibration-based structural health monitoring in WTBs.
Wind Turbine Structural Dynamics
NASA Technical Reports Server (NTRS)
Miller, D. R. (Editor)
1978-01-01
A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.
Development of high resolution simulations of the atmospheric environment using the MASS model
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan
1989-01-01
Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.
Intermittency of solar wind on scale 0.01-16 Hz.
NASA Astrophysics Data System (ADS)
Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel
Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran
Wurman; Winslow
1998-04-24
High-resolution observations obtained with the Doppler On Wheels (DOW) mobile weather radar near the point of landfall of hurricane Fran (1996) revealed the existence of intense, sub-kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed. It is proposed that these structures are one cause of geographically varying surface damage patterns that have been observed after some landfalling hurricanes and that they cause much of the observed gustiness, bringing high-velocity air from aloft to the lowest observable levels. High-resolution DOW radar observations are contrasted with lower-resolution observations obtained with an operational weather radar, which underestimated peak low-level wind speeds.
Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2013-01-01
We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2014-01-01
We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
NASA Astrophysics Data System (ADS)
Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo
2017-10-01
An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.
Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry
NASA Technical Reports Server (NTRS)
Williams, Brent A.
2011-01-01
A scatterometer is a radar that measures the normalized radar cross section sigma(sup 0) of the Earth's surface. Over the ocean this signal is related to the wind via the geophysical model function (GMF). The objective of wind scatterometry is to estimate the wind vector field from sigma(sup 0) measurements; however, there are many subtleties that complicate this problem-making it difficult to obtain a unique wind field estimate. Conventionally, wind estimation is split into two stages: a wind retrieval stage in which several ambiguous solutions are obtained, and an ambiguity removal stage in which ambiguities are chosen to produce an appropriate wind vector field estimate. The most common approach to wind field estimation is to grid the scatterometer swath into wind vector cells and estimate wind vector ambiguities independently for each cell. Then, field wise structure is imposed on the solution by an ambiguity selection routine. Although this approach is simple and practical, it neglects field wise structure in the retrieval step and does not account for the spatial correlation imposed by the sampling. This makes it difficult to develop a theoretically appropriate noise versus resolution trade-off using pointwise retrieval. Fieldwise structure may be imposed in the retrieval step using a model-based approach. However, this approach is generally only practical if a low order wind field model is applied, which may discard more information than is desired. Furthermore, model-based approaches do not account for the structure imposed by the sampling. A more general fieldwise approach is to estimate all the wind vectors for all the WVCs simultaneously from all the measurements. This approach can account for structure of the wind field as well as structure imposed by the sampling in the wind retrieval step. Williams and Long in 2010 developed a fieldwise retrieval method based on maximum a posteriori estimation (MAP). This MAP approach can be extended to perform a noise versus resolution trade-off, and deal with ambiguity selection. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed.
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.
NASA Astrophysics Data System (ADS)
Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.
2010-12-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.
2017-08-01
The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oskinova, L. M.; Hamann, W.-R.; Shenar, T.
The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less
Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM
NASA Astrophysics Data System (ADS)
Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa
2018-02-01
Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Chaparro, Daniel
2017-01-01
This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.
AmeriFlux US-Wrc Wind River Crane Site
Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...
Wind Energy Finance in the United States: Current Practice and Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwabe, Paul D.; Feldman, David J.; Settle, Donald E.
In the United States, investment in wind energy has averaged nearly $13.6 billion annually since 2006 with more than $140 billion invested cumulatively over that period (BNEF 2017). This sizable investment activity demonstrates the persistent appeal of wind energy and its increasing role in the U.S electricity generation portfolio. Despite its steady investment levels over the last decade, some investors still consider wind energy as a specialized asset class. Limited familiarity with the asset class both limit the pool of potential investors and drive up costs for investors. This publication provides an overview of the wind project development process, capitalmore » sources and financing structures commonly used, and traditional and emerging procurement methods. It also provides a high-level demonstration of how financing rates impact a project's all-in cost of energy. The goal of the publication is to provide a representative and wide-ranging resource for the wind development and financing processes.« less
Spectroscopy of the Stellar Wind in the Cygnus X-1 System
NASA Technical Reports Server (NTRS)
Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert
2010-01-01
The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.
Topological Origins of the Slow Solar Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro
2008-01-01
Although the slow solar wind has been studied for decades with both in situ and remote sensing observations, its origin is still a matter of intense debate. In the standard quasi-steady model, the slow wind is postulated to originate near coronal hole boundaries that define topologically well-behaved separatrices between open and closed field regions. In the interchange model, on the other hand, the slow wind is postulated to originate on open flux that is dynamically diffusing throughout the seemingly closed-field corona. We argue in favor of the quasi-steady scenario and propose that the slow wind is due to two effects: First, the open-closed boundary is highly complex due to the complexity of the photospheric flux distribution. Second, this boundary is continuously driven by the transport of magnetic helicity from the closed field region into the open. The implications of this model for the structure and dynamics of the corona and slow wind are discussed, and observational tests of the mode
Science Objectives for a Soft X-ray Mission
NASA Astrophysics Data System (ADS)
Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.
2016-12-01
When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.
Network Analyses for Space-Time High Frequency Wind Data
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Kanevski, Mikhail
2017-04-01
Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2015-11-01
The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.
Satellite accelerometer measurements of neutral density and winds during geomagnetic storms
NASA Technical Reports Server (NTRS)
Marcos, F. A.; Forbes, J. M.
1986-01-01
A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine
NASA Astrophysics Data System (ADS)
Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.
Performance of the high speed anechoic wind tunnel at Lyon University
NASA Technical Reports Server (NTRS)
Sunyach, M.; Brunel, B.; Comte-Bellot, G.
1986-01-01
The characteristics of the feed duct, the wind tunnel, and the experiments run in the convergent-divergent anechoic wind tunnel at Lyon University are described. The wind tunnel was designed to eliminate noise from the entrance of air or from flow interactions with the tunnel walls so that noise caused by the flow-test structure interactions can be studied. The channel contains 1 x 1 x 0.2 m glass and metal foil baffles spaced 0.2 m apart. The flow is forced by a 350 kW fan in the primary circuit, and a 110 kW blower in the secondary circuit. The primary circuit features a factor of four throat reductions, followed by a 1.6 reduction before the test section. Upstream and downstream sensors permit monitoring of the anechoic effectiveness of the channel. Other sensors allow modeling of the flow structures in the tunnel. The tunnel was used to examine turbulent boundary layers in flows up to 140 m/sec, tubulence-excited vibrations in walls, and the effects of laminar and turbulent flows on the appearance and locations of noise sources.
Radio Observations of Elongated Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Ng, Stephen C.-Y.
2015-08-01
The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.
Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates
NASA Astrophysics Data System (ADS)
Bouzid, Omar M.; Tian, Gui Y.; Cumanan, K.; Neasham, J.
Integration of acoustic wireless technology in structural health monitoring (SHM) applications introduces new challenges due to requirements of high sampling rates, additional communication bandwidth, memory space, and power resources. In order to circumvent these challenges, this chapter proposes a novel solution through building a wireless SHM technique in conjunction with acoustic emission (AE) with field deployment on the structure of a wind turbine. This solution requires a low sampling rate which is lower than the Nyquist rate. In addition, features extracted from aliased AE signals instead of reconstructing the original signals on-board the wireless nodes are exploited to monitor AE events, such as wind, rain, strong hail, and bird strike in different environmental conditions in conjunction with artificial AE sources. Time feature extraction algorithm, in addition to the principal component analysis (PCA) method, is used to extract and classify the relevant information, which in turn is used to classify or recognise a testing condition that is represented by the response signals. This proposed novel technique yields a significant data reduction during the monitoring process of wind turbine blades.
Modes of energy transfer from the solar wind to the inner magnetosphere
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Tornquist, M.; Koepke, M. E.
2009-12-01
The energy provided by the solar wind to geospace finds its way to the inner magnetosphere and leads to variations in the mid-latitude ground magnetic field. Through measurement of field disturbances and energetic particle fluxes one can show that the inner magnetospheric behavior is organized in large-scale modes of response. Each mode is excited by a different combination of solar wind plasma and field variables which often occur in characteristic geoeffective structures. We compare the wave field and energetic-electron modes of response to solar wind variables as obtained by filter and correlation techniques. Characteristic modes of response are found for low-frequency wave fields measured by mid- and high-latitude meridional arrays such as MEASURE and the geosynchronous field recorded by GOES magnetometers. The modes are similar to those obtained earlier for magnetospheric electron flux such as that measured by the HIST instrument on POLAR, and the similarity is used to determine the parameter range in L, MLT, time, and perpendicular energy for drift-resonant interaction. We present modeling results for the excitation of these wave fields during the passage of the interplanetary structures.
Supernova shock breakout through a wind
NASA Astrophysics Data System (ADS)
Balberg, Shmuel; Loeb, Abraham
2011-06-01
The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.
Sand Transport under Highly Turbulent Airflow on a Beach Surface
NASA Astrophysics Data System (ADS)
Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.
2012-04-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.
Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine.
Roni Sahroni, Taufik
2015-01-01
This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed.
Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine
Roni Sahroni, Taufik
2015-01-01
This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed. PMID:26550605
NASA Astrophysics Data System (ADS)
Gull, Theodore R.; Madura, Thomas; Corcoran, Michael F.; Teodoro, Mairan; Richardson, Noel; Hamaguchi, Kenji; Groh, Jose H.; Hillier, Desmond John; Damineli, Augusto; Weigelt, Gerd
2015-01-01
The massive binary, Eta Carinae (EC), produces such massive winds that strong forbidden line emission of singly- and doubly-ionized iron traces wind-wind interactions from the current cycle plus fossil interactions from one, two and three 5.54-year cycles ago.With an eccentricity of >0.9, the >90 solar mass primary (EC-A) and >30 solar mass secondary (EC-B) approach to within 1.5 AU during periastron and recede to nearly 30 AU across apastron. The wind-wind structures move outward driven by the 420 km/s primary wind interacting with the ~3000 km/s secondary wind yielding partially-accelerated compressed primary wind shells that are excited by mid-UV from EC-A and in limited lines of sight, FUV from EC-B.These structures are spectroscopically and spatially resolved by HST's Space Telescope Imaging Spectrograph. At critical binary phases, we have mapped the central 2'x2' region in the light of [Fe III] and [Fe II] with spatial resolution of 0.12' and velocity resolution of 40 km/s.1) The bulk of forbidden emission originates from the large cavity northwest of EC and is due to ionization of massive ejecta from the 1840s and 1890s eruptions. The brightest clumps are the Weigelt Blobs C and D, but there are additionally multiple, fainter emission clumps. Weigelt B appears to have faded.2) Three concentric, red-shifted [FeII] arcs expand at ~470 km/s excited by mid-UV of EC-A.3) The structure of primarily blue-shifted [Fe III] emission resembles a Maryland Blue Crab. The claws appear at the early stages of the high-excitation recovery from the periastron passage, expand at radial velocities exceeding the primary wind terminal velocity, 420 km/s and fade as the binary system approaches periastron with the primary wind enveloping the FUV radiation from EC-B.4) All [Fe III] emission faded by late June 2014 and disappeared by August 2, 2014, the beginning of periastron passage.Comparisons to HST/STIS observations between 1998 to 2004.3 indicate long-term fading of [Fe II]. Likewise, Na D emission has faded. 3D hydro/radiative models suggest a small decrease (< factor of 2) in primary mass loss rate to be the cause.
Flow Control of Flexible Structures
2017-09-06
energy systems (e.g. wind turbines or ocean energy devices), air vehicle aerodynamics and engines, or even medical flows (blood flow, respiration...stall model for wind turbine airfoils. Journal of Fluids and Structures, (23):959982, 2007. J. G. Leishman and T. S. Beddoes. A semi-empirical model for...Subsonic Wind Tunnel, USAFA . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Low-Speed Research Wind Tunnel, UCB
A thermal storage capacity market for non dispatchable renewable energies
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz
2017-06-01
Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S. A.; Kulak, R. F.; Bojanowski, C.
2011-05-19
This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focusmore » of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.« less
Plume structure in high-Rayleigh-number convection
NASA Astrophysics Data System (ADS)
Puthenveettil, Baburaj A.; Arakeri, Jaywant H.
2005-10-01
Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.
Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.
2001-01-01
The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.
NASA Technical Reports Server (NTRS)
Kumar, S.; Broadfoot, A. L.
1979-01-01
A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.
Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range
NASA Technical Reports Server (NTRS)
Decker, Ryan K.
2017-01-01
Space launch vehicles develop day-of-launch steering commands based upon the upper-level atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, upper-level wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA's) Kennedy Space Center co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution rawinsondes. One inherent limitation with rawinsondes consists of taking approximately one hour to generate a vertically complete wind profile. Additionally, rawinsonde drift during ascent by the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during rawinsonde ascent as a function of season and discuss an alternative method to measure upper level wind environments in closer proximity to the vehicle trajectory launching from the ER.
Visualization and analysis of vortex-turbine intersections in wind farms.
Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I
2013-09-01
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.
Wind Extraction for Natural Ventilation
NASA Astrophysics Data System (ADS)
Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan
2017-11-01
Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.
Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range
NASA Technical Reports Server (NTRS)
Decker, Ryan K.
2017-01-01
Space launch vehicles use day-of-launch steering commands based upon the upper-level (UL) atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, UL wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution (HR) rawinsondes. One inherent limitation with rawinsondes is the approximately one-hour sampling time necessary to measure tropospheric winds. Additionally, rawinsonde drift during ascent due to the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during HR rawinsonde ascent as a function of season. Will also discuss an alternative method to measure UL wind environments in closer proximity to the vehicle trajectory when launching from the ER.
Damage tolerance and structural monitoring for wind turbine blades
McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.
2015-01-01
The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858
NASA Astrophysics Data System (ADS)
Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.
2015-01-01
A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.
Examing the Effects of Different IMF, F10.7, and Auroral Inputs on the Thermospheric Neutral Winds
NASA Astrophysics Data System (ADS)
Deng, Y.; Ridley, A. J.
2003-12-01
To obtain a better understanding of how the magnetosphere effects the global thermospheric and ionospheric structure, we conduct some numerical experiments using the University of Michigan's Global Ionosphere-Thermosphere Model (GITM). We have run GITM to roughly steady-state using different strengths of the high-latitude electric potential pattern, F10.7, and auroral inputs to determine how these effect the temporal history and stead-state of the thermospheric neutral winds. Our model reproduces the well known fact that the neutral winds are strongly driven by the ion convection above approximately 300 km, and that the ramp-up time is very dependent upon the altitude. We show quantitative results of the ramp-up times and maximum neutral wind speeds for the different driving conditions.
Wind-induced structural response of a large telescope
NASA Astrophysics Data System (ADS)
Smith, David R.; Avitabile, Peter; Gwaltney, Geoff; Cho, Myung; Sheehan, Michael
2004-09-01
In May of 2000, the construction progress of the Gemini South 8m telescope at Cerro Pachon in Chile was such that the telescope and dome were installed and able to move, but the primary mirror had not been installed. This provided a unique opportunity to make extensive tests of the structure in its nearly-completed state, including a modal impact test and simultaneous measurements of wind pressure and structural response. The testing was even more comprehensive because the Gemini dome design allows for a wide range of wind flow configurations, from nearly enclosed to almost fully exposed. In these tests, the operating response of 24 surface pressures on the primary mirror cell, 5 wind velocity channels (each with direction vector information), and more than 70 channels of accelerometers on the telescope structure were measured. The data were taken in a variety of wind loading configurations. While previous analysis efforts have focused on the wind velocity and pressure measurement, this paper investigates the dynamic behavior of the telescope structure itself. Specifically, the discussion includes the participation of the modes measured in the modal impact test as a function of wind loading configuration. Data that indicate the most important frequency ranges in the operating response of the telescope are also presented. Finally, the importance of the response of the enclosure on the structural vibration of the telescope structure is discussed.
Stellar feedback in galaxies and the origin of galaxy-scale winds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Quataert, Eliot; Murray, Norman
2012-04-01
Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.; Minor, J.E.; Mehta, K.C.
1975-06-01
In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loadsmore » for an example structure are included. (LCL)« less
Wind systems the driving force of evaporation at the Dead Sea
NASA Astrophysics Data System (ADS)
Metzger, Jutta; Corsmeier, Ulrich; Alpert, Pinhas
2017-04-01
The Dead Sea is a unique place on earth. It is located in the Eastern Mediterranean at the lowest point of the Jordan Rift valley and its water level is currently at 429 m below mean sea level. The region is located in a transition zone of semi-arid to arid climate conditions and endangered by severe environmental problems, especially the rapid lake level decline (>1m/year), causing the shifting of fresh/saline groundwater interfaces and the drying up of the lake. Two key features are relevant for these environmental changes: the evaporation from the water surface and its driving mechanisms. The main driver of evaporation at the Dead Sea is the wind velocity and hence the governing wind systems with different scales in space and time. In the framework of the Virtual Institute DEad SEa Research Venue (DESERVE) an extensive field campaign was conducted to study the governing wind systems in the valley and the energy balance of the water and land surface simultaneously. The combination of several in-situ and remote sensing instruments allowed temporally and spatially high-resolution measurements to investigate the frequency of occurrence of the wind systems, their three-dimensional structure, associated wind velocities and their impact on evaporation. The characteristics of the three local wind systems governing the valley's wind field, as well as their impact on evaporation, will be presented. Mostly decoupled from the large scale flow a local lake breeze determines the conditions during the day. Strong downslope winds drive the evaporation in the afternoon, and down valley flows with wind velocities of over 10 m s-1 dominate during the night causing unusually high evaporation rates after sunset.
NASA Astrophysics Data System (ADS)
Nakakita, K.
2017-02-01
Simultaneous visualization technique of the combination of the unsteady Pressure-Sensitive Paint and the Schlieren measurement was introduced. It was applied to a wind tunnel test of a rocket faring model at the JAXA 2mx2m transonic wind tunnel. Quantitative unsteady pressure field was acquired by the unsteady PSP measurement, which consisted of a high-speed camera, high-power laser diode, and so on. Qualitative flow structure was acquired by the Schlieren measurement using a high-speed camera and Xenon lamp with a blue optical filter. Simultaneous visualization was achieved 1.6 kfps frame rate and it gave the detailed structure of unsteady flow fields caused by the unsteady shock wave oscillation due to shock-wave/boundary-layer interaction around the juncture between cone and cylinder on the model. Simultaneous measurement results were merged into a movie including surface pressure distribution on the rocket faring and spatial structure of shock wave system concerning to transonic buffet. Constructed movie gave a timeseries and global information of transonic buffet flow field on the rocket faring model visually.
Ursella, L.; Poulain, P.-M.; Signell, R.P.
2007-01-01
More than 120 satellite-tracked drifters were deployed in the northern and middle Adriatic (NMA) Sea between September 2002 and November 2003, with the purpose of studying the surface circulation at mesoscale to seasonal scale in relation to wind forcing, river runoff, and bottom topography. Pseudo-Eulerian and Lagrangian statistics were calculated from the low-pass-filtered drifter velocity data between September 2002 and December 2003. The structure of the mean circulation is determined with unprecedented high horizontal resolution by the new data. In particular, mean currents, velocity variance, and kinetic energy levels are shown to be maximal in the Western Adriatic Current (WAC). Separating data into seasons, we found that the mean kinetic energy is maximal in fall, with high values also in winter, while it is significantly weaker in summer. High-resolution Local Area Model Italy winds were used to relate the drifter velocities to the wind fields. The surface currents appear to be significantly influenced by the winds. The mean flow during the northeasterly bora regime shows an intensification of the across-basin recirculating currents. In addition, the WAC is strongly intensified both in intensity and in its offshore lateral extension. In the southeasterly sirocco regime, northward flow without recirculation dominates in the eastern half of the basin, while during northwesterly maestro the WAC is enhanced. Separating the data into low and high Po River discharge rates for low-wind conditions shows that the WAC and the velocity fluctuations in front of the Po delta are stronger for high Po River runoff. Lagrangian covariance, diffusivity, and integral time and space scales are larger in the along-basin direction and are maximal in the southern portion of the WAC. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine
2017-02-01
During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick; Dykes, Katherine; Scott, George
2016-08-01
U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember, lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach tomore » evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30 m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40 m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.« less
A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters
NASA Astrophysics Data System (ADS)
Damiani, R.; Dykes, K.; Scott, G.
2016-09-01
U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach to evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
The effect of sensor spacing on wind measurements at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
Merceret, Francis J.
1995-01-01
This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.
Control system for a vertical axis windmill
Brulle, Robert V.
1983-10-18
A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
Control system for a vertical-axis windmill
Brulle, R.V.
1981-09-03
A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines
NASA Technical Reports Server (NTRS)
James, George H., III; Carne. Thomas G.
2008-01-01
Wind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency, which are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines has been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 meters tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980's with the development of NExT in the 1990's. NExT was a predecessor to OMA, developed to overcome these challenges of testing immense structures excited with environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present. Keywords: OMA, Modal Analysis, NExT, Wind Turbines, Wind Excitation
On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Edmondson, J. K.
2012-11-01
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.
Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2018-06-01
We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
NASA Technical Reports Server (NTRS)
Stewart, H. J.
1978-01-01
A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.
Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.
Suomi, Irene; Vihma, Timo
2018-04-23
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.
Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities
2018-01-01
Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided. PMID:29690647
NASA Astrophysics Data System (ADS)
Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.
2013-12-01
The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.
NASA Astrophysics Data System (ADS)
Telichev, Igor; Cherniaev, Aleksandr
Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.
NASA Astrophysics Data System (ADS)
Kalina, E.; Cione, J.; Bryan, G. H.; Lenschow, D. H.; Fairall, C. W.
2016-12-01
Open-ocean measurements of turbulence variables in the tropical cyclone (TC) boundary layer are rare, given the dangers posed by convective downdrafts, high waves, and sea spray to manned hurricane reconnaissance aircraft. The Coyote Unmanned Aircraft System (UAS) represents an opportunity to mitigate the risk to personnel while simultaneously collecting low-altitude measurements of air pressure, temperature, humidity, and wind in TCs. In 2014, the Coyote UAS flew at a height of h = 760 m in Hurricane Edouard for 45 min. The resulting wind velocity measurements were used to estimate the turbulent eddy dissipation rate (ɛ) along the Coyote flight track, using power spectra and the second-order velocity structure function. Power spectra of both the longitudinal (Suu) and transverse wind components (Svv) exhibited well-defined inertial subranges with five-thirds scaling, as expected from Kolmogorov (1941). The ratio Svv:Suu was 4:3, in agreement with theory. Under the moderate wind speeds (15-25 m s-1) sampled by the Coyote, estimates of ɛ from the power spectra and structure function ranged from 2-3.5×10-4 m2 s-3. An idealized TC simulation with Cloud Model version 1 (CM1) and a horizontal grid spacing of dx = 20 m was then used to support the observed estimates of ɛ. Along the mock Coyote flight path, the model domain-averaged value of ɛ was 3.0×10-4 m2 s-3, which is within the range of the observationally-based estimates. This agreement was achieved despite the relatively slow sampling rate (1 Hz) of the Coyote sensors and occasional missing data. Therefore, a 1-Hz sampling rate may be adequate for estimating ɛ, and time series with missing samples may still contain the necessary information to estimate the power spectra and structure functions, and thus ɛ. These findings are motivating subsequent Coyote flights into high-wind regions of TCs to collect turbulence measurements that will be used to evaluate subgrid turbulence schemes for numerical models. Future flights in the surface layer (h < 100 m) will also be used to measure the surface drag coefficient at hurricane-force wind speeds.
NASA Astrophysics Data System (ADS)
Chen, Shuyi S.; Curcic, Milan
2016-07-01
Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.
Numerical simulation of hydrodynamic processes beneath a wind-driven water surface
NASA Astrophysics Data System (ADS)
Tsai, Wu-ting
Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.
NASA Technical Reports Server (NTRS)
Viterna, Larry A. (Inventor)
2009-01-01
A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.
On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae
NASA Technical Reports Server (NTRS)
Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji
2012-01-01
Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.
Damage tolerance and structural monitoring for wind turbine blades.
McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K
2015-02-28
The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Possible Noise Nature of Elsässer Variable z- in Highly Alfvénic Solar Wind Fluctuations
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.; Yao, S.; Zhang, L.
2018-01-01
It has been a long-standing debate on the nature of Elsässer variable z- observed in the solar wind fluctuations. It is widely believed that z- represents inward propagating Alfvén waves and interacts nonlinearly with z+ (outward propagating Alfvén waves) to generate energy cascade. However, z- variations sometimes show a feature of convective structures. Here we present a new data analysis on autocorrelation functions of z- in order to get some definite information on its nature. We find that there is usually a large drop on the z- autocorrelation function when the solar wind fluctuations are highly Alfvénic. The large drop observed by Helios 2 spacecraft near 0.3 AU appears at the first nonzero time lag τ = 81 s, where the value of the autocorrelation coefficient drops to 25%-65% of that at τ = 0 s. Beyond the first nonzero time lag, the autocorrelation coefficient decreases gradually to zero. The drop of z- correlation function also appears in the Wind observations near 1 AU. These features of the z- correlation function may suggest that z- fluctuations consist of two components: high-frequency white noise and low-frequency pseudo structures, which correspond to flat and steep parts of z- power spectrum, respectively. This explanation is confirmed by doing a simple test on an artificial time series, which is obtained from the superposition of a random data series on its smoothed sequence. Our results suggest that in highly Alfvénic fluctuations, z- may not contribute importantly to the interactions with z+ to produce energy cascade.
Autonomous Aerial Sensors for Wind Power Meteorology
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim; La Cour-Harbo, Anders; Thomsen, Carsten; Bange, Jens; Buschmann, Marco
2010-05-01
This poster describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. During a week of flying a lighter-than-air vehicle, two small electrically powered aeroplanes and a larger helicopter at the Risø test station at Høvsøre, we will compare wind speed measurements with fixed mast and LIDAR measurements, investigate optimal flight patterns for each measurement task, and measure other interesting meteorological features like the air-sea boundary in the vicinity of the wind farm. In order to prepare the measurement campaign, a workshop is held, soliciting input from various communities. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. While the wake structure behind single wind turbines onshore is fairly well understood, there are different problems offshore, thought to be due mainly to the low turbulence. Good measurements of the wake and wake structure are not easy to come by, as the use of a met mast is static and expensive, while the use of remote sensing instruments either needs significant access to the turbine to mount an instrument, or is complicated to use on a ship due to the ship's own movement. In any case, a good LIDAR or SODAR will cost many tens of thousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12 MW class, with tip heights of over 200 m. Very few measurement masts exist to verify our knowledge of atmospheric physics - all that is known is that the boundary layer description we used so far is not valid any more. Here, automated Unmanned Aerial Vehicles (UAVs) could be used as either an extension of current high masts or to build a network of very high ‘masts' in a region of complex terrain or coastal flow conditions. In comparison to a multitude of high masts, UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø will build a lighter-than-air kite with a long tether, Bergen University flies a derivative of the Funjet, a pusher airplane below 1 kg total weight, Mavionics or TU Braunschweig flies the Carolo, a 2m wide two prop model with a pitot tube on the nose, and Aalborg University will use a helicopter for their part. All those platforms will be flown during one week at the Danish national test station for large wind turbines at Høvsøre. The site is strongly instrumented, with 6 masts reaching up to 167m. The comparison of wind speed measurements from planes and fixed masts should give an indication of the accuracy of the measured wind field. A workshop is planned as preparation, where everyone with an interest in the program can give input.
The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures
NASA Astrophysics Data System (ADS)
Huesmann, Amihan S.; Hitchman, Matthew H.
2001-06-01
Global quasi-biennial variation in the lower stratosphere and tropopause region is studied using 41 years (1958-1998) of reanalyses from the National Centers for Environmental Prediction (NCEP). Horizontal wind, temperature, geopotential height, tropopause temperature and pressure fields are used. A new quasi-biennial oscillation (QBO) indexing method is presented, which is based on the zonal mean zonal wind shear anomaly at the equator and is compared to the Singapore index. A phase difference composting technique provides ``snapshots'' of the QBO meridional-vertical structure as it descends, and ``composite phases'' provide a look at its time progression. Via binning large amounts of data, the first observation-based estimate of the QBO meridional circulation is obtained. High-latitude QBO variability supports previous studies that invoke planetary wave-mean flow interaction as an explanation. The meridional distribution of the range in QBO zonal wind is compared with the stratospheric annual cycle, with the annual cycle dominating poleward of ~12° latitude but still being significant in the deep tropics. The issues of temporal shear zone asymmetries and phase locking with the annual cycle are critically examined. Subtracting the time mean and annual cycle removes ~2/3 of the asymmetry in wind (and wind shear) zone descent rate. The NCEP data validate previous findings that both the easterly and westerly QBO anomalous wind regimes in the lower stratosphere change sign preferentially during northern summer. It is noteworthy that the NCEP QBO amplitude and the relationships among the reanalysed zonal wind, temperature, and meridional circulation undergo a substantial change around 1978.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-10-01
NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.
Robust multi-model control of an autonomous wind power system
NASA Astrophysics Data System (ADS)
Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul
2006-09-01
This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright
Number density structures in the inner heliosphere
NASA Astrophysics Data System (ADS)
Stansby, D.; Horbury, T. S.
2018-06-01
Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.
Subsonic structure and optically thick winds from Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.
2018-06-01
Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.
Astronomy In Denver: Polarization of Stellar Wind Bow Shocks
NASA Astrophysics Data System (ADS)
Lin, Austin A.; Shrestha, Manisha; Wolfe, Tristan; Stencel, Robert E.; Hoffman, Jennifer L.
2018-06-01
When a star with stellar wind moves through the interstellar medium (ISM) at a relative supersonic velocity, an arch like structure known as a stellar wind bow shock is formed. Studying the characteristics of these structures can further our understanding of evolved stellar winds and the composition of the ISM. Observations of these structures have been performed for some time, but the recent discovery of many bow shock structures have opened more ways to study them. These stellar wind bow shocks display aspherical shapes, which cause light scattering through the dense shock material to become polarized. We selected a target star for observation using a catalog compiled from previous studies and observed it in polarized light with the University of Denver’s DUSTPol instrument. Our group has also simulated the polarization of stellar wind bow shocks using a Monte Carlo radiative transfer code. We present the data from our observations and compare them with the simulations. We also discuss the contribution of interstellar polarization to the data.
X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignace, R.; Waldron, W. L.; Cassinelli, J. P.
2012-05-01
The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less
NASA Astrophysics Data System (ADS)
Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.
1988-09-01
The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.
The Character and Variability of the Eta Carinae Wind Lines
NASA Technical Reports Server (NTRS)
Nielsen, K. E.; Corcoran, M. F.; Gull, T. R.; Ivarsson, S.; Hillier, J. D.
2006-01-01
The binarity of Eta Carinae has been debated for a long time. We have searched for more evidence for a companion star in a spectroscopic investigation of the Eta Carinae stellar wind lines, using moderate spectral and high angular resolution HST/STIS data. Over Eta Carinae's 5.54 year spectroscopic period many of the observable wind lines in the NUV/Optical spectral region exhibit peculiar line profiles with unusual velocity shifts relative to the system velocity. Some of the lines are exclusively blue-shifted over the entire cycle. Their ionization/excitation imply formation not in the stellar wind but rather in the interface between the two massive stars. We have analyzed velocity and intensity variations over the spectroscopic period and interpreted what the variations tell us about the geometry of the nebular structure close to Eta Carinae.
Numerical investigation of wind loads on an operating heliostat
NASA Astrophysics Data System (ADS)
Ghanadi, Farzin; Yu, Jeremy; Emes, Matthew; Arjomandi, Maziar; Kelso, Richard
2017-06-01
The velocity fluctuations within the atmospheric boundary layer (ABL) and the wind direction are two important parameters which affect the resulting loads on the heliostats. In this study, the drag force on a square heliostat within the ABL at different turbulence intensities is simulated. To this end, numerical analysis of the wind loads have been conducted by implementing the three-dimensional Embedded Large Eddy Simulation (ELES). The results prove that in contrast with other models which are too dissipative for highly turbulent flow, the present model can accurately predict boundary effects and calculate the peak loads on heliostat at different elevation angles and turbulence intensities. Therefore, it is recommended that the model is used as a tool to provide new information about the relationship between wind loads and turbulence structures within ABL such as vortex length scale.
A ground-base Radar network to access the 3D structure of MLT winds
NASA Astrophysics Data System (ADS)
Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.
2016-12-01
The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.
International manned lunar base - Beginning the 21st century in space
NASA Astrophysics Data System (ADS)
Smith, Harlan J.; Gurshtejn, Aleksandr A.; Mendell, Wendell
An evaluation is made of requirements for, and advantages in, the creation of a manned lunar base whose functions emphasize astronomical investigations. These astronomical studies would be able to capitalize on the lunar environment's ultrahigh vacuum, highly stable surface, dark and cold sky, low-G, absence of wind, isolation from terrestrial 'noise', locally usable ceramic raw materials, and large radiotelescope dish-supporting hemispherical craters. Large telescope structures would be nearly free of the gravity and wind loads that complicate their design on earth.
NASA Astrophysics Data System (ADS)
Holappa, L.; Mursula, K.
2017-12-01
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSSs) are the most important large-scale solar wind structures driving geomagnetic activity. It is well known that CMEs cause the strongest geomagnetic storms, while HSSs drive mainly moderate or small storms. Here we study the spatial-temporal distribution of geomagnetic activity at annual resolution using local geomagnetic indices from a wide range of latitudes in 1966-2014. We show that the overall contribution of HSSs to geomagnetic activity exceeds that of CMEs at all latitudes. Only in a few sunspot maximum years CMEs have a comparable contribution to HSSs. While the relative contribution of HSSs maximizes at high latitudes, the relative contribution of CMEs maximizes at subauroral and low latitudes. We show that this is related to different latitudinal distribution of CME and HSS-driven substorms. We also show that the contributions of CMEs and HSSs to annual geomagnetic activity are highly correlated with the intensity of the interplanetary magnetic field and the solar wind speed, respectively. Thus, a very large fraction of the long-term variability in annual geomagnetic activity is described only by the variation of IMF strength and solar wind speed.
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
Pulsar-Wind Nebulae and Magnetar Outflows: Observations at Radio, X-Ray, and Gamma-Ray Wavelengths
NASA Astrophysics Data System (ADS)
Reynolds, Stephen P.; Pavlov, George G.; Kargaltsev, Oleg; Klingler, Noel; Renaud, Matthieu; Mereghetti, Sandro
2017-07-01
We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few "magnetar-wind nebula" have been recently identified.
An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements
NASA Astrophysics Data System (ADS)
Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.
2015-12-01
As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.
Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Piola, A. R.; Charo, M.; Romero, S. I.
2017-03-01
The South-Atlantic Patagonian shelf is the largest chlorophyll-a (Chl-a) hot spot in Southern Ocean color images. While a persistent 1500 km long band of high Chl-a along the shelf-break front (SBF) is indicative of upwelling, the mechanisms that drive it are not entirely known. Along-front wind oscillations can enhance upwelling and provide a nutrient pumping mechanism at shelf-break fronts of western boundary currents. Here we assess wind-induced upwelling at the SBF off Patagonia from daily satellite Chl-a and winds, historical hydrographic observations, cross-shelf Chl-a fluorescence transects from two cruises, and in situ winds and water column structure from a mooring site. Satellite Chl-a composites segregated by along-front wind direction indicate that surface Chl-a is enhanced at the SBF with southerly winds and suppressed with northerly winds. Northerly winds also result in enhanced Chl-a further offshore (˜25-50 km). Synoptic transects as well as mean hydrographic sections segregated by along-front winds show isopycnals tilted upward for southerly winds. Spring observations from the mooring also suggest that southerly winds destratify the water column and northerly winds restratify, in agreement with Ekman transport interacting with the front. Moreover, changes in water column temperature lag along-front wind forcing by 2-4 days. Our results suggest that oscillations in along-front winds, on timescales typical of atmospheric storms (2-10 days), can significantly modulate the upwelling and Chl-a concentrations at the SBF off Patagonia, revealing the importance of wind-induced upwelling for shelf-slope exchange at shelf-break fronts of western boundary currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zirnstein, E. J.; McComas, D. J.; Dayeh, M. A.
2017-09-01
With 7 years of Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs), IBEX has shown a clear correlation between dynamic changes in the solar wind and the heliosphere’s response in the formation of ENAs. In this paper, we investigate temporal variations in the latitudinal-dependent ENA spectrum from IBEX and their relationship to the solar wind speed observed at 1 au. We find that the variation in latitude of the transition in ENA spectral indices between low (≲1.8) and high (≳1.8) values, as well as the distribution of ENA spectral indices at high and low latitudes, correlatesmore » well with the evolution of the fast and slow solar wind latitudinal structure observed near 1 au. This correlation includes a delay due to the time it takes the solar wind to propagate to the termination shock and into the inner heliosheath, and for ENAs to be generated via charge-exchange and travel back toward 1 au. Moreover, we observe a temporal asymmetry in the steepening of the ENA spectrum in the northern and southern hemispheres, consistent with asymmetries observed in the solar wind and polar coronal holes. While this asymmetry is observed near the upwind direction of the heliosphere, it is not yet observed in the tail direction, suggesting a longer line-of-sight integration distance or different processing of the solar wind plasma downstream of the termination shock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Jacob; Pao, Lucy Y.; Fleming, Paul
2014-11-13
As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC trackingmore » performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there are insufficient wind resources available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.« less
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2018-01-01
The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.
Foreshock and magnetosheath transients, origin and connection to the magnetopause.
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.
2014-12-01
The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.
Mass loss from inhomogeneous hot star winds. I. Resonance line formation in 2D models
NASA Astrophysics Data System (ADS)
Sundqvist, J. O.; Puls, J.; Feldmeier, A.
2010-01-01
Context. The mass-loss rate is a key parameter of hot, massive stars. Small-scale inhomogeneities (clumping) in the winds of these stars are conventionally included in spectral analyses by assuming optically thin clumps, a void inter-clump medium, and a smooth velocity field. To reconcile investigations of different diagnostics (in particular, unsaturated UV resonance lines vs. Hα/radio emission) within such models, a highly clumped wind with very low mass-loss rates needs to be invoked, where the resonance lines seem to indicate rates an order of magnitude (or even more) lower than previously accepted values. If found to be realistic, this would challenge the radiative line-driven wind theory and have dramatic consequences for the evolution of massive stars. Aims: We investigate basic properties of the formation of resonance lines in small-scale inhomogeneous hot star winds with non-monotonic velocity fields. Methods: We study inhomogeneous wind structures by means of 2D stochastic and pseudo-2D radiation-hydrodynamic wind models, constructed by assembling 1D snapshots in radially independent slices. A Monte-Carlo radiative transfer code, which treats the resonance line formation in an axially symmetric spherical wind (without resorting to the Sobolev approximation), is presented and used to produce synthetic line spectra. Results: The optically thin clumping limit is only valid for very weak lines. The detailed density structure, the inter-clump medium, and the non-monotonic velocity field are all important for the line formation. We confirm previous findings that radiation-hydrodynamic wind models reproduce observed characteristics of strong lines (e.g., the black troughs) without applying the highly supersonic “microturbulence” needed in smooth models. For intermediate strong lines, the velocity spans of the clumps are of central importance. Current radiation-hydrodynamic models predict spans that are too large to reproduce observed profiles unless a very low mass-loss rate is invoked. By simulating lower spans in 2D stochastic models, the profile strengths become drastically reduced, and are consistent with higher mass-loss rates. To simultaneously meet the constraints from strong lines, the inter-clump medium must be non-void. A first comparison to the observed Phosphorus V doublet in the O6 supergiant λ Cep confirms that line profiles calculated from a stochastic 2D model reproduce observations with a mass-loss rate approximately ten times higher than that derived from the same lines but assuming optically thin clumping. Tentatively this may resolve discrepancies between theoretical predictions, evolutionary constraints, and recent derived mass-loss rates, and suggests a re-investigation of the clump structure predicted by current radiation-hydrodynamic models.
Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data
NASA Astrophysics Data System (ADS)
Perschke, C.; Narita, Y.
2012-12-01
Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.
NASA Astrophysics Data System (ADS)
Campbell, David R.
Arc-heated wind tunnels are the primary test facility for screening and qualification of candidate materials for hypersonic thermal protection systems (TPS). Via an electric arc that largely augments the enthalpy (by tens of MJ/kg) of the working fluid (Air, Nitrogen, CO2 in case of Mars-entry studies) passed through a converging-diverging nozzle at specific stagnation conditions, different regimes encountered in entry and re-entry hypersonic aerothermodynamics can be simulated. Because of the high-enthalpies (and associated temperatures that generally exceed the limits required by the thermo-structural integrity of the facility) the active cooling of the arc-heated wind tunnel's parts exposed to the working gas is critical. This criticality is particularly severe in these facilities due to the time scales associated with their continuous operation capabilities (order of minutes). This research focuses on the design and the conjugate heat transfer and resultant thermo-structural analysis of a multi-segment nozzle and low-Reynolds, hypersonic diffuser for the new arc-heated wind tunnel (AHWT-II) of the University of Texas at Arlington. Nozzles and hypersonic diffusers are critical components that experience highly complex flows (non-equilibrium aerothermochemistry) and high (local and distributed) heat-flux loads which significantly augment the complexity of the problems associated with their thermal management. The proper design and thermo-mechanical analysis of these components are crucial elements for the operability of the new facility. This work is centered on the design considerations, methodologies and the detailed analysis of the aforementioned components which resulted in the definition of final parts and assemblies that are under manufacturing at this writing. The project is jointly sponsored by the Office of Naval Research (ONR) and the Defense Advanced Research Project Agency (DARPA).
A field study of wind over a simulated block building
NASA Technical Reports Server (NTRS)
Frost, W.; Shahabi, A. M.
1977-01-01
A full-scale field study of the wind over a simulated two-dimensional building is reported. The study develops an experiment to investigate the structure and magnitude of the wind fields. A description of the experimental arrangement, the type and expected accuracy of the data, and the range of the data are given. The data are expected to provide a fundamental understanding of mean wind and turbulence structure of the wind field around the bluff body. Preliminary analysis of the data demonstrates the reliability and completeness of the data in this regard.
Simulation of stochastic wind action on transmission power lines
NASA Astrophysics Data System (ADS)
Wielgos, Piotr; Lipecki, Tomasz; Flaga, Andrzej
2018-01-01
The paper presents FEM analysis of the wind action on overhead transmission power lines. The wind action is based on a stochastic simulation of the wind field in several points of the structure and on the wind tunnel tests on aerodynamic coefficients of the single conductor consisting of three wires. In FEM calculations the section of the transmission power line composed of three spans is considered. Non-linear analysis with deadweight of the structure is performed first to obtain the deformed shape of conductors. Next, time-dependent wind forces are applied to respective points of conductors and non-linear dynamic analysis is carried out.
The Formation of Filamentary Structures in Radiative Cluster Winds
NASA Astrophysics Data System (ADS)
Rodríguez-González, Ary; Esquivel, Alejandro; Raga, Alejandro C.; Cantó, Jorge
We explore the dynamics of a "cluster wind" flow in the regime in which the shocks resulting from the interaction of winds from nearby stars are radiative. We show that for a cluster with low-intermedia mass stars, the wind interactions are indeed likely to be radiative. We then compute three dimensional, radiative simulations of a cluster of 75 young stars, exploring the effects of varying the wind parameters and the density of the initial ISM that permeates the volume of the cluster. These simulations show that the ISM is compressed by the action of the winds into a structure of dense knots and filaments.
NASA Technical Reports Server (NTRS)
Auer, L. H.; Koenigsberger, G.
1994-01-01
Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.
Aspects of structural health and condition monitoring of offshore wind turbines
Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.
2015-01-01
Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864
Aspects of structural health and condition monitoring of offshore wind turbines.
Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K
2015-02-28
Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.
Inherent length-scales of periodic solar wind number density structures
NASA Astrophysics Data System (ADS)
Viall, N. M.; Kepko, L.; Spence, H. E.
2008-07-01
We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
Aerodynamics of magnetic levitation (MAGLEV) trains
NASA Technical Reports Server (NTRS)
Schetz, Joseph A.; Marchman, James F., III
1996-01-01
High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.
Directional Wave Spectra Observed During Intense Tropical Cyclones
NASA Astrophysics Data System (ADS)
Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.
2018-02-01
Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.
3D-PTV around Operational Wind Turbines
NASA Astrophysics Data System (ADS)
Brownstein, Ian; Dabiri, John
2016-11-01
Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.
Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.
Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth
2013-02-13
Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.
NASA Technical Reports Server (NTRS)
Richardson, Ian G.; Cane, Hilary V.
2012-01-01
In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.
Main drive selection for the Windstorm Simulation Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, J.M.; Earl, J.S.
1998-02-01
Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributesmore » is achieved at the best value. Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.« less
Mojica, Elizabeth K.; Watts, Bryan D.; Turrin, Courtney L.
2016-01-01
Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60–100). PMID:27336482
Mojica, Elizabeth K; Watts, Bryan D; Turrin, Courtney L
2016-01-01
Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60-100).
A study on the required performance of a 2G HTS wire for HTS wind power generators
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun
2016-05-01
YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.
Multi-Instrument Observations of Prolonged Stratified Wind Layers at Iqaluit, Nunavut
NASA Astrophysics Data System (ADS)
Mariani, Zen; Dehghan, Armin; Gascon, Gabrielle; Joe, Paul; Hudak, David; Strawbridge, Kevin; Corriveau, Julien
2018-02-01
Data collected between October 2015 and May 2016 at Environment and Climate Change Canada's Iqaluit research site (64°N, 69°W) have revealed a high frequency (40% of all days for which observations were available) of stratified wind layer events that occur from near the surface up to about 7.2 km above sea level. These stratified wind layers are clearly visible as wind shifts (90 to 180°) with height in range-height indicator scans from the Doppler lidar and Ka-band radar and in wind direction profiles from the Doppler lidar and radiosonde. During these events, the vertical structure of the flow appears to be a stack of 4 to 10 layers ranging in vertical width from 0.1 to 4.4 km. The stratification events that were observed occurred predominantly (81%) during light precipitation and lasted up to 27.5 h. The integrated measurement platforms at Iqaluit permitted continuous observations of the evolution of stratification events in different meteorological conditions.
Influence of Wind Pressure on the Carbonation of Concrete
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-01-01
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462
Influence of Wind Pressure on the Carbonation of Concrete.
Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun
2015-07-24
Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.
Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean
2015-06-12
concentrations of wind-generated sea spray and the resulting spray icing on offshore structures, such as wind turbines and exploration, drilling , and...We anticipate that structures placed in shallow water—wind turbines, drilling rigs, or man-made production islands, for instance—will, therefore...and the severity of sea spray icing on fixed offshore structures. We will use existing information on the relationship of the spray concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, W. K.
1985-01-01
A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.« less
The GalileoJupiter Probe Doppler Wind Experiment
NASA Astrophysics Data System (ADS)
Atkinson, D. H.
2001-09-01
The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind recovery, the frequency residuals offer tantalizing clues to microstructure in the atmospheric dynamics, including turbulence and wave motion.
Structure-borne sound and vibration from building-mounted wind turbines
NASA Astrophysics Data System (ADS)
Moorhouse, Andy; Elliott, Andy; Eastwick, Graham; Evans, Tomos; Ryan, Andy; von Hunerbein, Sabine; le Bescond, Valentin; Waddington, David
2011-07-01
Noise continues to be a significant factor in the development of wind energy resources. In the case of building-mounted wind turbines (BMWTs), in addition to the usual airborne sound there is the potential for occupants to be affected by structure-borne sound and vibration transmitted through the building structure. Usual methods for prediction and evaluation of noise from large and small WTs are not applicable to noise of this type. This letter describes an investigation aiming to derive a methodology for prediction of structure-borne sound and vibration inside attached dwellings. Jointly funded by three UK government departments, the work was motivated by a desire to stimulate renewable energy generation by the removal of planning restrictions where possible. A method for characterizing BMWTs as sources of structure-borne sound was first developed during a field survey of two small wind turbines under variable wind conditions. The 'source strength' was established as a function of rotor speed although a general relationship to wind speed could not be established. The influence of turbulence was also investigated. The prediction methodology, which also accounts for the sound transmission properties of the mast and supporting building, was verified in a field survey of existing installations. Significant differences in behavior and subjective character were noted between the airborne and structure-borne noise from BMWTs.
ON THE WEAK-WIND PROBLEM IN MASSIVE STARS: X-RAY SPECTRA REVEAL A MASSIVE HOT WIND IN {mu} COLUMBAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huenemoerder, David P.; Oskinova, Lidia M.; Todt, Helge
2012-09-10
{mu} Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the {sup w}eak-wind problem{sup -}identified frommore » cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are 'weak-wind' stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.« less
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J.
1999-01-01
UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self-absorptions reflect a wind turbulence of approximately equal 9-21 km/s. We further characterize the wind by comparing the observations with synthetic profiles generated with the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code, assuming simple models of the outer atmospheric structure. These comparisons indicate that the wind in 1994 can be described by a model with a wind acceleration parameter beta approximately 0.9, a terminal velocity of 29-33 km/s, and a mass-loss rate approximately 3 x 10(exp -9) solar M/yr. Modeling of the 3.6 cm radio flux observed in 1997 suggests a more slowly accelerating wind (higher beta) and/or a higher mass-loss rate than inferred from the UV line profiles. These differences may be due to temporal variations in the wind or from limitations in one or both of the models. The discrepancy is currently under investigation.
Full-scale monitoring of wind and suspension bridge response
NASA Astrophysics Data System (ADS)
Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.
2017-12-01
Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.
Extreme winds and tornadoes: design and evaluation of buildings and structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The general provisions of ANSI A58.1-1982 are explained in detail. As mentioned above, these procedures may be used to determine design wind loads on structures from extreme winds, hurricane and tornado winds. Treatment of atmospheric pressure change loads are discussed, including recommendations for venting a building, if necessary, and the effects of rate of pressure change on HVAC systems. Finally, techniques for evaluating existing facilities are described.
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Stansbery, Eileen K.
2006-01-01
The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yin, Xiaobin; Shi, Hanqing; Wang, Zhenzhan; Xu, Qing
2018-04-01
Accurate estimations of typhoon-level winds are highly desired over the western Pacific Ocean. A wind speed retrieval algorithm is used to retrieve the wind speeds within Super Typhoon Nepartak (2016) using 6.9- and 10.7-GHz brightness temperatures from the Japanese Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on board the Global Change Observation Mission-Water 1 (GCOM-W1) satellite. The results show that the retrieved wind speeds clearly represent the intensification process of Super Typhoon Nepartak. A good agreement is found between the retrieved wind speeds and the Soil Moisture Active Passive wind speed product. The mean bias is 0.51 m/s, and the root-mean-square difference is 1.93 m/s between them. The retrieved maximum wind speeds are 59.6 m/s at 04:45 UTC on July 6 and 71.3 m/s at 16:58 UTC on July 6. The two results demonstrate good agreement with the results reported by the China Meteorological Administration and the Joint Typhoon Warning Center. In addition, Feng-Yun 2G (FY-2G) satellite infrared images, Feng-Yun 3C (FY-3C) microwave atmospheric sounder data, and AMSR2 brightness temperature images are also used to describe the development and structure of Super Typhoon Nepartak.
Development and validation of a method to estimate the potential wind erosion risk in Germany
NASA Astrophysics Data System (ADS)
Funk, Roger; Deumlich, Detlef; Völker, Lidia
2017-04-01
The introduction of the Cross Compliance (CC) regulations for soil protection resulted in the demand for the classification of the the wind erosion risk on agricultural areas in Germany nationwide. A spatial highly resolved method was needed based on uniform data sets and validation principles, which provides a fair and equivalent procedure for all affected farmers. A GIS-procedure was developed, which derives the site specific wind erosion risk from the main influencing factors: soil texture, wind velocity, wind direction and landscape structure following the German standard DIN 19706. The procedure enables different approaches in the Federal States and comparable classification results. Here, we present the approach of the Federal State of Brandenburg. In the first step a complete soil data map was composed in a grid size of 10 x 10 m. Data were taken from 1.) the Soil quality Appraisal (scale 1:10.000), 2.) the Medium-scale Soil Mapping (MMK, 1:25.000), 3.) extrapolating the MMK, 4.) new Soil quality Appraisal (new areas after coal-mining). Based on the texture and carbon content the wind erosion susceptibility was divided in 6 classes. This map was combined with data of the annual average wind velocity resulting in an increase of the risk classes for wind velocities > 5 ms-1 and a decrease for < 3 ms-1. The sheltering effect of landscape structure is regarded by allocating a height to each landscape element, corresponding to the described features in the digital "Biotope and Land Use Map". The "hill shade" procedure of ArcGIS was used to set virtual shadows behind the landscape elements for eight directions. The relative frequency of wind from each direction was used as a weighting factor and multiplied with the numerical values of the shadowed cells. Depending on the distance to the landscape element the shadowing effect was combined with the risk classes. The results show that the wind erosion risk is obviously reduced by integrating landscape structures into the risk assessment. After the renewed classification for the entire Federal State, about 60% of the area in the highest, and 40% in the medium risk classes changed into lower classes. The area of the highest potential risk class decreased from 40% to 17% in relation to the total area. A validation of this approach was made by data of the Digital Surface Model (DSM, first pulse) from laser scanning of an area of 144 km2 with a spatial resolution of 1 x 1 m. It could be shown that the allocated height values of the landscape elements were correct in 75% per cent, too low in 15% and too high in 11% off all cases. The current landscape element map of the Federal State of Brandenburg will be replaced, when the DSM is available for the entire area in the near future.
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
NASA Astrophysics Data System (ADS)
Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.
2017-08-01
The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.
2017-08-14
The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.
The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. As a result, these insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less
Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers
Choi, Seong-Won; Farinholt, Kevin M.; Taylor, Stuart G.; ...
2014-01-01
This paper presents the experimental results of active-sensing structural health monitoring (SHM) techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrantmore » further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.« less
Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind
NASA Technical Reports Server (NTRS)
Osherovich, Vladimir A.; Fainberg, Joseph
2015-01-01
Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard
1991-01-01
Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.
Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind
NASA Astrophysics Data System (ADS)
Jendzelovsky, Norbert; Antal, Roland
2017-10-01
Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case vibration rises and structure can be snapped or deformed permanently. In the long term vibration, fatigue stress can be significant. At the conclusion hazardous wind speed and recommendations for different shapes and parameters of lamellas are shown.
Squeezing of particle distributions by expanding magnetic turbulence and space weather variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffolo, D.; Seripienlert, A.; Tooprakai, P.
Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ∼2 MeV nucleon{sup –1}) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional magnetic fluctuations to tracemore » simulated trajectories in the solar wind, we show that the distribution of high-energy (E ≥ 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.« less
Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey
NASA Astrophysics Data System (ADS)
Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.
2017-12-01
Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.
NASA Astrophysics Data System (ADS)
Hardesty, R.; Brewer, A.; Banta, R. M.; Senff, C. J.; Sandberg, S. P.; Alvarez, R. J.; Weickmann, A. M.; Sweeney, C.; Karion, A.; Petron, G.; Frost, G. J.; Trainer, M.
2012-12-01
Aircraft-based mass balance approaches are often used to estimate greenhouse gas emissions from distributed sources such as urban areas and oil and gas fields. A scanning Doppler lidar, which measures range-resolved wind and aerosol backscatter information, can provide important information on mixing and transport processes in the planetary boundary layer for these studies. As part of the Uintah Basin Winter Ozone Study, we deployed a high resolution Doppler lidar to characterize winds and turbulence, atmospheric mixing, and mixing layer depth in the oil and gas fields near Vernal, Utah. The lidar observations showed evolution of the horizontal wind field, vertical mixing and aerosol structure for each day during the 5-week deployment. This information was used in conjunction with airborne in situ observations of methane and carbon dioxide to compute methane fluxes and estimate basin-wide methane emissions. A similar experiment incorporating a lidar along with a radar wind profiler and instrumented aircraft was subsequently carried out in the vicinity of the Denver-Julesburg Basin in Colorado. Using examples from these two studies we discuss the use of Doppler lidar in conjunction with other sources of wind information and boundary layer structure for mass-balance type studies. Plans for a one-year deployment of a Doppler lidar as part of the Indianapolis Flux experiment to estimate urban-scale greenhouse gas emissions near are also presented.
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui
2018-06-01
This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.
CFD-based design load analysis of 5MW offshore wind turbine
NASA Astrophysics Data System (ADS)
Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.
2012-11-01
The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.
Current Sheets in the Corona and the Complexity of Slow Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro
2010-01-01
The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman
2018-05-01
Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition, having proper lighting while working with high-speed cameras can be an issue, therefore image enhancement and contrast manipulation has also been performed to enhance the raw images. Ultimately, the extracted resonant frequencies and operational deflection shapes are used to detect the presence of damage, demonstrating the feasibility of implementing non-contact video measurements to perform realistic structural damage detection.
Application of two passive strategies on the load mitigation of large offshore wind turbines
NASA Astrophysics Data System (ADS)
Shirzadeh, Rasoul; Kühn, Martin
2016-09-01
This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.
Wind flow modulation due to variations of the water surface roughness
NASA Astrophysics Data System (ADS)
Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana
2016-04-01
Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).
A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.
Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo
2010-03-01
A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.
Colliding Stellar Winds Structure and X-ray Emission
NASA Astrophysics Data System (ADS)
Pittard, J. M.; Dawson, B.
2018-04-01
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.
NASA Technical Reports Server (NTRS)
Musick, H. Brad; Truman, C. Randall; Trujillo, Steven M.
1992-01-01
Wind erosion in semi-arid regions is a significant problem for which the sheltering effect of rangeland vegetation is poorly understood. Individual plants may be considered as porous roughness elements which absorb or redistribute the wind's momentum. The saltation threshold is the minimum wind velocity at which soil movement begins. The dependence of the saltation threshold on geometrical parameters of a uniform roughness array was studied in a wind tunnel. Both solid and porous elements were used to determine relationships between canopy structure and the threshold velocity for soil transport. The development of a predictive relation for the influence of vegetation canopy structure on wind erosion of soil is discussed.
Magnetic Origin of Black Hole Winds Across the Mass Scale
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2017-01-01
Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.
Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars
NASA Technical Reports Server (NTRS)
Lichter, Matthew D.; Viterna, Larry
1999-01-01
A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.
Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures
NASA Astrophysics Data System (ADS)
Lu, Hongya; Zeng, Pan; Lei, Liping
2018-03-01
The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.
Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.;
2016-01-01
Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.
NASA Astrophysics Data System (ADS)
Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao
2017-11-01
The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.
High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines
NASA Astrophysics Data System (ADS)
Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.
2014-06-01
Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.
Simulation of probabilistic wind loads and building analysis
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Chamis, Christos C.
1991-01-01
Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.
Modeling Smart Structure of Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping
2012-06-01
With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.
Large-scale Advanced Prop-fan (LAP) high speed wind tunnel test report
NASA Technical Reports Server (NTRS)
Campbell, William A.; Wainauski, Harold S.; Arseneaux, Peter J.
1988-01-01
High Speed Wind Tunnel testing of the SR-7L Large Scale Advanced Prop-Fan (LAP) is reported. The LAP is a 2.74 meter (9.0 ft) diameter, 8-bladed tractor type rated for 4475 KW (6000 SHP) at 1698 rpm. It was designated and built by Hamilton Standard under contract to the NASA Lewis Research Center. The LAP employs thin swept blades to provide efficient propulsion at flight speeds up to Mach .85. Testing was conducted in the ONERA S1-MA Atmospheric Wind Tunnel in Modane, France. The test objectives were to confirm that the LAP is free from high speed classical flutter, determine the structural and aerodynamic response to angular inflow, measure blade surface pressures (static and dynamic) and evaluate the aerodynamic performance at various blade angles, rotational speeds and Mach numbers. The measured structural and aerodynamic performance of the LAP correlated well with analytical predictions thereby providing confidence in the computer prediction codes used for the design. There were no signs of classical flutter throughout all phases of the test up to and including the 0.84 maximum Mach number achieved. Steady and unsteady blade surface pressures were successfully measured for a wide range of Mach numbers, inflow angles, rotational speeds and blade angles. No barriers were discovered that would prevent proceeding with the PTA (Prop-Fan Test Assessment) Flight Test Program scheduled for early 1987.
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter
2015-09-01
Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or inside them where failures might occur. Within this paper, an approach was used to extract the full-field dynamic strain on a wind turbine assembly subject to arbitrary loading conditions. A three-bladed wind turbine having 2.3-m long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. For three different test cases, the turbine was excited using (1) pluck testing, (2) random impacts on blades with three impact hammers, and (3) random excitation by a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the paper show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for each of the three loading conditions. The approach used in this paper to predict the strain showed higher accuracy than the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.
Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005
NASA Astrophysics Data System (ADS)
Pástor, P.
2017-08-01
Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.
78 FR 2382 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...: Blackwell Wind, LLC, CPV Cimarron Renewable Energy Company, LLC, Elk City Wind, LLC, Elk City II Wind, LLC, Ensign Wind, LLC, FPL Energy Cowboy Wind, LLC, FPL Energy Oklahoma Wind, LLC, FPL Energy Sooner Wind, LLC, Gray County Wind Energy, LLC, High Majestic Wind Energy Center, LLC, High Majestic Wind II, LLC, Minco...
Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.
1989-01-01
Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.
Approximate method for calculating free vibrations of a large-wind-turbine tower structure
NASA Technical Reports Server (NTRS)
Das, S. C.; Linscott, B. S.
1977-01-01
A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.
NASA Astrophysics Data System (ADS)
Harlaß, Jan; Latif, Mojib; Park, Wonsun
2018-04-01
We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.
A 3D dynamical model of the colliding winds in binary systems
NASA Astrophysics Data System (ADS)
Parkin, E. R.; Pittard, J. M.
2008-08-01
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.
THE BALMER-DOMINATED BOW SHOCK AND WIND NEBULA STRUCTURE OF {gamma}-RAY PULSAR PSR J1741-2054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romani, Roger W.; Shaw, Michael S.; Camilo, Fernando
2010-12-01
We have detected an H{alpha} bow shock nebula around PSR J1741-2054, a pulsar discovered through its GeV {gamma}-ray pulsations. The pulsar is only {approx}1.''5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The H{alpha} images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity {approx}150 km s{sup -1}, directed 15{sup 0} {+-} 10{sup 0} out of the plane of the sky. The complex H{alpha} profile indicates that different portions of the post-shock flow dominate line emission as gas moves along themore » nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact {approx}2.''5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close ({<=}0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient {gamma}-ray production for this unusual, energetic pulsar.« less
Wireless monitoring of structural components of wind turbines including tower and foundations
NASA Astrophysics Data System (ADS)
Wondra, B.; Botz, M.; Grosse, C. U.
2016-09-01
Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.
Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones
NASA Astrophysics Data System (ADS)
Lee, J. L.; Lee, W. C.; MacDonald, A. E.
2006-01-01
The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.
Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer
NASA Astrophysics Data System (ADS)
Schnieders, Jana; Garbe, Christoph
2014-05-01
The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.
Global MHD simulations driven by idealized Alfvenic fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.
2017-12-01
High speed solar wind streams (HSSs) and corotating interaction regions (CIRs) often lead to MeV electron flux enhancements the Earth's outer radiation belt. The relevant physical processes responsible for these enhancements are not entirely understood. We investigate the potential role that solar wind Alfvenic fluctuations, intrinsic structures embedded in the HSS/CIRs, play in radiation belt dynamics. In particular, we explore the hypothesis that magnetospheric ultra-low frequency (ULF) pulsations driven by interplanetary magnetic field fluctuations are the intermediary mechanism responsible for the pronounced effect that HSS/CIRs have on the outer electron radiation belt. We examine these effects using global, three-dimensional magnetohydrodynamic (MHD) simulations driven by idealized interplanetary Alfvenic fluctuations, both monochromatic and broadband noise (Kolmogorov turbulence).
Disturbance Accommodating Adaptive Control with Application to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2012-01-01
Adaptive control techniques are well suited to applications that have unknown modeling parameters and poorly known operating conditions. Many physical systems experience external disturbances that are persistent or continually recurring. Flexible structures and systems with compliance between components often form a class of systems that fail to meet standard requirements for adaptive control. For these classes of systems, a residual mode filter can restore the ability of the adaptive controller to perform in a stable manner. New theory will be presented that enables adaptive control with accommodation of persistent disturbances using residual mode filters. After a short introduction to some of the control challenges of large utility-scale wind turbines, this theory will be applied to a high-fidelity simulation of a wind turbine.
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
Periodic Alpha Signatures and the Origins of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Blume, Catherine; Kepko, Larry
2017-01-01
The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density structures seem to support the S-web model over the expansion factor model and can provide additional constrains to slow solar wind models moving forward.
Multiple damage identification on a wind turbine blade using a structural neural system
NASA Astrophysics Data System (ADS)
Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.
2007-04-01
A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.
From ultraluminous X-ray sources to ultraluminous supersoft sources: NGC 55 ULX, the missing link
NASA Astrophysics Data System (ADS)
Pinto, C.; Alston, W.; Soria, R.; Middleton, M. J.; Walton, D. J.; Sutton, A. D.; Fabian, A. C.; Earnshaw, H.; Urquhart, R.; Kara, E.; Roberts, T. P.
2017-07-01
In recent work with high-resolution reflection grating spectrometers (RGS) aboard XMM-Newton, Pinto et al. have discovered that two bright and archetypal ultraluminous X-ray sources (ULXs) have strong relativistic winds in agreement with theoretical predictions of high accretion rates. It has been proposed that such winds can become optically thick enough to block and reprocess the disc X-ray photons almost entirely, making the source appear as a soft thermal emitter or ultraluminous supersoft X-ray source (ULS). To test this hypothesis, we have studied a ULX where the wind is strong enough to cause significant absorption of the hard X-ray continuum: NGC 55 ULX. The RGS spectrum of NGC 55 ULX shows a wealth of emission and absorption lines blueshifted by significant fractions of the light speed (0.01-0.20)c indicating the presence of a powerful wind. The wind has a complex dynamical structure with the ionization state increasing with the outflow velocity, which may indicate launching from different regions of the accretion disc. The comparison with other ULXs such as NGC 1313 X-1 and NGC 5408 X-1 suggests that NGC 55 ULX is being observed at higher inclination. The wind partly absorbs the source flux above 1 keV, generating a spectral drop similar to that observed in ULSs. The softening of the spectrum at lower (˜ Eddington) luminosities and the detection of a soft lag agree with the scenario of wind clumps crossing the line of sight, partly absorbing and reprocessing the hard X-rays from the innermost region.
Blade design and operating experience on the MOD-OA 200 kW wind turbine at Clayton, New Mexico
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Shaltens, R. K.
1979-01-01
Two 60 foot long aluminum wind turbine blades were operated for over 3000 hours on the MOD-OA wind turbine. The first signs of blade structural damage were observed after 400 hours of operation. Details of the blade design, loads, cost, structural damage, and repair are discussed.
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Girouard, R. L.; Young, C. P., Jr.; Petley, D. H.; Hudson, J. L., Jr.; Hudgins, J. L.
1977-01-01
This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed.
Electric power from vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Touryan, K. J.; Strickland, J. H.; Berg, D. E.
1987-12-01
Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.
Large, low cost composite wind turbine blades
NASA Technical Reports Server (NTRS)
Gewehr, H. W.
1979-01-01
A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.
Prediction for the Flow-induced Gravity Field of Saturn: Implications for Cassini’s Grand Finale
NASA Astrophysics Data System (ADS)
Galanti, Eli; Kaspi, Yohai
2017-07-01
The Cassini measurements of Saturn’s gravity field during its Grand Finale might shed light on a long-standing question regarding the flow on Saturn. While the cloud-level winds are well known, little is known about whether these winds are confined to the outer layers of the planet or penetrate deep into the interior. An additional complexity is added by the uncertainty in the exact rotation period of Saturn, a key factor in determining the cloud-level winds, with an effect on the north-south symmetric part of the winds. Using Saturn’s cloud-level winds we relate the flow to the gravity harmonics. We give a prediction for the odd harmonics {J}3,{J}5,{J}7,{and} {J}9 as a function of the flow depth, identifying three ranges of depths. Since the odd harmonics depend solely on the flow, and are not influenced by Saturn’s shape and static density distribution, any measured value of the odd harmonics by Cassini can be used to uniquely determine the depth of the flow. We also discuss the flow-induced even harmonics {{Δ }}{J}2,{{Δ }}{J}4,\\ldots ,{{Δ }}{J}12 that are affected by Saturn’s rotation period. While the high-degree even harmonics might also be used to determine the flow depth, the lower-degree even harmonics serve as uncertainties for analysis of the planet’s interior structure and composition. Thus, the gravity harmonics measured during the Cassini Grand Finale may be used to get a first-order estimate of the flow structure and to better constrain the planet’s density structure and composition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Definitions. 550.902 Section 550.902 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL... an open structure where adverse conditions such as darkness, lightning, steady rain, or high wind...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Definitions. 550.902 Section 550.902 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL... an open structure where adverse conditions such as darkness, lightning, steady rain, or high wind...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Definitions. 550.902 Section 550.902 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL... an open structure where adverse conditions such as darkness, lightning, steady rain, or high wind...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Definitions. 550.902 Section 550.902 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL... an open structure where adverse conditions such as darkness, lightning, steady rain, or high wind...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Definitions. 550.902 Section 550.902 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL... an open structure where adverse conditions such as darkness, lightning, steady rain, or high wind...
Kuok, Sin-Chi; Yuen, Ka-Veng
2013-01-01
The goal of this study is to investigate the structural performance of reinforced concrete building under the influence of severe typhoon. For this purpose, full-scale monitoring of a 22-story reinforced concrete building was conducted during the entire passage process of a severe typhoon "Vicente." Vicente was the eighth tropical storm developed in the Western North Pacific Ocean and the South China Sea in 2012. Moreover, it was the strongest and most devastating typhoon that struck Macao since 1999. The overall duration of the typhoon affected period that lasted more than 70 hours and the typhoon eye region covered Macao for around one hour. The wind and structural response measurements were acquired throughout the entire typhoon affected period. The wind characteristics were analyzed using the measured wind data including the wind speed and wind direction time histories. Besides, the structural response measurements of the monitored building were utilized for modal identification using the Bayesian spectral density approach. Detailed analysis of the field data and the typhoon generated effects on the structural performance are discussed.
Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years
NASA Astrophysics Data System (ADS)
Lastovicka, Jan; Krizan, Peter; Kozubek, Michal
2018-01-01
One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.
Structure of the airflow above surface waves
NASA Astrophysics Data System (ADS)
Buckley, Marc; Veron, Fabrice
2016-04-01
Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer theory.
NASA Astrophysics Data System (ADS)
Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.
2017-12-01
At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.
NASA Astrophysics Data System (ADS)
Monteiro, Isabel T.; Santos, Aires J.; Belo-Pereira, Margarida; Oliveira, Paulo B.
2016-04-01
During summer (June, July, and August), northerly winds driven by the Azores anticyclone are prevalent over western Iberia. The Quick Scatterometer Satellite 2000 to 2009 summertime estimates reveal a broad high wind speed (≥7 ms-1) area extending about 300 km from shore and along the entire Iberian west coast. Nested in this large high-speed region, preferred maximum regions anchored in the Iberian major capes, Finisterre, Roca, and S. Vicente, are found. Composite analyses of wind maxima were performed to diagnose the typical summertime synoptic-scale pressure distribution associated with these smaller size high-speed regions. The flow low-level structure was further studied with a mesoscale numerical prediction model for three northerly events characterized by typical summertime synoptic conditions. A low-level coastal jet, setting the background conditions to the marine atmospheric boundary layer (MABL) response to topography, was found in the three cases. The causes for wind maximum downwind capes were investigated, focusing on the hypothesis that western Iberia MABL responds to hydraulic forcing. For the three events supercritical and transcritical flow conditions were identified and expansion fan signatures were found downwind each cape. Aircraft measurements, performed during one of the events, gave additional evidence of the expansion fan leeward Cape Roca. The importance of other forcing mechanisms was also assessed by considering the hypothesis of downslope wind acceleration and found to be in direct conflict with soundings and surface observations.
Automated wind load characterization of wind turbine structures by embedded model updating
NASA Astrophysics Data System (ADS)
Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.
2010-04-01
The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.
NASA Astrophysics Data System (ADS)
Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2012-12-01
Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.
Structural analysis considerations for wind turbine blades
NASA Technical Reports Server (NTRS)
Spera, D. A.
1979-01-01
Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.
Lidar Data Products and Applications Enabled by Conical Scanning
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo
2004-01-01
Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.
The Magnetic Structure of H-Alpha Macrospicules in Solar Coronal Holes
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakuri, T.
2003-01-01
Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic flux of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of H-alpha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar-coronal holes in 6 days of image-processed full-disk H-alpha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single-column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events, and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions and corona are driven by explosive reconnection events in the magnetic network.
The Magnetic Structure of H-alpha Macrospicules in Solar Coronal Holes
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T.
2004-01-01
Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated back to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of Ha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar coronal holes in 6 days of image- processed full-disk Ha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions are driven by explosive reconnection events in the magnetic network.
Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading
NASA Astrophysics Data System (ADS)
Dervilis, N.; Choi, M.; Antoniadou, I.; Farinholt, K. M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Worden, K.; Farrar, C. R.
2012-08-01
The remarkable evolution of new generation wind turbines has led to a dramatic increase of wind turbine blade size. In turn, a reliable structural health monitoring (SHM) system will be a key factor for the successful implementation of such systems. Detection of damage at an early stage is a crucial issue as blade failure would be a catastrophic result for the entire wind turbine. In this study the SHM analysis will be based on experimental measurements of Frequency Response Functions (FRFs) extracted by using an input/output acquisition technique under a fatigue loading of a 9m CX-100 blade at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC) performed in the Los Alamos National Laboratory. The blade was harmonically excited at its first natural frequency using a Universal Resonant Excitation (UREX) system. For analysis, the Auto-Associative Neural Network (AANN) is a non-parametric method where a set of damage sensitive features gathered from the measured structure are used to train a network that acts as a novelty detector. This traditionally has a highly complex "bottleneck" structure with five layers in the AANN. In the current paper, a new attempt is also exploited based on an AANN with one hidden layer in order to reduce the theoretical and computational difficulties. Damage detection of composite bodies of blades is a "grand challenge" due to varying aerodynamic and gravitational loads and environmental conditions. A study of the noise tolerant capability of the AANN which is associated to its generalisation capacity is addressed. It will be shown that vibration response data combined with AANNs is a robust and powerful tool, offering novelty detection even when operational and environmental variations are present. The AANN is a method which has not yet been widely used in the structural health monitoring of composite blades.
NASA Astrophysics Data System (ADS)
Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.
2016-12-01
CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.
Projection Moire Interferometry Measurements of Micro Air Vehicle Wings
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.
2001-01-01
Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.
GCR Modulation by Small-Scale Features in the Interplanetary Medium
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.
2007-12-01
In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.
EFFECT OF COHERENT STRUCTURES ON ENERGETIC PARTICLE INTENSITY IN THE SOLAR WIND AT 1 AU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessein, Jeffrey A.; Matthaeus, William H.; Wan, Minping
2015-10-10
We present results from an analysis of Advanced Composition Explorer (ACE) observations of energetic particles in the 0.047–4.78 MeV range associated with shocks and discontinuities in the solar wind. Previous work found a strong correlation between coherent structures and energetic particles measured by ACE/EPAM. Coherent structures are identified using the Partial Variance of Increments (PVI) method, which is essentially a normalized vector increment. The correlation was based on a superposed epoch analysis using over 12 years of data. Here, we examine many individual high-PVI events to better understand this association emphasizing intervals selected from data with shock neighborhoods removed. Wemore » find that in many cases the local maximum in PVI is in a region of rising or falling energetic particle intensity, which suggests that magnetic discontinuities may act as barriers inhibiting the motion of energetic particles across them.« less
Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem.
Wilson, J H
1979-01-01
Because the individual strands of DNA are intertwined, formation of heteroduplex structures between duplexes--as in presumed recombination intermediates--presents a topological puzzle, known as the winding problem. Previous approaches to this problem have assumed that single-strand breaks are required to permit formation of fully coiled heteroduplexes. This paper describes a simple, nick-free solution to the winding problem that satisfies all topological constraints. Homologous duplexes associated by their minor-groove surfaces can switch strand pairing to form reciprocal heteroduplexes that coil together into a compact, four-stranded helix throughout the region of pairing. Model building shows that this fused heteroduplex structure is plausible, being composed entirely of right-handed primary helices with Watson-Crick base pairing throughout. Its simplicity of formation, structural symmetry, and high degree of specificity are suggestive of a natural mechanism for alignment by base pairing between intact homologous duplexes. Implications for genetic recombination are discussed. Images PMID:291028
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
Wind Fins: Novel Lower-Cost Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Morris; Dr. Will D. Swearingen
This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less
Development of High Altitude UAV Weather Radars for Hurricane Research
NASA Technical Reports Server (NTRS)
Heymsfield, Gerald; Li, Li-Hua
2005-01-01
A proposed effort within NASA called (ASHE) over the past few years was aimed at studying the genesis of tropical disturbances off the east coast of Africa. This effort was focused on using an instrumented Global Hawk UAV with high altitude (%Ok ft) and long duration (30 h) capability. While the Global Hawk availability remains uncertain, development of two relevant instruments, a Doppler radar (URAD - UAV Radar) and a backscatter lidar (CPL-UAV - Cloud Physics Lidar), are in progress. The radar to be discussed here is based on two previous high-altitude, autonomously operating radars on the NASA ER-2 aircraft, the ER-2 Doppler Radar (EDOP) at X-band (9.6 GHz), and the Cloud Radar System (CRS) at W- band (94 GHz). The nadir-pointing EDOP and CRS radars profile vertical reflectivity structure and vertical Doppler winds in precipitation and clouds, respectively. EDOP has flown in all of the CAMEX flight series to study hurricanes over storms such as Hurricanes Bonnie, Humberto, Georges, Erin, and TS Chantal. These radars were developed at Goddard over the last decade and have been used for satellite algorithm development and validation (TRMM and Cloudsat), and for hurricane and convective storm research. We describe here the development of URAD that will measure wind and reflectivity in hurricanes and other weather systems from a top down, high-altitude view. URAD for the Global Hawk consists of two subsystems both of which are at X-band (9.3-9.6 GHz) and Doppler: a nadir fixed-beam Doppler radar for vertical motion and precipitation measurement, and a Conical scanning radar for horizontal winds in cloud and at the surface, and precipitation structure. These radars are being designed with size, weight, and power consumption suitable for the Global Hawk and other UAV's. The nadir radar uses a magnetron transmitter and the scanning radar uses a TWT transmitter. With conical scanning of the radar at a 35" incidence angle over an ocean surface in the absence of precipitation, the surface return over a single 360 degree sweep over -25 h-diameter region provides information on the surface wind speed and direction within the scan circle. In precipitation regions, the conical scan with appropriate mapping and analysis provides the 3D structure of reflectivity beneath the plane and the horizontal winds. The use of conical scanning in hurricanes has recently been demonstrated for measuring inner core winds with the IWRAP system flying on the NOAA P3's. In this presentation, we provide a description of the URAD system hardware, status, and future plans. In addition to URAD, NASA SBIR activity is supporting a Phase I study by Remote Sensing Solutions and the University of Massachusetts for a dual-frequency IWRAP for a high altitude UAV that utilizes solid state transmitters at 14 and 35 GHz, the same frequencies that are planned for the radar on the Global Precipitation System satellite. This will be discussed elsewhere at the meeting.
NASA Astrophysics Data System (ADS)
Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.
2018-06-01
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (˜1 keV) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers. Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth's exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV "lobster-eye" telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.
The tropical tropopause inversion layer: variability and modulation by equatorial waves
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2016-09-01
The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.
Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.
2016-01-01
Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.