Characterization of Fibre Channel over Highly Turbulent Optical Wireless Links
Johnson, G W; Henderer, B D; Wilburn, J W; Ruggiero, A J
2003-07-28
We report on the performance characterization and issues associated with using Fibre Channel (FC) over a highly turbulent free-space optical (FSO) link. Fibre Channel is a storage area network standard that provides high throughput with low overhead. Extending FC to FSO links would simplify data transfer from existing high-bandwidth sensors such as synthetic aperture radars and hyperspectral imagers. We measured the behavior of FC protocol at 1 Gbps in the presence of synthetic link dropouts that are typical of turbulent FSO links. Results show that an average bit error rate of less than 2 x 10{sup -8} is mandatory for adequate throughput. More importantly, 10 ns dropouts at a 2 Hz rate were sufficient to cause long (25 s) timeouts in the data transfer. Although no data was lost, this behavior is likely to be objectionable for most applications. Prospects for improvements in hardware and software will be discussed.
Characterization of gigabit ethernet over highly turbulent optical wireless links
NASA Astrophysics Data System (ADS)
Johnson, Gary W.; Cornish, John P.; Wilburn, Jeffrey W.; Young, Richard A.; Ruggiero, Anthony J.
2002-12-01
We report on the performance characterization and issues associated with using Gigabit Ethernet (GigE) over a highly turbulent 1.3 km air-optic lasercom links. Commercial GigE hardware is a cost-effective and scalable physical layer standard that can be applied to air-optic communications. We demonstrate a simple GigE hardware interface to a single-mode fiber-coupled, 1550 nm, WDM air-optic transceiver. TCP/IP serves as a robust and universal foundation protocol that has some tolerance of data loss due to atmospheric fading. Challenges include establishing and maintaining a connection with acceptable throughput under poor propagation conditions. The most useful link performance diagnostic is shown to be scintillation index, where a value of 0.2 is the maximum permissible for adequate GigE throughput. Maximum GigE throughput observed was 49.7% of that obtained with a fiber jumper when scintillation index is 0.1. Shortcomings in conventional measurements such as bit error rate are apparent. Prospects for forward error correction and other link enhancements will be discussed.
Characterization of Gigabit Ethernet Over Highly Turbulent Optical Wireless Links
Johnson, G W; Cornish, J P; Wilburn, J W; Young, R A; Ruggiero, A J
2002-07-01
We report on the performance characterization and issues associated with using Gigabit Ethernet (GigE) over a highly turbulent (C{sub n}{sup 2} > 10{sup -12}) 1.3 km air-optic lasercom links. Commercial GigE hardware is a cost-effective and scalable physical layer standard that can be applied to air-optic communications. We demonstrate a simple GigE hardware interface to a singlemode fiber-coupled, 1550 nm, WDM air-optic transceiver. TCPAP serves as a robust and universal foundation protocol that has some tolerance of data loss due to atmospheric fading. Challenges include establishing and maintaining a connection with acceptable throughput under poor propagation conditions. The most useful link performance diagnostic is shown to be scintillation index, where a value of 0.2 is the maximum permissible for adequate GigE throughput. Maximum GigE throughput observed was 49.7% of that obtained with a fiber jumper when scintillation index is 0.1. Shortcomings in conventional measurements such as bit error rate are apparent. Prospects for forward mor correction and other link enhancements will be discussed.
LOLAS-2: Redesign of an Optical Turbulence Profiler with High Altitude-resolution
NASA Astrophysics Data System (ADS)
Avila, R.; Zúñiga, C. A.; Tapia-Rodríguez, J. J.; Sánchez, L. J.; Cruz-González, I.; Avilés, J. L.; Valdés-Hernández, O.; Carrasco, E.
2016-10-01
We present the development, tests, and first results of the second-generation LOLAS-2. This instrument constitutes a strongly improved version of the prototype LOLAS, which is aimed at the measurement of optical turbulence profiles close to the ground, with high altitude-resolution. The method is based on the generalized Scidar principle that consists of taking double-star scintillation images on a defocused pupil plane and calculating in real time the autocovariance of the scintillation. The main components are an open-truss 40-cm Ritchey-Chrétien telescope, a German-type equatorial mount, an electron-multiplying CCD camera, and a dedicated acquisition and real-time data-processing software. The new optical design of LOLAS-2 is significantly simplified compared to the prototype. The experiments carried out to test the permanence of the image within the useful zone of the detector and the stability of the telescope focus show that LOLAS-2 can function without the use of the autoguiding and autofocus algorithms that were developed for the prototype version. Optical turbulence profiles obtained with the new LOLAS have the best altitude-resolution ever achieved with Scidar-like techniques (6.3 m). The simplification of the optical layout and the improved mechanical properties of the telescope and mount make of LOLAS-2 a more robust instrument.
Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.
2013-01-01
photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.
Adaptive optical ghost imaging through atmospheric turbulence.
Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Zhang, Jinghui; Shen, Hong; Qiao, Chunhong; Wang, Yingjian
2012-12-17
We demonstrate for the first time (to our knowledge) that a high-quality image can still be obtained in atmospheric turbulence by applying adaptive optical ghost imaging (AOGI) system even when conventional ghost imaging system fails to produce an image. The performance of AOGI under different strength of atmospheric turbulence is investigated by simulation. The influence of adaptive optics system with different numbers of adaptive mirror elements on obtained image quality is also studied.
Study of strong turbulence effects for optical wireless links
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Meric, Hasim; Kunter, Fulya
2012-10-01
Strong turbulence measurements that are taken using real time optical wireless experimental setups are valuable when studying the effects of turbulence regimes on a propagating optical beam. In any kind of FSO system, for us to know the strength of the turbulence thus the refractive index structure constant, is beneficial for having an optimum bandwidth of communication. Even if the FSO Link is placed very well-high-above the ground just to have weak enough turbulence effects, there can be severe atmospheric conditions that can change the turbulence regime. Having a successful theory that will cover all regimes will give us the chance of directly processing the image in existing or using an additional hardware thus deciding on the optimum bandwidth of the communication line at firsthand. For this purpose, Strong Turbulence data has been collected using an outdoor optical wireless setup placed about 85 centimeters above the ground with an acceptable declination and a path length of about 250 meters inducing strong turbulence to the propagating beam. Variations of turbulence strength estimation methods as well as frame image analysis techniques are then been applied to the experimental data in order to study the effects of different parameters on the result. Such strong turbulence data is compared with existing weak and intermediate turbulence data. Aperture Averaging Factor for different turbulence regimes is also investigated.
Wall induced turbulence distortions of optical measurements
NASA Astrophysics Data System (ADS)
Gustafsson, Ove K. S.; Henriksson, Markus; Sjöqvist, Lars
2009-09-01
Optical measurements and tests of optical instruments are often performed through an opened window or from the roof of an elevated building. This can also be a common situation for free-space optical (FSO) communication systems. Wind friction in combination with solar heating of the wall and the ground will create increased turbulence in a boundary layer close to the wall. For an outgoing laser beam this thin region of strong turbulence causes beam wander, beam broadening and beam break-up. For imaging and detection systems angle of arrival fluctuations and image blurring may result. In an attempt to estimate the strength of the atmospheric turbulence in the layer at the wall the refractive index structure constant (Cn2) was measured with an ultra sonic anemometer as a function of distance from the wall. The measurements were performed at the lower part of a window that was open just enough to give space for the anemometer. The window was placed 10 m above ground in a 12 m high building, with brick wall below the window and wooden panel above the window. Measurements of the turbulence as a function of distance from the wall were performed during different times of the day to study the influence of sun heating of the wall. The measured average Cn2 shows an exponentially decreasing function of distance from the wall. The exponential decay of Cn2 depends on the time of the day. The highest measured value of Cn2 was approximately 3x10-11 m-2/3 near the wall. The influence of wall turbulence is discussed with respect to its influence on laser beam propagation.
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence. PMID:22273930
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.
Submerged turbulence detection with optical satellites
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.
2013-01-01
During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed !100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 ! 104 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ! 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.
Submerged turbulence detection with optical satellites
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.
2007-09-01
During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 × 10 4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~ 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.
Optical turbulence in fiber lasers.
Wabnitz, Stefan
2014-03-15
We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788
First results from optical turbulence measurements at Cerro Las Campanas in 2010
NASA Astrophysics Data System (ADS)
Berdja, A.; Prieto, G.; Thomas-Osip, J. E.
2011-09-01
We report preliminary results from optical turbulence measurements carried out in 2010 at Cerro Las Campanas, the future site for the Giant Magellan Telescope (GMT). The instruments involved are MooSci, a lunar scintillometer for the near-ground optical turbulence profile, Differential Image Motion Monitor (DIMM) for the whole atmosphere total seeing, and MASS Multiple Aperture Scintillation Sensor (MASS) for high-altitude optical turbulence estimation. The main purpose of these measurements is to anticipate the optical turbulence strength above the future GMT enclosure, and to provide a means to model the future adaptive optics performance. We also discuss the significance of such a combination of instruments and some hypothetical limitations.
NASA Astrophysics Data System (ADS)
Xiao, Shu-mei; Mei, Hai-ping; Wang, Qian; Rao, Rui-zhong
2013-08-01
An integrated fiber-optic turbulence sensor based on non-balanced fiber-optic Mach-Zehnder interferometer with a small air gap as light path difference has been designed for detecting air refractive index fluctuation. For avoiding sensing signal fading and perturbations from circumstance during signal transmission, the phase generated carrier is used. The turbulence induced air refractive index fluctuations are demodulated by the algorithm of correlation. Background noise of the sensor is below10-17 . By comparing with the refractive index structure constant measured by fine-wire resistance thermometer, results show good agreement in both their magnitude and tendency. For its outstanding property of corrosion protection, the sensor is especially suitable for maritime atmospheric optical turbulence research, which is verified by one month sea beach investigation. Some results of the maritime optical turbulence intensity are reported in the end.
Impacts of optical turbulence on underwater imaging
NASA Astrophysics Data System (ADS)
Hou, Weilin; Woods, S.; Goode, W.; Jarosz, E.; Weidemann, A.
2011-06-01
Optical signal transmission underwater is of vital interests to both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties determines the effectiveness of EO technology. These applications include diver visibility, search and rescue, mine detection and identification, and optical communications. The impact of optical turbulence on underwater imaging has been postulated and observed by many researchers. However, no quantative studies have been done until recently, in terms of both the environmental conditions, and impacts on image quality as a function of range and spatial frequencies. Image data collected from field measurements during SOTEX (Skaneateles Optical Turbulence Exercise, July 22-31, 2010) using the Image Measurement Assembly for Subsurface Turbulence (IMAST) are presented. Optical properties of the water column in the field were measured using WETLab's ac-9 and Laser In Situ Scattering and Transmissometer (LISST, Sequoia Scientific), in coordination with physical properties including CTD (Seabird), dissipation rate of kinetic energy and heat, using both the Vector velocimeter and CT combo (Nortek and PME), and shear probe based Vertical Microstructure Profiler (VMP, Rockland). The strong stratification structure in the water column provides great opportunity to observe various dissipation strengths throughout the water column, which corresponds directly with image quality as shown. Initial results demonstrate general agreement between data collected and model prediction, while discrepancies between measurements and model suggest higher spatial and temporal observations are needed in the future.
Optical turbulence above mountains seen in 3D
NASA Astrophysics Data System (ADS)
Els, S. G.; Vogiatzis, K.; Otárola, A.; Riddle, R.; Schöck, M.; Skidmore, W.; Travouillon, T.
2010-07-01
Atmospheric optical turbulence is the main driver of wavefront distortions which affect optical telescope performance. Therefore, many techniques have been developed to measure the optical turbulence strength along the line of sight. Based on data collected with the MASS (Multi Aperture Scintillation Sensor), we show that a large sample of such measurements can be used to assess the average three dimensional turbulence distribution above ground. The use of, and a more sophisticated instrumental setup for, such turbulence tomography will be discussed.
Optical monitor for observing turbulent flow
Albrecht, Georg F.; Moore, Thomas R.
1992-01-01
The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.
Optical intensity interferometry through atmospheric turbulence
NASA Astrophysics Data System (ADS)
Tan, P. K.; Chan, A. H.; Kurtsiefer, C.
2016-04-01
Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.
NASA Astrophysics Data System (ADS)
Wang, Qian; Mei, Haiping; Rao, Ruizhong
2015-04-01
In this article, a high quality fiber optical turbulence sensing array contains several sensors is proposed to obtain time series of air refractive index fluctuations. A fixed sensor is supposed to be set as the origin and others to be arranged in Cartesian coordinates respectively. Under the spatial configurations above, two-point correlation algorithm is used to give two order structure parameters and multipoint correlation algorithm for more structure information about scalar turbulence. For each direction, two-point spatial correlation coefficients varying with distance are provided. Meanwhile spatial power spectrum and outer-scales according to the data are introduced. Multipoint correlations can give more structure information such as the interactions between scales and the spatial structure of relevant fluctuations. In the one-dimension circumstance for instance the x-axis, spatial correlation coefficient tends to take oscillation. After a short-time averaging, it tends to decrease with the increase of spatial displacement, and then tends to zero after outer scale. Further study show that within the limit of outer scale, diurnal variation of the spatial correlation coefficient and intensity reveal a higher similarity, the relevancy is about 60% and keeps stable; once the distance goes across the outer scale, they are uncorrelated. In short, utilizing the fiber optical turbulence sensing array is a new method for measuring spatial correlation of optical turbulence. It can overcome some problems from single-point measurement, especially when using Taylor's frozen-turbulence hypothesis. Some structural information of optical turbulence not only makes the theory of scalar field more abundant, but also in favor of some problems about optical propagation.
Measurements of optical underwater turbulence under controlled conditions
NASA Astrophysics Data System (ADS)
Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.
2016-05-01
Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.
Atmospheric turbulence optical model (ATOM) based on fractal theory
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Scoggins, Jim; Carroll, Marvin P.
1994-06-01
An Atmospheric Turbulence Optical Model (ATOM) is presented that used cellular automata (CA) rules as the basis for modeling synthetic phase sheets. This method allows image fracture, scintillation and blur to be correctly models using the principle of convolution with a complex kernel derived from CA rules interaction. The model takes into account the changing distribution of turbules from micro-turbule domination at low altitudes to macro-domination at high altitudes. The wavelength of propagating images (such as a coherent laser beam) and the range are taken into account. The ATOM model is written in standard FORTRAN 77 and enables high-speed in-line calculation of atmospheric effects to be performed without resorting to computationally intensive solutions of Navier Stokes equations or Cn2 profiles.
Optical turbulence in confined media: part I, the indoor turbulence sensor instrument.
Chabé, Julien; Blary, Flavien; Ziad, Aziz; Borgnino, Julien; Fanteï-Caujolle, Yan; Liotard, Arnaud; Falzon, Frédéric
2016-09-01
Optical system performances can be affected by local optical turbulence created by its surrounding environment (telescope dome, clean room, atmospheric surface layer). We present our new instrument INdoor TurbulENce SEnsor (INTENSE) dedicated to this local optical turbulence characterization. INTENSE consists of using several parallel laser beams separated by non-redundant baselines between 0.05 and 2.5 m and measuring the angle of arrival fluctuations from spot displacements on a CCD. After introducing the theoretical background, we give a description of the instrument including a detailed characterization of instrumental noise and, finally, give the first results for the characterization of the turbulence inside clean rooms for optical systems studies.
Optical turbulence in confined media: part I, the indoor turbulence sensor instrument.
Chabé, Julien; Blary, Flavien; Ziad, Aziz; Borgnino, Julien; Fanteï-Caujolle, Yan; Liotard, Arnaud; Falzon, Frédéric
2016-09-01
Optical system performances can be affected by local optical turbulence created by its surrounding environment (telescope dome, clean room, atmospheric surface layer). We present our new instrument INdoor TurbulENce SEnsor (INTENSE) dedicated to this local optical turbulence characterization. INTENSE consists of using several parallel laser beams separated by non-redundant baselines between 0.05 and 2.5 m and measuring the angle of arrival fluctuations from spot displacements on a CCD. After introducing the theoretical background, we give a description of the instrument including a detailed characterization of instrumental noise and, finally, give the first results for the characterization of the turbulence inside clean rooms for optical systems studies. PMID:27607283
Statistics of optical vortex wander on propagation through atmospheric turbulence.
Gu, Yalong
2013-04-01
The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.
Weak Langmuir optical turbulence in a fiber cavity
NASA Astrophysics Data System (ADS)
Xu, G.; Garnier, J.; Mussot, A.; Trillo, S.; Churkin, D.; Tarasov, N.; Turitsyn, S.; Picozzi, A.
2016-07-01
We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.
Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel
2016-05-01
Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.
Characterizing inertial and convective optical turbulence by detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Funes, Gustavo; Figueroa, Eduardo; Gulich, Damián.; Zunino, Luciano; Pérez, Darío. G.
2013-10-01
Atmospheric turbulence is usually simulated at the laboratory by generating convective free flows with hot surfaces, or heaters. It is tacitly assumed that propagation experiments in this environment are comparable to those usually found outdoors. Nevertheless, it is unclear under which conditions the analogy between convective and isotropic turbulence is valid; that is, obeying Kolmogorov isotropic models. For instance, near-ground-level turbulence often is driven by shear ratchets deviating from established inertial models. In this case, a value for the structure constant can be obtained but it would be unable to distinguish between both classes of turbulence. We have performed a conceptually simple experiment of laser beam propagation through two types of artificial turbulence: isotropic turbulence generated by a turbulator [Proc. SPIE 8535, 853508 (2012)], and convective turbulence by controlling the temperature of electric heaters. In both cases, a thin laser beam propagates across the turbulent path, and its wandering is registered by a position sensor detector. The strength of the optical turbulence, in terms of the structure constant, is obtained from the wandering variance. It is expressed as a function of the temperature difference between cold and hot sources in each setup. We compare the time series behaviour for each turbulence with increasing turbulence strength by estimating the Hurst exponent, H, through detrended fluctuation analysis (DFA). Refractive index fluctuations are inherently fractal; this characteristic is reflected in their spectra power-law dependence—in the inertial range. This fractal behaviour is inherited by time series of optical quantities, such as the wandering, by the occurrence of long-range correlations. By analyzing the wandering time series with this technique, we are able to correlate the turbulence strength to the value of the Hurt exponent. Ultimately, we characterize both types of turbulence.
Near-Ground optical turbulence measurements at Cerro Las Campanas
NASA Astrophysics Data System (ADS)
Prieto, G.; Berdja, A.; Thomas-Osip, J. E.
2011-11-01
We report preliminary results from Near-Ground optical turbulence measurements carried out at Cerro Las Campanas, the future site of the Giant Magellan Telescope (GMT), using MooSci (Moon Scintillomenter), DIMM (Differential Image Motion Monitor) and MASS (Multiple Aperture Scintillation Sensor), focusing on the effects above the future GMT enclosure. This campaign will continue with future observations of the NGL turbulence in order to better model the adaptive optics performance and aid in the design of the GMT AO instrumentation
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum
Propagation of optical coherence lattices in the turbulent atmosphere.
Liu, Xianlong; Yu, Jiayi; Cai, Yangjian; Ponomarenko, Sergey A
2016-09-15
We explore the propagation of recently introduced optical coherence lattices (OCLs) in the turbulent atmosphere. We show that the lattice intensity profile and the spatial degree of coherence will display periodicity reciprocity over long propagation distances even though the lattices are affected by the turbulence. The lattice periodicity reciprocity has been previously conjectured to be advantageous for free-space information transfer and optical communications. We then show how one can increase the distance over which the lattice periodicity reciprocity is preserved in the turbulent atmosphere by engineering input lattice beam parameters. We also show that the OCLs have scintillation indices lower than those of Gaussian beams. PMID:27628352
Trajectory of an optical vortex in atmospheric turbulence.
Dipankar, A; Marchiano, R; Sagaut, P
2009-10-01
Trajectory of an optical vortex has been identified for its propagation in atmospheric turbulence using numerical simulations. An analytical expression has been found, relating the radial departure of the vortex in plane perpendicular to the direction of propagation, to the refractive index structure function parameter and the inner scale of turbulence. The angular orientation of the vortex in the same transverse plane is found to be related to the anisotropy of the medium. The obtained results provide an alternative way to find turbulent parameters with the help of optical vortices.
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
2010-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical or other telescopes. In addition, the quality of service of a free space optical communications link may also be impacted. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, particularly for OCONUS locations, so simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using the Maui High Performance Computing Centers (MHPCC) Mana cluster. The WRF model is configured to run at 1km horizontal resolution over a domain covering several hundreds of kilometers. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. We are interested in the variations in Cn2 and the Fried Coherence Length (ro). Nearly two years of simulations have been performed over various regions
Intensity fluctuations of asymmetrical optical beams in anisotropic turbulence.
Baykal, Yahya
2016-09-20
Intensity fluctuations of asymmetrical optical beams are examined when such beams propagate through anisotropic turbulence. Anisotropic turbulence is modeled by non-Kolmogorov von Kármán spectrum. The variations of the scintillation index are observed against the changes in the asymmetry factor of the Gaussian beam, power law exponent of non-Kolmogorov spectrum, anisotropic factors in the transverse direction, and the link length. It is found that for all the conditions, asymmetry in the optical beam is a disadvantage but the anisotropy in the atmosphere is an advantage for reducing the intensity fluctuations in an optical wireless communications link operating in the atmosphere. PMID:27661570
Optical measurements of the outer scale of the atmospheric turbulence.
NASA Astrophysics Data System (ADS)
Lukin, V. P.
The light scattering on the turbulence inhomogeneities of the atmosphere is the one of the main mechanism of distortion of the received optical signal. The random spacetime changes of the atmospheric refractive index lead to distortion of the optical beam structure, the fluctuations of the intensity and phase of the optical wave are manifested, in particular, in blurring, shivering and flickering of the source images, as well as in the turbulent extinction of the mean received power of the signal. Several models are compared with measurements of atmospheric parameters.
A flexible testbed for adaptive optics in strong turbulence
NASA Astrophysics Data System (ADS)
Schmidt, Jason D.; Steinbock, Michael J.; Berg, Eric C.
2011-06-01
In recent years, optical wave propagation through strong atmospheric turbulence and adaptive optics compensation thereof has received much attention in literature and technical meetings. At the Air Force Institute of Technology, recent simulation-based efforts in strong turbulence compensation are expanding into laboratory experiments utilizing a versatile surrogate turbulence simulator and adaptive optics system. The system can switch between using two different wavefront sensors, a Shack-Hartmann and a self-referencing interferometer. Wavefront reconstruction takes place on field programmable gate arrays, operating at kilohertz frame rates. Further, the system is able to perform reconstruction and control in software for testing of advanced algorithms (at frame rates below 10 Hz). The entire package is compact enough for transportation to other laboratories and live test facilities. This paper describes the optical layout, architecture, and initial results of real-time operation.
Optical tomography system for laboratory turbulence measurements
NASA Astrophysics Data System (ADS)
McMackin, Lenore J.; Pierson, Robert E.; Hugo, Ronald J.; Truman, C. Randall
1998-10-01
We describe the design and operation of a high speed optical tomography system for measuring 2D images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. Series of reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.
Cui, Linyan; Xue, Bindang; Zhou, Fugen
2015-11-16
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.
Laser beam propagation through turbulence and adaptive optics for beam delivery improvement
NASA Astrophysics Data System (ADS)
Nicolas, Stephane
2015-10-01
We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.
The Durham/ESO SLODAR optical turbulence profiler
NASA Astrophysics Data System (ADS)
Wilson, R. W.; Butterley, T.; Sarazin, M.
2009-11-01
An instrument for monitoring of the vertical profile of atmospheric optical turbulence strength, employing the Slope Detection and Ranging (SLODAR) double star technique applied to a small telescope, has been developed by Durham University and the European South Observatory. The system has been deployed at the Cerro Paranal observatory in Chile for statistical characterization of the site. The instrument is configured to sample the turbulence at altitudes below 1.5 km with a vertical resolution of approximately 170 m. The system also functions as a general-purpose seeing monitor, measuring the integrated optical turbulence strength for the whole atmosphere, and hence the seeing width. We give technical details of the prototype and present data to characterize its performance. Comparisons with contemporaneous measurements from a differential image motion monitor (DIMM) and a multi-aperture scintillation sensor (MASS) are discussed. Statistical results for the optical turbulence profile at the Paranal site are presented. We find that, in the median case, 49 per cent of the total optical turbulence strength is associated with the surface layer (below 100 m), 35 per cent with the `free atmosphere' (above 1500 m) and 16 per cent with the intermediate altitudes (100-1500 m).
Characterisation of the Optical Turbulence at Siding Spring
NASA Astrophysics Data System (ADS)
Goodwin, Michael; Jenkins, Charles; Lambert, Andrew
2013-01-01
Measurements of the optical turbulence profile above Siding Spring Observatory were conducted during 2005 and 2006. This effort was largely motivated by the need to predict the statistical performance of adaptive optics at Siding Spring. The data were collected using a purpose-built instrument based on the slope detection and ranging (SLODAR) method where observations of a bright double star are imaged by Shack-Hartmann taken with the Australian National University 24-inch and 40-inch telescopes. The analysis of the data yielded a model consisting of a handful of statistically prominent thin layers that are statistically separated into the ground layer (37.5, 250 m) and the free atmosphere (1, 3, 6, 9, 13.5 km) for good (25%), typical (50%), and bad (25%) observing conditions. We found that ground-layer turbulence dominates the turbulence profile with up to 80% of the integrated turbulence below 500 m. The turbulence tends to be non-Kolmogorov, especially for the ground layer with a power-law index of β ~ 10/3. The mirror/dome seeing can be a significant fraction of the ground-layer turbulence. The median atmospheric seeing is around 1.2 arcsec, in agreement with observational reports.
Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
2012-09-01
Research and Forecasting (WRF) model is used to produce characterizations and forecasts of OT. These forecasts are used for planning FSOC experiments in the 3-24 hour range. The WRF model is configured to run at up to 300 meters horizontal resolution over a 250km by 250km horizontal domain. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere with over 130 vertical levels. The model top is 20 km in altitude. The model is run up to twice per day and generates forecasts out to 27 hours. The WRF model has proven to be a valuable tool for link characterization and forecasting, since it can identify thin relatively layers of optical turbulence that are not represented by standard empirically derived Cn2 profiles. Results show that WRF simulations can accurately predict upcoming turbulence events that may degrade system performance. Demonstrations of these forecasts will be shown at the conference. The near realtime simulations of OT are performed using the Maui High Performance Computing Centers (MHPCC) Mana cluster.
O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.
1997-01-01
This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.
500 Gb/s free-space optical transmission over strong atmospheric turbulence channels.
Qu, Zhen; Djordjevic, Ivan B
2016-07-15
We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.
Characterising atmospheric optical turbulence using stereo-SCIDAR
NASA Astrophysics Data System (ADS)
Osborn, James; Butterley, Tim; Föhring, Dora; Wilson, Richard
2015-04-01
Stereo-SCIDAR (SCIntillation Detection and Ranging) is a development to the well known SCIDAR method for characterisation of the Earth's atmospheric optical turbulence. Here we present some interesting capabilities, comparisons and results from a recent campaign on the 2.5 m Isaac Newton Telescope on La Palma.
Incoherent shock waves in long-range optical turbulence
NASA Astrophysics Data System (ADS)
Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A.
2016-10-01
Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin-Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW - the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r_{0}=15.1.
On atmospheric turbulence structure constant measurement by a passive optical method
NASA Astrophysics Data System (ADS)
Konyaev, Petr A.; Botygina, Nina N.; Antoshkin, Leonid V.; Emaleev, Oleg N.; Lukin, Vladimir P.
2015-11-01
Development of a passive optical method for measuring the strength of atmospheric turbulence (atmospheric air refractive index structure constant Cn2) from image jitter is discussed. A high-rate digital camera and computer processing, including fast parallel 2D image correlation tracking algorithms, are shown to allow for real-time Cn2 measurements. The results obtained by passive and active optical methods together with meteorological station support of the experiment are compared.
Orbital angular momentum in optical waves propagating through distributed turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-11-21
This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated. PMID:22109489
Orbital angular momentum in optical waves propagating through distributed turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-11-21
This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated.
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics.
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics. PMID:27505641
Decay of Turbulence at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Sinhuber, Michael; Bodenschatz, Eberhard; Bewley, Gregory P.
2015-01-01
Turbulent motions in a fluid decay at a certain rate once stirring has stopped. The role of the most basic parameter in fluid mechanics, the Reynolds number, in setting the decay rate is not generally known. This Letter concerns the high-Reynolds-number limit of the process. In a classical grid-turbulence wind-tunnel experiment that both reaches higher Reynolds numbers than ever before and covers a wide range of them (1 04
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
Optically relevant turbulence parameters in the Marine boundary layer
NASA Technical Reports Server (NTRS)
Davidson, K. L.; Houlihan, T. M.
1976-01-01
Shipboard measurements of temperature and velocity fluctuations were performed to determine optical propagation properties of the marine boundary layer. Empirical expressions describing the temperature structure parameter in terms of the Richardson Number overland were used to analyze data obtained for open ocean conditions. Likewise, profiles of mean wind and velocity fluctuation spectra derived from shipboard observations were utilized to calculate associated boundary layer turbulence parameters. In general, there are considerable differences between the open-ocean results of this study and previously determined overland results.
Optical turbulence and spectral condensate in long fibre lasers
Turitsyna, E. G.; Falkovich, Gregory; El-Taher, Atalla; Shu, Xuewen; Harper, Paul; Turitsyn, Sergei K.
2012-01-01
We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate's lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations. PMID:22870062
NASA Astrophysics Data System (ADS)
Ziad, Aziz; Borgnino, Julien; Martin, François; Maire, Jérôme; Bondoux, Erick; Douet, Richard; Fanteï-Caujolle, Yan; Robini, Alex; Daban, Jean-Baptiste
2011-09-01
The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly the structure constante of the refractive index Cn2 and the outer scale L0. New techniques for the monitoring of the Cn2 and L0 profiles with high vertical resolution will be presented.
Analysis of optical waves propagating through moderate-to-strong non-Kolmogorov turbulence.
Cui, Linyan; Xue, Bindang; Cao, Xiaoguang
2013-09-01
The turbulence effect models derived with the Rytov theory method cannot be applied in the analysis of moderate-to-strong non-Kolmogorov turbulence. In this work, new expressions of the temporal power spectra of irradiance fluctuations are derived theoretically for optical waves propagating through moderate-to-strong non-Kolmogorov turbulence. They are developed under Andrews' assumption that small-scale irradiance fluctuations are modulated by large-scale irradiance fluctuations of the optical wave. A wide range of turbulence strength is considered instead of a limited range for weak non-Kolmogorov turbulence. These expressions have general spectral power law values in the range 3 to 4 instead of the standard power law value of 11/3 for Kolmogorov turbulence. Calculations are performed to analyze turbulence strength and turbulence spectral power law's variations on the final expressions.
OHP02 gravity wave campaign in relation to optical turbulence
NASA Astrophysics Data System (ADS)
Vernin, J.; Trinquet, H.; Jumper, G.; Murphy, E.; Ratkowski, A.
2007-09-01
Herein we present a campaign dedicated to the detection and the characterization of Gravity Waves (GW) in the Earth's atmosphere in relation to the generation of Optical Turbulence (OT). The observations took place in France from 17 to 24 July 2002 at the Haute Provence Observatory (OHP) and simultaneously at the Sirene Observatory, some 20 km apart. From both sites, several balloons were launched that measured the classical PTU-Wind profiles and additionally the structure constant of the temperature field C_T^2 vertical profiles. A Generalized Scidar (GS) technique was implemented at the 1.93 m-diameter OHP telescope, providing C_N^2(h) profiles every minute. From our observations, a significant amount of GW activity was observed at both sites, but without clear evidence of correlation between the two sites. It seems from our observations that a wide spectrum of GW is present at a given altitude and that this could result in a lack of correlation between observat! ions made from two sites 20 km apart. Most GW are non-stationary with long horizontal wavelengths (λ ˜ 100-200 km), kilometric vertical wavelengths (λ ~ 0.5-2 km) and long intrinsic period (T ~ 2-15 h). They belong in the category of "hydrostatic rotating or non-rotating waves". Layers of optical turbulence detected by balloons and the Scidar technique correlate well with regions of GW activity.
Buffer requirements of an optical communication system in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Leclerc, Troy T.; Phillips, Ronald L.; Andrews, Larry C.; Crabbs, Robert
2013-05-01
Expressions related to the buffer requirements of an optical communication system in atmospheric turbulence are developed from the channel signal fade time statistics. Laser irradiance data were recorded over the course of one day by a receiving aperture of variable diameter at the Townes Institute Science and Technology Experimentation Facility (TISTEF) 1km laser range located within the Kennedy Space Center at Cape Canaveral, FL. Fade statistics of collected data and scintillometer measurements were compared to the derived model gamma-gamma fade model. Parallel to the laser instrumentation was a commercial scintillometer unit which reported the refractive index structure coefficient, Cn2 and the inner-scale of atmospheric turbulence, l0. The atmospheric parameters inferred from the collected laser data and the commercial instruments were compared. Mean and variance of the fade times were found to agree well with theory for smaller apertures where effects of aperture averaging are not present and in cases where scintillation is weak to moderate. It is suggested that a more appropriate PDF, with a heavier focus on aperture averaging, may be applied in future studies of free space optical communication system fade statistics.
Turbulent mixing in high-altitude explosions
Kuhl, A.L.; Bell, J.B. ); Ferguson, R.E. ); White, W.W.; McCartor, T.H. )
1992-09-01
Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t[sup [minus]1]. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.
Turbulent mixing in high-altitude explosions
Kuhl, A.L.; Bell, J.B.; Ferguson, R.E.; White, W.W.; McCartor, T.H.
1992-09-01
Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t{sup {minus}1}. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.
NASA Astrophysics Data System (ADS)
Alliss, R.
2014-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification
Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices
NASA Astrophysics Data System (ADS)
Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.
2014-11-01
The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.
Cui, Linyan; Xue, Bindang
2015-09-01
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. Very recent analyses of angle of arrival (AOA) fluctuations of an optical wave in anisotropic non-Kolmogorov turbulence have adopted the assumption that the propagation path was in the z-direction with circular symmetry of turbulence cells maintained in the orthogonal xy-plane throughout the path, and one single anisotropy factor was adopted in the orthogonal xy-plane to parameterize the asymmetry of turbulence cells or eddies in both horizontal and vertical directions. In this work, the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane is no longer required, and two anisotropy parameters are introduced in the orthogonal xy-plane to investigate the AOA fluctuations. In addition, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. With the Rytov approximation theory, new theoretical models for the variance of AOA fluctuations are developed for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. When the two anisotropic parameters are equal to each other, they reduce correctly to the recently published results (the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane was adopted). Furthermore, when these two anisotropic parameters equal one, they reduce correctly to the previously published analytic expressions for the cases of optical wave propagation through weak isotropic non-Kolmogorov turbulence.
New route to optical turbulence in detuned lasers with a compound cavity
Otsuka, K.; Kawaguchi, H.
1984-09-01
A successive subharmonic modulation cascade of self-sustained relaxation oscillations in an inverse order leading to optical turbulence in detuned lasers with compound-cavity configurations is predicted. A brief experimental result which supports the predicted subharmonic modulation phenomenon is shown. The suppression effect of optical turbulence by external light injection, which is important for practical applications, is demonstrated theoretically.
Application of a photodiode-array optical turbulence sensor to wind studies in complex terrain
Porch, W.M.; Green, T.J.
1980-04-01
A digital photodiode-array optical turbulence sensor was used to gather data simultaneously with analog optical anemometer measurements during the July 1979 ASCOT experiment. This system provided useful information regarding the uniformity of optical turbulence used by the optical anemometer to derive cross-path wind speeds. Wind speeds derived from digital analysis of the photodiode-array intensities also provided an independent measure of the cross-path wind speed. Close agreement was found between these two measures of the wind.
Multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2014-05-01
The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov’s 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number, Re(106) (Taylor number Ta(1012)) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque- and local-velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov’s paradigm.
Multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Huisman, Sander; van der Veen, Roeland; Sun, Chao; Lohse, Detlef
2014-11-01
The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and its large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher-dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number Re = O (106) (Taylor number Ta = O (1012) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque and local velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (i.e. very large Re) and questions Kolmogorov's paradigm.
Influence of atmospheric turbulence on optical measurement: a case report and review of literature
NASA Astrophysics Data System (ADS)
Yao, Linshen; Shang, Yang; Fu, Dan
2016-01-01
When videogammetry (optical measurement) was carried outdoor or under cruel indoor circumstance, the results would be inevitably affected by the atmosphere turbulence. As a result, the precision of surveying was destroyed. The field of air turbulence's impact on optical measurement was neglected by scholars for a long time, the achievements massed about laser optics and optical communications. The mostly adapted method was noise filtration when the pixel wandering could not be rejected in engineering application, which got little improvement on usual conditions. The principle of influence under atmospheric turbulence on optical measurement is presented in this paper. And experiments data and applications are carried out to announce the impact of atmospheric turbulence. Combining with relevant researches, some essential issues and expectations of the atmospheric turbulence research are proposed.
NASA Astrophysics Data System (ADS)
Weiss-Wrana, Karin R.
2005-08-01
The refractive-index structure parameter Cn2 is the parameter most commonly used to describe the optically active turbulence. In the past, FGAN-FOM carried out long-term experiments in moderate climate (Central Europe, Germany), arid (summer), and semiarid (winter) climate (Middle East, Israel). Since Cn2 usually changes as a function of time of day and of season its influence on electro-optical systems should be expressed in a statistical way. We composed a statistical data base of Cn2 values. The cumulative frequency of occurrence was calculated for a time interval of two hours around noon (time of strongest turbulence), at night, and around sunrise (time of weakest turbulence) for an arbitrarily selected period of one month in summer and in winter. In October 2004 we extended our long-term turbulence experiments to subarctic climate (North Europe, Norway). First results of our turbulence measurement over snow-covered terrain indicate Cn2 values which are similar or even higher than measured values in Central European winter. The statistical data base was used to calculate the expected turbulence-induced aperture-averaged scintillation index for free-space optical systems (FSO system) in different climates. The calculations were performed for commercially available FSO systems with wavelength of 785 nm and 1.55 µm respectively and with aperture diameters of the receiver of 60 mm and 150 mm for horizontal path at two heights, 2.3 m and 10 m above ground.
Cui, Linyan
2014-09-01
Current theoretical temporal power spectra models of an optical wave have been developed for terrestrial environments. The interactions between humidity and temperature fluctuations in the marine atmospheric environments make the marine atmospheric turbulence particularly challenging, and the optical waves' propagation through marine turbulence exhibits a different behavior with respect to terrestrial propagation. In this paper, the temporal power spectra of irradiance scintillation under weak marine atmospheric turbulence, which is one of the key temporal statistics to describe the correlation of irradiance fluctuations at different time instances, is investigated in detail both analytically and numerically. Closed-form expressions for the temporal power spectra of irradiance scintillation are derived for infrared plane and spherical waves under weak marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that the marine atmospheric turbulence brings more effects on the irradiance scintillation than the terrestrial atmospheric turbulence.
500 Gb/s free-space optical transmission over strong atmospheric turbulence channels.
Qu, Zhen; Djordjevic, Ivan B
2016-07-15
We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated. PMID:27420516
Turbulence modeling for high speed compressible flows
NASA Technical Reports Server (NTRS)
Chandra, Suresh
1993-01-01
The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.
Turbulence modeling for high speed compressible flows
NASA Astrophysics Data System (ADS)
Chandra, Suresh
1993-08-01
The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.
Optical turbulence characterization at the SAAO Sutherland site
NASA Astrophysics Data System (ADS)
Catala, L.; Crawford, S. M.; Buckley, D. A. H.; Pickering, T. E.; Wilson, R. W.; Butterley, T.; Shepherd, H. W.; Marang, F.; Matshaya, P.; Fourie, C.
2013-11-01
We present results from the first year of a campaign to characterize and monitor the optical turbulence profile at the South African Astronomical Observatory's Sutherland observing station in South Africa. A Multi Aperture Scintillation Sensor Differential Image Motion Monitor (MASS-DIMM) was commissioned in 2010 March to provide continuous monitoring of the seeing conditions. Over the first month of the campaign, a Slope Detection And Ranging (SLODAR) from Durham University was also installed, allowing an independent verification of the performance of the MASS-DIMM device. After the first year of data collection, the overall median seeing value is found to be 1.32 arcsec as measured at ground level. The ground layer which includes all layers below 1 km accounts for 84 per cent of the turbulence, while the free atmosphere above 1 km accounts for 16 per cent with a median value of 0.41 arcsec. The median isoplanatic angle value is 1.92 arcsec, which is similar to other major astronomical sites. The median coherence time, calculated from corrected MASS measurements, is 2.85 ms. The seeing conditions at the site do show a strong correlation with wind direction, with bad seeing conditions being associated with winds from the south-east.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.
Observations of clear air turbulence by high power radar.
Browning, K A; Watkins, C D
1970-07-18
Clear air turbulence is a hazard to aviation and is thought to have important effects on atmospheric dynamics. This article describes the structure and evolution of clear air turbulence at high altitudes as revealed by a high power radar and vertical soundings of wind and temperature.
Study of turbulence effects for a free-space optical link over water
NASA Astrophysics Data System (ADS)
Mackey, Ruth; Chen, Mingzhou; Lambert, Andrew; Mackey, David; Goncharov, Alexander
2010-10-01
In this paper we report on measurements of atmospheric turbulence effects arising from water air interaction. The aim of this study is to aid in the design of a free-space optical relay system to facilitate longer line-of-sight distances between relay buoys in a large expanse of water. Analysis of turbulence statistics will provide the basis for adaptive optics solutions to improve the relay signal strength affected by scintillation and beam wander. We report on experiments determining the isokinetic angle using an array of broadband incoherent sources of variable angular separation on the order of 0.1 mrad to 2.8 mrad. The experimental setup consists of a 5 inch telescope with high speed CMOS camera observing over a distance of 300 m close at a height of 1.5 m above the water surface. As part of the turbulence characterisation we experimentally estimate the relative image motion of angle-ofarrival fluctuations and perform other time series analysis. Analysis of the image motion requires new techniques due to the extended nature of the source. We explore different centroiding algorithms and surface fitting techniques.
Temporal averaging of atmospheric turbulence-induced optical scintillation.
Yura, H T; Beck, S M
2015-08-24
Based on the Rytov approximation we have developed for weak scintillation conditions a general expression for the temporal averaged variance of irradiance. The present analysis provides, for what we believe is the first time, a firm theoretical basis for the often-observed reduction of irradiance fluctuations of an optical beam due to atmospheric turbulence. Accurate elementary analytic approximations are presented here for plane, spherical and beam waves for predicting the averaging times required to obtain an arbitrary value of the ratio of the standard deviation to the mean of an optical beam propagating through an arbitrary path in the atmosphere. In particular, a novel application of differential absorption measurement for the purpose of measuring column-integrated concentrations of various so-called greenhouse gas (GHG) atmospheric components is considered where the results of our analysis indicates that relatively short averaging times, on the order of a few seconds, are required to reduce the irradiance fluctuations to a value precise enough for GHG measurements of value to climate related studies.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Qin, Zhiyuan; Tao, Rumao; Zhou, Pu; Xu, Xiaojun; Liu, Zejin
2013-11-20
Based on partially coherent Bessel-Gaussian beams (BGBs), the coherence evolution of the partially coherent beams carrying optical vortices in non-Kolmogorov turbulence is investigated in detail. The analytical formulas for the spatial coherence length of partially coherent BGBs with optical vortices in non-Kolmogorov turbulence have been derived by using the combination of a coherence superposition approximation of decentered Gaussian beams and the extended Huygens-Fresnel principle. The influences of beam and turbulence parameters on spatial coherence are investigated by numerical examples. Numerical results reveal that the coherence of the partially coherent laser beam with vortices is independent of the optical vortices, and the spatial correlation length of the beams does not decrease monotonically during propagation in non-Kolmogorov turbulence. Within a certain propagation distance, the coherence of the partially coherent beam will improve, and the improvement of the coherence of the partially coherent beams is closely related to the beam and turbulence parameters.
NASA Astrophysics Data System (ADS)
Frankel, Michael Y.; Livas, Jeff
2005-02-01
This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended
NASA Astrophysics Data System (ADS)
Ziad, Aziz; Borgnino, Julien; Martin, François; Maire, Jérôme; Wassila, Dali-Ali; Berdja, Amokrane; Daban, Jean-Baptiste; Fanteï-Caujolle, Yan; Sarazin, Marc; Tokovinin, Andreï
2010-07-01
The futures large telescopes will be certainly equipped with Multi-Conjugate Adaptive Optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these systems. Major of these technical specifications are related to the atmospheric turbulence particularly the structure constante of the refractive index C2n(h) and the outer scale L0(h). New techniques based on the moon limb observation for the monitoring of the C2n(h) and L0(h) profiles with high vertical resolution will be presented.
Multi-instrument characterization of optical turbulence at the Ali observatory
NASA Astrophysics Data System (ADS)
Liu, L.-Y.; Yao, Y.-Q.; Vernin, J.; Wang, H.-S.; Yin, J.; Qian, X.
2015-04-01
In order to characterize the atmospheric optical turbulence at Ali observatory, we have deployed multi-instruments, which are able to continuously monitor the optical turbulence for site evaluation. These instruments include the DIMM, MASS, Single Star SCIDAR and Polaris seeing monitor, and we also plan to install SNODAR and Micro-thermal sensors for the turbulence on surface layer by the end of this year. This configuration allows us to collect a substantial database and make cross-comparison of the results. We have successfully obtained the profiles of optical turbulence and wind speed with Single Star SCIDAR, as well as the key parameters for adaptive optics application, such as seeing, coherence time, and isoplanatic angle. The DIMM seeing measurements are also carried out simultaneously. The median seeing measured by the DIMM and SSS in 2013 is 0.69 and 0.79 arcsec, respectively.
Controlled simulation of optical turbulence in a temperature gradient air chamber
NASA Astrophysics Data System (ADS)
Toselli, Italo; Wang, Fei; Korotkova, Olga
2016-05-01
Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.
LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D
2014-06-20
Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors. PMID:24979411
LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D
2014-06-20
Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.
Cheng, Mingjian; Zhang, Yixin; Gao, Jie; Wang, Fei; Zhao, Fengsheng
2014-06-20
We model the average channel capacity of optical wireless communication systems for cases of weak to strong turbulence channels, using the exponentiation Weibull distribution model. The joint effects of the beam wander and spread, pointing errors, atmospheric attenuation, and the spectral index of non-Kolmogorov turbulence on system performance are included. Our results show that the average capacity decreases steeply as the propagation length L changes from 0 to 200 m and decreases slowly down or tends to a stable value as the propagation length L is greater than 200 m. In the weak turbulence region, by increasing the detection aperture, we can improve the average channel capacity and the atmospheric visibility as an important issue affecting the average channel capacity. In the strong turbulence region, the increase of the radius of the detection aperture cannot reduce the effects of the atmospheric turbulence on the average channel capacity, and the effect of atmospheric visibility on the channel information capacity can be ignored. The effect of the spectral power exponent on the average channel capacity in the strong turbulence region is higher than weak turbulence region. Irrespective of the details determining the turbulent channel, we can say that pointing errors have a significant effect on the average channel capacity of optical wireless communication systems in turbulence channels.
Lazarian, A.; Pogosyan, D.
2008-10-10
We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.
NASA Astrophysics Data System (ADS)
Sahm, Michael Kenneth
1992-09-01
Experimental measurements of the effects of high levels of free stream turbulence on convex wall boundary layers were made. Using three different means of turbulence generation, intensities from 6 percent to 30 percent and length scales, L sub u/delta from 0.2 to 3 were achieved. The degree of curvature was strong for all cases, ranging from 0.12 to 0.15. Both the attenuating effects of convex wall curvature and the augmenting effects of turbulence were observed for all cases. The augmentation in Stanton number is about two or three times the local turbulence intensity present. The exponential Reynolds number dependence in the upstream flat plate flow maintains a -0.25 slope and in the curve maintains a -1 slope. Skin friction is also augmented by free stream turbulence. Increases in skin friction are comparable to those in heat transfer but do not correspond exactly for each case. Based on length scales determined, it is concluded that smaller relative scales are more effective in augmenting skin friction and larger scales are more effective in augmenting heat transfer. Careful flow field control upstream of the curve resulted in typical curved potential core behavior. An important effect of turbulence on the velocity profile in the curve is the broadening of the transition between the boundary layer and the potential core profile. This transition grows wider and flatter as the turbulence level is increased. With the highest level of turbulence achieved, the outer region profile, transition becomes very wide and flat and a previously unreported viscid/inviscid interaction takes place which leads to rapid boundary layer growth in the curve. The correlation of the present data was examined. The Ludwieg-Tillmann correlation for skin friction was found to predict the present baseline data and the data for all three turbulence cases to about +/- 6 percent including the effects of curvature. A thermal analogy to the LT correlation was developed for use with free stream
NASA Astrophysics Data System (ADS)
He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.
Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu
2013-02-25
As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Fuensalida, J. J.
2011-01-01
The characterization of the optical turbulence structure at an astronomical site requires a proper data base of the refractive-index structure constant, ?. Our team has been obtaining generalized SCIntillation Detection and Ranging (SCIDAR) observations to monitor ? from 2002 November-2009 January at Teide Observatory (Tenerife, Canary Islands, Spain). The Teide ? data base includes useful data from 153 nights of generalized SCIDAR measurements obtained at the 1.5-m Calos Sánchez Telescope. The overestimation of the turbulence strength as a consequence of generalized SCIDAR data processing has been analysed for all double stars and analysis-plane combinations used in our observations. If this overestimation of the turbulence is not taken into account, the median total seeing and isoplanatic angle derived from the turbulence profiles in the data base are 0.70 and 2.47 arcsec, respectively. We have recalibrated all the derived ?, correcting for this overestimation. The statistical optical turbulence structure above Teide Observatory is derived by combining the 93 662 individual ? that constitute the data base at this site. More than 85 per cent of the total optical turbulence is concentrated in low-altitude layers (<5 km above sea level). The optical turbulence structure presents an evolution of the layers in both strength and altitude. Only the turbulence concentration at the observatory level shows a similar turbulence strength over a standard year. The median values of total seeing and isoplanatic angle of ɛ0= 0.64 arcsec and θ0= 2.83 arcsec demonstrate the excellent quality of the Teide Observatory astronomical site for the implementation of adaptive optics systems.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Ames, Forrest; Kingery, Joseph E.
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
Spot detection accuracy analysis in turbulent channel for free space optical communication
NASA Astrophysics Data System (ADS)
Liu, Yan-Fei; Dai, Yong-Hong; Yu, Sheng-Lin; Xin, Shan; Chen, Jing; Ai, Yong
2015-10-01
Increasingly importance has been taken seriously for high frame rate CMOS camera to optical communication acquisition pointing and tacking (APT) system, with its compact structure, easy to developed and adapted to beacon light spot detection in atmospheric channel. As spot position accuracy directly determines the performance of space optical communication, it is very important to design a high precision spot center algorithm. Usually spot location algorithm uses gravity algorithm, shape center capturing algorithm or self-adaption threshold algorithm. In experiments we analyzed the characteristics of the spots which transmitted through atmospheric turbulence and studied light transmission characteristics in turbulent channel. We carried out a beacon light detection experiments in a distance of 3.4km, collected the beacon spots on CMOS camera and signal light power. We calculated spot position with two different algorithm and compared the calculation accuracy between field dispersive spot and ideal Gaussian laser spot. Experiment research show that, gravity center algorithm should be more suitable for beacon beam spot which accuracy can be improved about 1.3 pixels for a Gaussian spot. But the shape center algorithm has higher precision. The reasons were analyzed which made an important preparation for subsequent testing.
Local isotropy in high Reynolds number turbulent shear flows
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1993-01-01
This is a report on the continuation of experiments, which Dr. Srinivas Veeravalli and the present author started in 1991, to investigate the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods like large-eddy simulation. The importance of Kolmogorov's ideas arises from the fact that they create a foundation for turbulence theory.
Intensity fluctuations of ultrasonic scattering in a highly turbulent flow.
Shen, C; Lemmin, U
2000-05-01
Aspects of ultrasound intensity fluctuations backscattered from additive microstructures in a turbulent flow have been investigated theoretically and experimentally for the conditions of a small insonified volume, a high sound frequency and strong turbulence. These conditions are typically found in high resolution Doppler sonar applications. An easily applicable expression for the auto-correlation of scattering intensity fluctuations is obtained by introducing open-channel turbulence theory, a semi-empirical scalar spectrum (including a Batchelor spectrum) and a Gaussian window function. Experiments carried out in a laboratory-clear water, open-channel flow for different turbulence levels verify the underlying assumptions. A good agreement is found with the predictions made with the above-derived expression. The feasibility of extracting flow information from the backscattered intensity fluctuations is discussed.
Control of turbulent flow over an articulating turret for reduction of adverse aero-optic effects
NASA Astrophysics Data System (ADS)
Wallace, Ryan
2011-12-01
Turbulent flows such as wakes and shear layers are highly detrimental to the intensity of any collimated light beams that pass through these regions. The work presented in this thesis utilized suction flow control to help mitigate the adverse affects of the wake and shear layer over a flat aperture on the hemisphere of a three dimensional turret. The hemisphere of the turret was capable of dynamically articulating in two degrees of freedom: pitch and azimuthal rotation. The experiments were performed in the Syracuse University wind tunnel at a Mach number of 0.1, giving a Reynolds number of 500,000. Steady suction at various amounts were initially implemented for both static and dynamic pitching cases. Abatement of the wake above the aperture of the turret was seen for open loop suction actuation in both cases, demonstrating that for our conditions the suction system has enough control authority to reduce the turbulence levels. Building upon this success, a simple proportional closed loop controller was constructed to improve the efficiency of the actuation system by reducing the amount of suction required to achieve the same level of turbulence abatement as with the open loop control. The overall objective of the controller was to drive the velocity fluctuations over the aperture of the turret to zero. The next set of experiments fixed the pitch angle and dynamically rotated the hemisphere in the azimuthal direction. Like the pitch tests, steady suction actuation applied over the top of the turret was able to diminish the size of the wake. A multiple-input-multiple output closed loop controller was then employed with the objective of reducing the velocity fluctuations over the aperture of the turret. By dividing the actuation into two separate zones, the MIMO controller was able to more efficiently decrease the turbulent levels over the aperture when compared to the open loop case. Additional suction control tests were performed over a stationary turret in the Air
Characterization of optical turbulence at the solar observatory at the Mount Teide, Tenerife
NASA Astrophysics Data System (ADS)
Sprung, Detlev; Sucher, Erik
2013-10-01
Optical turbulence represented by the structure function parameter of the refractive index Cn2 is regarded as one of the chief causes of image degradation of ground-based astronomical telescopes operating in visible or infrared wavebands. Especially, it affects the attainable spatial resolution. Therefore since the middle of September 2012 the optical turbulence has been monitored between two German solar telescopes at the Observatory in Tenerife /Canary Islands /Spain. It comprises the solar telescope GREGOR and the vacuum tower telescope VTT mounted on two 30 m high towers. Between the two towers at the level of the telescopes, Cn2 was measured using a Laser-Scintillometer SLS40 (Scintec, Rottenburg, Germany). The horizontal distance of the measurement path was 75 m. The first results of the measurements starting from the 15th September 2012 up to the end of December 2012 are presented and analyzed using simultaneous measured meteorological data of wind, temperature and humidity. Daily and seasonal variations are shown and discussed.
The interaction of high-speed turbulence with flames: Turbulent flame speed
Poludnenko, A.Y.; Oran, E.S.
2011-02-15
Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps
Two-dimensional simulation of optical wave propagation through atmospheric turbulence.
Hyde, Milo W; Basu, Santasri; Schmidt, Jason D
2015-01-15
A methodology for the two-dimensional simulation of optical wave propagation through atmospheric turbulence is presented. The derivations of common statistical field moments in two dimensions, required for performing and validating simulations, are presented and compared with their traditional three-dimensional counterparts. Wave optics simulations are performed to validate the two-dimensional moments and to demonstrate the utility of performing two-dimensional wave optics simulations so that the results may be scaled to those of computationally prohibitive 3D scenarios. Discussions of the benefits and limitations of two-dimensional atmospheric turbulence simulations are provided throughout.
Turbulence and transition modeling for high-speed flows
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1993-01-01
Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Cui, Linyan
2015-06-01
Analytic expressions for the temporal power spectra of irradiance fluctuations and angle of arrival (AOA) fluctuations are derived for optical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. In the derivation, the anisotropic non-Kolmogorov spectrum is adopted, which adopts the assumption of circular symmetry in the orthogonal plane throughout the path and the same degree of anisotropy along the propagation direction for all the turbulence cells. The final expressions consider simultaneously the anisotropic factor and general spectral power law values. When the anisotropic factor equals one (corresponding to the isotropic turbulence), the derived temporal power spectral models have good consistency with the known results for the isotropic turbulence. Numerical calculations show that the increased anisotropic factor alleviates the atmospheric turbulence's influence on the final expressions.
Ren, Yongxiong; Xie, Guodong; Huang, Hao; Bao, Changjing; Yan, Yan; Ahmed, Nisar; Lavery, Martin P J; Erkmen, Baris I; Dolinar, Samuel; Tur, Moshe; Neifeld, Mark A; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E
2014-05-15
We propose an adaptive optics compensation scheme to simultaneously compensate multiple orbital angular momentum (OAM) beams propagating through atmospheric turbulence. A Gaussian beam on one polarization is used to probe the turbulence-induced wavefront distortions and derive the correction pattern for compensating the OAM beams on the orthogonal polarization. By using this scheme, we experimentally demonstrate simultaneous compensation of multiple OAM beams, each carrying a 100 Gbit/s data channel through emulated atmospheric turbulence. The experimental results indicate that the correction pattern obtained from the Gaussian probe beam could be used to simultaneously compensate multiple turbulence-distorted OAM beams with different orders. It is found that the turbulence-induced crosstalk effects on neighboring modes are efficiently reduced by 12.5 dB, and the system power penalty is improved by 11 dB after compensation.
Characterizing Optical Turbulence at the GMT Site with MooSci and MASS-DIMM
NASA Astrophysics Data System (ADS)
Thomas-Osip, J. E.; Prieto, G.; Berdja, A.; Cook, K. W.; Villanueva, S.; DePoy, D. L.; Marshall, J. L.; Rheault, J. P.; Allen, R. D.; Carona, D. W.
2012-01-01
In order to guide the adaptive optics design and aid in performance predictions, optical turbulence at the site of the future Giant Magellan Telescope (GMT) is characterized using MooSci, a lunar scintillometer, and MASS-DIMM, a combination differential image motion monitor and multiaperture scintillation sensor. As a new instrument, MooSci, is verified as a reliable ground-layer turbulence profiler. The GMT can expect an improvement of approximately 0.1'' over the site testing results as measured with a DIMM. Turbulence below 30 m is horizontally nonhomogeneous, dependent on wind speed and direction, and on average accounts for 60% of the full ground-layer (up to 500 m) turbulence.
A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence
NASA Astrophysics Data System (ADS)
Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.
2010-01-01
The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by
Wake survey techniques for objects with highly turbulent wakes
NASA Astrophysics Data System (ADS)
Lu, Biao
The primary objective of this study is to develop practical and accurate wake survey techniques for determining the drag of bluff bodies that have highly turbulent wakes. The commonly used wake survey method, the simplified Jones' equation with pneumatic probe measurements, was found to be inadequate in such cases. This study consisted of an experimental investigation of several wind-tunnel models, a theoretical analysis of turbulence effects on pressure measurements, and an analysis of wake drag equations. The experimental investigation was performed in the Illinois 3- by 4-foot low-speed wind tunnel. In the test, the wake of a 1-inch diameter cylinder and two airfoils, an S809 and NACA 0012, with and without various ice simulations were surveyed in detail using several Pitot-static probes with different nose shapes and an X-hotwire. The cylinder results were used to validate the wake survey techniques. The drag of the airfoils with and without ice accretions was determined using the validated wake survey techniques. A theoretical analysis of the turbulence effect on total and static pressure measurements was presented and compared with experimental data. Methods for correcting the turbulence effect on pressure measurements were provided, and a technique for estimating the turbulence kinetic pressure using the uncorrected pressure measurements was developed. Turbulence was also found to play an important role in drag determination through Reynolds stresses and static pressure deficit in the wake. A new wake drag equation was derived to include the turbulence effects. It was found the turbulence contribution to profile drag was over 17% in the cylinder test, and over 10% in the test of airfoils with ice accretions. This dissertation for the first time analyzed the turbulence effect on the simplified Jones' equation with measurements using a Pitot probe, and found that this method includes a portion of the turbulence effect into account implicitly, depending on the
Four Years of Optical Turbulence Monitoring at the Cerro Tololo Inter-American Observatory (CTIO)
NASA Astrophysics Data System (ADS)
Els, S. G.; Schöck, M.; Bustos, E.; Seguel, J.; Vasquez, J.; Walker, D.; Riddle, R.; Skidmore, W.; Travouillon, T.; Vogiatzis, K.
2009-08-01
The optical turbulence conditions as measured between 2004 through the end of 2008 above Cerro Tololo, their seasonal as well as nocturnal behavior, are presented. A comparison with the MASS-DIMM system of the Thirty Meter Telescope site testing was conducted and identifies an artificially increased seeing component in the data collected by the CTIO-DIMM system under northerly winds. Evidence is shown that this increased turbulence is caused by the telescope dome. A correction for this effect is attempted and applied to the CTIO-DIMM data. The MASS data of this comparison campaign allow constraints to be set on the general assumption of uniform turbulent layers above a site.
Free-space optical channel simulator for weak-turbulence conditions.
Bykhovsky, Dima
2015-11-01
Free-space optical (FSO) communication may be severely influenced by the inevitable turbulence effect that results in channel gain fluctuations and fading. The objective of this paper is to provide a simple and effective simulator of the weak-turbulence FSO channel that emulates the influence of the temporal covariance effect. Specifically, the proposed model is based on lognormal distributed samples with a corresponding correlation time. The simulator is based on the solution of the first-order stochastic differential equation (SDE). The results of the provided SDE analysis reveal its efficacy for turbulent channel modeling.
Low turbulence/high efficiency cyclone separators: Facility qualification results
Razgaitis, R.; Paul, D.D.; Bioarski, A.A.; Jordan, H. ); Brodkey, R.S.; Munson-McGee, M. . Dept. of Chemical Engineering)
1985-01-01
The objective of this work is to experimentally investigate the near-wall turbulent flow-fields characteristic of cyclone separators in order to determine the influence of wall-originating turbulence on the separation of fine particles. In particular, seven turbulence suppression concepts will be evaluated with reference to a well-established baseline condition. Concepts which appear attractive will be studied and characterized in more detail. The work accomplished to date is principally the design, construction, and qualification of two of the facilities that will be used to study the various concepts of turbulence suppression. The qualification of the primary facility, the Cyclonic Wind Tunnel (CWT), has required the development and adaptation of laser Doppler velocimetry (LDV) to perform simultaneous two-dimensional turbulence measurements in a highly swirling flow. A companion facility to the CWT is the Curvilinear Boundary Layer (CBL) apparatus. The purpose of the CBL is to provide a thick, visually-observable near-wall flow region under dynamically similar conditions to the CWT to that a physical understanding of the turbulence suppression process can be obtained. 9 refs., 15 figs.
Comparison and analysis of atmospheric optical turbulence in coast and over sea
NASA Astrophysics Data System (ADS)
Cai, Jun; Wu, Xiaoqing; Yang, Yiping
2016-01-01
Observation of meteorological parameters in coast and over sea surface layer will be conducive to understand the interaction between ocean and atmosphere, as well as the mechanism that ocean impacts on climate. Compared with the coast, it is more difficult to measure the atmospheric optical turbulence over sea, which includes measurement error caused by the instability of observation platform, instrument damage caused by poor environment and accuracy of measurement caused by the known and unknown factors, and so on. Conventional meteorological parameters and atmospheric optical turbulence in coast and over sea were observed by instruments equipped on the Marine Meteorological Science Experiment Base at Bohe and characteristics of atmospheric optical turbulence in this region were analyzed. By using temperature, humidity and wind speed, the atmospheric refractive-index structure constant in coast were estimated, and then compared with measured values, which verified the feasibility of this method.
Volume Visualizing High-Resolution Turbulence Computations
NASA Astrophysics Data System (ADS)
Clyne, John; Scheitlin, Tim; Weiss, Jeffrey B.
Using several volume-visualization packages including a new package we developed called Volsh, we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We compare surface fitting and direct volume rendering approaches, as well as a number of techniques for producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool has its own advantages and disadvantages, and a combination of tools is most effective at exploring large four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics of coherent vortices.
Coordinated observations of high-latitude ionospheric turbulence
Basu, S.; Basu, S.; Valladares, C.E.; Weber, E.J.; Buchau, J.
1988-01-01
A coordinated data set comprised of scintillation, ionosonde, incoherent scatter radar and optical measurements obtained on two nights during the CEDAR/WITS campaign of February, 1988 was selected for the study of two distinct classes of high latitude plasma turbulence. Under IMP Bz northward conditions, the polar cap arc detected by the all-sky imaging photometer (ASIP) in this phase of low solar activity (SSN=40) was found to be associated with a total electron content enhancement of only 2x10 to the 16th power/sq. m and weak amplitude scintillations (S sub 4 about = 0.35) at 250 MHz. The photometer and scintillation measurements indicated that in addition to the dawn to dusk motion of 200/ms in the inertial frame, there existed enhanced plasma motion of about 400/ms along the arc. The second data set conforming to IMF Bz southward condition showed the existence of ionization patches in the polar cap and their anti-sunward motion towards the auroral oval. The polar cap patches detected deep within the polar cap with electron contents as large as 10x10 to the 16th power/sq. m caused 15 dB scintillations at 250 MHz. These patches detected close to the auroral oval also caused strong scintillations which indicated that the patches get continually structured during their convection through the winter polar cap.
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
NASA Technical Reports Server (NTRS)
Nerheim, N.
1989-01-01
Blind pointing of the Deep Space Network (DSN) 70-meter antennas can be improved if distortions of the antenna structure caused by unpredictable environmental loads can be measured in real-time, and the resulting boresight shifts evaluated and incorporated into the pointing control loops. The measurement configuration of a proposed pointing compensation system includes an optical range sensor that measures distances to selected points on the antenna surface. The effect of atmospheric turbulence on the accuracy of optical distance measurements and a method to make in-situ determinations of turbulence-induced measurement errors are discussed.
Significance of anisotropy and the outer scale of turbulence for optical and radio seeing.
Coulman, C E; Vernin, J
1991-01-01
The small value found for the outer scale of turbulence (namely, Optical and radio seeing measurements are analyzed in support of a proposed turbulence spectrum which exhibits a spectral gap for scales (and hence interferometer baselines) between approximately 10 and 1500 m but which obeys a 5/3 power law between 1500 and 20,000 m. The implications for forecasting the performance of optical and radio telescopes and interferometers are important.
SLODAR turbulence monitors for real-time support of astronomical adaptive optics
NASA Astrophysics Data System (ADS)
Wilson, Richard; Butterley, Timothy; Sarazin, Marc; Lombardi, Gianluca; Chun, Mark; Benigni, Samuel; Weir, Donald; Avila, Remy; Aviles, Jose-Luis
2008-07-01
We describe the current status of the SLODAR optical turbulence monitors, developed at Durham University, for support of adaptive optics for astronomy. SLODAR systems have been installed and operated at the Cerro Paranal and Mauna Kea observatories, and a third will be deployed at the South African Astronomical Observatory in 2008. The instruments provide real-time measurements of the atmospheric turbulence strength, altitude and velocity. We summarize the capabilities of the systems and describe recent enhancements. Comparisons of contemporaneous data obtained with SLODAR, MASS and DIMM monitors at the ESO Paranal site are presented.
Turbulent single-photon propagation in the Canary optical link
Capraro, Ivan; Tomaello, Andrea; Dall'Arche, Alberto; Gerlin, Francesca; Vallone, Giuseppe; Villoresi, Paolo; Herbst, Thomas; Ursin, Rupert
2014-12-04
The role of turbulence for Quantum Communications (QC) has been investigated in a 143 km-long link. The analysis of the received signal temporal domain indicate how to exploit constructively its effects in the case of QC along very long free-space links as well satellite links. Novel applications with relevant background noise may be envisaged.
Heat transfer with very high free stream turbulence
NASA Technical Reports Server (NTRS)
Moffat, Robert J.; Maciejewski, Paul K.
1985-01-01
Stanton numbers as much as 350 percent above the accepted correlations for flat plate turbulent boundary layer heat transfer have been found in experiments on a low velocity air flow with very high turbulence (up to 50 percent). These effects are far larger that have been previously reported and the data do not correlate as well in boundary layer coordinates (Stanton number and Reynolds number) as they do in simpler coordinates: h vs. X. The very high relative turbulence levels were achieved by placing the test plate in different positions in the margin of a large diameter free jet. The large increases may be due to organized structures of large scale which are present in the marginal flowfield around a free jet.
Cui, Linyan; Xue, Bindang; Cao, Xiaoguang; Zhou, Fugen
2014-04-01
Based on the generalized von Kármán spectrum and the extended Rytov theory, new analytic expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through moderate-to-strong non-Kolmogorov turbulence with horizontal path. They consider finite turbulence outer scale and general spectral power law value, and cover a wide range of non-Kolmogorov turbulence strength. When the turbulence outer scale is set to infinite, the new expressions can reduce correctly to previously published analytic expressions [J. Opt. Soc. Am. A, 302188 (2013]. The final results show that the increased turbulence outer scale value enlarges the variance of AOA fluctuations greatly under moderate-to-strong (or strong) non-Kolmogorov turbulence.
Monitoring the optical turbulence in the surface layer at Dome C, Antarctica, with sonic anemometers
NASA Astrophysics Data System (ADS)
Aristidi, E.; Vernin, J.; Fossat, E.; Schmider, F.-X.; Travouillon, T.; Pouzenc, C.; Traullé, O.; Genthon, C.; Agabi, A.; Bondoux, E.; Challita, Z.; Mékarnia, D.; Jeanneaux, F.; Bouchez, G.
2015-12-01
The optical turbulence above Dome C in winter is mainly concentrated in the first tens of metres above the ground. Properties of this so-called surface layer (SL) were investigated during the period 2007-2012 by a set of sonic anemometers placed on a 45 m high tower. We present the results of this long-term monitoring of the refractive index structure constant C_n^2 within the SL, and confirm its thickness of 35 m. We give statistics of the contribution of the SL to the seeing and coherence time. We also investigate properties of large-scale structure functions of the temperature and show evidence of a second inertial zone at kilometric spatial scales.
Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} lidar
Nelson, Douglas H.; MacKerrow, Edward P.
2000-04-20
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO{sub 2} lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. (c) 2000 Optical Society of America.
The effect of thin turbulent shear layers on the optical quality of imaging systems
NASA Technical Reports Server (NTRS)
Steinmetz, W. J.
1975-01-01
A modified C141 transport was outfitted with a 91.5-cm reflector telescope designed to view objects radiating outside the visible window in the infrared range from 1 micron to 1000 microns. The telescope is situated in a cavity which is operated open port. Spoilers were designed which reduce turbulence-induced excitation of the cavity. The aircraft was designed to operate at altitudes up to 15 km to significantly reduce the effect of the H2O and CO2. Furthermore, the optically degrading influence of the large-scale atmospheric turbulence on land-based telescopes is replaced by the effect of the turbulent shear layer resulting from the spoiler upstream of the cavity. A mathematical model was established to describe the effect of turbulent shear layers on imaging systems and to examine the parameters of interest relevant to potential wind-tunnel experimentation.
Zhu, Kaicheng; Li, Shaoxin; Tang, Ying; Yu, Yan; Tang, Huiqin
2012-03-01
Based on the integral representation of Bessel function and the extended Huygens-Fresnel principle, an integral expression of the Wigner distribution function (WDF) for partially coherent Bessel-Gaussian beams (PBGBs) propagating through turbulent atmosphere has been obtained. Also, the analytical formulas of the M2-factor for PBGB propagation in such a medium have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The performed numerical results reveal that the M2-factor of a PBGB in turbulent atmosphere depends on the beam parameters of the initial input beam, the structure constants of the turbulent atmosphere, and the propagation distance. These results may be useful in long-distance optical communications in free space or in turbulent atmosphere.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing
High-resolution speckle imaging through strong atmospheric turbulence.
Hope, Douglas A; Jefferies, Stuart M; Hart, Michael; Nagy, James G
2016-05-30
We demonstrate that high-resolution imaging through strong atmospheric turbulence can be achieved by acquiring data with a system that captures short exposure ("speckle") images using a range of aperture sizes and then using a bootstrap multi-frame blind deconvolution restoration process that starts with the smallest aperture data. Our results suggest a potential paradigm shift in how we image through atmospheric turbulence. No longer should image acquisition and post processing be treated as two independent processes: they should be considered as intimately related.
Prediction of laminar-turbulent transition on an airfoil at high level of free-stream turbulence
NASA Astrophysics Data System (ADS)
Chernoray, V.
2015-06-01
Prediction of laminar-turbulent transition at high level of free-stream turbulence in boundary layers of airfoil geometries with external pressure gradient changeover is in focus. The aim is a validation of a transition model for transition prediction in turbomachinery applications. Numerical simulations have been performed by using a transition model by Langtry and Menter for a number of different cases of pressure gradient, at Reynolds-number range, based on the airfoil chord, 50 000 ≤ Re ≤ 500 000, and free-stream turbulence intensities 2% and 4%. The validation of the computational results against the experimental data showed good performance of used turbulence model for all test cases.
Resilience of hybrid optical angular momentum qubits to turbulence.
Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio
2015-02-12
Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.
Resilience of hybrid optical angular momentum qubits to turbulence
Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P.; Sciarrino, Fabio
2015-01-01
Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667
NASA Astrophysics Data System (ADS)
Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo
2013-03-01
We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.
Coherent Optical Receiver for PPM Signals under Atmospheric Turbulence
NASA Technical Reports Server (NTRS)
Munoz Fernandez, Michela; Vilnrotter, Victor A.
2005-01-01
Adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of simulated spatial distortions resembling atmospheric turbulence is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot-noise. A convergence analysis of the algorithm is presented, and results with both, computer simulated and experimentally obtained PPM signals are analyzed.
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing; Cheng, Qi; Zhang, Dan
2016-06-10
The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment. PMID:27409021
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.
1996-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.
Correlation of optical phase distortion with turbulent structure in a homogeneous shear flow
NASA Technical Reports Server (NTRS)
Truman, C. Randall; Lee, Moon J.
1989-01-01
The relative importance of small-scale and large-scale turbulent structure to phase distortion in propagation through the homogeneous shear flow is the focus of this study. The importance of large-scale vortical structure and the associated scalar distribution to optical distortion induced by propagation through a turbulent shear flow has been established (Truman and Lee 1989). Phase errors induced in a coherent optical beam by these turbulent fluctuations are computed. This scalar field shows elongated regions of intense fluctuations which have an inclination with respect to the mean flow similar to that of the characteristic hairpin eddies. Long-term plans include an examination of the effects of inhomogeneity through consideration of direct numerical simulations of the channel flow, boundary layer or mixing layer.
Bender, D.A.; Kuklo, T.
1994-11-08
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.
Bender, Donald A.; Kuklo, Thomas
1994-01-01
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.
Characterization of the horizontal optical turbulence (C{/n 2}) data measured at Kongju and Cheonan
NASA Astrophysics Data System (ADS)
Yeong Kim, Bo; Lee, Jun Ho; Soo Choi, Young
2015-06-01
When light from an object or an astronomical star propagates in the earth's atmosphere, atmospheric turbulence can distort and move the image in various ways. A quantitative measure of the intensity of optical turbulence with a refractive index structure parameter, C {/n 2}, is widely used in the statistical characterization of the random refractive index fluctuations generally referred to as optical turbulence. I this study, we investigated the horizontal optical turbulence in the near infrared region (850nm) at two sites in South Korea (Kongju and Cheonan) by using a scintillometer. The scintillometer measured the refractive index structure parameter C {/n 2} over 2.1- and 0.4-km paths, respectively, in Kongju and Cheonan. The first path was over an urban area characterized by a complicated land-use mix (residential houses, a river, bare ground, etc.) whereas the second path was a building-to-building path at a 15-m height on a university campus. In addition to the scintillometer, an independent weather station recorded meteorological conditions such as wind speed, relative humidity, and temperature. Study results indicate the general patterns of the optical turbulence at both sites agree with previous-reported diurnal patterns; they have two dips in C2n, one at around sunrise and the other at sunset, but the night profiles varied strongly depending on the atmospheric conditions. The average values of C {/n 2} for the measurement period were × 10-15 and 2.90 × 10-14 m-2/3 in Kongju and Cheonan, espectively, thus confirming that the optical field is clearer in the former. In addition, the average values of the Fried parameter, r0, were accordingly estimated to be 8.0 and 2.5 cm over a 2-km optical distance at Kongju and Cheonan, respectively.
Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.
Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander
2013-05-23
The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav
2014-11-01
This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Experimental study of highly turbulent isothermal opposed-jet flows
NASA Astrophysics Data System (ADS)
Coppola, Gianfilippo; Gomez, Alessandro
2010-10-01
Opposed-jet flows have been shown to provide a valuable means to study a variety of combustion problems, but have been limited to either laminar or modestly turbulent conditions. With the ultimate goal of developing a burner for laboratory flames reaching turbulence regimes of relevance to practical systems, we characterized highly turbulent, strained, isothermal, opposed-jet flows using particle image velocimetry (PIV). The bulk strain rate was kept at 1250 s-1 and specially designed and properly positioned turbulence generation plates in the incoming streams boosted the turbulence intensity to well above 20%, under conditions that are amenable to flame stabilization. The data were analyzed with proper orthogonal decomposition (POD) and a novel statistical analysis conditioned to the instantaneous position of the stagnation surface. Both POD and the conditional analysis were found to be valuable tools allowing for the separation of the truly turbulent fluctuations from potential artifacts introduced by relatively low-frequency, large-scale instabilities that would otherwise partly mask the turbulence. These instabilities cause the stagnation surface to wobble with both an axial oscillation and a precession motion about the system axis of symmetry. Once these artifacts are removed, the longitudinal integral length scales are found to decrease as one approaches the stagnation line, as a consequence of the strained flow field, with the corresponding outer scale turbulent Reynolds number following a similar trend. The Taylor scale Reynolds number is found to be roughly constant throughout the flow field at about 200, with a value virtually independent of the data analysis technique. The novel conditional statistics allowed for the identification of highly convoluted stagnation lines and, in some cases, of strong three-dimensional effects, that can be screened, as they typically yield more than one stagnation line in the flow field. The ability to lock on the
Modeling Compressibility Effects in High-Speed Turbulent Flows
NASA Technical Reports Server (NTRS)
Sarkar, S.
2004-01-01
Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.
Ren, Yongxiong; Huang, Hao; Xie, Guodong; Ahmed, Nisar; Yan, Yan; Erkmen, Baris I; Chandrasekaran, Nivedita; Lavery, Martin P J; Steinhoff, Nicholas K; Tur, Moshe; Dolinar, Samuel; Neifeld, Mark; Padgett, Miles J; Boyd, Robert W; Shapiro, Jeffrey H; Willner, Alan E
2013-10-15
We experimentally investigate the performance of an orbital angular momentum (OAM) multiplexed free space optical (FSO) communication link through emulated atmospheric turbulence. The turbulence effects on the crosstalk and system power penalty of the FSO link are characterized. The experimental results show that the power of the transmitted OAM mode will tend to spread uniformly onto the neighboring mode in medium-to-strong turbulence, resulting in severe crosstalk at the receiver. The power penalty is found to exceed 10 dB in a weak-to-medium turbulence condition due to the turbulence-induced crosstalk and power fluctuation of the received signal.
HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS
Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit
2014-07-20
As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.
NASA Astrophysics Data System (ADS)
Carapezza, Edward M.; Lombardi, Gabrial; Butman, Jerry; Babb, Ivar
2009-09-01
This paper describes an innovative miniature optical sensor for predicting dissolved oxygen concentrations and measuring turbulence in river and littoral water columns. The dissolved oxygen and turbulence sensor consists of a single-frequency laser transmitter and a photodetector on which the scattered light from the turbulent water at the base of a dam or spillway is coherently mixed with a sample of the transmitted beam. This miniature sensor could be used both upstream and downsteam of dams and weirs to predict the amount of dissolved oxygen and turbulence in these waters. It could also be used on mobile platforms, such as unmanned underwater vehicles (UUV's), to monitor the edges of biological or chemical plumes or for wake follow platforms, schools of fish or marine mammals or on stationary unattended underwater sensors to monitor natural aeration and turbulence in littoral and riverine waters. Arrays of fixed unattended sensors could be used to detect the wake of transiting submerged vehicles, scuba divers, marine mammals or large schools of fish. A mobile platform equipped with a miniature sensor could to be cued to the general location and depth of an underwater target and then the platform could use this small aperture sensor to acquire and follow the wake. This dissolved oxygen and turbulence sensor system could be miniaturized and packaged into a very small volume; approximately the size of a wristwatch.
NASA Astrophysics Data System (ADS)
Carapezza, Edward M.; Lombardi, Gabrial; Butman, Jerry; Babb, Ivar
2007-10-01
This paper describes an innovative miniature optical sensor for measuring the turbulence in water columns. The turbulence sensor consists of a single-frequency laser transmitter and a photodetector on which the scattered light from the turbulent water is coherently mixed with a sample of the transmitted beam. This miniature sensor could be used on mobile platforms, such as unmanned underwater vehicles (UUV's), to wake follow platforms, schools of fish or marine mammals or on stationary unattended underwater sensors to monitor natural turbulence in littoral waters. Arrays of fixed unattended sensors could be used to detect the wake of transiting submerged vehicles, scuba divers, marine mammals or large schools of fish. A mobile platform equipped with a miniature turbulence sensor could to be cued to the general location and depth of an underwater target and then the platform could use this small aperture sensor to acquire and follow the wake. This turbulence sensor system could be miniaturized and packaged into a very small volume; approximately the size of a wristwatch.
Temporal broadening of optical pulses propagating through non-Kolmogorov turbulence.
Chen, Chunyi; Yang, Huamin; Lou, Yan; Tong, Shoufeng; Liu, Rencheng
2012-03-26
General formulations of the temporal averaged pulse intensity for optical pulses propagating through either non-Kolmogorov or Kolmogorov turbulence are deduced under the strong fluctuation conditions and the narrow-band assumption. Based on these formulations, an analytical formula for the turbulence-induced temporal half-width of spherical-wave Gaussian (SWG) pulses is derived, and the single-point, two-frequency mutual coherence function (MCF) of collimated Gaussian-beam waves in atmospheric turbulence is formulated analytically, by which the temporal averaged pulse intensity of collimated space-time Gaussian (CSTG) pulses can be calculated numerically. Calculation results show that the temporal broadening of both SWG and CSTG pulses in atmospheric turbulence depends heavily on the general spectral index of the spatial power spectrum of refractive-index fluctuations, and the temporal broadening of SWG pulses can be used to approximate that of CSTG pulses on the axis with the same turbulence parameters and propagation distances. It is also illustrated by numerical calculations that the variation in the turbulence-induced temporal half-width of CSTG pulses with the radial distance is really tiny.
Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.
Nelson, D H; Walters, D L; Mackerrow, E P; Schmitt, M J; Quick, C R; Porch, W M; Petrin, R R
2000-04-20
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. PMID:18345082
Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong
2012-10-20
The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.
Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.
Nelson, D H; Walters, D L; Mackerrow, E P; Schmitt, M J; Quick, C R; Porch, W M; Petrin, R R
2000-04-20
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.
NASA Astrophysics Data System (ADS)
Miville-Deschênes, M.-A.; Duc, P.-A.; Marleau, F.; Cuillandre, J.-C.; Didelon, P.; Gwyn, S.; Karabal, E.
2016-08-01
Diffuse Galactic light has been observed in the optical since the 1930s. We propose that, when observed in the optical with deep imaging surveys, it can be used as a tracer of the turbulent cascade in the diffuse interstellar medium (ISM), down to scales of about 1 arcsec. Here we present a power spectrum analysis of the dust column density of a diffuse cirrus at high Galactic latitude (l ≈ 198°, b ≈ 32°) as derived from the combination of a MegaCam g-band image, obtained as part of the MATLAS large programme at the CFHT, with Planck radiance and WISE 12 μm data. The combination of these three datasets have allowed us to compute the density power spectrum of the H i over scales of more than three orders of magnitude. We found that the density field is well described by a single power law over scales ranging from 0.01 to 50 pc. The exponent of the power spectrum, γ = -2.9 ± 0.1, is compatible with what is expected for thermally bi-stable and turbulent H i. We did not find any steepening of the power spectrum at small scales indicating that the typical scale at which turbulent energy is dissipated in this medium is smaller than 0.01 pc. The ambipolar diffusion scenario that is usually proposed as the main dissipative agent, is consistent with our data only if the density of the cloud observed is higher than the typical values assumed for the cold neutral medium gas. We discuss the new avenue offered by deep optical imaging surveys for the study of the low density ISM structure and turbulence.
Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer.
Curley, Michael J; Peterson, Burl H; Wang, J C; Sarkisov, Sergey S; Sarkisov Ii, Sergey S; Edlin, George R; Snow, Ronald A; Rushing, John F
2006-10-01
One atmospheric phenomenon that adversely affects laser propagation is optical turbulence. From ten months of observation, the refractive index structure constant in the atmospheric boundary layer was found to be significantly reduced under widespread cloudy conditions. The refractive index structure constant (C(n) (2)) depends upon the turbulent flux of momentum, sensible and latent heat. The intensity of a propagating laser beam will not be degraded nearly as much as would be expected under clear or lightly scattered cloud conditions. New experimental data are presented that support this hypothesis. The refractive index structure constant was measured for various cloud-cover conditions.
NASA Astrophysics Data System (ADS)
Meneveau, Charles; de Silva, Charitha M.; Philip, Jimmy; Chauhan, Kapil; Marusic, Ivan
2013-11-01
The scaling and surface area properties of the wrinkled surface separating turbulent from non-turbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. PIV data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent/non-turbulent interface experimentally and to determine unambiguously that such surfaces exhibit fractal scaling with box-counting exponent between -1.3 and -1.4. A complementary analysis based on spatial filtering of the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of filter width, with an exponent between -0.3 and -0.4. These results establish that the interface is fractal-like with a multiscale geometry and fractal dimension of D ~ 2.3-2.4. Measurements of viscous, subgrid-scale and turbulent fluxes across the interface at various scales confirm the complementary nature of viscous nibbling at small scales while turbulent and then large-scale engulfment dominate when viewed at large scales. Financial support provided by the Australian Research Council, Fulbright, Melbourne U. and the NSF (CBET 1033942).
NASA Astrophysics Data System (ADS)
Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin
2016-02-01
The error rate performances and outage probabilities of free-space optical (FSO) communications with spatial diversity are studied for Gamma-Gamma turbulent environments. Equal gain combining (EGC) and selection combining (SC) diversity are considered as practical schemes to mitigate turbulence. The exact bit-error rate (BER) expression and outage probability are derived for direct detection EGC multiple aperture receiver system. BER performances and outage probabilities are analyzed and compared for different number of sub-apertures each having aperture area A with EGC and SC techniques. BER performances and outage probabilities of a single monolithic aperture and multiple aperture receiver system with the same total aperture area are compared under thermal-noise-limited and background-noise-limited conditions. It is shown that multiple aperture receiver system can greatly improve the system communication performances. And these analytical tools are useful in providing highly accurate error rate estimation for FSO communication systems.
Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong
2014-12-29
In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.
Yi, Xiang; Li, Zan; Liu, Zengji
2015-02-20
In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.
Yi, Xiang; Li, Zan; Liu, Zengji
2015-02-20
In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case. PMID:25968187
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.
High speed turbulent reacting flows: DNS and LES
NASA Technical Reports Server (NTRS)
Givi, Peyman
1990-01-01
Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.
High-resolution ground layer turbulence from inside the CFHT dome using a lunar scintillometer
NASA Astrophysics Data System (ADS)
Pfrommer, T.; Hickson, P.
2015-04-01
For ground layer adaptive optics systems, knowledge of the local height- and time- resolved ground layer (GL) turbulence is crucial to link local topography with optical turbulence. Such turbulence profiles have been obtained in the years 2009 and 2010 over 250 hours on Mauna Kea, Hawaii. Results from measurements inside the Canada-France-Hawaii Telescope (CFHT) dome indicate severe degradation of image quality due to a poorly vented dome and thus provide input for dome modifications and design aspects for a new ground layer adaptive optics system. The outside median GL seeing above 6 metres was determined to be 0.48±0.01”.
Neo, Richard; Goodwin, Michael; Zheng, Jessica; Lawrence, Jon; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel
2016-02-01
In recent years, there have been a series of proposals to exploit the orbital angular momentum (OAM) of light for astronomical applications. The OAM of light potentially represents a new way in which to probe the universe. The study of this property of light entails the development of new instrumentation and problems which must be addressed. One of the key issues is whether we can overcome the loss of the information carried by OAM due to atmospheric turbulence. We experimentally analyze the effect of atmospheric turbulence on the OAM content of a signal over a range of realistic turbulence strengths typical for astronomical observations. With an adaptive optics system we are able to recover up to 89% power in an initial non-zero OAM mode (ℓ = 1) at low turbulence strengths (0.30" FWHM seeing). However, for poorer seeing conditions (1.1" FWHM seeing), the amount of power recovered is significantly lower (5%), showing that for the terrestrial detection of astronomical OAM, a careful design of the adaptive optics system is needed.
Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.
1997-07-22
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.
Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.
1997-01-01
An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.
High Reynolds number decay of turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Verschoof, Ruben A.; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2015-11-01
We study the decay of high-Reynolds number turbulence in a Taylor-Couette facility for pure inner cylinder rotation. The rotation of the inner cylinder (Rei = 2 ×106) is suddenly decelerated as fast as possible, thus removing the energy input within seconds. Local velocity measurements show that the decay in this wall-bounded inhomogeneous flow is faster than observed for homogeneous isotropic turbulent flows, due to the strong viscous drag applied by the inner and outer cylinder surfaces. We found that the decay over time can be described with the differential equation Re . (t) =cf (Re)Re2 , where the effects of the walls are included through the friction coefficient. A self-similar behavior of the azimuthal velocity is found: its normalized velocity profile as a function of the radius collapses over time during the decay process.
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Federrath, Christoph; Schober, Jennifer; Bovino, Stefano; Schleicher, Dominik R. G.
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
NASA Astrophysics Data System (ADS)
Yang, Wenxia; Cai, Chao; Ding, Mingyue; Zhou, Chengping; Guo, Xiaoxing
2007-11-01
The goal of this paper is to numerically simulate and analyze the aero-optic effects caused by the hyper-speed turbulence fields surrounding the aircraft under different flight conditions, and to characterize them with the associated optical transfer functions. First, analysis and computation of the aero-optic effects under different flight conditions have been addressed, where the parameters characterizing the hyper-speed turbulence field were obtained by solving its N-S equations via CFD methods. The infrared ray trajectories passing through the flow field with a non-homogeneous distribution of the refraction indices were acquired using the gradient index ray-tracing method, and the transfer function to represent the aero-optic effects was derived considering the principles of Fourier optics. The simulation results showed that the aero-optic transfer function is characterized as a low-pass filter of nonlinearly varying phases, which results the blurring and shifting of the objects in the acquired images.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Guo-an
2014-09-01
In order to mitigate atmospheric turbulence, the free space optical (FSO) system model with spatial diversity is analyzed based on intensity detection pulse position modulation (PPM) in the weak turbulence atmosphere. The slot error rate (SER) calculating formula of the system without diversity is derived under pulse position modulation firstly. Then as a benchmark, independent of identical distribution, the average slot error rates of the three linear combining technologies, which are the maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SelC), are compared. Simulation results show that the performance of system is the best improved by MRC, followed by EGC, and is poor by SelC, but SelC is simpler and more convenient. Spatial diversity is efficient to improve the performance and has strong ability on resistance to atmospheric channel decline. The above scheme is more suitable for optical wireless communication systems.
Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.
Banakh, V A; Smalikho, I N
2014-09-22
Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.
NASA Technical Reports Server (NTRS)
Harger, R. O.
1974-01-01
Abstracts are reported relating to the techniques used in the research concerning optical transmission of information. Communication through the turbulent atmosphere, quantum mechanics, and quantum communication theory are discussed along with the results.
Turbulence Model Comparisons for a High-Speed Aircraft
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
Four turbulence models are described and evaluated for transonic flows over the High-Speed Research/industry baseline configuration known as Reference H by using the thin-layer, upwind, Navier-Stokes solver known as CFL3D. The turbulence models studied are the equilibrium model of Baldwin-Lomax (B-L) with the Degani-Schiff (D-S) modifications, the one-equation Baldwin-Barth (B-B) model, the one-equation Spalart-Allmaras (S-A) model, and Menter's two-equation Shear Stress Transport (SST) model. The flow conditions, which correspond to tests performed in the National Transonic Facility (NTF) at Langley Research Center, are a Mach number of 0.90 and a Reynolds number of 30 x 10 (exp. 6) based on mean aerodynamic chord for angles of attack of 1 deg., 5 deg., and 10 deg. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Computed forces and surface pressures compare reasonably well with the experimental data for all four turbulence models.
Saturated laser fluorescence in turbulent sooting flames at high pressure
NASA Technical Reports Server (NTRS)
King, G. B.; Carter, C. D.; Laurendeau, N. M.
1984-01-01
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.
Onset of turbulence in accelerated high-Reynolds-number flow.
Zhou, Ye; Robey, Harry F; Buckingham, Alfred C
2003-05-01
A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types
Measurements of passive-scalar spectra for grid turbulence using a nonlinear optical technique
O'Hern, T.J.; Torczynski, J.R.; Neal, D.R.; Shagam, R.N. ); Robey, H.F. )
1991-01-01
A nonlinear optical technique has been applied to grid turbulence measurements. A laser beam passing through a turbulent region acquires phase perturbations related to the density perturbations it encounters. If the laser beam is then passed through a crystal of barium titanate (BaTiO{sub 3}), a photorefractive nonlinear optical material, the small-amplitude perturbations to the beam are passed but the large-amplitude unperturbed portion of the beam is deflected away from the beam path. An optical Fourier transform of the perturbations performed by a lens yields the two-dimensional density-perturbation (passive-scalar) spectrum at the lens focal plane or, alternatively, a photorefractive schlieren photograph at the lens image plane. As a test application for this technique, a system was assembled to study the downstream evolution of the density-perturbation spectrum in grid turbulence produced by an electrically heated screen spanning the test section of a wind tunnel. Near the screen, the spectrum is found to consist primarily of large-amplitude peaks at the fundamental and the first few harmonics of the screen-wake spatial frequency. As expected, these amplitudes are observed to decay rapidly in the downstream direction. 8 refs., 12 figs.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results. PMID:24977911
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.
Optical requirements with turbulence correction for long-range biometrics
NASA Astrophysics Data System (ADS)
Choi, Junoh; Soehnel, Grant H.; Bagwell, Brett E.; Dixon, Kevin R.; Wick, David V.
2009-05-01
Iris recognition utilizes distinct patterns found in the human iris to perform identification. Image acquisition is a critical first step towards successful operation of iris recognition systems. However, the quality of iris images required by standard iris recognition algorithms puts hard constraints on the imaging optical systems which have resulted in demonstrated systems to date requiring a relatively short subject stand-off distance. In this paper, we study long-range iris recognition at distances as large as 200 meters, and determine conditions the imaging system must satisfy for identification at longer stand-off distances.
Edwards, M J; Hansen, J; Miles, A R; Froula, D; Gregori, G; Glenzer, S; Edens, A; Dittmire, T
2005-02-08
The possibility of studying compressible turbulent flows using gas targets driven by high power lasers and diagnosed with optical techniques is investigated. The potential advantage over typical laser experiments that use solid targets and x-ray diagnostics is more detailed information over a larger range of spatial scales. An experimental system is described to study shock - jet interactions at high Mach number. This consists of a mini-chamber full of nitrogen at a pressure {approx} 1 atms. The mini-chamber is situated inside a much larger vacuum chamber. An intense laser pulse ({approx}100J in {approx} 5ns) is focused on to a thin {approx} 0.3{micro}m thick silicon nitride window at one end of the mini-chamber. The window acts both as a vacuum barrier, and laser entrance hole. The ''explosion'' caused by the deposition of the laser energy just inside the window drives a strong blast wave out into the nitrogen atmosphere. The spherical shock expands and interacts with a jet of xenon introduced though the top of the mini-chamber. The Mach number of the interaction is controlled by the separation of the jet from the explosion. The resulting flow is visualized using an optical schlieren system using a pulsed laser source at a wavelength of 0.53 {micro}m. The technical path leading up to the design of this experiment is presented, and future prospects briefly considered. Lack of laser time in the final year of the project severely limited experimental results obtained using the new apparatus.
NASA Technical Reports Server (NTRS)
Schmidt, J. F.; Boldman, D. R.; Todd, C.
1972-01-01
A laminarization model which consists of a completely laminar sublayer region near the wall and a turbulent wake region is developed for the turbulent eddy transport in accelerated turbulent boundary layers. This laminarization model is used in a differential boundary layer calculation which was applied to nozzle flows. The resulting theoretical velocity profiles are in good agreement with the experimental nozzle data in the convergent region.
NASA Astrophysics Data System (ADS)
Bernotas, Marius P.; Nelson, Charles
2016-05-01
The Weibull and Exponentiated Weibull probability density functions have been examined for the free space regime using heuristically derived shape and scale parameters. This paper extends current literature to the underwater channel and explores use of experimentally derived parameters. Data gathered in a short range underwater channel emulator was analyzed using a nonlinear curve fitting methodology to optimize the scale and shape parameters of the PDFs. This method provides insight into the scaled effects of underwater optical turbulence on a long range link, and may yield a general set of equations for determining the PDF for an underwater optical link.
Computation of turbulent high speed mixing layers using a two-equation turbulence model
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Sekar, B.
1991-01-01
A two-equation turbulence model was extended to be applicable for compressible flows. A compressibility correction based on modelling the dilational terms in the Reynolds stress equations were included in the model. The model is used in conjunction with the SPARK code for the computation of high speed mixing layers. The observed trend of decreasing growth rate with increasing convective Mach number in compressible mixing layers is well predicted by the model. The predictions agree well with the experimental data and the results from a compressible Reynolds stress model. The present model appears to be well suited for the study of compressible free shear flows. Preliminary results obtained for the reacting mixing layers are included.
NASA Astrophysics Data System (ADS)
Jumper, E. J.; Hugo, R. J.
1992-07-01
This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.
Study on Atmospheric Optical Turbulence above Mount Shatdzhatmaz in 2007-2013
NASA Astrophysics Data System (ADS)
Kornilov, V.; Safonov, B.; Kornilov, M.; Shatsky, N.; Voziakova, O.; Potanin, S.; Gorbunov, I.; Senik, V.; Cheryasov, D.
2014-05-01
We present the results of the atmospheric optical turbulence (OT) measurements performed atop Mount Shatdzhatmaz at the installation site of new 2.5 m telescope of the Sternberg Astronomical Institute. Nearly 300,000 vertical OT profiles from the ground up to an altitude of 23 km were obtained in the period of 2007 November-2013 June 2 with the combined multiaperture scintillation sensor (MASS) and differential image motion monitor (DIMM) instrument. The medians of the main OT characteristics, computed over the whole dataset are as follows: the integral seeing β0 = 0.96'', the free-atmosphere seeing βFA = 0.43'', and the isoplanatic angle θ0 = 2.07''. The median atmospheric time constant is τ0 = 6.57 ms. The revealed long-term variability of these parameters on scales of months and years implies the need to take it into account in astroclimatic campaign planning. For example, the annual variation in the monthly θ0 estimate amounts to 30%, while the time constant τ0 changes by a factor of 2.5. Evaluation of the potential of Mount Shatdzhatmaz in terms of high angular resolution observations indicates that in October-November, this site is as good as the best of studied summits in the world.
NASA Astrophysics Data System (ADS)
Louthain, James A.; Welsh, Byron M.
1998-09-01
A new atmospheric screen generator is developed for use in performance calculations of adaptive optics and imaging systems. The generator is valid over a wide range of atmospheric turbulence parameters and incorporates both phase and amplitude effects. The new screen generator accounts for diffraction effects caused by turbulence and incorporates the phase, amplitude, and cross statistics of a weak turbulence model. The second order statistics of the phase and amplitude perturbations are based on the auto- correlation functions developed by Lee and Harp and the cross-correlation of the phase and amplitude perturbations derived in this paper. The correlations are derived by modeling the turbulence as a number of layers of randomly varying refractivity perpendicular to the propagation path. As the field propagates through the medium, diffraction occurs at each of the layers. A Fourier series expansion of the wavefront phase and amplitude is used. The screen generator uses the power and cross spectral densities of the phase and amplitude perturbations. The mean square value and the structure functions of the wavefront phase and amplitude are calculated in a Monte Carlo experiment and shown to be within 1% of the theoretical value.
Gated high speed optical detector
NASA Technical Reports Server (NTRS)
Green, S. I.; Carson, L. M.; Neal, G. W.
1973-01-01
The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.
First results of the PML monitor of atmospheric turbulence profile with high vertical resolution
NASA Astrophysics Data System (ADS)
Ziad, A.; Blary, F.; Borgnino, J.; Fanteï-Caujolle, Y.; Aristidi, E.; Martin, F.; Lantéri, H.; Douet, R.; Bondoux, E.; Mékarnia, D.
2013-11-01
Aims: Future extremely large telescopes will certainly be equipped with wide-field adaptive optics systems. The optimization of the performances of these techniques requires a precise specification of the different components of these AO systems. Most of these technical specifications are related to the atmospheric turbulence parameters, particularly the profile of the refractive index structure constant CN2(h). A new monitor called Profiler of Moon Limb (PML) for the extraction of the CN2(h) profile with high vertical resolution and its first results are presented. Methods: The PML instrument uses an optical method based on the observation of the Moon limb through two subapertures. The use of the lunar limb leads to a continuum of double stars allowing a scan of the whole atmosphere with high resolution in altitude. Results: The first prototype of the PML has been installed at Dome C in Antarctica and the first results of the PML are presented and compared to radio-sounding balloon profiles. In addition to the CN2(h) profile obtained with high vertical resolution, PML is also able to provide other atmospheric turbulence parameters such as the outer scale profile, the total seeing, and the isoplanatic and isopistonic angles.
Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi
2010-06-20
Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows relative to
Electromagnetic gyrokinetic turbulence in high-beta helical plasmas
NASA Astrophysics Data System (ADS)
Ishizawa, Akihiro
2013-10-01
Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.
Temporal frequency spread of optical wave propagation through anisotropic non-Kolmogorov turbulence
NASA Astrophysics Data System (ADS)
Kotiang, Stephen; Choi, Jaeho
2015-12-01
In this paper, we derive new analytic expressions for the atmospheric-induced frequency spread of optical plane and spherical waves propagating in a horizontal path and experiencing anisotropic non-Kolmogorov turbulence. The anisotropic spectrum model is based on the assumption that circular symmetry is maintained in the orthogonal xy-plane throughout the path and that it includes the same degree of anisotropy along the direction of propagation for all the turbulence cell sizes. These expressions are developed in the weak fluctuation region using the Rytov approximation method and are independent of the knowledge of the temporal mutual coherence function for the optical waves. We perform our analysis based on a generalized von Karman power spectrum of the index of refraction. The spectrum considers the effect of finite inner and outer scales of turbulence, together with a non-Kolmogorov spectral power exponent α that varies between 3-4. The simulation results show that the anisotropic parameter impacts on the frequency spread by a factor {\\zeta }2-α . Moreover the frequency spread is most significant for α values around 3.1.
Adaptive-optics compensation by distributed beacons for non-kolmogorov turbulence.
Rao, C; Jiang, W; Ling, N
2001-07-20
In optical propagation through atmospheric turbulence, the performance of compensation with adaptive optics depends on a beacon's spatial distribution. With distributed beacons, the inefficiency of the modal correction, which is defined as the ratio of the anisoplanatic error of the jth mode and the Zernike-coefficient variance, is derived by use of the wave-front expansion on the Zernike polynomials for non-Kolmogorov turbulence. Numerical results are presented for laser beam propagation through constant turbulence with an offset point beacon and an on-axis uniform circular beacon. The results show that compensation for an on-axis uniform circular beacon is much more effective than that for an offset point beacon. The low-order modes are much more correlated than the higher-order modes. The larger the power-law exponent of the refractive-index power spectrum beta, the smaller the propagation path length L and the larger the diameter D of the telescope aperture, the more effective the compensation is. For a specific extended degree of beacon for which there are a maximum number of modes N(max) to be corrected, only low-order-correction systems are useful.
Very High Resolution Simulations of Compressible, Turbulent Flows
Woodward, P R; Porter, D H; Sytine, I; Anderson, S E; Mirin, A A; Curtis, B C; Cohen, R H; Dannevik, W P; Dimits, A M; Eliason, D E; Winkler, K-H; Hodson, S W
2001-04-26
The steadily increasing power of supercomputing systems is enabling very high resolution simulations of compressible, turbulent flows in the high Reynolds number limit, which is of interest in astrophysics as well as in several other fluid dynamical applications. This paper discusses two such simulations, using grids of up to 8 billion cells. In each type of flow, convergence in a statistical sense is observed as the mesh is refined. The behavior of the convergent sequences indicates how a subgrid-scale model of turbulence could improve the treatment of these flows by high-resolution Euler schemes like PPM. The best resolved case, a simulation of a Richtmyer-Meshkov mixing layer in a shock tube experiment, also points the way toward such a subgrid-scale model. Analysis of the results of that simulation indicates a proportionality relationship between the energy transfer rate from large to small motions and the determinant of the deviatoric symmetric strain as well as the divergence of the velocity for the large-scale field.
NASA Astrophysics Data System (ADS)
Rampy, Rachel A.
Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and
The interaction of high-speed turbulence with flames: Global properties and internal flame structure
Poludnenko, A.Y.; Oran, E.S.
2010-05-15
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H{sub 2}-air mixture. The system being modeled represents turbulent combustion with the Damkoehler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H{sub 2}-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes. (author)
NASA Astrophysics Data System (ADS)
Prabu, K.; Kumar, D. Sriram
2015-05-01
An optical wireless communication system is an alternative to radio frequency communication, but atmospheric turbulence induced fading and misalignment fading are the main impairments affecting an optical signal when propagating through the turbulence channel. The resultant of misalignment fading is the pointing errors, it degrades the bit error rate (BER) performance of the free space optics (FSO) system. In this paper, we study the BER performance of the multiple-input multiple-output (MIMO) FSO system employing coherent binary polarization shift keying (BPOLSK) in gamma-gamma (G-G) channel with pointing errors. The BER performance of the BPOLSK based MIMO FSO system is compared with the single-input single-output (SISO) system. Also, the average BER performance of the systems is analyzed and compared with and without pointing errors. A novel closed form expressions of BER are derived for MIMO FSO system with maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques. The analytical results show that the pointing errors can severely degrade the performance of the system.
Contribution to the numerical study of turbulence in high intensity discharge lamps
Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K.
2011-07-15
We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.
High-speed holocinematographic velocimeter for studying turbulent flow control physics
NASA Technical Reports Server (NTRS)
Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.
1985-01-01
Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.
Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.
Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z
2015-08-10
A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.
NASA Astrophysics Data System (ADS)
Rampy, Rachel A.
Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and
NASA Astrophysics Data System (ADS)
Volino, Ralph John
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale
NASA Astrophysics Data System (ADS)
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2008-05-01
A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied and determine the aggregate capacity of the multichannel system at those conditions. OAM-multiplexed FSO systems that operate in the weak turbulence regime are found to offer good performance. We verify that the aggregate capacity decreases as the turbulence increases. A per-channel bit-error rate evaluation is presented to show the uneven effects of crosstalk on the constituent channels.
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
Implications of the homogeneous turbulence assumption on the aero-optic linking equation
NASA Astrophysics Data System (ADS)
Hugo, Ronald J.; Jumper, Eric J.
1995-09-01
This paper investigates the validity of applying the simplified (under the assumptions of isotropic and homogeneous turbulence) aero-optic linking equation to a flowfield that is known to consist of anisotropic and nonhomogeneous turbulence. The investigation is performed in the near nozzle-region of a heated two-dimensional jet, and the study makes use of a conditional sampling experiment to acquire a spatio-temporal temperature field data base for the heated jet flowfield. After compensating for the bandwidth limitations of constant-current-wire temperature measurements, the temperature field data base is applied to the computation of optical degradation through both direct methods and indirect methods relying on the aero-optic linking equation. The simplified version of the linking equation was found to provide very good agreement with direct calculations provided that the length scale of the density fluctuations was interpreted as being the integral scale, with the limits of the integration being the two first zero crossings of the covariance coefficient function.
High heat load synchrotron optics
Mills, D.M.
1992-08-01
Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.
The performance of space shift keying for free-space optical communications over turbulent channels
NASA Astrophysics Data System (ADS)
Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, El-Hadi M.
2015-01-01
This paper evaluates the performance of space shift keying (SSK) free-space optical communication (FSO) over moderate and strong turbulent channels. It has been shown previously that repetition codes (RCs) using intensity modulation with direct detection techniques are superior to SSK system for a spectral efficiency of 1 bit/s/Hz. It is shown in this study that SSK outperforms RCs using M-ary pulse amplitude modulation for spectral efficiencies of 3 bits/s/Hz or larger. Analytical expressions for the bit error rate for the SSK system under study are derived and extensive simulation results corroborate the correctness of the conducted analysis.
NASA Astrophysics Data System (ADS)
Prabu, K.; Sriram Kumar, D.
2016-01-01
This paper investigates the outage performance of polarization shift keying (PolSK) based multihop parallel relay assisted free space optics (FSO) system over a strong atmospheric turbulence channel with misalignment fading. An exact closed form expression is derived for the end-to-end outage probability of the system. The results are compared with the direct transmission and on-off keying (OOK) based FSO systems. The results indicate that the performance of the PolSK based relay-assisted FSO system is much better than the direct transmission and OOK systems. The outage performance is enhanced by increasing the number of relay path between the transmitter and receiver.
KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited
NASA Technical Reports Server (NTRS)
Craig, J.; Allen, C.
1987-01-01
The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.
Wall-bounded turbulence at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Vallikivi, Margit
Measurements are reported that give new insight into the behavior of turbulent wall-bounded flows at high Reynolds number. Turbulent pipe and boundary layer flows are examined experimentally over a wide range of Reynolds numbers -- up to Retau=100,000 (Re D=6x106) in pipe flow, and up to Re tau=73,000 (ReD=235x103) in a flat plate zero pressure gradient boundary layer. A Nano-Scale Thermal Anemometry Probe (NSTAP) was developed for very high spatial and temporal resolution measurements. Sensors with wire lengths 30 and 60 mum were fabricated, tested and validated in known flows, and then used to obtain single-point measurements at high Reynolds numbers in pipe and boundary layers. The mean velocity data together with data from previous studies and extensive error analysis showed that the von Karman's constant in the log-law is kappa=0.40+/-0.02. It was shown that the streamwise Reynolds stress exhibits a logarithmic behavior in the inertial sublayer for Retau≥20,000, in both pipes and boundary layers. Variances as well as higher order even moments were compared for pipes and boundary layers and it was shown that all even moments have a logarithmic behavior in the inertial sublayer, suggesting a true scale separation. Streamwise turbulent spectra showed a clear k --5/3 region for up to two decades in wavenumber. No k--1 region was found to be present in any of the cases in the pipe or the boundary layer. The location of the outer spectral peak, associated with very large scale motions, was found to have only a weak dependence on Reynolds number. The loci of these peak occur at the same wall-normal distance where the streamwise stresses establish a logarithmic behavior and where the amplitude modulation coefficient has a zero value. This suggests that with Reynolds number increasing to infinity most of the energy is contained within a diminishing wall-layer in physical coordinates.
Turbulent phase noise on asymmetric two-way ground-satellite coherent optical links
NASA Astrophysics Data System (ADS)
Robert, Clélia; Conan, Jean-Marc; Wolf, Peter
2015-10-01
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end-to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. Simulations make use of the reciprocity principle to estimate both down and up link performance from wave-optics propagation of descending plane waves. These temporally resolved simulations allow characterising the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock transfer.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian. PMID:26831396
Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.
Chu, Xiuxiang
2007-12-24
The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.
Gamo, H; Majumdar, A K
1978-12-01
A turbulence chamber (0.78 x 0.23 x 2.59 m(3)) consisting of ten small electric heater/blowers with an aluminum foil screen and three screens of 2-mm aluminum wire meshes can generate the nearly homogeneous isotropic turbulence within the 0.5 x 0.05 x 2-m(3) region at the 0.11-m height of optical measurements. The temperature structure constant squared C(2)(T) = 52.9 K(2) m(-?) was obtained from the temperature structure function measurements measured by using a differential microthermocouple system. The refractive-index structure constant squared C(2)n_{at the 632.8-nm wavelength was calculated from C(2)(T):C(2)(n) = 3.00 x 10(-11)m(-?). The average wind velocity and temperature were 0.41 m/sec and 53 degrees C, respectively. From the power spectrum of temperature fluctuations, the inner and outer scales of turbulence are determined: l(o) = 5.0 mm and L(0) = 6.5 cm. The measured temperature structure function and power spectrum of temperature fluctuations satisfy the ? and -5/3 power similarity laws in the inertial subrange, respectively.}
High-resolution turbulent simulations using the Connection Machine-2
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Shan, Xiaowen
1992-01-01
The spectral method provides an efficient algorithm for solving the 3D incompressible Navier-Stokes equations in periodic boundaries. Most people, so far, have used vectorized machines, such as the CRAY-2, to implement fast Fourier transformations and time integrations in the spectral calculations. In this paper, new results are presented using the spectral calculations on the Connection Machine-2 with a parallel algorithm. The large memory of the Connection Machine-2 and the parallel algorithm allows, of the first time, to implement a 512-cubed mesh resolution for high Reynolds number flows. The computational speed of the present code is about 30 percent faster than the fastest CRAY-2 simulations with four processors. Parallel machines, such as the Connection Machine-2, will possibly provide new computational power for understanding the intermittency and cascade mechanism in fluid turbulence.
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.
Measurements of optical turbulence in the free atmosphere above Mount Maidanak in 2005-2007
NASA Astrophysics Data System (ADS)
Kornilov, V.; Ilyasov, S.; Vozyakova, O.; Tillaev, Yu.; Safonov, B.; Ibragimov, M.; Shatsky, N.; Egamberdiev, Sh.
2009-08-01
We present the results of our 2005-2007 campaign to measure the vertical distribution of optical turbulence above Mount Maidanak. The measurements were performed with the MASS instrument, a multi-aperture scintillation sensor that has been widely used for such studies in recent years at many observatories worldwide. Analysis of the data shows that the median seeing in the free atmosphere (at an altitude of 0.5 km and higher) is 0 ″46, while the isoplanatic angle is 2″.47. Given the large time constant (about 7 ms at good seeing), such conditions are favorable for using adaptive optics and interferometric measurements in the visible and near-infrared spectral ranges.
Suret, Pierre; Picozzi, Antonio; Randoux, Stéphane
2011-08-29
We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a statistically stationary state. The evolution of the power spectrum of the field is characterized by the rapid growth of spectral tails that exhibit damped oscillations, until the whole spectrum ultimately reaches a steady state. The kinetic approach allows us to derive an analytical expression of the damped oscillations, which is found in agreement with the numerical simulations of both the NLS and kinetic equations. We report the experimental observation of this peculiar relaxation process of the integrable NLS equation.
Suret, Pierre; Picozzi, Antonio; Randoux, Stéphane
2011-08-29
We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a statistically stationary state. The evolution of the power spectrum of the field is characterized by the rapid growth of spectral tails that exhibit damped oscillations, until the whole spectrum ultimately reaches a steady state. The kinetic approach allows us to derive an analytical expression of the damped oscillations, which is found in agreement with the numerical simulations of both the NLS and kinetic equations. We report the experimental observation of this peculiar relaxation process of the integrable NLS equation. PMID:21935152
High freestream turbulence studies on a scaled-up stator vane
NASA Astrophysics Data System (ADS)
Radomsky, Roger William, Jr.
2000-10-01
Today's gas turbine engines are operating at combustor exit temperatures far exceeding the maximum temperatures of the component alloys downstream of the combustor. These higher temperatures are necessary to increase the efficiency of the engine, and, as such, durability of the downstream components becomes an issue. The highly turbulent flowfield that exists at the exit of the combustor complicates issues further by increasing heat transfer from the hot gas to the component surface. To account for the high heat transfer rates, and provide a better prediction of the applied heat loads, detailed heat transfer and flowfield information is needed at turbulence levels representative those exiting a combustor. Flowfield measurements at high freestream turbulence levels indicated that turbulence, which was isotropic at the inlet, became highly anisotropic in the test section as a result of surface curvature and strain. Turbulent kinetic energy levels were shown to increase in the passage by as much as 131% and 31% for the 10% and 19.5% turbulence levels. Although the turbulent kinetic energy was high, the turbulence level based upon local velocity decreased quickly to levels of 3% and 6% near the suction surface for the 10% and 19.5% turbulence levels. For the pressure surface, local turbulence levels were as high as 10% and 16% for the 10% and 19.5% turbulence levels. High local turbulence levels and heat transfer augmentation were observed near the stagnation location, by as much as 50%, and along the pressure surface, by as much as 80%, where airfoil geometries have shown degradation after prolonged usage. Endwall flowfield measurements on a plane at the stagnation location showed that a horseshoe vortex developed in the juncture region of the vane at high freestream. turbulence similar to that at low freestream turbulence. Measurements near the center of the vortex indicated that the vortex was highly unsteady. In regions where strong secondary flows (horseshoe and
Libich, Jiri; Komanec, Matej; Zvanovec, Stanislav; Pesek, Petr; Popoola, Wasiu O; Ghassemlooy, Zabih
2015-02-01
This Letter presents original measurement results from an all-optical 10 Gbit/s free-space optics (FSO) relay link involving two FSO links and an all-optical switch. Considering the fact that reported analyses of relay links are dominated by analytical findings, the experimental results represent a vital resource for evaluating the performance of relay FSO links in the presence of atmospheric turbulence. Bit-error-rate (BER) performance of the relay system is tested for single and dual-hop links under several turbulence regimes. Furthermore, results from this measurement are used to ascertain real parameters of the outdoor links and to improve the accuracy of simulation results. Results show that using a dual-hop FSO link against a single FSO link could result in up to four orders of magnitude improvement in BER in the presence of atmospheric turbulence.
High Availability in Optical Networks
NASA Astrophysics Data System (ADS)
Grover, Wayne D.; Wosinska, Lena; Fumagalli, Andrea
2005-09-01
Call for Papers: High Availability in Optical Networks Submission Deadline: 1 January 2006 The Journal of Optical Networking (JON) is soliciting papers for a feature Issue pertaining to all aspects of reliable components and systems for optical networks and concepts, techniques, and experience leading to high availability of services provided by optical networks. Most nations now recognize that telecommunications in all its forms -- including voice, Internet, video, and so on -- are "critical infrastructure" for the society, commerce, government, and education. Yet all these services and applications are almost completely dependent on optical networks for their realization. "Always on" or apparently unbreakable communications connectivity is the expectation from most users and for some services is the actual requirement as well. Achieving the desired level of availability of services, and doing so with some elegance and efficiency, is a meritorious goal for current researchers. This requires development and use of high-reliability components and subsystems, but also concepts for active reconfiguration and capacity planning leading to high availability of service through unseen fast-acting survivability mechanisms. The feature issue is also intended to reflect some of the most important current directions and objectives in optical networking research, which include the aspects of integrated design and operation of multilevel survivability and realization of multiple Quality-of-Protection service classes. Dynamic survivable service provisioning, or batch re-provisioning is an important current theme, as well as methods that achieve high availability at far less investment in spare capacity than required by brute force service path duplication or 100% redundant rings, which is still the surprisingly prevalent practice. Papers of several types are envisioned in the feature issue, including outlook and forecasting types of treatments, optimization and analysis, new
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
Beresnyak, Andrey
2014-04-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.
High Reynolds number effects on a localized stratified turbulent flow
NASA Astrophysics Data System (ADS)
Zhou, Qi; Diamessis, Peter
2015-11-01
We report large-eddy simulations (LES) of the turbulent flow behind a sphere of diameter D translating at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N. These simulations are performed using a spectral-multidomain-penalty incompressible Navier-Stokes solver, at Reynolds numbers Re ≡ UD / ν ∈ { 5 ×103 , 105 , 4 ×105 } and Froude numbers Fr ≡ 2 U / (ND) ∈ { 4 , 16 , 64 } . An increasingly richer turbulent fine-structure is observed within the larger-scale quasi-horizontal vortices at later times. Turbulent transport of momentum is examined during the non-equilibrium (NEQ) regime of the turbulent life cycle, with an emphasis on the vertical transport that occurs after the establishment of local buoyancy control. The turbulent viscosities in both horizontal and vertical directions are estimated through the LES data; possible parameterization of the vertical turbulent viscosity with the buoyancy Reynolds number Reb = ɛ / (νN2) (or its easy-to-obtain surrogates) is discussed. The dynamical role of the buoyancy Reynolds number in choosing the vertical turbulence length scales is also investigated. ONR grant N00014-13-1-0665 (managed by Dr. R. Joslin); HPCMP Frontier Project FP-CFD-FY14-007 (P.I.: Dr. S. de Bruyn Kops).
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-01-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
NASA Astrophysics Data System (ADS)
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-10-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented--up to now--time-resolved observations of the awaited dynamics. Here, we report temporal `snapshots' of random light using a specially designed `time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by `breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence.
High-Temperature Optical Sensor
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.
2010-01-01
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.
PDF methods for combustion in high-speed turbulent flows
NASA Technical Reports Server (NTRS)
Pope, Stephen B.
1995-01-01
This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.
Fast calibration of high-order adaptive optics systems.
Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain
2004-06-01
We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182
Fast calibration of high-order adaptive optics systems.
Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain
2004-06-01
We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.
Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Foy, B.R.; Koskelo, A.C.; McVey, B.D.; Quick, C.R.; Porch, W.M.; Tiee, J.J.; Fite, C.B.; Archuleta, F.A.; Whitehead, M.C.; Walters, D.L.
1999-03-23
The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. We have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these process: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, we briefly review a description of our model including the limitations along with previous simulation s of individual effects. The performance of our modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, advanced studies have been performed to demonstrate the utility of our model in assessing the effects for different lidar geometries on RMS noise and correlation ''size'' in the receiver plane.
Nelson, D.; Petrin, R.; MacKerrow, E.; Schmitt, M.; Foy, B.; Koskelo, A.; McVey, B.; Quick, C.; Porch, W.; Fite, C.; Archuleta, F.; Whitehead, M.; Tiee, J.; Walters, D.
1999-04-01
The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. The authors have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these processes: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements. The limitations of the model are also discussed. In addition, studies have been performed to determine the importance of key parameters in the simulation. The results of these studies and their impact on the overall results will be presented.
Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number
NASA Astrophysics Data System (ADS)
Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui
2013-11-01
To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide
Investigation of anisoplanatic effect in adaptive optics for atmospheric turbulence correction
NASA Astrophysics Data System (ADS)
Li, Xinyang; Shao, Li; Hu, Shijie; Huang, Kui
2015-02-01
Laser Guide Star (LGS) is an artificial atmospheric turbulence probing source of adaptive optics (AO) for compensating for the wave-front error of interested object in real time, and for providing approximate diffraction-limited resolution recovery. Actually the unavoidable anisoplanatic error resulting from different light experience between the LGS and the object of interest through turbulent atmosphere will lead to an incomplete wave-front distortion compensation of the object. In this paper the statistics of anisoplanatic errors and their associated Zernike-modal variances have been systematically investigated for different LGS sources by means of numerical simulation, including Rayleigh LGS and Sodium LGS. The numerical results show that the probed wave-front expanded Zernike-modal decorrelation versus angular deviation between the LGS and the object of interest becomes much more sensitive for the higher altitude LGS. For minor angular deviations with LGS focal spots being still within the ray path from the object to the telescope, the reduction of the error from turbulence above the LGS altitude is still a leading cause to decrease the residual error variance after AO correction. However, for the greater angular deviations with LGS focal spots moving on the outside of the ray path from the object to the telescope, higher-altitude LGS could lead to an increasing residual error variance after AO complete correction with its wave-front as reference. At this point the adopted LGS operation mode and the AO system modal correction optimization should be taken into account for achieving a desired residual wave-front error.
Turbulence measurements in high-speed flows by resonant fluoresence
NASA Technical Reports Server (NTRS)
Miles, R. B.
1982-01-01
Both mean flow and turbulence measurements were investigated using the resonant Doppler velocimeter in a Mach 3.2 nitrogen flow. Data are presented showing velocity, temperature and pressure measured point by point across the flow field. This data is compared with conventional pitot and temperature surveys. Turbulence was induced by a small metal tab in the flow and observed by both hot wire and RDV techniques. Photographs of the flow field demonstrate the utility of the RDV for quantitative flow field visualization.
Optical measurement techniques for high Reynolds number train investigations
NASA Astrophysics Data System (ADS)
Loose, S.; Richard, H.; Bosbach, J.; Thimm, M.; Becker, W.; Raffel, M.
2006-04-01
This article reports on experimental aerodynamic investigations on a generic high-speed train configuration performed within two different wind tunnels. Both wind tunnels are specialized facilities for high Reynolds number investigations and offer low turbulence levels. The wind tunnels are the cryogenic wind tunnel located in Cologne (KKK) and in the high-pressure wind tunnel located in Göttingen (HDG). Both facilities are part of the German Dutch wind tunnel association (DNW). The adaptation and application of three optical measurement techniques for such high Reynolds number investigations is described in the article. The optical methods are: Particle Image Velocimetry for the measurement of velocity fields, Background Oriented Schlieren technique for density gradient measurements, and a white light Digital Speckle Photography technique for model deformation monitoring.
Hasegawa, Akira
2009-01-01
One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067
High resolution optical DNA mapping
NASA Astrophysics Data System (ADS)
Baday, Murat
Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
Statistics of High Atwood Number Turbulent Mixing Layers
NASA Astrophysics Data System (ADS)
Baltzer, Jon; Livescu, Daniel
2015-11-01
The statistical properties of incompressible shear-driven planar mixing layers between two miscible streams of fluids with different densities are investigated by means of Direct Numerical Simulations. The simulations begin from a thin interface perturbed by a thin broadband random disturbance, and the mixing layers are allowed to develop to self-similar states. The temporal simulations are performed in unprecedented domain sizes, with grid sizes up to 6144 x 2048 x 1536, which allows turbulent structures to grow and merge naturally. This allows the flow to reach states far-removed from the initial disturbances, thereby enabling high-quality statistics to be obtained for higher moments, pdfs, and other quantities critical to developing closure models. A wide range of Atwood numbers are explored, ranging from nearly constant density to At=0.87. The consequences of increasing the density contrast are investigated for global quantities, such as growth rates, and asymmetries that form in statistical profiles. Additional simulations in smaller domains are performed to study the effects of domain size.
NASA Astrophysics Data System (ADS)
Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich
In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Simon, Terrence W.
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.
Optics assembly for high power laser tools
Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.
2016-06-07
There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.
Migration of a turbulent patch through a high-pressure turbine cascade
NASA Astrophysics Data System (ADS)
Wu, Xiaohua; Li, Lu Ting; St. Hilaire, Matthew
2009-02-01
We report two flow physics phenomena observed from direct numerical simulations on the migration and distortion of a turbulent patch inside a representative high-pressure turbine cascade. In the nonimpinging flow design, the upstream turbulent patch is on a trajectory offset from the blade leading edge, whereas in the impinging design the introduced turbulence impacts the stagnation. We found that in the nonimpinging flow, the original spanwisely continuous turbulent patch develops into long vortex tubes. They are quite persistent and are also nearly parallel to the blade pressure surface. In the impinging flow, slightly downstream of the leading edge, short vortex tubes form on the pressure side but not parallel to the local blade pressure surface, and they decay and fade away rapidly. Physical mechanisms responsible for these observed flow features are addressed. An additional simulation in which the turbulent patch migrates through a simple straight passage without the cascade is also reported.
High-resolution turbulence observations in the stratosphere with LITOS
NASA Astrophysics Data System (ADS)
Gerding, M.; Schneider, A.; Luebken, F. J.; Söder, J.
2015-12-01
Although the stratosphere is mostly stably stratified, breaking gravity waves and instabilities produce turbulence and energy dissipation. This modifies the energy distribution from the troposphere to the mesosphere and is an important parameter for the vertical mixing of trace species. In order to precisely infer energy dissipation rates, the viscous subrange has to be resolved, which in the stratosphere lies at scales of centimeters and below. Our balloon-borne system LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) observes small-scale wind fluctuations with a vertical resolution of less than 1 mm. The dissipation rate is obtained by fitting a turbulence model to the measured spectrum of fluctuations. Between 2008 and 2011 three flights were performed from Kiruna/Sweden (68°N, 21°E) during BEXUS campaigns as part of a large (~120 kg) payload. Recently, a new small version of LITOS (overall ~4 kg) was flown several times from Kühlungsborn/Germany (54°N, 12°E), thereof one during nighttime. Various turbulent layers with a vertical thickness in the order of a few 10 m have been observed. Stratospheric energy dissipation rates greatly vary within only a few 10 m, roughly between 10-8 and 10 W/kg, with a mean value of roughly 10-3 W/kg. Huge differences have been found in the altitudinal structure and strength of stratospheric turbulence. Results and differences between flights will be discussed in the geophysical context. Turbulence data will be compared with results from simultaneous radiosonde data (5-10 m vertical resolution).
Cang, Ji; Liu, Xu
2011-09-01
The performance of partially coherent free-space optical links is investigated in the moderate to strong fluctuation regime of non-Kolmogorov turbulence. The expressions for large- and small-scale log-irradiance flux variance are obtained in non-Kolmogorov turbulence. By employing the gamma-gamma distribution of irradiance fluctuations, the effects of spatial coherence of the source, index of non-Kolmogorov spectrum, and size of the receiver on channel capacity for horizontal links are discussed. Results show that channel capacity presents fluctuating behaviors with the variation of alpha for longer links and increases for alpha values higher than 11/3.
High pressure optical combustion probe
Woodruff, S.D.; Richards, G.A.
1995-06-01
The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.
Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin
2015-09-01
The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations. PMID:26368880
NASA Astrophysics Data System (ADS)
Li, Kangning; Ma, Jing; Belmonte, Aniceto; Tan, Liying; Yu, Siyuan
2015-12-01
The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for a multiple-aperture receiver system. Equal gain-combining (EGC) and selection-combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence under thermal-noise-limited conditions. Bit-error rate (BER) performances for on-off keying-modulated direct detection and outage probabilities are analyzed and compared for SC diversity receptions using analytical results and for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple-aperture receiver system, BER performances and outage probabilities of EGC and SC receiver systems are compared with a single monolithic-aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo simulations.
Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin
2015-09-01
The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations.
Hanson, Frank; Lasher, Mark
2010-06-01
We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.
Robey, H.F.; Albrecht, G.F.; Moore, T.R.
1990-04-06
A new optical technique for quantitatively measuring the spectral density of passive scalar fluctuations in a turbulent flow has been developed. The technique exploits the photorefractive properties of BaTiO{sub 3} to separate the optical signal of the turbulent field from the coherent illumination background. It is a major improvement over existing techniques in that it is non-intrusive, has excellent frequency response and spatial resolution, and is capable of simultaneously measuring two components of the three-dimensional spectral density, {Phi}{theta}({kappa}). The technique is thus especially well suited to the directly study of anisotropic flows. We have applied this technique to study the spectrum of temperature fluctuations in a fully developed turbulent channel flow with heat addition. The flow is highly anisotropic, yet the spectrum in directions transverse to the flow is seen to exhibit an inertial--convective subrange behavior which is characteristic of isotropic flows. The spectral behavior in the flow direction, due to the direct influence of the mean strain rate, is observed to be markedly different. 17 refs., 7 figs.
High-Reynolds Number Taylor-Couette Turbulence
NASA Astrophysics Data System (ADS)
Grossmann, Siegfried; Lohse, Detlef; Sun, Chao
2016-01-01
Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. One key response of the system is the torque required to retain constant angular velocities, which can be connected to the angular velocity transport through the gap. Whereas the low-Reynolds number regime was well explored in the 1980s and 1990s of the past century, in the fully turbulent regime major research activity developed only in the past decade. In this article, we review this recent progress in our understanding of fully developed Taylor-Couette turbulence from the experimental, numerical, and theoretical points of view. We focus on the parameter dependence of the global torque and on the local flow organization, including velocity profiles and boundary layers. Next, we discuss transitions between different (turbulent) flow states. We also elaborate on the relevance of this system for astrophysical disks (quasi-Keplerian flows). The review ends with a list of challenges for future research on turbulent Taylor-Couette flow.
Dual-scale turbulence in filamenting laser beams at high average power
NASA Astrophysics Data System (ADS)
Schubert, Elise; de la Cruz, Lorena; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre
2016-10-01
We investigate the self-induced turbulence of high-repetition-rate laser filaments over a wide range of average powers (1 mW to 100 W) and its sensitivity to external atmospheric turbulence. Although both externally imposed and self-generated types of turbulence can have comparable magnitudes, they act on different temporal and spatial scales. While the former drives the shot-to-shot motion at the millisecond time scale, the latter acts on the 0.5-s scale. As a consequence, their effects are decoupled, preventing beam stabilization by the thermally induced low-density channel produced by the laser filaments.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
NASA Astrophysics Data System (ADS)
Nelson, Douglas H.; Petrin, Roger R.; MacKerrow, Edward P.; Schmitt, Mark J.; Quick, Charles R., Jr.; Zardecki, Andrew; Porch, William M.; Whitehead, Michael C.; Walters, Donald L.
1998-09-01
The measurement sensitivity of CO2 differential absorption LIDAR (DIAL) can be affected by a number of different processes. We will address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO2 DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.
Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.
1998-09-01
The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen
2009-02-02
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Im, Hong G; Trouve, Arnaud; Rutland, Christopher J; Chen, Jacqueline H
2012-08-13
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Raghurama Reddy; Roberto Gomez; Junwoo Lim; Yang Wang; Sergiu Sanielevici
2004-10-15
This SciDAC project enabled a multidisciplinary research consortium to develop a high fidelity direct numerical simulation (DNS) software package for the simulation of turbulent reactive flows. Within this collaboration, the authors, based at CMU's Pittsburgh Supercomputing Center (PSC), focused on extensive new developments in Sandia National Laboratories' "S3D" software to address more realistic combustion features and geometries while exploiting Terascale computational possibilities. This work significantly advances the state-of-the-art of DNS of turbulent reacting flows.
Turbulence modeling of free shear layers for high-performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas L.
1993-01-01
The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.
Brown, David M; Juarez, Juan C; Brown, Andrea M
2013-12-01
A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1994-01-01
The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.
Optical design of a high power fiber optic coupler
English, R.E. Jr.; Halpin, J.M.; House, F.A.; Paris, R.D.
1991-06-19
Fiber optic beam delivery systems are replacing conventional mirror delivery systems for many reasons (e.g., system flexibility and redundancy, stability, and ease of alignment). Commercial products are available that use of fiber optic delivery for laser surgery and materials processing. Also, pump light of dye lasers can be delivered by optical fibers. Many laser wavelengths have been transported via optical fibers; high power delivery has been reported for argon, Nd:YAG, and excimer. We have been developing fiber optic beam delivery systems for copper vapor laser light; many of the fundamental properties of these systems are applicable to other high power delivery applications. A key element of fiber optic beam delivery systems is the coupling of laser light into the optical fiber. For our application this optical coupler must be robust to a range of operating parameters and laser characteristics. We have access to a high power copper vapor laser beam that is generated by a master oscillator/power amplifier (MOPA) chain comprised of three amplifiers. The light has a pulse width of 40--50 nsec with a repetition rate of about 4 kHz. The average power (nominal) to be injected into a fiber is 200 W. (We will refer to average power in this paper.) In practice, the laser beam's direction and collimation change with time. These characteristics plus other mechanical and operational constraints make it difficult for our coupler to be opto-mechanically referenced to the laser beam. We describe specifications, design, and operation of an optical system that couples a high-power copper vapor laser beam into a large core, multimode fiber. The approach used and observations reported are applicable to fiber optic delivery applications. 6 refs., 6 figs.
High Reynolds number and turbulence effects on aerodynamics and heat transfer in a turbine cascade
NASA Technical Reports Server (NTRS)
Yeh, Frederick C.; Hippensteele, Steven A.; Vanfossen, G. James; Poinsatte, Philip E.; Ameri, Ali
1993-01-01
Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.5 x 10 exp 6 and a range of turbulence intensities from 1.8 to about 15 percent. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range of Reynolds numbers encountered in the Space Shuttle main engine (SSME) turbopump turbines. Specifically, the study aimed to determine (1) the effect of Reynolds number on heat transfer, (2) the effect of upstream turbulence on heat transfer and pressure distribution, and (3) the relationship between heat transfer at high Reynolds numbers and the current data base. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparison of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.
Toselli, Italo; Korotkova, Olga
2015-06-01
We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.
Cang, Ji; Liu, Xu
2011-09-26
Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links.
Local Counterparts to High-Redshift Turbulent Galaxies: What are the Stellar Kinematics?
NASA Astrophysics Data System (ADS)
Bassett, Robert; Glazebrook, Karl; Fisher, David; Abraham, Roberto; Damjanov, Ivana
2014-02-01
We aim to measure the stellar kinematics of 4 low redshift turbulent, clumpy disks with the GMOS IFU. Recent observations of high redshift galaxies show that gaseous disks in high redshift (z 2) galaxies are turbulent. The source of this turbulence remains an open question. A possible scenario is that turbulent disks are fed by streams of cold gas, flowing along cosmic filaments, which drive the large H-alpha velocity dispersions and clumpy star formation observed (for example by the SINS survey). However, the recent discovery of low redshift disk galaxies with clumpy-high velocity dispersion disks shows that galaxies with similar properties to high-z clumpy disks can exists in absence of cold flows, therefore an alternate driver for turbulence seems likely to explain, at least these nearby galaxies. A contrasting scenario is that the turbulence is driven by feedback from extreme star formation originating from a thin stellar disk. These nearby star forming disks are very rare, yet they provide an oppurtunity to study clumpy disks with techniques which are impossible at high redshift (due to both resolution and surface brightness dimming). Here we propose one such study, to measure the stellar kinematics from Balmer absorption lines. If the stars and gas have similar velocity dispersion, this would favor externally driven turbulence by gas accretion (a rare thing in the low redshift Universe); conversely if the gas and stars have different dynamics then this would suggest that internally driven turbelence from feedback is a plausible scenario. We currently have GMOS IFU observations of two disk systems, and we propose here to extend our sample. To identify galaxies as disks we use lower resolution IFU emission line kinematics from AAO, surface photometry from UKIDSS and SDSS, and Halpha maps from Hubble Space Telescope.
The research of high efficient optical fiber coupling technology in space laser communication
NASA Astrophysics Data System (ADS)
Wang, Hao-zeng; Tong, Shou-feng; Zhang, Lei; Yang, Hong-kun
2013-08-01
With the development of optical fiber communications, especially the maturity of the optical amplifiers and the WDM technology, space optical communication at 1550 nm becomes a promising solution for future high speed satellite communication. Receiving technology with optical amplifiers and coupling space light into single mode fiber are key technologies in space optical communication at 1550 nm. Free-space-to-fiber coupling technique investigated in this paper is the first challenge of applying fiber communication techniques to free space optical communications. We analyzed the factors that affect the efficiency of free-space-to single-mode-fiber coupling based on mode-matching theory of electromagnetic fields. On this objective, in this paper, the theoretical analysis of the effect of atmospheric turbulence on the space light-single mode fiber coupling efficiency is discussed. On this basis, the short-distance experiment coupling space light into single mode fiber is carried out. 1. The main factors affecting the process coupling space light into single mode fiber are analyzed. This paper introduced the statistical theory of atmospheric turbulence and gave out the main turbulence parameters and meteyard based on the theory of the space light-single mode fiber coupling efficiency under ideal conditions. 2. The influence of atmospheric turbulence on the space light-single mode fiber coupling efficiency is analyzed and simulated. In the weak turbulence condition, mathematical model of the mean coupling efficiency and its fluctuation variance was given. And the fluctuation variance of coupling efficiency was simulated studied under the atmospheric conditions. The influences on the average coupling efficiency was theoretically studied, which were induced by the structure constant of atmospheric refractive index, the diameter of coupling lens and the single-mode fiber mode field radius. 3. Validating the theoretical model by a experiment under a short link coupling
Adaptive optics for high data rate satellite to ground laser link
NASA Astrophysics Data System (ADS)
Védrenne, N.; Conan, J.-M.; Petit, C.; Michau, V.
2016-03-01
To match the increasing need for high data rate between high altitude platforms and ground free space optics links are investigated. Part of the growing interest is motivated by the possibility to reap the benefits of the technological maturity of the fibered components. This requires the injection of the received wave into a single mode fiber. To reduce injection losses on the ground terminal the use of adaptive optics (AO) is investigated. The AO system must work for a wide variety of turbulence conditions: by daytime and nighttime, at potentially very low elevations for LEO satellites, with localizations of optical ground stations that could be unfavorable regarding atmospheric turbulence. Contrary to astronomy where the quantity optimized is the average Strehl ratio, for free space communications statistical and temporal characteristics of the injection losses must be taken into account. The consequences of a partial correction are investigated here by numerical simulation for both GEO and LEO to ground links.
Symmetry reduction in high dimensions, illustrated in a turbulent pipe
NASA Astrophysics Data System (ADS)
Willis, Ashley P.; Short, Kimberly Y.; Cvitanović, Predrag
2016-02-01
Equilibrium solutions are believed to structure the pathways for ergodic trajectories in a dynamical system. However, equilibria are atypical for systems with continuous symmetries, i.e., for systems with homogeneous spatial dimensions, whereas relative equilibria (traveling waves) are generic. In order to visualize the unstable manifolds of such solutions, a practical symmetry reduction method is required that converts relative equilibria into equilibria, and relative periodic orbits into periodic orbits. In this article we extend the fixed Fourier mode slice approach, previously applied one-dimensional PDEs, to a spatially three-dimensional fluid flow, and show that it is substantially more effective than our previous approach to slicing. Application of this method to a minimal flow unit pipe leads to the discovery of many relative periodic orbits that appear to fill out the turbulent regions of state space. We further demonstrate the value of this approach to symmetry reduction through projections (projections only possible in the symmetry-reduced space) that reveal the interrelations between these relative periodic orbits and the ways in which they shape the geometry of the turbulent attractor.
NASA Astrophysics Data System (ADS)
Konnik, Mikhail V.; De Dona, Jose
2014-07-01
Model-based optimal control such as Linear Quadratic Gaussian (LQG) control has been attracting considerable attention for adaptive optics systems. The ability of LQG to handle the complex dynamics of deformable mirrors and its relatively simple implementation makes LQG attractive for large adaptive optics systems. However, LQG has its own share of drawbacks, such as suboptimal handling of constraints on actuators movements and possible numerical problems in case of fast sampling rate discretization of the corresponding matrices. Unlike LQG, the Receding Horizon Control (RHC) technique provides control signals for a deformable mirror that are optimal within the prescribed constraints. This is achieved by reformulating the control problem as an online optimization problem that is solved at each sampling instance. In the unconstrained case, RHC produces the same control signals as LQG. However, when the control signals reach the constraints of actuator's allowable movement in a deformable mirror, RHC finds the control signals that are optimal within those constraints, rather than just clipping the unconstrained optimum as commonly done in LQG control. The article discusses the consequences of high-gain LQG control operation in the case when the constraints on the actuator's movement are reached. It is shown that clipping / saturating the control signals is not only suboptimal, but may be hazardous for the surface of a deformable mirror. The results of numerical simulations indicate that high-gain LQG control can lead to abrupt changes and spikes in the control signal when saturation occurs. The article further discusses a possible link between high-gain LQG and the waffle mode in the closed-loop operation of astronomical adaptive optics systems. Performance evaluation of Receding Horizon Control in terms of atmospheric disturbance rejection and a comparison with Linear Quadratic Gaussian control are performed. The results of the numerical simulations suggest that the
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Electro-Optical High-Voltage Sensors
NASA Technical Reports Server (NTRS)
Gottsche, Allan; Johnston, Alan R.
1992-01-01
Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.
NASA Astrophysics Data System (ADS)
Molin, S.; Dolfi, D.; Doisy, M.; Seraudie, A.; Arnal, D.; Coustols, E.; Mandle, J.
2010-09-01
We demonstrate the feasibility of detection of the nature (laminar/turbulent/transitional) of the aerodynamic boundary layer of a profile of a wing aircraft model, using a Distributed FeedBack (DFB) Fiber Laser as optical fiber sensor. Signals to be measured are pressure variations : ΔP~1Pa at few 100Hz in the laminar region and ΔP~10Pa at few kHz in the turbulent region. Intermittent regime occurring in-between these two regions (transition) is characterized by turbulent bursts in laminar flow. Relevant pressure variations have been obtained in a low-speed research-type wind tunnel of ONERA Centre of Toulouse. In order to validate the measurements, a "classical" hot film sensor, the application and use of which have been formerly developed and validated by ONERA, has been placed at the neighborhood of the fiber sensor. The hot film allows measurement of the boundary layer wall shear stress whose characteristics are a well known signature of the boundary layer nature (laminar, intermittent or turbulent) [1]. In the three regimes, signals from the fiber sensor and the hot film sensor are strongly correlated, which allows us to conclude that a DFB fiber laser sensor is a good candidate for detecting the boundary layer nature, and thus for future integration in an aircraft wing. The work presented here has been realized within the framework of "Clean Sky", a Joint Technology Initiative of the European Union.
High Bandwidth Electro-optic Scanner for Optical Data Storage
NASA Astrophysics Data System (ADS)
Zhai, Jinhui; Huang, Yuhong; Schroeck, Steve; Messner, W.; Stancil, Daniel D.; Schlesinger, T. E.
2000-02-01
Beam deflectors can be used as fine tracking actuators to improve track access time and data rate in future high performance optical disk drives. In this paper we report on the use of an electro-optic (EO) scanner for optical data storage. Track following has been accomplished using this EO actuator with a servo bandwidth of 200 kHz, and single-stage high-speed track switching/following has been demonstrated in a new optical head tracking system with reduced offset. A fine tracking experiment has also been demonstrated using an EO actuator with a voice coil motor (VCM) actuator to extend the fine tracking range. A new compensator design method, the PQ method, has been used for this scanner/VCM compound actuator system. Significant improvements in track switching/following speed are demonstrated with the scanner/VCM compound actuator as compared to tracking with the VCM actuator alone.
Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W
2016-03-01
A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
NASA Astrophysics Data System (ADS)
Xu, G. S.; Wan, B. N.; Wang, H. Q.; Guo, H. Y.; Naulin, V.; Rasmussen, J. Juul; Nielsen, A. H.; Wu, X. Q.; Yan, N.; Chen, L.; Shao, L. M.; Chen, R.; Wang, L.; Zhang, W.
2016-03-01
A new model for the low-to-high (L -H ) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L -H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L -H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.
Particle deposition in low-speed, high-turbulence flows
NASA Astrophysics Data System (ADS)
Reck, Mads; Larsen, Poul S.; Ullum, Ulrik
The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a Petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard, active and passive samplers provide typical values of airborne concentrations and specific deposition fluxes. Velocity and turbulence data from field studies are used as input in large eddy simulations of the process, and estimates of deposition fluxes are of the same order of magnitude as those deduced from field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows.
Universal intermittent properties of particle trajectories in highly turbulent flows.
Arnèodo, A; Benzi, R; Berg, J; Biferale, L; Bodenschatz, E; Busse, A; Calzavarini, E; Castaing, B; Cencini, M; Chevillard, L; Fisher, R T; Grauer, R; Homann, H; Lamb, D; Lanotte, A S; Lévèque, E; Lüthi, B; Mann, J; Mordant, N; Müller, W-C; Ott, S; Ouellette, N T; Pinton, J-F; Pope, S B; Roux, S G; Toschi, F; Xu, H; Yeung, P K
2008-06-27
We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R{lambda}in[120:740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, pointing towards the existence of a universal behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is found to capture the intermittency of velocity statistics over the whole three decades of temporal scales investigated here.
High-beta turbulence in two-dimensional magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1975-01-01
Incompressible turbulent flows were investigated in the framework of ideal magnetohydrodynamics. Equilibrium canonical distributions are determined in a phase whose coordinates are the real and imaginary parts of the Fourier coefficients for the field variables. The magnetic field and fluid velocity have variable x and y components, and all field quantities are independent of z. Three constants of the motion are found which survive the truncation in Fourier space and permit the construction of canonical distributions with three independent temperatures. Spectral densities are calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long wavelength, self-generated, magnetic fields ("magnetic islands"). In the presence of finite dissipation, energy cascades to higher wave numbers can be accompanied by vector potential cascades to lower wave numbers, in much the same way that in the fluid dynamic case, energy cascades to lower wave numbers accompany entropy cascades to higher wave numbers.
High-beta turbulence in two-dimensional magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1976-01-01
Equations of ideal magnetohydrodynamics are used to study incompressible turbulent flows in a specified geometry where all the field quantities vary with only two spatial dimensions. The procedures adopted are basically those of Kraichnan (1967), in which classical equilibrium ensembles are built around constants of the motion identified from the Fourier-transformed equations of motion. Once the constants of the motion are identified, the statistical formulation of the problem is presented in a phase space whose coordinates are the real and imaginary parts of the Fourier coefficients. Canonical ensembles are constructed in this phase space by classical arguments. The theory developed permits isolation of some qualitatively new gross physical effects which have so far not been calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long-wavelength, self-generated, magnetic fields for a wide range of initial parameters.
Gilles, L; Ellerbroek, B L
2010-11-01
Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.
High-order parabolic beam approximation for aero-optics
White, Michael D.
2010-08-01
The parabolic beam equations are solved using high-order compact differences for the Laplacians and Runge-Kutta integration along the beam path. The solution method is verified by comparison to analytical solutions for apertured beams and both constant and complex index of refraction. An adaptive 4th-order Runge-Kutta using an embedded 2nd-order method is presented that has demonstrated itself to be very robust. For apertured beams, the results show that the method fails to capture near aperture effects due to a violation of the paraxial approximation in that region. Initial results indicate that the problem appears to be correctable by successive approximations. A preliminary assessment of the effect of turbulent scales is undertaken using high-order Lagrangian interpolation. The results show that while high fidelity methods are necessary to accurately capture the large scale flow structure, the method may not require the same level of fidelity in sampling the density for the index of refraction. The solution is used to calculate a phase difference that is directly compared with that commonly calculated via the optical path difference. Propagation through a supersonic boundary layer shows that for longer wavelengths, the traditional method to calculate the optical path is less accurate than for shorter wavelengths. While unlikely to supplant more traditional methods for most aero-optics applications, the current method can be used to give a quantitative assessment of the other methods as well as being amenable to the addition of more physics.
A high-fidelity method to analyze perturbation evolution in turbulent flows
NASA Astrophysics Data System (ADS)
Unnikrishnan, S.; Gaitonde, Datta V.
2016-04-01
turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.
The high-energy-density counterpropagating shear experiment and turbulent self-heating
Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.
2013-12-15
The counterpropagating shear experiment has previously demonstrated the ability to create regions of shock-driven shear, balanced symmetrically in pressure, and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.
The high-energy-density counterpropagating shear experiment and turbulent self-heating
Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.
2013-12-06
The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.
Low-turbulence high-speed wind tunnel for the determination of cascade shock losses
NASA Technical Reports Server (NTRS)
Slovisky, J. A.; Roberts, W. B.; Sandercock, D. M.
1979-01-01
A low turbulence high-speed wind tunnel, using anti-turbulence screening and a 100:1 contraction ratio, has been found suitable for high-speed smoke flow visualization. The location and strength of normal, oblique, and curved shock waves generated by transonic or supersonic wind tunnel flow over airfoils or through axial compressor cascades is determined by combined shadowgraph and smokelines visualization techniques without the interference effects caused by intrusive probes. The Reynolds number based on chord varied between 50,000 and 1,000,000. Preliminary results are compared with the relevant theory and data gathered using a total pressure probe.
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence. PMID:27661363
Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels
Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher
2014-01-24
This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.
High-Schmidt-number scalar transfer in regular and fractal grid turbulence
NASA Astrophysics Data System (ADS)
Suzuki, Hiroki; Nagata, Kouji; Sakai, Yasuhiko; Ukai, Ryota
2010-12-01
Turbulent mixing of high-Schmidt-number passive scalars in regular and fractal grid turbulence is experimentally investigated using a water channel. A turbulence-generating grid is installed at the entrance of the test section, which is 1.5 m in length and 0.1 m×0.1 m in cross section. Two types of grids are used: one is a regular grid consisting of square-mesh and biplane constructions, and the other is a square-type fractal grid, which was first investigated by Hurst and Vassilicos (2007 Phys. Fluids 19 035103) and Seoud and Vassilicos (2007 Phys. Fluids 19 105108). The two grids have the same solidity of 0.36. The Reynolds number based on the mesh size, ReM=U0Meff/ν, is 2500 in both flows, where U0 is the cross-sectionally averaged mean velocity, Meff is the effective mesh size and ν is the kinematic viscosity. A fluorescent dye (rhodamine B) is homogeneously premixed only in the lower stream and therefore the scalar mixing layers with an initial step profile develop downstream of the grids. The Schmidt number of the dye is O(103). The time-resolved particle image velocimetry and the planar laser-induced fluorescence techniques are used to measure the velocity and concentration fields. The results show that the turbulent mixing in fractal grid turbulence is more strongly enhanced than that in regular grid turbulence for the same mesh Reynolds number ReM. The profile of instantaneous scalar dissipation shows that scalar dissipation takes place locally even in the far downstream region at x/Meff=120 in fractal grid turbulence.
Blob identification algorithms applied to laser speckle to characterize optical turbulence
NASA Astrophysics Data System (ADS)
Cauble, Galen D.; Wayne, David T.
2015-09-01
Laser beam speckle resulting from atmospheric turbulence contains information about the propagation channel. The number and size of the speckle cells can be used to infer the spatial coherence and thus the Cn2 along a path. The challenge with this technique is the rapidly evolving speckle pattern and non-uniformity of the speckle cells. In this paper we investigate modern blob counting techniques used in biology, microscopy, and medical imaging. These methods are then applied to turbulent speckle images to estimate the number and size of the speckle cells. Speckle theory is reviewed for different beam types and different regimes of turbulence. Algorithms are generated to calculate path Cn2 from speckle information and path geometry. The algorithms are tested on speckle images from experimental data collected over a turbulent 1km path and compared to Cn2 measurements collected in parallel.
NASA Astrophysics Data System (ADS)
Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.
2014-12-01
For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.
Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications
NASA Technical Reports Server (NTRS)
Nichols, Robert H.; Tramel, Robert W.; Rahman, Zia-Ur
2006-01-01
An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2.
Variational multiscale turbulence modelling in a high order spectral element method
Wasberg, Carl Erik Gjesdal, Thor Reif, Bjorn Anders Pettersson Andreassen, Oyvind
2009-10-20
In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing equations are projected onto an a priori scale partitioning of the solution space. This gives an alternative framework for designing and analyzing turbulence models. We describe the implementation of the VMS LES methodology in a high order spectral element method with a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral element code is first validated by doing a direct numerical simulation of fully developed plane channel flow. The performance of the turbulence model is then assessed by several coarse grid simulations of channel flow at different Reynolds numbers.
Cui, Linyan; Xue, Bindang; Zheng, Shiling; Xue, Wenfang; Bai, Xiangzhi; Cao, Xiaoguang; Zhou, Fugen
2012-06-01
A new atmospheric spectral model and expressions of irradiance scintillation index are derived theoretically for optical wave propagating through moderate-to-strong non-Kolmogorov turbulence. They are developed under Andrews' assumption that small-scale irradiance fluctuations are modulated by large-scale irradiance fluctuations of the wave, and the geometrical optics approximation is adopted for mathematical development. A wide range of turbulence strength is considered instead of a limited range for weak turbulence. The atmospheric spectral model has a spectral power law value in the range of 3 to 4 instead of the standard power law value of 11/3. Numerical calculations are conducted to analyze the influences of spectral power law and turbulence strength.
Quasilinear wave-particle scattering rate in high-beta turbulent collisionless plasmas
NASA Astrophysics Data System (ADS)
Santos de Lima, Reinaldo; Yan, Huirong; Lazarian, Alex; de Gouveia Dal Pino, Elisabete
2015-08-01
Collisionless or weakly collisional plasmas, like the plasma of the intracluster medium of galaxies, are subject to electromagnetic instabilities driven by temperature anisotropy, which naturally arise in the presence of turbulence. These instabilities produce anomalous collisionality via wave-particle scattering, then reducing the mean-free-path of the particles by several orders of magnitude. This reduction affects directly the transport properties of the plasma and makes its large scale dynamics to behave similar to collisional MHD. In particular, it allows the turbulence to amplify the magnetic fields via the small-scale dynamo. Using the quasilinear theory, we calculate the scattering rate of ions due to the kinetic instabilities ion-cyclotron, mirror, and firehose. Using these results we estimate the average scattering rate of ions consistent with data cubes of high-beta MHD turbulence which represent the intracluster medium.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie
2014-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate in conditions of low Reynolds number and a wide range in incidence resulting from rotational speed variation. A comprehensive data set obtained in a linear cascade which includes the effects of Reynolds number, free-stream turbulence and incidence is now available and this paper concerns itself with the post-diction of boundary layer transitionseparation, blade pressure loading and total pressure loss pertaining to the conditions set for measurements in that data set. The distinction between the state of the measured data presented here and the earlier publications is the addition of high free-stream turbulence intensity. We will, for the purposes of the numerical post-diction, present some of the higher free stream turbulence data in this paper but defer a comprehensive presentation and treatment of the measured data will be done elsewhere.
Wang, Yao; Basu, Sukanta
2016-05-15
In this Letter, an artificial neural network (ANN) approach is proposed for the estimation of optical turbulence (Cn2) in the atmospheric surface layer. Five routinely available meteorological variables are used as the inputs. Observed Cn2 data near the Mauna Loa Observatory, Hawaii are utilized for validation. The proposed approach has demonstrated its prowess by capturing the temporal evolution of Cn2 remarkably well. More interestingly, this ANN approach is found to outperform a widely used similarity theory-based conventional formulation for all the prevalent atmospheric conditions (including strongly stratified conditions).
Wang, Yao; Basu, Sukanta
2016-05-15
In this Letter, an artificial neural network (ANN) approach is proposed for the estimation of optical turbulence (Cn2) in the atmospheric surface layer. Five routinely available meteorological variables are used as the inputs. Observed Cn2 data near the Mauna Loa Observatory, Hawaii are utilized for validation. The proposed approach has demonstrated its prowess by capturing the temporal evolution of Cn2 remarkably well. More interestingly, this ANN approach is found to outperform a widely used similarity theory-based conventional formulation for all the prevalent atmospheric conditions (including strongly stratified conditions). PMID:27176996
Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems
Coppola, Gianfilippo; Coriton, Bruno; Gomez, Alessandro
2009-09-15
We propose a highly turbulent counterflow flame as a very useful benchmark of complexity intermediate between laminar flames and practical systems. By operating in a turbulent Reynolds number regime of relevance to practical systems such as gas turbines and internal combustion engines, it retains the interaction of turbulence and chemistry of such environments, but offers several advantages including: (a) the achievement of high Reynolds numbers without pilot flames, which is particularly advantageous from a modeling standpoint; (b) control of the transition from stable flames to local extinction/reignition conditions; (c) compactness of the domain by comparison with jet flames, with obvious advantages from both a diagnostic and, especially, a computational viewpoint; and (d) the reduction or, altogether, elimination of soot formation, thanks to the high strain rates and low residence times of such a system, and the establishment of conditions of large stoichiometric mixture fraction, as required for robust flame stabilization. We demonstrate the phenomenology of such highly strained turbulent flames under conditions spanning unpremixed, partially premixed and premixed regimes. The system lends itself to the validation of DNS and other computational models. It is also well-suited for the examination of practical fuel blends - a need that is becoming more and more pressing in view of the anticipated diversification of the future fossil fuel supply. (author)
NASA Technical Reports Server (NTRS)
Rostand, Philippe
1988-01-01
The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practical way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.
RELATIVISTIC ACCRETION MEDIATED BY TURBULENT COMPTONIZATION
Socrates, Aristotle E-mail: socrates@astro.princeton.ed
2010-08-10
Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.
High-Temperature Optical Window Design
NASA Technical Reports Server (NTRS)
Roeloffs, Norman; Taranto, Nick
1995-01-01
A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu
2016-10-01
A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.
The impact of turbulent fluctuations on light propagation in a controlled environment
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley
2014-05-01
Underwater temperature and salinity microstructure can lead to localized changes in the index of refraction and can be a limiting factor in oceanic environments. This optical turbulence can affect electro-optical (EO) signal transmissions that impact various applications, from diver visibility to active and passive remote sensing. To quantify the scope of the impacts from turbulent flows on EO signal transmission, and to examine and mitigate turbulence effects, we perform experiments in a controlled turbulence environment allowing the variation of turbulence intensity. This controlled turbulence setup is implemented at the Naval Research Laboratory Stennis Space Center (NRLSSC). Convective turbulence is generated in a classical Rayleigh-Benard tank and the turbulent flow is quantified using a state-of-the-art suite of sensors that includes high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The measurements are complemented by very high- resolution non-hydrostatic numerical simulations. These computational fluid dynamics simulations allow for a more complete characterization of the convective flow in the laboratory tank than would be provided by measurements alone. Optical image degradation in the tank is assessed in relation to turbulence intensity. The unique approach of integrating optical techniques, turbulence measurements and numerical simulations helps advance our understanding of how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as of the use of optical techniques to probe oceanic processes.
Bulk Comptonization by turbulence in accretion discs
NASA Astrophysics Data System (ADS)
Kaufman, J.; Blaes, O. M.
2016-06-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.
A controlled laboratory environment to study EO signal degradation due to underwater turbulence
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley; Liu, Guigen; Han, Ming; Kanaev, Andrey; Restaino, Sergio
2015-05-01
Temperature microstructure in the ocean can lead to localized changes in the index of refraction and can distort underwater electro-optical (EO) signal transmission. A similar phenomenon is well-known from atmospheric optics and generally referred to as "optical turbulence". Though turbulent fluctuations in the ocean distort EO signal transmission and can impact various underwater applications, from diver visibility to active and passive remote sensing, there have been few studies investigating the subject. To provide a test bed for the study of impacts from turbulent flows on underwater EO signal transmission, and to examine and mitigate turbulence effects, we set up a laboratory turbulence environment allowing the variation of turbulence intensity. Convective turbulence is generated in a large Rayleigh- Bénard tank and the turbulent flow is quantified using high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The turbulence measurements are complemented by computational fluid dynamics simulations of convective turbulence emulating the tank environment. These numerical simulations supplement the sparse laboratory measurements. The numerical data compared well to the laboratory data and both conformed to the Kolmogorov spectrum of turbulence and the Batchelor spectrum of temperature fluctuations. The controlled turbulence environment can be used to assess optical image degradation in the tank in relation to turbulence intensity, as well as to apply adaptive optics techniques. This innovative approach that combines optical techniques, turbulence measurements and numerical simulations can help understand how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as advance optical techniques to probe oceanic processes.
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-15
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
NASA Astrophysics Data System (ADS)
Movahed, Pooya
High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores
NASA Astrophysics Data System (ADS)
Sprung, D.; Sucher, E.; Ramkilowan, A.; Griffith, D. J.
2014-10-01
Optical turbulence represented by the structure function parameter of the refractive index Cn 2 is a relevant parameter for the performance of electro-optical systems and characterization of the atmospheric influence on imaging. It was investigated during a field trial above an Highveld grassland in the atmospheric surface layer at the Rietvlei Nature Reserve close to Pretoria in South Africa from 18th June to 30th June 2013. This campaign was performed to compare different measurement techniques analyzing the diurnal formation of the vertical distribution of optical turbulence up to a height of 16 m above ground. The chosen time period was characterized by a pronounced diurnal cycle of the meteorological conditions, i.e. low variations from day to day. Ultra sonic anemometers were used to measure high frequency time series (50 Hz) of temperature at single points. From the statistical analysis of these time series Cn 2 was derived. Three instruments were mounted at a portable mast in the center of slant path measurements over a horizontal distance of 1000 m using large aperture scintillometers (Boundary layer scintillometer BLS 900). Averaging over a time period of 5 minutes, the results of both methods are compared. The agreement in the results of optical turbulence is quite good. Discrepancies and agreement are analyzed with respect to the atmospheric stability and other meteorological parameters. Lowest values of Cn 2 at 4.6 m above ground amount to about 8*10-17 m-2/3, daily maxima to 6*10-13 m-2/3. Additional to the nearly constant meteorological conditions in the diurnal cycle, the uniformity of the terrain let the results of this measurement campaign an ideal data set for investigating methodological questions regarding a comparison of single point measurements with integrated measurements over a horizontal distance. Four stability regimes were identified in the diurnal cycle and investigated. These are convective conditions during the day, neutral
High accuracy optical rate sensor
NASA Technical Reports Server (NTRS)
Uhde-Lacovara, J.
1990-01-01
Optical rate sensors, in particular CCD arrays, will be used on Space Station Freedom to track stars in order to provide inertial attitude reference. An algorithm to provide attitude rate information by directly manipulating the sensor pixel intensity output is presented. The star image produced by a sensor in the laboratory is modeled. Simulated, moving star images are generated, and the algorithm is applied to this data for a star moving at a constant rate. The algorithm produces accurate derived rate of the above data. A step rate change requires two frames for the output of the algorithm to accurately reflect the new rate. When zero mean Gaussian noise with a standard deviation of 5 is added to the simulated data of a star image moving at a constant rate, the algorithm derives the rate with an error of 1.9 percent at a rate of 1.28 pixels per frame.
Performance analysis for LDPC-coded optical PPM communication system in weak turbulence
NASA Astrophysics Data System (ADS)
Wang, Hongxing; Su, Yanqin; Zhang, Guangyi; Zhang, Tieying
2007-11-01
Atmosphere Laser Communication (ALC) has the great capability, the better quality of anti-jamming and security, so ALC is adapt to the military application in particular. But because ALC's channel is atmosphere, ALC will be influenced by Atmospheric fading and turbulence, which reduce communication reliability. As a result, studying the suitable modulation and coding becomes the important problems for ALC. From these, people has put forward plenty of modulation and coding technologies, including On-off keying (OOK), pulse position modulation (PPM), digital pulse interval modulation (DPIM), dual-header pulse interval modulation(DHPIM) and so on. Among these, the mean transmit power and error symbol rate of PPM are all less than the others, so PPM has some applied advantage. People has also studied channel coding technology for PPM in ALC, George Stephen Mecherle applied RS code to PPM and analyzed error bit performance in 1986, Jon Hamkins and Meera Srinivasan analyzed the error bit rate of applying Turbo code to PPM through APD detecting in 1998, J. Hamkins analyzed the error bit performance of 256-ray PPM for Turbo code in 1999, and HU Hongfei analyzed the combined mode and applying approach of binary LDPC and multi-system PPM. But all of these have not involved the influence of atmosphere weak turbulence. The paper introduces LDPC as the channel code to ALC, and combines with PPM, discusses the error performance of LDPC in weak turbulence, then compares the performance in weak turbulence, Gauss channel and uncoded system. The emulation results indicate that the LDPC-coded performance of Gauss channel is better than that in weak turbulence channel, and introducing LDPC can efficiently improve the error performance in Gauss channel and weak turbulence channel, which has some applied value.
Xue, Bindang; Cui, Linyan; Xue, Wenfang; Bai, Xiangzhi; Zhou, Fugen
2011-05-01
A new generalized modified atmospheric spectral model is derived theoretically for wave propagating through non-Kolmogorov turbulence, which has been reported recently by increasing experimental evidence and theoretical investigation. The generalized, modified atmospheric spectrum considers finite turbulence inner and outer scales and has a spectral power law value in the range of 3 to 5 instead of the standard power law value of 11/3. When the inner scale and outer scale are set to zero and infinity, respectively, this spectral model is reduced to the classical non-Kolmogorov spectrum.
Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number
NASA Astrophysics Data System (ADS)
Lachize, C.; Verhille, G.; Le Gal, P.
2016-08-01
This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.
Turbulence patterns and neutrino flavor transitions in high-resolution supernova models
Borriello, Enrico; Mirizzi, Alessandro; Chakraborty, Sovan; Janka, Hans-Thomas; Lisi, Eligio E-mail: sovan@mppmu.mpg.de E-mail: eligio.lisi@ba.infn.it
2014-11-01
During the shock-wave propagation in a core-collapse supernova (SN), matter turbulence may affect neutrino flavor conversion probabilities. Such effects have been usually studied by adding parametrized small-scale random fluctuations (with arbitrary amplitude) on top of coarse, spherically symmetric matter density profiles. Recently, however, two-dimensional (2D) SN models have reached a space resolution high enough to directly trace anisotropic density profiles, down to scales smaller than the typical neutrino oscillation length. In this context, we analyze the statistical properties of a large set of SN matter density profiles obtained in a high-resolution 2D simulation, focusing on a post-bounce time (2 s) suited to study shock-wave effects on neutrino propagation on scales as small as O(100) km and possibly below. We clearly find the imprint of a broken (Kolmogorov-Kraichnan) power-law structure, as generically expected in 2D turbulence spectra. We then compute the flavor evolution of SN neutrinos along representative realizations of the turbulent matter density profiles, and observe no or modest damping of the neutrino crossing probabilities on their way through the shock wave. In order to check the effect of possibly unresolved fluctuations at scales below O(100) km, we also apply a randomization procedure anchored to the power spectrum calculated from the simulation, and find consistent results within ± 1σ fluctuations. These results show the importance of anchoring turbulence effects on SN neutrinos to realistic, fine-grained SN models.
Flux-freezing breakdown observed in high-conductivity magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Lalescu, C.; Eyink, G.; Kanov, K.; Burns, R.; Meneveau, C.; Szalay, A.; Vishniac, E.; Aluie, H.; Bürger, K.
2013-04-01
Alfven's principle of ``frozen-in'' magnetic field lines for ideal plasmas explains diverse astrophysical phenomena, e.g. how proto-stars shed excess angular momentum. But frozen-in lines also preclude rapid changes in magnetic topology observed at high conductivities, e.g. in solar flares. Microphysical processes at scales below the ion gyroradius are a proposed explanation but it is unclear how these lead to rapid reconnection of astrophysical flux structures very much larger. We propose instead that turbulent Richardson advection brings field-lines implosively together to gyroradius separations from distances far apart. Here we report analysis of a simulation of MHD turbulence at high-conductivity that exhibits Richardson dispersion. This effect of advection by rough velocities leads to line-motions that are completely indeterministic or ``spontaneously stochastic,'' as predicted in analytical studies. The turbulent breakdown of standard flux-freezing at scales greater than the ion gyroradius can explain fast reconnection of large-scale flux structures, e.g. post-CME side-lobe magnetic fields reconnecting to an arcade of flare loops. The thick current sheet observed between flare arcade and CME is explained quantitatively by the stochastic flux-freezing due to turbulence.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.
2014-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.
2015-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.
Yura, Harold T; Fields, Renny A
2011-06-20
Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.
Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose
2014-12-01
This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.
Measurement of High Reynolds Number Near-Field Turbulent Sphere Wakes under Stratified Conditions
NASA Astrophysics Data System (ADS)
Kalumuck, Kenneth; Brandt, Alan; Decker, Kirk; Shipley, Kara
2015-11-01
To characterize the near-field of a stratified wake at Reynolds numbers, Re = 2 x 105 - 106, experiments were conducted with a large diameter (0.5 m) sphere towed through a thermally stratified fresh water lake. Stratification produced BV frequencies, N, up to 0.07/s (42 cph) resulting in Froude numbers F = U/ND >= 15. The submerged sphere and associated instrumentation including two Acoustic Doppler Velocimeters (ADVs) and an array of fast response thermistors were affixed to a common frame towed over a range of speeds. Three components of the instantaneous wake velocities were obtained simultaneously at two cross-wake locations with the ADVs while density fluctuations were inferred from temperature measurements made by the thermistors. These measurements were used to determine the mean, rms, and spectra of all three components of the turbulent velocity field and density fluctuations at multiple locations. The turbulence power spectra follow the expected -5/3 slope with wavenumber. Existing stratified near-field wake data for spheres are for Re =104 and less, and only a very limited set of data under unstratified conditions exists at these large values of Re. Those data are primarily measurements of the sphere drag, surface pressure distribution, and separation rather than in wake turbulence. Advances in CFD modeling have enabled simulations at these high Reynolds numbers without quantitative data available for validation. Sponsored by ONR Turbulence and Wakes program.
Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges
Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.
2015-04-15
Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.
High-Sensitivity Microwave Optics.
ERIC Educational Resources Information Center
Nunn, W. M., Jr.
1981-01-01
Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…
NASA Astrophysics Data System (ADS)
Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki
2016-01-01
To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.
Technology Development for High Efficiency Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2012-01-01
Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.
Optically transparent high temperature shape memory polymers.
Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong
2016-03-21
Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles. PMID:26686222
High-resolution simulations of planetesimal formation in turbulent protoplanetary discs
NASA Astrophysics Data System (ADS)
Johansen, A.; Klahr, H.; Henning, Th.
2011-05-01
We present high-resolution computer simulations of dust dynamics and planetesimal formation in turbulence generated by the magnetorotational instability. We show that the turbulent viscosity associated with magnetorotational turbulence in a non-stratified shearing box increases when going from 2563 to 5123 grid points in the presence of a weak imposed magnetic field, yielding a turbulent viscosity of α ≈ 0.003 at high resolution. Particles representing approximately meter-sized boulders concentrate in large-scale high-pressure regions in the simulation box. The appearance of zonal flows and particle concentration in pressure bumps is relatively similar at moderate (2563) and high (5123) resolution. In the moderate-resolution simulation we activate particle self-gravity at a time when there is little particle concentration, in contrast with previous simulations where particle self-gravity was activated during a concentration event. We observe that bound clumps form over the next ten orbits, with initial birth masses of a few times the dwarf planet Ceres. At high resolution we activate self-gravity during a particle concentration event, leading to a burst of planetesimal formation, with clump masses ranging from a significant fraction of to several times the mass of Ceres. We present a new domain decomposition algorithm for particle-mesh schemes. Particles are spread evenly among the processors and the local gas velocity field and assigned drag forces are exchanged between a domain-decomposed mesh and discrete blocks of particles. We obtain good load balancing on up to 4096 cores even in simulations where particles sediment to the mid-plane and concentrate in pressure bumps.
Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1998-01-01
This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.
Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas
NASA Astrophysics Data System (ADS)
Deng, Zhao; Waltz, R. E.; Wang, Xiaogang
2016-10-01
Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/ F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low- Ω* values
A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization A Final Report
NASA Technical Reports Server (NTRS)
Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.
2000-01-01
Experimental evidence exists which suggests turbulent boundary layer relaminarization may play an important role in the inverse Reynolds number effect in high-lift systems. An experimental investigation of turbulent boundary layer relaminarization has been undertaken at the University of Notre Dame's Hessert Center for Aerospace Research in cooperation with NASA Dryden Flight Research Center. A wind tunnel facility has been constructed at the Hessert Center and relaminarization achieved. Preliminary evidence suggests the current predictive tools available are inadequate at determining the onset of relaminarization. In addition, an in-flight relaminarization experiment for the NASA Dryden FTF-II has been designed to explore relaminarization at Mach and Reynolds numbers more typical of commercial high-lift systems.
Influence of atmospheric turbulence on the uplink propagation in an optical time transfer
NASA Astrophysics Data System (ADS)
Fridelance, Patricia
1997-08-01
The time transfer by laser link experiment T2L2 aims for a precision of 60 ps, which could be degraded by the atmospheric turbulence because of the strong variations of the photon number received by the satellite detector, from a measurement to another. The light intensity fluctuations in the satellite plane are estimated for the planned situation for which the beam radius at the atmosphere exit is significantly larger than the coherence length. Such speckle-type fluctuations are experimentally studied.
Influence of atmospheric turbulence on the uplink propagation in an optical time transfer.
Fridelance, P
1997-08-20
The time transfer by laser link experiment T2L2 aims for a precision of 60 ps, which could be degraded by the atmospheric turbulence because of the strong variations of the photon number received by the satellite detector, from a measurement to another. The light intensity fluctuations in the satellite plane are estimated for the planned situation for which the beam radius at the atmosphere exit is significantly larger than the coherence length. Such speckle-type fluctuations are experimentally studied.
Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to
Temporal decorrelation of optical turbulence as a function of altitude in the atmosphere
NASA Astrophysics Data System (ADS)
Avilés, J. L.; Avila, R.; Carrasco, E.; Sánchez, L. J.; Chun, M.; Butterley, T.; Wilson, R.; Urbiola, F. J.
2016-05-01
Here, we propose a new method to evaluate the Taylor's frozen-flow hypothesis with the Generalized SCIntillation Detection And Ranging technique (G-SCIDAR). Unlike the work previously reported in the literature, we take into consideration the wind-speed fluctuation effects when examining the spatiotemporal cross-covariance functions computed according to the G-SCIDAR method. We show that under the assumption of having turbulent layers driven by fluctuating wind-velocity vectors, it is correct examining the encircled volume of smeared cross-covariance peaks. The method was used to process 60 spatiotemporal cross-covariance functions of the stellar scintillation patterns retrieved at the 2.2 m telescope of the University of Hawaii along a two hours observation run. We found that most of the time the structure of atmospheric refraction-index inhomogeneities decorrelates linearly with time for individual turbulent layers. Moreover, contrary to the behaviour expected under the assumption of having a slowly evolving structure of turbulent eddies, being translated by a much greater wind-velocity vector, which should strengthen the hypothesis of a frozen flow, we found that the temporal decorrelation of such structure increases as the overall layer displacement velocity increases.
Observation of atmospheric turbulence from high resolution balloon soundings ST radar
NASA Astrophysics Data System (ADS)
Wilson, R.; Dalaudier, F.
2001-08-01
A field campaign involving balloon borne soundings and a ST radar (PROUST), both allowing high resolution measurements within the lower stratosphere, was conducted during April 1998 in St. Santin (south of France). One objective of this campaign was to characterize the small scale turbulence of the atmosphere from simultaneous and almost co-located observations. The purpose of this communication is to put forward some aspects of the supply of high resolution in situ measurements regarding to the interpretation of the radar data. First, the radar calibration appears correct. Second, the turbulent events seems to be severely under sampled by radar, likely because of the ground echo. On an other hand, high resolution in situ measurements show that classical PTU soundings are not sufficient to characterize the background (or reference) state of the atmosphere (for turbulence studies at least). As a consequence, the Brunt-Väisälä frequencies evaluated by classical soundings (or by model outputs), which are needed to infer tubulence parameters from radar measurements, should be considered in fine as a random parameter.
Mixed-derivative skewness for high Prandtl and Reynolds numbers in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Briard, Antoine; Gomez, Thomas
2016-08-01
The mixed-derivative skewness Suθ of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal Markovian closure, for Reλ ≥ 103 up to Pr = 105. A convergence of Suθ for Pr ≥ 103 is observed for any high enough Reynolds number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well.
Anamorphic high-NA EUV lithography optics
NASA Astrophysics Data System (ADS)
Migura, Sascha; Kneer, Bernhard; Neumann, Jens Timo; Kaiser, Winfried; van Schoot, Jan
2015-09-01
EUV lithography (EUVL) for a limit resolution below 8 nm requires the numerical aperture (NA) of the projection optics to be larger than 0.50. For such a high-NA optics a configuration of 4x magnification, full field size of 26 x 33 mm² and 6'' mask is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable mask shadowing effects. These shadowing effects can only be controlled by increasing the magnification, hence reducing the system productivity or demanding larger mask sizes. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm² but utilizing existing 6'' mask infrastructure. We discuss the optical solutions for such anamorphic high-NA EUVL.
Very High Resolution Simulation of Compressible Turbulence on the IBM-SP System
Mirin, A.A.; Cohen, R.H.; Curtis, B.C.; Dannevik, W.P.; Dimits, A.M.; Duchaineau, M.A.; Eliason, D.E.; Schikore, D.R.; Anderson, S.E.; Woodward, P.R.; Shieh, L.J.; White, S.W.; Porter, D.H.
1999-08-05
Understanding turbulence and mix in compressible flows is of fundamental importance to real-world applications such as chemical combustion and supernova evolution. The ability to run in three dimensions and at very high resolution is required for the simulation to accurately represent the interaction of the various length scales, and consequently, the reactivity of the intermixing species. Toward this end, we have carried out a very high resolution (over 8 billion zones) 3-D simulation of the Richtmyer-Meshkov instability and turbulent mixing on the IBM Sustained Stewardship TeraOp (SST) system, developed under the auspices of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) and located at Lawrence Livermore National Laboratory. We have also undertaken an even higher resolution proof-of-principle calculation (over 24 billion zones) on 5832 processors of the IBM, which executed for over an hour at a sustained rate of 1.05 Tflop/s, as well as a short calculation with a modified algorithm that achieved a sustained rate of 1.18 Tflop/s. The full production scientific simulation, using a further modified algorithm, ran for 27,000 timesteps in slightly over a week of n-all time using 3840 processors of the IBM system, clocking a sustained throughput of roughly 0.6 teraflop per second. Nearly 300,000 graphics files comprising over three terabytes of data were produced and post-processed. The capability of running in 3-D at high resolution enabled us to get a more accurate and detailed picture of the fluid-flow structure--in particular, to simulate the development of fine scale structures from the interactions of long- and short-wavelength phenomena, to elucidate differences between two-dimensional and three-dimensional turbulence, to explore a conjecture regarding the transition from unstable flow to fully developed turbulence with increasing Reynolds number, and to ascertain convergence of the computed solution with respect to mesh
Local isotropy in distorted turbulent boundary layers at high Reynolds number
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1993-01-01
This is a report on the continuation of our experimental investigations of the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation. Since Kolmogorov proposed his theory, there have been many experiments, conducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and laboratory boundary layers, in which attempts have been made to verify - or refute - the local-isotropy hypothesis. However, a review of the literature over the last five decades indicated that, despite all these experiments in shear flows, there was no consensus in the scientific community regarding this hypothesis, and, therefore, it seemed worthwhile to undertake a fresh experimental investigation into this question.
Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
van der Veen, Roeland C. A.; Huisman, Sander G.; Dung, On-Yu; Tang, Ho L.; Sun, Chao; Lohse, Detlef
2016-06-01
We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta =1011 to 9 ×1012 by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinders. The multiple states are found to be very robust and are expected to persist beyond Ta =1013 . The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. By mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states are again observed. Here they are characterized by even richer roll structure phenomena, including an antisymmetrical roll state.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Franci, Luca; Verdini, Andrea; Landi, Simone; Matteini, Lorenzo; Hellinger, Petr
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
NASA Astrophysics Data System (ADS)
Ishizawa, Akihiro; Watanabe, Tomo-Hiko; Sugama, Hideo; Maeyama, Shinya; Nunami, Masanori; Nakajima, Noriyoshi
2014-10-01
Turbulent transport in a high ion temperature discharge of Large Helical Device (LHD) is investigated by means of electromagnetic gyrokinetic simulations including kinetic electrons. A new electromagnetic gyrokinetic simulation code GKV+enables us to examine electron heat and particle fluxes as well as ion heat flux in finite beta heliotron/stellarator plasmas. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The turbulent fluxes, which are evaluated through a nonlinear simulation carried out in the K-super computer system, will be reported. This research uses computational resources of K at RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140044).
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.; Vidoni, T. J.
1991-01-01
The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented.
Guimaraes-Filho, Zwinglio O.; Caldas, Ibere L.; Heller, Maria Vittoria A. P.; Nascimento, Ivan C.; Kuznetsov, Yuri K.; Viana, Ricardo L.; Bengtson, Roger D.
2008-06-15
In Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao et al., Plasma Phys. Controlled Fusion 43, 1181 (2001)], high magnetohydrodynamic (MHD) activity may appear spontaneously or during discharges with a voltage biased electrode inserted at the plasma edge. The turbulent electrostatic fluctuations, measured by Langmuir probes, are modulated by Mirnov oscillations presenting a dominant peak with a common frequency around 10 kHz. We report the occurrence of phase locking of the turbulent potential fluctuations driven by MHD activity at this frequency. Using wavelet cross-spectral analysis, we characterized the phase and frequency synchronization in the plasma edge region. We introduced an order parameter to characterize the radial dependence of the phase-locking intensity.
Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2012-01-01
Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.
A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.
2003-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.
Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers
NASA Technical Reports Server (NTRS)
Tong, P.; Ackerson, B. J.
1999-01-01
A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.
Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
NASA Astrophysics Data System (ADS)
Coudert, S.; Foucaut, J. M.; Kostas, J.; Stanislas, M.; Braud, P.; Fourment, C.; Delville, J.; Tutkun, M.; Mehdi, F.; Johansson, P.; George, W. K.
2011-01-01
An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.
1994-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.
Krishnakumar, S; Gaudana, Sandeep B; Viswanathan, Ganesh A; Pakrasi, Himadri B; Wangikar, Pramod P
2013-09-01
Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (KL a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4 h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria.
NASA Astrophysics Data System (ADS)
Yang, You-quan; Chi, Xue-fen; Shi, Jia-lin; Zhao, Lin-lin
2015-05-01
To facilitate the efficient support of quality-of-service (QoS) for promising free-space optical (FSO) communication systems, it is essential to model and analyze FSO channels in terms of delay QoS. However, most existing works focus on the average capacity and outage capacity for FSO, which are not enough to characterize the effective transmission data rate when delay-sensitive service is applied. In this paper, the effective capacity of FSO communication systems under statistical QoS provisioning constraints is investigated to meet heterogeneous traffic demands. A novel closed-form expression for effective capacity is derived under the combined effects of atmospheric turbulence conditions, pointing errors, beam widths, detector sizes and QoS exponents. The obtained results reveal the effects of some significant parameters on effective capacity, which can be used for the design of FSO systems carrying a wide range of services with diverse QoS requirements.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Turbulence Decorrelation via Controlled Ex B Shear in High-Performance Plasmas
NASA Astrophysics Data System (ADS)
McKee, G. R.
2015-11-01
Multi-scale spatiotemporal turbulence properties are significantly altered as toroidal rotation and resulting ExB shearing rate profile are systematically varied in advanced-inductive H-mode plasmas on DIII-D (βN ~ 2.7, q95=5.1). Density, electron and ion temperature profiles and dimensionless parameters (βN, q95, ν*, ρ*, and Te/Ti) are maintained nearly fixed during the rotation scan. Low-wavenumber turbulence (k⊥ρS < 1), measured with Beam Emission Spectroscopy, exhibits increased decorrelation rates (reduced eddy lifetime) as the ExB shear rises across the radial zone of maximum shearing rate (0.55 < ρ < 0 . 75), while the fluctuation amplitude undergoes little change. The poloidal wavenumber is reduced at higher shear, indicating a change in the wavenumber spectrum: eddies elongate in the direction orthogonal to shear and field. At both low and high shear, the 2D turbulence correlation function exhibits a tilted structure, consistent with flow shear. At mid-radius (ρ ~ 0.5), low-k density fluctuations show localized amplitude reduction, consistent with linear GYRO growth rates and ωExB shearing rates. Intermediate and high wavenumber fluctuations measured with Doppler Back-Scattering (k⊥ρS ~ 2.5-3.5) at ρ=0.7 and Phase Contrast Imaging (k⊥ρS > 5) exhibit decreasing amplitude at higher rotation. The energy confinement time increases from 105 ms to 150 ms as the toroidal Mach number (M=vTOR / vth , i) increases to Mo ~ 0.5, while transport decreases. TGLF calculations match the Ti profile with modest discrepancies in the Te and ne profiles. These results clarify the complex mechanisms by which ExB shear affects turbulence. Work supported in part by the US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698.
HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.
BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.
2005-08-21
Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.
Deng, Zhao; Waltz, R. E.
2015-05-15
This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup }< 100 where Ω*{sup }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of
High-impact resistance optical sensor windows
NASA Astrophysics Data System (ADS)
Askinazi, Joel; Ceccorulli, Mark L.; Goldman, Lee
2011-06-01
Recent field experience with optical sensor windows on both ground and airborne platforms has shown a significant increase in window fracturing from foreign object debris (FOD) impacts and as a by-product of asymmetrical warfare. Common optical sensor window materials such as borosilicate glass do not typically have high impact resistance. Emerging advanced optical window materials such as aluminum oxynitride offer the potential for a significant improvement in FOD impact resistance due to their superior surface hardness, fracture toughness and strength properties. To confirm the potential impact resistance improvement achievable with these emerging materials, Goodrich ISR Systems in collaboration with Surmet Corporation undertook a set of comparative FOD impact tests of optical sensor windows made from borosilicate glass and from aluminum oxynitride. It was demonstrated that the aluminum oxynitride windows could withstand up to three times the FOD impact velocity (as compared with borosilicate glass) before fracture would occur. These highly encouraging test results confirm the utility of this new highly viable window solution for use on new ground and airborne window multispectral applications as well as a retrofit to current production windows. We believe that this solution can go a long way to significantly reducing the frequency and life cycle cost of window replacement.
High sensitivity optically pumped quantum magnetometer.
Tiporlini, Valentina; Alameh, Kamal
2013-01-01
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716
High Sensitivity Optically Pumped Quantum Magnetometer
Tiporlini, Valentina; Alameh, Kamal
2013-01-01
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz1/2 over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz1/2 in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz. PMID:23766716
High sensitivity optically pumped quantum magnetometer.
Tiporlini, Valentina; Alameh, Kamal
2013-01-01
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei
2016-01-01
Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.
NASA Astrophysics Data System (ADS)
Iyer, Ganesh Ramamurthy
1998-12-01
A modified low Reynolds number k-varepsilon model for predicting effects of high free stream turbulence (FST) on momentum transport and heat transfer in a flat plate turbulent boundary layer is presented. The prediction capabilities of four well tested k-varepsilon models (Launder-Sharma, K-Y Chien, Lam-Bremhorst and Jones-Launder) under high FST conditions (initial turbulence intensity, Tusbi>5%) were investigated using a partial differential equation solver. Predictions became poorer (overprediction up to more than 50% for skin friction coefficient and Stanton number, and underprediction of TKE up to more than 50%) as FST increased to about 26%. The high FST data sets against which the predictions were compared had initial FST intensities of 6.53% and 25.7%. Predictions clearly indicated a deficit of TKE levels in the boundary layer, when compared to experimental data. An additional production term which incorporated the effects of FST intensity (velocity scale) and length scale was included in the TKE equation. The constant csb{mu} in the equation for the transport coefficient musbt was modified using experimental data. This new model, then provided excellent results for Stanton number and skin friction coefficient (within ±3.5% of data) for both the data sets (Tusbi = 6.53% and Tusbi = 25.7%). TKE and other hydrodynamic results were excellent for Tusbi = 6.53%, but not so good for Tusbi = 25.7%. Further, this new model was implemented for calculating another case of flat plate turbulent boundary layer under high FST (Tusbi = 5.3%) subjected to pressure gradient. Results for skin friction and heat transfer coefficients were reasonably good (within 11% of experimental data). The present model incorporates physics of transport of free stream turbulence in turbulence modeling and provides a new method for simulating flows with high FST. Future work should concentrate on implementing this model for more cases with Tusbi going up to more than 20% and various length
Highly Sensitive Electro-Optic Modulators
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.
NASA Astrophysics Data System (ADS)
Fazal, Muhammad Irfan
The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters
Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.
Caulfield, H John; Dolev, Shlomi; Green, William M J
2009-08-01
The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.
Crackle noise from high-speed free-shear-flow turbulence
NASA Astrophysics Data System (ADS)
Buchta, David; Freund, Jonathan
2015-11-01
High-thrust jet engines radiate a particularly intense and distinct sound that has become known as `crackle'. Its root mechanisms are not fully understood, though they are thought to involve nonlinear acoustics because the sound waves appear steepened. They also have a positive skewness, pressure maxima are stronger than minima, for unknown reasons. We use direct numerical simulations of free-shear-flow turbulence with Mach numbers ranging from M = 0 . 9 to 3 . 5 to study the very near acoustic field and the turbulence interactions. Results indicate that crackle is insensitive to Reynolds number for the range considered, though DNS is restricted to modest Reynolds numbers. The very near field is teeming with weak, nonlinearly interacting Mach-like waves. Locally, these waves generate intense pressure fluctuations, especially as they merge. We observe that skewness changes are small over the propagation distances simulated, though more significant changes are to be expected over larger propagation distances. The source of the peculiar skewness is thus near or within the turbulence. Simulations modulating the underlying unstable linear modes reveal a sensitivity to crackle and are used to assess the role of large-scale structures in its source.
Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Wu, Minwei
2012-01-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
The detailed flame structure of highly stretched turbulent premixed methane-air flames
Chen, Y.C.; Peters, N.; Schneemann, G.A.; Wruck, N.; Renz, U.; Mansour, M.S.
1996-11-01
The premixed stoichiometric turbulent methane flames are investigated on a piloted Bunsen burner with mean nozzle exit velocities of 65, 50, and 30 m/s. Advanced laser diagnostics of the flow field using two-component and two-point laser Doppler anemometer, as well as of the scalar fields with 2-D Rayleigh thermometry and line Raman/Rayleigh laser-induced predissociation fluorescence techniques, are applied to obtain both the instantaneous and mean flame structure in terms of velocity, temperature, and major species concentrations, as well as turbulent kinetic energy and length scales. The three flames cover the entire range of the distributed-reaction-zones regime from the borderline to the well-stirred reactor regime to the flamelet regime. Measurements were from X/D = 2.5 above the nozzle exit plane to X/D = 12.5 downstream. Thus, a complete database is established for comparison with the numerical predictions. Within the mixing layer between the unburnt gas and the pilot flame, the instantaneous temperatures are much lower than the adiabatic flame temperature due to the short residence time and heat loss to the burner. With increasing residence time the mean flame temperature increases in the axial direction. The radial mixing of the turbulence generated with the shear layers between the nozzle jet stream and surrounding pilot stream is suppressed, such that the turbulence kinetic energy remains nearly constant on the centerline. From the two-dimensional temperature fields instantaneous iso-temperature contours are plotted showing broad regions where burnt and unburnt gas are partially mixed. These regions are interpreted in terms of the quench scale {ell}{sub q} = ({epsilon}{tau}{sub c}{sup 3}){sup 1/2}. The measured values of the flame brush thickness are proportional to the quench scale for the two high-velocity flames, whereas the low-velocity flame exhibits essential flamelet behavior.
MEASUREMENT OF INTERMITTENCY OF ANISOTROPIC MAGNETOHYDRODYNAMIC TURBULENCE IN HIGH-SPEED SOLAR WIND
Luo, Q. Y.; Wu, D. J.; Yang, L.
2011-06-01
We investigate the intermittency of anisotropic magnetohydrodynamic (MHD) turbulence in high-speed solar wind. Using the data recorded by the Ulysses spacecraft, we apply the Castaing function to model the probability density functions of the fluctuating magnetic field and calculate the magnetic structure functions (SFs) S{sup p} of the order p in the coordinates (r, {Theta}), with r being the length scale and {Theta} the direction of the local mean field. The scaling exponent {zeta}, from S{sup p} (r, {Theta}){proportional_to}r {sup {zeta}(p,{Theta})}, has an anomalous nonlinear dependence on p, implying the intermittent scaling of solar wind turbulence, which has been observed for decades. Furthermore, we study the anisotropy of solar wind turbulence introduced by the strong mean magnetic field. From S{sup p} ({Theta} = 0){proportional_to}S{sup p} ({Theta} = {pi}/2), we obtain r{sub perpendicular{proportional_to}r {sup {alpha}}p||} with {alpha}{sub p} = {zeta}{sub ||}/{zeta}{sub perpendicular} denoting the perpendicular-parallel spatial correlation of the moment of the pth order. For the magnetic field difference {delta}B, we find {alpha}{sub 2} = 1.78 {+-} 0.26, consistent with recent theories and observations. However, when the contribution from the intermittent fluctuations begins to dominate the scaling, {alpha} is not a constant but increases with p, e.g., {alpha}{sub 5} = 1.97 {+-} 0.41 and {alpha}{sub 8} {approx} 2.42 {+-} 0.64. This complication of the perpendicular-parallel spatial correlation due to the intermittency raises new questions for MHD turbulence theory.
Tan, Liying; Li, Mengnan; Yang, Qingbo; Ma, Jing
2015-03-20
In practice, due to the laser device and the inevitable error of the processing technique, the laser source emitted from the communication terminal is partially coherent, and is represented as a Gaussian Schell model (GSM). The cross-spectral density function based on the Gaussian model in previous research is replaced by the GSM. Thus the fiber-coupling efficiency equation of the GSM laser source through atmospheric turbulence is deduced. The GSM equation presents the effect of the source coherent parameter ζ on the fiber-coupling efficiency, which was not included previously. The effects of the source coherent parameter ζ on the spatial coherent radius and the fiber-coupling efficiency through atmospheric turbulence are numerically simulated and analyzed. The result manifests that the fiber-coupling efficiency invariably degrades with increasing ζ. The work in this paper is aimed to improve the redundancy design of fiber-coupling receiver systems by analyzing the fiber-coupling efficiency with the source coherent parameters.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Lakshmanan, B.
1993-01-01
A high-speed shear layer is studied using compressibility corrected Reynolds stress turbulence model which employs newly developed model for pressure-strain correlation. MacCormack explicit prediction-corrector method is used for solving the governing equations and the turbulence transport equations. The stiffness arising due to source terms in the turbulence equations is handled by a semi-implicit numerical technique. Results obtained using the new model show a sharper reduction in growth rate with increasing convective Mach number. Some improvements were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress. The computed results are in good agreement with the experimental data.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Monteiro, A; Jarem, J
1993-01-10
The mutual coherence function (MCF) of strong-fluctuation theory as a result of optical energy passing through a transversely and longitudinally inhomogeneous aero-optic turbulent layer is studied. Solutions for the MCF equation are determined by decomposing the MCF solution into coherent and incoherent parts and by solving separately the equations that result from this decomposition. The MCF equations for an arbitrary three-dimensional inhomogeneous layer are presented. A simplified version of these equations for the case in which the turbulence inhomogeneity is longitudinally inhomogeneous and is transversely inhomogeneous in one dimension is also presented. A numerical method for solving the parabolic MCF equations by the Lax-Wendroff explicit finite-difference algorithm is given, and numerical examples of the MCF solution for three different inhomogeneous aero-optic layers are discussed. Equations to relate the point-spread function, the optical transfer function, and image formation to the MCF of an inhomogeneous aero-optic turbulence layer are derived. An approximate MCF Fourier integral solution is presented and compared with the exact finite-difference solution. A formula to estimate the validity of the approximate integral solution is given. PMID:20802679
A study of optical design for optics of high contrast projector
NASA Astrophysics Data System (ADS)
Yen, Chih-Ta; Fang, Yi-Chin; Tsai, Chen-Mu
2011-10-01
A new optical design inclusive of zoom optics and optical engine system is proposed in this paper. Traditionally, there is trade-off between F-number of projection optics and contrast, which seems that super high-contrast image from commercial projector was simply a dream. Some ideas of adaptive optics were announced before for the improvement of high contrast. However, few reach success or cost will be high. Traditionally, there is nothing to do with optics of projector and optical engine of projector if lens meets the specification. In this paper, a new optical design for optics and optical engine is studied with liquid optics arrays. Thanks to advanced optical design and LED light luminance, simulation results show that 50% improvement for image contrast could be made without sacrifice of volumetric size.
Optical multichannel analyzer techniques for high resolution optical spectroscopy
Chao, J.L.
1980-06-01
The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.
Towards green high capacity optical networks
NASA Astrophysics Data System (ADS)
Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.
2012-02-01
The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.
Towards green high capacity optical networks
NASA Astrophysics Data System (ADS)
Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.
2011-09-01
The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.
Experimental Study of Density Gradient Stabilization Effects on High-k Turbulence in NSTX
NASA Astrophysics Data System (ADS)
Ruiz Ruiz, J.; Guttenfelder, W.; Ren, Y.; White, A.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.
2015-11-01
Electron scale (high-k) ETG-turbulence is diagnosed in NSTX using a high-k microwave scattering system. We report on the stabilization effects of electron density gradient on electron-scale density fluctuations in a set of neutral beam injection (NBI) heated H-mode plasmas. The absence of high-k density fluctuations is correlated with large equilibrium density gradient, consistent with linear stabilization of ETG modes due to density gradient using the ETG linear threshold. The observed scattered power is anti-correlated with equilibrium density gradient. Corresponding linear gyrokinetic simulations using GS2 show that larger equilibrium density gradient leads to higher wavenumbers at the maximum linear growth rate. Real frequencies calculated by GS2 and experimental Doppler-subtracted plasma frame frequencies both decrease with density gradient. Nonlinear electron-scale gyrokinetic simulations were carried out with GYRO: high electron density gradient is shown to reduce electron density fluctuations, heat flux and stiffness, and to increase the ETG nonlinear threshold, reinforcing the experimental observations of density gradient stabilization of high-k turbulence. Work supported by D.O.E. contract DE-AC02-09CH11466.
Model of Atmospheric Links on Optical Communications from High Altitude
NASA Technical Reports Server (NTRS)
Subich, Christopher
2004-01-01
Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a
NASA Astrophysics Data System (ADS)
Kaur, Prabhmandeep; Jain, Virander Kumar; Kar, Subrat
2014-12-01
In this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.
Ren, Yongxiong; Wang, Zhe; Xie, Guodong; Li, Long; Willner, Asher J; Cao, Yinwen; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Willner, Alan E
2016-06-01
We explore the mitigation of atmospheric turbulence effects for orbital angular momentum (OAM)-based free-space optical (FSO) communications with multiple-input multiple-output (MIMO) architecture. Such a system employs multiple spatially separated aperture elements at the transmitter/receiver, and each transmitter aperture contains multiplexed data-carrying OAM beams. We propose to use spatial diversity combined with MIMO equalization to mitigate both weak and strong turbulence distortions. In a 2×2 FSO link with each transmitter aperture containing two multiplexed OAM modes of ℓ=+1 and ℓ=+3, we experimentally show that at least two OAM data channels could be recovered under both weak and strong turbulence distortions using selection diversity assisted with MIMO equalization.
NASA Astrophysics Data System (ADS)
Monkewitz, Peter A.; Chauhan, Kapil A.; Nagib, Hassan M.
2007-11-01
The asymptotic behavior of mean velocity and integral parameters in flat plate turbulent boundary layers under zero pressure gradient are studied for Reynolds numbers approaching infinity. Using the classical two-layer approach of Millikan, Rotta, and Clauser with a logarithmic velocity profile in the overlap region between "inner" and "outer" layers, a fully self-consistent leading-order description of the mean velocity profile and all integral parameters is developed. It is shown that this description fits most high Reynolds number data, and in particular their Reynolds number dependence, exceedingly well; i.e., within experimental errors.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.
NASA Astrophysics Data System (ADS)
Nagib, H.; Smits, A.; Marusic, I.; Alfredsson, P. H.
2009-11-01
Zero pressure gradient (ZPG) boundary layers are one of the canonical, wall-bounded, turbulent flows that have been the focus of experimental and analytical investigations for several decades. Over the past few years, four groups have focused on systematic comparison between several measurement techniques and three facilities. Two closed return wind tunnels with ZPG boundary layers developed on a plate suspended near the mid-height of the test section (at KTH and IIT), and an open return facility with a large and long test section and a boundary layer developing along its floor (at the University of Melbourne), are used for these coordinated efforts. The development length of the boundary layers and the free-stream velocity in the three facilities range from 5.5 to 22 m, and from 10 to 60 m/s, respectively. Various arrangements for adjustable test section ceilings are employed to generate ZPG boundary layers over the range of momentum thickness Reynolds numbers from 11,000 to 70,000. Oil film interferometry (OFI) is employed to directly measure the wall shear stress, and various sizes of Pitot probes and types of hot-wire sensors are used to measure wall-normal velocity profiles at different locations and free-stream velocities. Mean velocity, turbulence statistics and integral parameters are examined.
Cooling solutions for high heat load optics
Morris, D.; Harding, G.H.; Cox, M.P.; Lunt, D.
1996-09-01
Heat loads on optical components at third-generation synchrotron sources, such as the APS, present beamline designers with difficult and complex engineering problems. A number of solutions have been proposed, such as pin-post water cooling, cryogenic cooling, and liquid gallium cooling. This paper describes both a cryogenic cooling system and a liquid gallium pumping system that have been developed specifically for the APS high heat load beamlines. Also presented is a potential solution for the first mirrors on high heat load beamlines, based on liquid gallium internal cooling of a silicon carbide mirror. {copyright} {ital 1996 American Institute of Physics.}
Wide swath and high resolution optical imaging satellite of Japan
NASA Astrophysics Data System (ADS)
Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu
2016-05-01
The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.
High precision Woelter optic calibration facility
Morales, R.I.; Remington, B.A.; Schwinn, T.
1994-05-02
We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.
High star formation rates as the origin of turbulence in early and modern disk galaxies.
Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G
2010-10-01
Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.
Specialty fiber optic applications for harsh and high radiation environments
NASA Astrophysics Data System (ADS)
Risch, Brian G.
2015-05-01
Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.
High-speed wireless optical LANs
NASA Astrophysics Data System (ADS)
Oe, Kunishige; Sato, Syuichi; Okayama, Motoyuki; Kubota, Toshihiro
2001-11-01
Study on high speed indoor wireless optical LAN system enabling 100Mbps signal transmission with low bit error rate (10-9) is presented. To realize the optical LAN system handling 100 Mbps signal, a directed line of sight (LOS) system is adopted as the optical receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals is fairly large. In the system, new approaches are introduced: WDM technology which enables bi-directional transmission in full duplex manner is applied using a 1.3 micrometers laser diode for down-link and 0.65 micrometers red laser diode for up-link light sources. As the wavelengths of the two lasers are quite separated from each other, this WDM technology brings an advantage that two kind of semiconductor materials can be used for detectors; GaInAs is used for down-link while Si is applied for up-link. GaInAs PD cannot detect the up-link laser light of 0.65 micrometers and Si PD or APD cannot detect the down-link laser light of 1.3micrometers . Therefore full duplex transmission can be achieved in this configuration. In the indoor wireless optical LAN system, one of the critical points is the transmitter configuration for down- link which enables to deliver optical power enough for 100 Mbps transmission to user areas as wide as possible with inexpensive prices. To realize the point, a special 1.3micrometers laser diode, a spot-size converter integrated laser (SS-LD), is introduced in company with convex lens and an object lens to deliver optical power to areas as wide as possible. As the far-field patterns of the SS-LD are fairly narrow, most of the output power of the LD could be collected to and spread wide by the object lens of 40 magnifications. Using the device, 3m diameter circle area in the plane 2m apart from the 1.3micrometers SS-LD emitting 20 mW optical power, could receive optical power above the receiver sensitivity for a bit error rate of 10-9 for 100 Mbps signals. The visible red light is convenient for not only position
Outflows from Thick, Turbulent Accretion in High Accretion-Rate Protostellar Systems
NASA Astrophysics Data System (ADS)
Williams, Peter T.
2012-01-01
In previous work we argued that jets might not be produced through magnetocentrifugal acceleration, but rather through the toroidal stresses of magnetorotational instability (MRI)-driven turbulent magnetohydrodynamic (MHD) accretion in a geometrically thick disk or flow. High accretion-rate protostars are among the best candidates for this process because a geometrically thick accretion disk that extends down to the central star is more plausible in this context than in other protostellar systems. These systems are also cleaner objects to study than active galactic nuclei (AGN), microquasars, and the like, which necessarily involve more exotic relativistic physics. Here we present a novel in-depth analysis of the laboratory analog that inspired our work on this topic. This analog consists of the meridional flow around a rotating sphere in a viscoelastic fluid. We examine in detail the fluxes of mass, angular momentum, linear momentum, and energy, and how these depend upon system parameters. We find that the presence of an axial outflow depends critically upon the ratio of the analogous turbulent magnetic stress to turbulent Reynolds stress, which must be roughly equal to or larger than unity to drive an outflow. We also find that the flux of angular momentum can actually be opposed to the flow of matter within the outflow, despite the fact that the outflow is ultimately powered by the radial transport of angular momentum from the central object. In particular we show that, in contrast with magnetocentrifugal acceleration, the angular momentum of the outflow actually decreases even while the material is being axially accelerated. This translates to observational tests in protostellar jets. There are some obvious enormous differences between compressible flow in a gravitational field and incompressible flow in a laboratory. We address this and we and argue why, despite these differences, there is much to learn from this laboratory system.
Inhomogeneous turbulence in magnetic reconnection
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu
2016-07-01
Turbulence is expected to play an essential role in enhancing magnetic reconnection. Turbulence associated with magnetic reconnection is highly inhomogeneous: it is generated by inhomogeneities of the field configuration such as the velocity shear, temperature gradient, density stratification, magnetic shear, etc. This self-generated turbulence affects the reconnection through the turbulent transport. In this reconnection--turbulence interaction, localization of turbulent transport due to dynamic balance between several turbulence effects plays an essential role. For investigating inhomogeneous turbulence in a strongly nonlinear regime, closure or turbulence modeling approaches provide a powerful tool. A turbulence modeling approach for the magnetic reconnection is introduced. In the model, the mean-field equations with turbulence effects incorporated are solved simultaneously with the equations of turbulent statistical quantities that represent spatiotemporal properties of turbulence under the effect of large-scale field inhomogeneities. Numerical simulations of this Reynolds-averaged turbulence model showed that self-generated turbulence enhances magnetic reconnection. It was pointed out that reconnection states may be divided into three category depending on the turbulence level: (i) laminar reconnection; (ii) turbulent reconnection, and (iii) turbulent diffusion. Recent developments in this direction are also briefly introduced, which includes the magnetic Prandtl number dependence, spectral evolution, and guide-field effects. Also relationship of this fully nonlinear turbulence approach with other important approaches such as plasmoid instability reconnection will be discussed.
Adjoint-field errors in high fidelity compressible turbulence simulations for sound control
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan
2013-11-01
A consistent discrete adjoint for high-fidelity discretization of the three-dimensional Navier-Stokes equations is used to quantify the error in the sensitivity gradient predicted by the continuous adjoint method, and examine the aeroacoustic flow-control problem for free-shear-flow turbulence. A particular quadrature scheme for approximating the cost functional makes our discrete adjoint formulation for a fourth-order Runge-Kutta scheme with high-order finite differences practical and efficient. The continuous adjoint-based sensitivity gradient is shown to to be inconsistent due to discretization truncation errors, grid stretching and filtering near boundaries. These errors cannot be eliminated by increasing the spatial or temporal resolution since chaotic interactions lead them to become O (1) at the time of control actuation. Although this is a known behavior for chaotic systems, its effect on noise control is much harder to anticipate, especially given the different resolution needs of different parts of the turbulence and acoustic spectra. A comparison of energy spectra of the adjoint pressure fields shows significant error in the continuous adjoint at all wavenumbers, even though they are well-resolved. The effect of this error on the noise control mechanism is analyzed.
High data rate optical transceiver terminal
NASA Technical Reports Server (NTRS)
Clarke, E. S.
1973-01-01
The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui
2016-03-01
Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.
High performance optical wavelength multiplexer-demultiplexer.
Dobrowolski, J A; Hara, E H; Sullivan, B T; Waldorf, A J
1992-07-01
The principle of an optical wavelength multiplexer-demultiplexer is described in which the signals undergo repeated reflections from special filter elements that can be designed for a wide range of cross-talk ratios. The insertion losses of these units can be quite small and they can be implemented to provide simultaneous multichannel two-way transmission. In a preliminary investigation of an experimental prototype an insertion loss of 0.5 dB and a cross talk of -35 dB were demonstrated. The multiplexer-demultiplexer is expected to have a long life and high reliability.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Optical generation of narrowband high frequency ultrasound
NASA Astrophysics Data System (ADS)
Hung, Shi-Yao; Hsieh, Bao-Yu; Li, Pai-Chi
2014-03-01
We propose a multilayer film structure to generate high frequency and narrowband ultrasound. It consists of three light-absorbing layers and two light-transmittance layers. The amplitude is tunable by adjusting the optical absorption coefficient of light-absorbing layers. The delay can be adjusted by changing thicknesses of light-transmittance layers. In one example, the generated high frequency narrowband ultrasound signal has a center frequency of 18.4MHz and 32.6% fractional bandwidth using the proposed multilayer structure. Compared with this result, the single layer structure produces a center frequency of 20.2MHz and 125.7% fractional bandwidth. In addition, a single laser pulse was employed to generate US on the multilayer film as an US source and PA signals of the high optical absorption region of the phantom at the same time. Because the spectral characteristics of the ultrasound signals generated by the multi-layer film are tunable, it can be designed such that the US echo and PA echo are spectrally separable, thus enabling simultaneous US/PA imaging using only a single laser pulse. Feasibility of this proposed method was demonstrated by imaging of a cyst-like phantom.
Optical receiver for high-speed communication
NASA Astrophysics Data System (ADS)
Mitchell, Paul A.; Grib, Valerie J.
2010-04-01
For through-the-air optical communication applications, we present a high speed detector module with high bandwidth and large active area. The detector has achieved a rise time of 220 pS with a full-width-half-max of 420 pS. Data rates are expected to approach 2 GHz. The active area of the input window is 12 mm, giving a large collection surface for through-the-air applications. The detector module includes an integrated power supply having low power consumption. In comparison with other detector technologies, this new detector exceeds the speed of conventional photomultiplier designs by 3 to 5 times. In comparison with microchannel plate detectors, the speed is comparable, but the throughput of the new detector is much higher - tens of microamperes of signal current can be obtained indefinitely. Optical communication applications can be served by two different designs. In the first case, the module utilizes gain based on ordinary secondary emission materials to achieve current gains of 1500. This design is suitable for applications at the limit of the detector's bandwidth where light power is relatively high. In another design, the secondary emission material was changed to diamond film which allows five times higher gain. While the current design uses an ordinary, blue sensitive input light conversion material, higher efficiency materials are in development for signals at longer wavelength.
NASA Astrophysics Data System (ADS)
Masciadri, Elena; Lascaux, Franck
2012-07-01
We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint / validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the ground as well as in the free atmosphere, is critical and fundamental because the optical turbulence depends on most of these parameters. This approach permits us to provide an exhaustive and complete analysis of the model performances and to better define the model operational application. This also helps us to identify the sources of discrepancies with optical turbulence measurements (when they appear) and to discriminate between different origins of the problem: model parameterization, initial conditions, ... Preliminary results indicate a great accuracy of the model in reproducing most of the main meteorological parameters in statistical terms as well as in each individual night in the free atmosphere and in proximity of the surface. The study is co-funded by ESO and INAF-Arcetri (Italy).
Effect of Ambient Turbulence on the Drag Force of Particle at High Stokes Number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Oshima, Nobuyuki; Tsubokura, Makoto; Nakashima, Takuji
2008-11-01
Velocity of solid particle (diameter is 2 mm) free-falling in a nearly isotropic turbulent airflow has been investigated using an ingenious experimental setup to achieve high Stokes number. Turbulent intensity around the particle is large enough to have eddies of comparable size to the thickness of boundary layer (approximately 0.2 mm) that is estimated in a laminar flow. As a result of measurement, an ensemble averaged particle velocity is larger than the velocity predicted with Schiller and Naumann's drag coefficient (Muto et al., 2007). To investigate this reduction of drag force, flow aspects near the particle are observed using a numerical simulation of rotating spherical particle (periodically rotates in opposite direction) in a uniform flow. As a result, a modulation of drag force is found and it depends on period and amplitude of the rotation. A reason of the change of drag force in both experiment and numerical simulation is deduced that eddies included in an approach flow to particle, or periodic rotation of particle affect its boundary layer, and the wake of particle is suppressed.
Willis, Jay
2013-01-01
There has been debate about animals' contribution to ocean circulation, called biomixing, or biogenic mixing. The energy input of schooling fish is significant but the eddies may be too small; so energy is dissipated as heat before impacting oceanic structure. I suggest that high turbulence caused by some very large aggregations of small animals has an important impact via a more direct ecosystem feedback process than overall ocean circulation. In the model presented here, large schools exhibit cooperative behavior and act like giant sieves grading zooplankton through individual swimmer's wakes, which focus the best prey in predictable positions. Following schoolers exploit these patterns. Then schools leave, in their wakes, chaotic turbulence enhancing growth of the smaller zooplankton and phytoplankton which has been graded out by the school. The result is a different community structure of plankton than would exist without such biomixing. Changes to plankton abundance and community structure on oceanic scales over the past century are correlated to overfishing and are consistent with this concept. PMID:23825796
Review of numerical simulations for high-speed, turbulent cavity flows
NASA Astrophysics Data System (ADS)
Lawson, S. J.; Barakos, G. N.
2011-04-01
High speed flows inside cavities are encountered in many aerospace applications including weapon bays of combat aircraft as well as landing gear. The flow field inside these cavities is associated with strong acoustic effects, unsteadiness and turbulence. With increasing emphasis on stealth operation of unmanned combat air vehicles and noise concerns near airports, cavity flows attracted the interest of many researchers in aerodynamics and aeroacoustics. Several attempts were made using wind tunnel experimentation and computational fluid dynamics analyses to understand the complex flow physics associated with cavity flows and alleviate their adverse effects via flow control. The problem proved to be complex, and current research revealed a very complex flow with several flow phenomena taking place. With the aid of experiments, CFD methods were validated and then used for simulations of several cavity configurations. The detached-eddy and large-eddy simulation methods proved invaluable for these studies and their application highlights the need for advanced turbulence simulation techniques in aerospace. The success of these methods and a summary of the current status of the experimental and computational progress over the past twenty years is summarised in this paper.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
NASA Astrophysics Data System (ADS)
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
Willis, Jay
2013-01-01
There has been debate about animals' contribution to ocean circulation, called biomixing, or biogenic mixing. The energy input of schooling fish is significant but the eddies may be too small; so energy is dissipated as heat before impacting oceanic structure. I suggest that high turbulence caused by some very large aggregations of small animals has an important impact via a more direct ecosystem feedback process than overall ocean circulation. In the model presented here, large schools exhibit cooperative behavior and act like giant sieves grading zooplankton through individual swimmer's wakes, which focus the best prey in predictable positions. Following schoolers exploit these patterns. Then schools leave, in their wakes, chaotic turbulence enhancing growth of the smaller zooplankton and phytoplankton which has been graded out by the school. The result is a different community structure of plankton than would exist without such biomixing. Changes to plankton abundance and community structure on oceanic scales over the past century are correlated to overfishing and are consistent with this concept.
Velocity Resolved---Scalar Modeled Simulations of High Schmidt Number Turbulent Transport
NASA Astrophysics Data System (ADS)
Verma, Siddhartha
The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc " 1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc . Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor
TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS
Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.
2014-11-10
Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.
On life assessment of high reliability high power optical switch
NASA Astrophysics Data System (ADS)
Xu, Yuanjian; Chu, Peter
2014-09-01
High data rate and long range free space lasercom links require multi-watt optical transmitter power, which creates a need for high power redundancy switches to ensure high payload reliability. A high power optical switch (HPOS) with less than 0.15 dB loss and capable of switching more than 40 watts of optical power in a single mode fiber has been previously demonstrated in the Transformational Satellite Communication System program. Prototype switches, in either 1x2 or 2x2 configuration, have been subjected to pyro-shock test, vibration test, and vacuum operation. These switches showed no performance degradation as a result of these tests. Three prototypes went through 60,000 35-watt switching cycles and over 30 million low power switching cycles, and the switches showed no mechanical failure. The HPOS life is about 3.2 million switching cycles with a definition of 3-dB degradation in on/off extinction ratio, which is well suited for space applications.
Turbulent Boundary Layer Measurements in the Princeton/ONR High Reynolds Number Test Facility
NASA Astrophysics Data System (ADS)
Allen, James; Smits, Alexander
2003-11-01
Zero pressure gradient, high Reynolds number boundary layers are studied in the Princeton/ONR High Reynolds Number Test Facility (HRTF). The HRTF uses air at pressures up to 2500Ψ as the working fluid. Mean flow velocity profiles and turbulence measurements have been obtained at Reynolds numbers based on momentum thickness from 5× 10^3 up to 10^5. The log region at this Reynolds number is approximately two decades long in terms of y^+. The maximum y^+ achieved before departure from the log curve is of order y^+≃ 10,000. Results will be presented on the form of the best fit for the log law over this large Reynolds number range.
High-temperature, high-pressure optical cell
NASA Technical Reports Server (NTRS)
Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)
1986-01-01
The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.
Optical alignment of high resolution Fourier transform spectrometers
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.
1980-01-01
Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.
High resolution wavefront measurement of aspheric optics
NASA Astrophysics Data System (ADS)
Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.
2008-08-01
With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.
High-Throughput Nonlinear Optical Microscopy
So, Peter T.C.; Yew, Elijah Y.S.; Rowlands, Christopher
2013-01-01
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field. PMID:24359736
Berman, Gennady P.; Bishop, Alan R.; Nguyen, Dinh C.; Chernobrod, Boris M.; Gorshkov, Vacheslav N.
2009-10-13
A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.
Highly stretchable, printable nanowire array optical polarizers.
Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei
2016-09-21
Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area. PMID:27537105
Highly stretchable, printable nanowire array optical polarizers.
Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei
2016-09-21
Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area.
NASA Astrophysics Data System (ADS)
Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui
2015-10-01
In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.
Flatte; Gerber
2000-06-01
We have simulated optical propagation through atmospheric turbulence in which the spectrum near the inner scale follows that of Hill and Clifford [J. Opt. Soc. Am. 68, 892 (1978)] and the turbulence strength puts the propagation into the asymptotic strong-fluctuation regime. Analytic predictions for this regime have the form of power laws as a function of beta0(2), the irradiance variance predicted by weak-fluctuation (Rytov) theory, and l0, the inner scale. The simulations indeed show power laws for both spherical-wave and plane-wave initial conditions, but the power-law indices are dramatically different from the analytic predictions. Let sigmaI(2) - 1 = a(beta0(2)/betac(2))-b(l0/Rf)c, where we take the reference value of beta0(2) to be betac(2) = 60.6, because this is the center of our simulation region. For zero inner scale (for which c = 0), the analytic prediction is b = 0.4 and a = 0.17 (0.37) for a plane (spherical) wave. Our simulations for a plane wave give a = 0.234 +/- 0.007 and b = 0.50 +/- 0.07, and for a spherical wave they give a = 0.58 + /- 0.01 and b = 0.65 +/- 0.05. For finite inner scale the analytic prediction is b = 1/6, c = 7/18 and a = 0.76 (2.07) for a plane (spherical) wave. We find that to a reasonable approximation the behavior with beta0(2) and l0 indeed factorizes as predicted, and each part behaves like a power law. However, our simulations for a plane wave give a = 0.57 +/- 0.03, b = 0.33 +/- 0.03, and c = 0.45 +/- 0.06. For spherical waves we find a = 3.3 +/- 0.3, b = 0.45 +/- 0.05, and c = 0.8 +/- 0.1.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
van de Water, Willem; Ergun Cekli, Hakki; Joosten, Rene
2011-11-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the large eddies in the wind-tunnel turbulence. A large mismatch of these times creates a flow with interesting statistics, but it is not turbulence.
Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument
NASA Astrophysics Data System (ADS)
Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.
2014-07-01
Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.
Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C
2012-10-12
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented. PMID:23102319
High pressure fiber optic sensor system
Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N
2013-11-26
The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.
Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-01
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
A hot-wire method for high-intensity turbulent flows
NASA Technical Reports Server (NTRS)
Mueller, U. R.
1983-01-01
A measuring technique for determing instantaneous, three-dimensional velocity vectors in highly turbulent flows by means of a 4-sensor hot-wire probe is described. As is well known, the hot-wire signal received in reversing flows cannot uniquely be interpreted. This difficulty is circumvented by tracking the thermal wake of a heated wire. Whenever the approximate flow direction is indicated by a temperature-sensitive wake detector, all components of the instantaneous velocity vector are evaluated by means of a digital data reduction method. Uniqueness of the solution derived from the triple-hot-wire response equations is examined. A first application of the proposed measuring technique in the recirculating flow downstream of a backward-facing step is described.
NASA Astrophysics Data System (ADS)
Pawar, Shashikant S.; Arakeri, Jaywant H.
2016-06-01
Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.
J. KAO; D. COOPER; ET AL
2000-11-01
As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.
Turbulence effects on high energy laser beam propagation in the atmosphere.
Yahel, R Z
1990-07-20
A simple phenomenological model for the interaction of a high energy laser (HEL) beam with atmospheric turbulence is presented. According to this model the temperature power spectrum becomes non-Kolmogorov. The refractive index structure constant C(2)(n) is replaced by another quantity C(2)(n,eff) which is space dependent, C(2)(n,eff) = C(2)(n) (1 + mid R:nablaT/ partial differentialtheta / partial differentialzmid R:(2)) (provided ( partial differentialtheta )/( partial differentialz) not equal 0). Here DeltaT is the local temperature gradient in the crosswind direction, while ( partial differentialtheta )/( partial differentialz) is the vertical potential temperature gradient in the atmosphere. Numerical simulations of HEL beam propagation were performed including effects of this model. Implications of the results are discussed.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
High resolution mesospheric sodium properties for adaptive optics applications
NASA Astrophysics Data System (ADS)
Pfrommer, T.; Hickson, P.
2014-05-01
Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a
NASA Astrophysics Data System (ADS)
Eliasson, B.; Milikh, G.; Shao, X.; Mishin, E. V.; Papadopoulos, K.
2015-04-01
We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10-20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
1993-01-01
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Angioni, C.
2015-10-15
A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
NASA Technical Reports Server (NTRS)
Thompson, D. S.
1980-01-01
The full Navier-Stokes equations for incompressible turbulent flow must be solved to accurately represent all flow phenomena which occur in a high Reynolds number incompressible flow. A two layer algebraic eddy viscosity turbulence model is used to represent the Reynolds stress in the primitive variable formulation. The development of the boundary-fitted coordinate systems makes the numerical solution of these equations feasible for arbitrarily shaped bodies. The nondimensional time averaged Navier-Stokes equations, including the turbulence mode, are represented by finite difference approximations in the transformed plane. The resulting coupled system of nonlinear algebraic equations is solved using a point successive over relaxation iteration. The test case considered was a NACA 64A010 airfoil section at an angle of attack of two degrees and a Reynolds number of 2,000,000.
NASA Technical Reports Server (NTRS)
Rostand, Philippe
1989-01-01
The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practial way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2002-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Turbulent flame speeds and NOx kinetics of HHC fuels with contaminants and high dilution levels
Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Petersen, Eric
2012-09-30
This progress report documents the second year of the project, from October 1, 2011 through September 30, 2012. Characterization of the new turbulent flame speed vessel design was completed. Turbulence statistics of three impellers with different geometric features were measured using particle image velocimetry inside a Plexiglas model (~1:1 scale) of a cylindrical flame speed vessel (30.5 cm ID × 35.6 cm L). With four impellers arranged in a central-symmetric configuration, turbulence intensities between 1.2 and 1.7 m/s with negligible mean flow (0.1u´) were attained at the lowest fan speeds. Acceptable ranges for homogeneity and isotropy ratios of the velocity fields were set within a narrow bandwidth near unity (0.9-1.1). Homogeneity ratios were unaffected by changes to the impeller geometry, and the prototype with the higher number of blades caused the flow to become anisotropic. The integral length scale of the flow fields varied between 27 and 20 mm, which correlates well with those typically observed inside a gas turbine combustor. The mechanism to independently vary the intensity level and the integral length scale was established, where turbulence intensity level was dependent on the rotational speed of the fan, and the integral length scale decreased with increasing blade pitch angle. Ignition delay times of H₂/O₂ mixtures highly diluted with Ar and doped with various amounts of N₂O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940-1675 K). The pressure range investigated during this work (around 1.6, 13, and 30 atm) allows studying the effect of N₂O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N₂O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 30 atm. When it occurred, the decrease in
Turbulence-induced persistence in laser beam wandering.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G
2015-07-01
We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.
Turbulence-induced persistence in laser beam wandering.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G
2015-07-01
We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere. PMID:26125388
NASA Astrophysics Data System (ADS)
Montilla, I.; Tallon, M.; Langlois, M.; Béchet, C.; Collados Vera, M.
2014-08-01
Solar Adaptive Optics (AO) shares many issues with night-time AO, but it also has its own particularities. The wavefront sensing is performed using correlations to efficiently work on the solar granulation as a reference. The field of view for that measurement usually is around 10". A sensor collecting such a wide field of view averages wavefront information from different sky directions, and the anisoplanatism thus has a peculiar impact on the performance of solar AO and MCAO systems. Since we are entering the era of large solar telescopes (European Solar Telescope, Advanced Technology Solar Telescope) understanding this issue is crucial to evaluate its impact on the performance of future AO systems. In this paper we model the correlating wide field sensor and the way it senses the high altitude turbulence. Thanks to this improved modelling, we present an analysis of the influence of this sensing on the performance of each AO configuration, conventional AO and MCAO. In addition to the analytical study, simulations similar to the case of the EST AO systems with FRiM-3D (the Fractal Iterative Method for Atmospheric tomography) are used in order to highlight the relative influence of design parameters. In particular, results show the performance evolution when increasing the telescope diameter. We analyse the effect of high altitude turbulence correlation showing that increasing the diameter of the telescope does not degrade the performance when correcting on the same spatial and temporal scales.
High resolution fiber optic interferometer: FY94 final report
Baldwin, D.P.; Zamzow, D.S.; D`Silva, A.P.
1994-12-31
Objective is a field, on-line high resolution spectrometer system capable of resolving the optical emission from actinide isotopes in an inductively coupled plasma. AOTF (acousto-optic tunable filter) and FFP (fiber optic Fabry-Perot) were combined in this spectrometer, using bulk optical materials. The AOTF-FFP system was tested on U-235/U-238 and RCRA metals. Future development is described; a commercialization plan is attached.
An experimental study of high Reynolds number turbulence in the atmosphere
NASA Astrophysics Data System (ADS)
Dhruva, Brindesh R.
2000-11-01
High Reynolds number turbulence in the atmospheric boundary layer has been investigated using constant temperature hot-wire anemometry. The Taylor microscale Reynolds numbers (Rλ) were typically between 5 × 103 at 2 meters in the salt flats of Western Utah and 2 × 104 at 35 meters on the meterological tower of Brookhaven National Laboratory in Long Island. The measurements were used to study the statistical properties of inertial range quantities, Reynolds stress and wind direction. The identification of possible self- similar behavior in the inertial range is a primary goal in turbulence research. To motivate the need for high Reynolds number measurements we demonstrate the Reynolds number effect on the existence and extent of the inertial range. We find that the inertial range is non-existent at typical laboratory Reynolds numbers. We thus turn to high Reynolds numbers and analyze the asymmetry in the probability distribution function (pdf) of the longitudinal velocity increment. We compute the scaling exponents of the positive and negative structure functions and find that the negative exponents are more anomalous than the positive ones. Furthermore, we quantify the contribution to the asymmetry-or the skewness-from different regions of the pdf. We find that the core region of the pdf is more or less symmetric and the skewness comes primarily from the rare large amplitude events contained in the tails of the pdf. We discuss this result in the context of the down-scale cascade of energy. Next it is shown that even at Rλ ~ 20,000 the structure functions do not scale unambiguously-although the situation is far better than that at low Reynolds numbers. By applying various filtering techniques and conditional sampling it is shown that this lack of strict scaling even at very high Reynolds numbers is due to large scale ``corrupting effects'' on the inertial range. We propose a plausible scheme to remove the large scale effects. Next, we characterize the
CCD-based optical CT scanning of highly attenuating phantoms
NASA Astrophysics Data System (ADS)
Al-Nowais, Shamsa; Doran, Simon J.
2009-05-01
The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.
LIF measurements of turbulent premixed flames in a high pressure environment
Kobayashi, Hideaki; Oyachi, Yasuo; Maruta, Kaoru
1999-07-01
The effects of pressure on OH-LIF characteristics of laminar and turbulent premixed flames were investigated. OH-LIF experiments were performed for methane-air mixtures using burner flames stabilized in high-pressure chambers. An OPO tunable laser pumped by a Nd-YAG laser were used and A{sup 2}{Sigma}{sup +}-X{sup 2} II (0,0) and (1,0) band of OH radical were measured. For laminar flames, OH-LIF excitation spectrum was measured by scanning the laser wavelength at pressures up to 1.0 MPa. The overlap-integral profiles between Gaussian profiles of the laser and Voigt profiles of the absorption line were calculated, and the effects of pressure and laser linewidth on FWHM and intensities of the LIF excitation spectrum were compared with experimental data. Results show that the effects of pressure on the FWHM and peak intensity of overlap integral profiles agree qualitatively with those on the measured LIF excitation spectrum, indicating that the decrease in LIF intensity of the flame at high-pressure is dominated by the broadening of the absorption line shapes. The LIF intensity decreases with increasing linewidth of the laser. A narrow-band laser is effective in order to obtain higher LIF intensity at ordinary pressure but the linewidth of the laser has no significant effect at high pressures.
de Camargo, Camila L; Shiroma, Letícia S; Giordano, Gabriela F; Gobbi, Angelo L; Vieira, Luis C S; Lima, Renato S
2016-10-12
This paper addresses an important breakthrough in the deployment of ultra-high adhesion strength microfluidic technologies to provide turbulence at harsh flow rate conditions. This paper is only, to our knowledge, the second reporting on the generation of high flow rate-assisted turbulence in microchannels. This flow solves a crucial bottleneck in microfluidics: the generation of high throughput homogeneous mixings. We focused on the fabrication of bulky polydimethylsiloxane (PDMS) microchips (without any interfaces) rather than the laborious surface modifications that were employed in the first reporting about turbulence-assisted microfluidics. The fabrication is cleanroom-free, simple, low-cost, fast, solventless, and bondless requiring only a laboratory oven. More specifically, our method relies on the shaping of a nylon scaffold, cure of PDMS with embedded nylon, and removal of this scaffold. The scaffold was obtained by manually wrapping nylon threads. The withdrawing out of the scaffold was completed in few seconds using only a plier. Such microchannels endured flow rates of up to 60.0 mL min(-1) with a strikingly low elastic deformation. The importance in producing turbulence into microscale channels was successfully shown in liquid-liquid extractions. The great energy dissipation rate relative to the turbulence created high throughput and efficient extractions in microfluidics for the first time. The residence time was only 0.01 s at 25.0 mL min(-1) (total flow rate of the immiscible phases). In addition, the partition coefficient determined in a single run was similar to that obtained by the conventional batch shake-flask method that was realized in triplicate. PMID:27662761
de Camargo, Camila L; Shiroma, Letícia S; Giordano, Gabriela F; Gobbi, Angelo L; Vieira, Luis C S; Lima, Renato S
2016-10-12
This paper addresses an important breakthrough in the deployment of ultra-high adhesion strength microfluidic technologies to provide turbulence at harsh flow rate conditions. This paper is only, to our knowledge, the second reporting on the generation of high flow rate-assisted turbulence in microchannels. This flow solves a crucial bottleneck in microfluidics: the generation of high throughput homogeneous mixings. We focused on the fabrication of bulky polydimethylsiloxane (PDMS) microchips (without any interfaces) rather than the laborious surface modifications that were employed in the first reporting about turbulence-assisted microfluidics. The fabrication is cleanroom-free, simple, low-cost, fast, solventless, and bondless requiring only a laboratory oven. More specifically, our method relies on the shaping of a nylon scaffold, cure of PDMS with embedded nylon, and removal of this scaffold. The scaffold was obtained by manually wrapping nylon threads. The withdrawing out of the scaffold was completed in few seconds using only a plier. Such microchannels endured flow rates of up to 60.0 mL min(-1) with a strikingly low elastic deformation. The importance in producing turbulence into microscale channels was successfully shown in liquid-liquid extractions. The great energy dissipation rate relative to the turbulence created high throughput and efficient extractions in microfluidics for the first time. The residence time was only 0.01 s at 25.0 mL min(-1) (total flow rate of the immiscible phases). In addition, the partition coefficient determined in a single run was similar to that obtained by the conventional batch shake-flask method that was realized in triplicate.
TOCUSO: Test of Conceptual Understanding on High School Optics Topics
ERIC Educational Resources Information Center
Akarsu, Bayram
2012-01-01
Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that…
Long-distance Bessel beam propagation through Kolmogorov turbulence.
Birch, Philip; Ituen, Iniabasi; Young, Rupert; Chatwin, Chris
2015-11-01
Free-space optical communication has the potential to transmit information with both high speed and security. However, since it is unguided it suffers from losses due to atmospheric turbulence and diffraction. To overcome the diffraction limits the long-distance propagation of Bessel beams is considered and compared against Gaussian beam properties. Bessel beams are shown to have a number of benefits over Gaussian beams when propagating through atmospheric turbulence.
Jarem, J M
1994-01-10
The mutual coherence function (MCF) that results when a double point source illuminates a transversely and longitudinally inhomogeneous turbulence layer is considered. The analysis was carried out by (1) decomposition of the free-space MCF from the double point source into four separate interference terms, (2) calculation of the MCF that resulted from each of these terms when the optical wave that arose from these terms propagated through the inhomogeneous turbulence layer, and (3) addition of the solutions together to form the overall MCF solution of the optical system. The analysis was carried out in a transverse center-difference coordinate system. Two of the four terms were shown to vary rapidly in the center coordinate variables, and the other two were shown to vary rapidly in the difference coordinate variables. Because two of the terms showed rapid interference effects in the center coordinate variable and the other two in the difference coordinate variable, two different spatial-spectral algorithms were developed in the paper to analyze the MCF's that arose from each of the two types of rapid interference variation. The spatial-spectral MCF equations that arose from the analysis were solved numerically by the Lax-Wendroff finite-difference method. Several numerical plots of the center and difference interference MCF's that resulted when a double point source was incident upon a transversely inhomogeneous aero-optic layer were given. Plots of the variation of the interference MCF's with angular separation of the double point source are shown. PMID:20862014
Group-kinetic theory and modeling of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Application of portable optical laboratory in high schools and colleges
NASA Astrophysics Data System (ADS)
Altshuler, Gregory B.; Belashenkov, Nickolai R.; Ermolaev, Vladimir S.; Inochkin, Mickle V.; Karasev, Vyatcheslav B.
1995-10-01
The present paper describes the experience of application of portable optical laboratory in optical practicum developed directly for training and demonstrations of basic optical laws and phenomena in high-schools, colleges and nontechnical universities all over Russia. The laboratory includes the portable optical platform with built-in laser and lamp sources, kit of optical components and software. These accessories provide the attractive and smart teaching in general optics during lectures, lessons and practice at schools and colleges. The portable optical laboratory provides 28 basic lab works and demonstrations in reflection, refraction, absorption and dispersion of light, interference, diffraction, polarization of light, image formation and waveguide propagation of light in optical fibers. Due to their interdependence one can teach and learn a whole course of general optics. The individual work of students and school children with optical kit stimulates and develops their creative abilities and experimental skills, as well increases the effectiveness of education. The kit is provided with optional elements for a number of extra experiments with holography, polarizing light propagation, simple optical devices etc. These extensions allow to modify the education process according to teacher's point of view. The conception of optical class-room based on portable optical laboratories is discussed. The effectiveness of individual and small-group training is analyzed.
A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
NASA Astrophysics Data System (ADS)
He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li
2016-09-01
Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
NASA Astrophysics Data System (ADS)
He, Bin; Hu, Li-Fa; Li, Da-Yu; Xu, Huan-Yu; Zhang, Xing-Yun; Wang, Shao-Xin; Wang, Yu-Kun; Yang, Cheng-Liang; Cao, Zhao-Liang; Mu, Quan-Quan; Lu, Xing-Hai; Xuan, Li
2016-09-01
Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.; Goldman, L. J.
1982-01-01
A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer.
NASA Astrophysics Data System (ADS)
Wilson, R. W.; Butterley, T.; Osborn, J.
2009-09-01
SLODAR turbulence monitors have been installed and operated at the Cerro Paranal, Mauna Kea and SAAO Sutherland observatories. The instruments, developed at Durham University, provide real-time measurements of the atmospheric turbulence strength, altitude and velocity, for site characterization and for real-time support of adaptive optics for astronomy. We present sample results and compare contemporaneous data obtained with SLODAR, MASS and DIMM monitors at the ESO Paranal observatory.
Photonic microwave receivers based on high-Q optical resonance
NASA Astrophysics Data System (ADS)
Hossein-Zadeh, Mani
2012-02-01
The quest for low power and high frequency electro-optical modulator has been one of the important endeavors in microwave photonics. The advent of microdisk electro-optic modulator created a new domain in optical modulator and photonic microwave receiver design by exploiting the unique properties of high quality (high-Q) Whispering-Gallery Mode (WGM) optical cavities. High-Q crystalline WG cavities were the first devices used as compact and low power resonant electro-optical modulators and gradually semiconductor and polymer based microdisk and microring modulators emerged from this core technology. Due to its small size, high sensitivity and limited bandwidth, originally microdisk modulator was developed with the objective of replacing the conventional microwave wireless receiver frontend with a sensitive photonic front-end. Later it was shown that the electro-optic microdisk modulator could also function as a microwave frequency mixer in optical domain. Starting from fundamentals of resonant electro-optic modulation in high-Q WGM cavities, in this paper we review the development of high sensitivity microdisk modulators and the recent progress toward more efficient modulation at higher frequencies. Next related topics such as singlesideband modulation, all-dielectric photonic receiver, and semiconductor microring modulators are briefly discussed. Finally, photonic microwave receiver configurations that employ high-Q optical resonance for modulation, filtering and mixing are presented. We will show that high-Q optical resonance is one of the promising routes toward the general idea of an all-optical microwave receiver free of high frequency electronic transistors, mixers and filters.
Cui, Linyan
2015-03-01
Analytical expressions for the variance of angle of arrival (AOA) fluctuations based on the Rytov approximation theory are derived for plane and spherical waves' propagation through weak anisotropic non-Kolmogorov turbulence atmosphere. The anisotropic spectrum model based on the assumption of circular symmetry in the orthogonal plane throughout the path is adopted and it includes the same degree of anisotropy along the direction of propagation for all the turbulence cells size in the inertial sub-range. The derived expressions consider a single anisotropic coefficient describing the turbulence anisotropic property and a general spectral power law value in the range 3 to 4. They reduce correctly to the previously published analytic expressions for the cases of plane and spherical waves' propagation through weak isotropic non-Kolmogorov turbulence for the special case of anisotropic factor equaling one. To reduce the complexity of the analytical results, the asymptotic-fit expressions are also derived and they fit well with the close-form ones. These results are useful for understanding the potential impact of deviations from the standard isotropic non-Kolmogorov turbulence atmosphere.
2015-01-01
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296
Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C
2014-06-24
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296
Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan, M.
2014-01-01
Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.
Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback
NASA Astrophysics Data System (ADS)
Kimm, Taysun; Cen, Renyue; Devriendt, Julien; Dubois, Yohan; Slyz, Adrianne
2015-08-01
To better understand the impact of supernova (SN) explosions on the evolution of galaxies, we perform a suite of high-resolution (12 pc), zoom-in cosmological simulations of a Milky Way-like galaxy at z = 3 with adaptive mesh refinement. We find that SN explosions can efficiently regulate star formation, leading to the stellar mass and metallicity consistent with the observed mass-metallicity relation and stellar mass-halo mass relation at z ˜ 3. This is achieved by making three important changes to the classical feedback scheme: (i) the different phases of SN blast waves are modelled directly by injecting radial momentum expected at each stage, (ii) the realistic time delay of SNe is required to disperse very dense gas before a runaway collapse sets in, and (iii) a non-uniform density distribution of the interstellar medium (ISM) is taken into account below the computational grid scale for the cell in which an SN explodes. The simulated galaxy with the SN feedback model shows strong outflows, which carry approximately 10 times larger mass than star formation rate, as well as smoothly rising circular velocity. Although the metallicity of the outflow depends sensitively on the feedback model used, we find that the accretion rate and metallicity of the cold flow around the virial radius is impervious to SN feedback. Our results suggest that understanding the structure of the turbulent ISM may be crucial to assess the role of SN and other feedback processes in galaxy formation theory.
Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph
2010-01-01
Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Influence of in-hole roughness and high freestream turbulence on film cooling from a shaped hole
NASA Astrophysics Data System (ADS)
Schroeder, Robert P.
Gas turbines are heavily used for electricity generation and aircraft propulsion with a strong desire in both uses to maximize thermal efficiency while maintaining reasonable power output. As a consequence, gas turbines run at high turbine inlet temperatures that require sophisticated cooling technologies to ensure survival of turbine components. One such technology is film cooling with shaped holes, where air is withdrawn from latter stages of the compressor, is bypassed around the combustor, and is eventually ejected out holes in turbine component surfaces. Air ejected from these shaped holes helps maintain components at temperatures lower than flow from the combustor. Many studies have investigated different factors that influence shaped hole performance. However, no studies in open literature have investigated how cooling performance is affected by roughness along interior walls of the shaped hole. The effect of in-hole roughness on shaped hole film cooling was the focus of this research. Investigation of in-hole roughness effects first required the determination of behavior for a shaped hole with smooth walls. A public shaped hole, now used by other investigators as well, was designed with a diffused outlet having 7º expansion angles and an area ratio of 2.5. At low freestream turbulence intensity of 0.5%, film cooling adiabatic effectiveness for this smooth hole was found to peak at a blowing ratio of 1.5. Measurements of flowfields and thermal fields revealed causes of this behavior. Blowing ratio increases above 1.5 caused the jet from the smooth hole to penetrate higher into the surrounding mainstream, exhibit a stronger counter-rotating vortex pair, and have narrower contact with the wall than at lower blowing ratios. Experiments performed at high freestream turbulence intensity of 13% revealed dynamics of how freestream turbulence both diluted and laterally spread coolant. At the high blowing ratio of 3 the dilution and spreading were competing effects
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2014-04-29
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2015-03-24
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
Eurolaser. High power excimer laser: Optical crystals
NASA Astrophysics Data System (ADS)
Gaenswein, Bernhard
1987-09-01
The crystals used in excimer lasers because of their excellent optical properties in the ultra violet spectrum are described. The crystals are fluorides of the alkaline earth metals magnesium, calcium and barium and the alkaline fluorides of lithium and sodium. It is possible to grow optical monocrystals of these compounds up to weights of 15 kg with a diameter of 180 mm. Some problems develop in growing crystals larger than this. To do so greater plants and improved automatic temperature monitoring and regulation are required. Special tools are needed for handling such large and heavy monocrystals. Understanding of the interaction between laser radiation and crystal must be improved upon in order to meet all the requirements to be placed on optical components in the future.
Ding, Jiachen; Li, Mi; Tang, Minghui; Li, Yan; Song, Yuejiang
2013-09-15
Minimum shift keying (MSK) has been widely used in fiber optical communication and free-space optical communication. In order to introduce MSK into satellite laser communication, the bit-error rate (BER) performance of the MSK scheme is investigated in uplink communications under the influence of atmospheric turbulence consisting of weak fluctuation and beam wander. Numerical results indicate that the BER performance of MSK is much better than the performance of on-off keying (OOK). With the laser power being 4 W, the improvement is 5 dB in coherent demodulation and 15 dB in delay coherent demodulation. Furthermore, compared with OOK, optimal values of the divergence angle, receiver diameter, and transmitter beam radius are easier and more practical to achieve in the MSK scheme. The work can benefit ground-to-satellite laser uplink communication system design.
NASA Astrophysics Data System (ADS)
Valley, M. T.; Dudorov, V. V.; Kolosov, V. V.; Filimonov, G. A.
2006-11-01
The error caused by atmospheric turbulence, in determining the orientation angle of an object (a series of reflectors) has been studied. The orientation angle was determined by studying the image of the object. Numerical modeling was performed involving construction of the image of a series of reflectors as if they were observed through a turbulent medium, calculation of the coordinates of reflector mass centers, finding of the line closest to the reflector mass centers, and determination of its slope angle. Variance of the slope angle fluctuations is calculated.
Optical properties of water at high temperature
French, Martin; Redmer, Ronald
2011-04-15
We calculate optical properties of water along the principal Hugoniot curve from ambient conditions up to temperatures of 130 000 K with density functional theory (DFT) and the Kubo-Greenwood formula. The effect of the exchange correlation functional is examined by comparing the generalized gradient approximation with a hybrid functional that contains Fock exchange. We find noticeable but moderate differences between the respective results which decrease rapidly above 80 000 K. The reflectivity along the principal Hugoniot is calculated and a good qualitative but fair quantitative agreement with available experimental data is found. Our results are of general relevance for calculations of optical properties with DFT at zero and elevated temperature.
NASA Astrophysics Data System (ADS)
Zhang, Bo
The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine
Härkönen, Laura; Pekcan-Hekim, Zeynep; Hellén, Noora; Ojala, Anne; Horppila, Jukka
2014-01-01
In aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10-6 m2 s-3, and the water color was 140 mg Pt L-1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to intraguild
Härkönen, Laura; Pekcan-Hekim, Zeynep; Hellén, Noora; Ojala, Anne; Horppila, Jukka
2014-01-01
In aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10−6 m2 s−3, and the water color was 140 mg Pt L−1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to
Härkönen, Laura; Pekcan-Hekim, Zeynep; Hellén, Noora; Ojala, Anne; Horppila, Jukka
2014-01-01
In aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10-6 m2 s-3, and the water color was 140 mg Pt L-1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to intraguild
Optical interconnect technologies for high-bandwidth ICT systems
NASA Astrophysics Data System (ADS)
Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki
2016-03-01
The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.
Bufferless Ultra-High Speed All-Optical Packet Routing
NASA Astrophysics Data System (ADS)
Muttagi, Shrihari; Prince, Shanthi
2011-10-01
All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.
Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid
2012-10-15
It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
High energy laser optics manufacturing: a preliminary study
Baird, E.D.
1980-07-01
This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.
Diffraction-limited high-finesse optical cavities
Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk
2010-04-15
High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.
The high education of optical engineering in East China
NASA Astrophysics Data System (ADS)
Liu, Xu; Liu, Xiangdong; Wang, Xiaoping; Bai, Jian; Liu, Yuling
2014-07-01
The history and the development of the high education in the field of optical engineering in the area of East China will be presented in the paper. The overall situation of research and human resource training in optics and photonics will also be reviewed, it shows that China needs lots of talents and experts in this field to support the world optical industry in East China.
An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device.
Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Li, Dayu; Xuan, Li
2006-09-01
An adaptive optics imaging system is introduced in this paper. A high resolution liquid crystal on silicon (LCOS) device was used as a phase only wave front corrector instead of a conversional deformable mirror. The wave front aberration was detected by a Shack-Hartmann (SH) wave front sensor, which has lambda/100 rms wave front measurement accuracy. Under this construction 0.09lambda (lambda=0.6328microm) Peak to Valley correction precision was reached. Further more, some low frequency hot convection turbulence induced by an electric iron was compensated in real time at the same precision. The Modulation Transfer Function (MTF) of this system was also measured before and after wave front correction. Under the active correction of LCOS, the system reached the diffraction limited resolution approximately 65l p/mm on the horizontal direction. All of this showed the ability of using this device in high resolution, low temporal turbulence imaging system, such as retinal imaging, to improve the resolution performance.
The turbulence evolution in the high β region of the Earth's foreshock
NASA Astrophysics Data System (ADS)
Li, Huimin; Pang, Ye; Huang, Shiyong; Zhou, Meng; Deng, Xiaohua; Yuan, Zhigang; Wang, Dedong; Li, HaiMeng
2013-11-01
In this paper, we study the foreshock turbulence evolution in high β region via both Cluster observation on 29 March 2002 and 1-D hybrid simulation. The quasi-sinusoidal and the irregular wave trains are both detected in this event. The former one is believed to be generated by ion-ion right-hand nonresonant instability due to the right-hand polarization and antisunward propagation in the plasma frame. Since the ion distribution associated with the wave train is more "intermediate" rather than "diffused", we suggest that the wave train reported in this paper can be viewed as a "midstep" of "isolated" and "irregular". From the quasi-sinusoidal to the irregular waveform, the corresponding polarizations appear to transit: right-hand wave of higher frequency (wave number) is substituted by a left-hand wave with lower frequency (wave number) in spacecraft frame. Then the 1-D hybrid simulation is applied for two cases with various velocities to study such polarization transition. By comparing observation results with the simulation, such polarization transition and "inversed cascade" (wave energy transferring from large wave number to small wave number) can be understood as the consequence of decay instability. Although decay instability cannot be initiated in high beta (β > 1) plasma in magnetohydrodynamic theory, such β dependence can be modified by ion kinetic effect. Moreover, it is found that in simulation no matter which right-hand instability is dominant in early stage, left-hand wave will be the prime component of magnetic field disturbance in the final stage.
Ozgokmen, T.; Fischer, P.; Duan, J.; Iliescu, T.; Mathematics and Computer Science; Univ. of Miami; IIT; Virginia Polytechnic Inst. and State Univ.
2004-09-01
Overflows are bottom gravity currents that supply dense water masses generated in high-latitude and marginal seas into the general circulation. Oceanic observations have revealed that mixing of overflows with ambient water masses takes place over small spatial and time scales. Studies with ocean general circulation models indicate that the strength of the thermohaline circulation is strongly sensitive to representation of overflows in these models. In light of these results, overflow-induced mixing emerges as one of the prominent oceanic processes. In this study, as a continuation of an effort to develop appropriate process models for overflows, nonhydrostatic 3D simulations of bottom gravity are carried out that would complement analysis of dedicated observations and large-scale ocean modeling. A parallel high-order spectral-element Navier-Stokes solver is used as the basis of the simulations. Numerical experiments are conducted in an idealized setting focusing on the startup phase of a dense water mass released at the top of a sloping wedge. Results from 3D experiments are compared with results from 2D experiments and laboratory experiments, based on propagation speed of the density front, growth rate of the characteristic head at the leading edge, turbulent overturning length scales, and entrainment parameters. Results from 3D experiments are found to be in general agreement with those from laboratory tank experiments. In 2D simulations, the propagation speed is approximately 20% slower than that of the 3D experiments and the head growth rate is 3 times as large, Thorpe scales are 1.3-1.5 times as large, and the entrainment parameter is up to 2 times as large as those in the 3D experiments. The differences between 2D and 3D simulations are entirely due to internal factors associated with the truncation of the Navier-Stokes equations for 2D approximation.
High-data rate laser communication field experiment in the turbulence channel
NASA Astrophysics Data System (ADS)
Sun, Jianfeng; Zhi, Ya'nan; Lu, Wei; Wang, Lijuan; Dai, Enwen; Liu, Liren
2012-10-01
At present inter-satellite laser communications have made great success, such as SILEX, TerraSAR-X LCT etc. But satellite to ground laser communications still at the experimental stages because of the atmosphere turbulence channel and the clouds. Once the satellite to ground laser communication technology obtains a breakthrough, the all laser spacebased communication era is coming. In this paper, we suggest a DPSK modulation/self-coherent homodyne reception scheme to overcome the atmosphere turbulence. The key in the scheme lies in the phase error compensation with the external environment change. In our experiment, we use two parallel plates rotating to compensate the phase error. The communication data rate reaches 2.5Gbps in the field experiment. The real time bit error rate was obtained with the variation of the communication channel's turbulence.
A Large Aperture, High Energy Laser System for Optics and Optical Component Testing
Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J
2003-11-01
A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.
R. Nazikian; K. Shinohara; G.J. Kramer; E. Valeo; K. Hill; T.S. Hahm; G. Rewoldt; S. Ide; Y. Koide; Y. Oyama; H. Shirai; W. Tang
2005-03-29
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast to the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Colucci, P. J.; Jaberi, F. A.; Givi, P.
1996-01-01
A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.