Characterization of Fibre Channel over Highly Turbulent Optical Wireless Links
Johnson, G W; Henderer, B D; Wilburn, J W; Ruggiero, A J
2003-07-28
We report on the performance characterization and issues associated with using Fibre Channel (FC) over a highly turbulent free-space optical (FSO) link. Fibre Channel is a storage area network standard that provides high throughput with low overhead. Extending FC to FSO links would simplify data transfer from existing high-bandwidth sensors such as synthetic aperture radars and hyperspectral imagers. We measured the behavior of FC protocol at 1 Gbps in the presence of synthetic link dropouts that are typical of turbulent FSO links. Results show that an average bit error rate of less than 2 x 10{sup -8} is mandatory for adequate throughput. More importantly, 10 ns dropouts at a 2 Hz rate were sufficient to cause long (25 s) timeouts in the data transfer. Although no data was lost, this behavior is likely to be objectionable for most applications. Prospects for improvements in hardware and software will be discussed.
Characterization of Gigabit Ethernet Over Highly Turbulent Optical Wireless Links
Johnson, G W; Cornish, J P; Wilburn, J W; Young, R A; Ruggiero, A J
2002-07-01
We report on the performance characterization and issues associated with using Gigabit Ethernet (GigE) over a highly turbulent (C{sub n}{sup 2} > 10{sup -12}) 1.3 km air-optic lasercom links. Commercial GigE hardware is a cost-effective and scalable physical layer standard that can be applied to air-optic communications. We demonstrate a simple GigE hardware interface to a singlemode fiber-coupled, 1550 nm, WDM air-optic transceiver. TCPAP serves as a robust and universal foundation protocol that has some tolerance of data loss due to atmospheric fading. Challenges include establishing and maintaining a connection with acceptable throughput under poor propagation conditions. The most useful link performance diagnostic is shown to be scintillation index, where a value of 0.2 is the maximum permissible for adequate GigE throughput. Maximum GigE throughput observed was 49.7% of that obtained with a fiber jumper when scintillation index is 0.1. Shortcomings in conventional measurements such as bit error rate are apparent. Prospects for forward mor correction and other link enhancements will be discussed.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Optical distortions by compressible turbulence
NASA Astrophysics Data System (ADS)
Mani, Ali
Optical distortions induced by refractive index fluctuations in turbulent flows are a serious concern in airborne communication and imaging systems. This project focuses on aero-optical flows in which compressible turbulence is the dominant source of optical distortions. These flows include boundary layers, free shear layers, cavity flows, and wakes typically associated with flight conditions. The present study consists of two theoretical analyses and an extensive numerical investigation of optical distortions by separated shear layers and turbulent wakes. We present an analysis of far-field optical statistics in a general aero-optical framework. Based on this analysis, measures of far-field distortion, such as tilt, spread, and loss of focus-depth, are linked to key flow statistics. By employing these measures, we quantify distortion effects through a set of norms that have provable scaling properties with key optical parameters. The second analysis presents a theoretical estimate of the range of optically important flow scales in an arbitrary aero-optical flowfield. We show that in the limit of high Reynolds numbers, the smallest optically important scale does not depend on the Kolmogorov scale. For a given geometry this length scale depends only on the flow Mach number, freestream refractive index, and the optical wavelength. The provided formula can be used to estimate grid resolution requirements for numerical simulations of aero-optical phenomena. A rough estimate indicates that resolution requirements for accurate prediction of aero-optics is not much higher than typical LES requirements. As a model problem, compressible turbulent flows over a circular cylinder is considered to study the fundamental physics of aero-optical effects. Large-eddy simulation with a high-resolution numerical scheme is employed to compute variations of the refractive index field in the separated shear layers and turbulent wakes in a range of flow Mach numbers (0.2--0.85) and
Optical turbulence profiling with SloDAR in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Maire, Jérôme; Mieda, Etsuko; Steinbring, Eric; Murowinski, Richard; Graham, James R.; Carlberg, Raymond; Wright, Shelley A.; Law, Nicholas M.; Sivanandam, Suresh
2014-07-01
The Earth's polar regions offer unique advantages for ground-based astronomical observations with its cold and dry climate, long periods of darkness, and the potential for exquisite image quality. We present preliminary results from a site-testing campaign during nighttime from October to November 2012 at the Polar Environment Atmospheric Research Laboratory (PEARL), on a 610-m high ridge near the Eureka weatherstation on Ellesmere Island, Canada. A Shack-Hartmann wavefront sensor was employed, using the Slope Detection and Ranging (SloDAR) method. This instrument (Mieda et al, this conference) was designed to measure the altitude, strength and variability of atmospheric turbulence, in particular for operation under Arctic conditions. First SloDAR optical turbulence profiles above PEARL show roughly half of the optical turbulence confined to the boundary layer, below about 1 km, with the majority of the remainder in one or two thin layers between 2 km and 5 km, or above. The median seeing during this campaign was measured to be 0.65 arcsec.
LOLAS-2: Redesign of an Optical Turbulence Profiler with High Altitude-resolution
NASA Astrophysics Data System (ADS)
Avila, R.; Zúñiga, C. A.; Tapia-Rodríguez, J. J.; Sánchez, L. J.; Cruz-González, I.; Avilés, J. L.; Valdés-Hernández, O.; Carrasco, E.
2016-10-01
We present the development, tests, and first results of the second-generation LOLAS-2. This instrument constitutes a strongly improved version of the prototype LOLAS, which is aimed at the measurement of optical turbulence profiles close to the ground, with high altitude-resolution. The method is based on the generalized Scidar principle that consists of taking double-star scintillation images on a defocused pupil plane and calculating in real time the autocovariance of the scintillation. The main components are an open-truss 40-cm Ritchey-Chrétien telescope, a German-type equatorial mount, an electron-multiplying CCD camera, and a dedicated acquisition and real-time data-processing software. The new optical design of LOLAS-2 is significantly simplified compared to the prototype. The experiments carried out to test the permanence of the image within the useful zone of the detector and the stability of the telescope focus show that LOLAS-2 can function without the use of the autoguiding and autofocus algorithms that were developed for the prototype version. Optical turbulence profiles obtained with the new LOLAS have the best altitude-resolution ever achieved with Scidar-like techniques (6.3 m). The simplification of the optical layout and the improved mechanical properties of the telescope and mount make of LOLAS-2 a more robust instrument.
Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.
2013-01-01
photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.
Turbulent Transitions in Optical Wave Propagation
NASA Astrophysics Data System (ADS)
Pierangeli, D.; Di Mei, F.; Di Domenico, G.; Agranat, A. J.; Conti, C.; DelRe, E.
2016-10-01
We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
Bahamas Optical Turbulence Exercise (BOTEX): preliminary results
NASA Astrophysics Data System (ADS)
Hou, Weilin; Jorosz, Ewa; Dalgleish, Fraser; Nootz, Gero; Woods, Sarah; Weidemann, Alan D.; Goode, Wesley; Vuorenkoski, Anni; Metzger, B.; Ramos, B.
2012-06-01
The Bahamas Optical Turbulence Exercise (BOTEX) was conducted in the coastal waters of Florida and the Bahamas from June 30 to July 12 2011, onboard the R/V FG Walton Smith. The primary objective of the BOTEX was to obtain field measurements of optical turbulence structures, in order to investigate the impacts of the naturally occurring turbulence on underwater imaging and optical beam propagation. In order to successfully image through optical turbulence structures in the water and examine their impacts on optical transmission, a high speed camera and targets (both active and passive) were mounted on a rigid frame to form the Image Measurement Assembly for Subsurface Turbulence (IMAST). To investigate the impacts on active imaging systems such as the laser line scan (LLS), the Telescoping Rigid Underwater Sensor Structure (TRUSS) was designed and implemented by Harbor Branch Oceanographic Institute. The experiments were designed to determine the resolution limits of LLS systems as a function of turbulence induced beam wander at the target. The impact of natural turbulence structures on lidar backscatter waveforms was also examined, by means of a telescopic receiver and a short pulse transmitter, co-located, on a vertical profiling frame. To include a wide range of water types in terms of optical and physical conditions, data was collected from four different locations. . Impacts from optical turbulence were observed under both strong and weak physical structures. Turbulence measurements were made by two instruments, the Vertical Microstructure Profiler (VMP) and a 3D acoustical Doppler velocimeter with fast conductivity and temperature probes, in close proximity in the field. Subsequently these were mounted on the IMAST during moored deployments. The turbulence kinetic energy dissipation rate and the temperature dissipation rates were calculated from both setups in order to characterize the physical environments and their impacts. Beam deflection by multiple point
Measurements of Turbulent Dissipation During the Bahamas Optical Turbulence Experiment
2013-07-16
Bahamas Optical Turbulence Experiment 0601153N 73-6604-03-5 Silvia Matt, Weilin Hou, Sarah Woods, Ewa Jarosz, Wesley Goode and Alan Weidemann Naval...of turbulent dissipation during the Bahamas Optical Turbulence Experiment Silvia Matt 1,2, Weilin Hou 2, Sarah Woods 3, Ewa Jarosz 2, Wesley Goode 2...SPEC Inc., Boulder, CO, USA Corresponding author: Silvia Matt: E-mail: silvia.matt.ctr.de@nrlssc.navy.mil Figure 1. Location of stations during BOTEX
The influence of underwater turbulence on optical phase measurements
NASA Astrophysics Data System (ADS)
Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony
2016-05-01
Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.
Measurements of turbulent dissipation during the Bahamas Optical Turbulence Experiment
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Woods, Sarah; Jarosz, Ewa; Goode, Wesley; Weidemann, Alan
2013-06-01
The Bahamas Optical Turbulence Experiment (BOTEX) was conducted in the summer of 2011 to investigate the impact of turbulence on underwater optical imaging. Underwater optical properties can be affected by turbulence in the water, due to localized changes in the index of refraction. We discuss measurements of current velocity and temperature, made with a Nortek Vector Acoustic Doppler Velocimeter (ADV) and PME Conductivity- Temperature (CT) probe, as well as observations made with a Rockland Oceanographic Vertical Microstructure Profiler (VMP). The instruments were deployed in close proximity in the field and in the context of measurements of optical target clarity. Turbulent kinetic energy dissipation (TKED) and temperature dissipation (TD) rates are calculated from the ADV/CT measurements and compared to TKED and TD estimated from the data collected with the VMP. The results show reasonable agreement between the two methods; differences are attributed to turbulence patchiness and intermittence, as well as sampling challenges. The study also highlights the importance of collecting concurrent data on temperature, current velocity, and current shear to assess the turbulence impact on underwater optical properties.
Submerged turbulence detection with optical satellites
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.
2007-09-01
During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 × 10 4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~ 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.
Submerged turbulence detection with optical satellites
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.
2013-01-01
During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed !100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 ! 104 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ! 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.
NASA Astrophysics Data System (ADS)
Eaton, Frank D.; Nastrom, Gregory D.; Hansen, Anthony R.
1999-02-01
Slant path calculations are shown of the transverse coherence length (r0), the isoplanatic angle ((theta) 0), and the Rytov variance ((sigma) 2R), using a 6- yr data set of refractive index structure parameter (C2n) from 49.25-MHz radar observations at White Sands Missile Range, New Mexico. The calculations are for a spherical wave condition; a wavelength ((lambda) ) of electromagnetic radiation of 1 micrometers ; four different elevation angles (3, 10, 30, and 60 deg), two path lengths (50 and 150 km); and a platform, such as an aircraft, at 12.5 km MSL (mean sea level). Over 281,000 radar-derived C2n profiles sampled at 3 min intervals with 150-m height resolution are used for the calculations. The approach, an `onion skin' model, assumes horizontal stationarity over each entire propagation path and is consistent with Taylor's hypothesis. The results show that refractivity turbulence effects are greatly reduced for the there propagation parameters (r0, (theta) 0, and (sigma) 2R) as the elevation angle increases from 3 to 60 deg. A pronounced seasonal effect is seen on the same parameters, which is consistent with climatological variables and gravity wave activity. Interactions with the enhanced turbulence in the vicinity of the tropopause with the range weighting functions of each propagation parameter is evaluated. Results of a two region model relating r0, (theta) 0, and (sigma) 2R to wind speed at 5.6 km MSL are shown. This statistical model can be understood in terms of upward propagating gravity waves that are launched by strong winds over complex terrain.
Low-noise, high-speed detector development for optical turbulence fluctuation measurements for NSTX
Schoenbeck, N. L.; Fonck, R. J.; McKee, G. R.; Smith, D.; Uzun-Kaymak, I. U.; Winz, G.; Ellington, S. D.; Jaehnig, K.
2010-10-15
A new beam emission spectroscopy (BES) diagnostic is under development. Photon-noise limited measurements of neutral beam emissions are achieved using photoconductive photodiodes with a novel frequency-compensated broadband preamplifier. The new BES system includes a next-generation preamplifier and upgraded optical coupling system. Notable features of the design are surface-mount components, minimized stray capacitance, a wide angular acceptance photodiode, a differential output line driver, reduced input capacitance, doubling of the frequency range, net reduced electronic noise, and elimination of the need for a cryogenic cooling system. The irreducible photon noise dominates the noise up to 800 kHz for a typical input power of 60 nW. This new assembly is being integrated into an upgraded multichannel optical detector assembly for a new BES system on the NSTX experiment.
Modified-Dewan Optical Turbulence Parameterizations
2007-11-02
Kea Observatories on the Island of Hawaii (Businger et al. 2002) by converting standard Numerical Weather Prediction (NWP) forecast model output into...describing optical turbulence. The Dewan parameterization is also being used to forecast optical seeing conditions for ground-based telescopes at the Mauna
Critical issues encountered in experiments and measurements involving optical turbulence
NASA Astrophysics Data System (ADS)
Eaton, Frank D.
2007-02-01
The successful design and operation of high energy laser (HEL) and laser communication systems require a comprehensive and thorough knowledge of the real turbulent atmosphere coupled with high-fidelity realistic laser beam propagation models. To date, modeling and simulation of laser beam propagation through atmospheric turbulence have relied upon a traditional theoretical basis that assumes the existence of homogeneous, isotropic, stationary, and Kolmogorov turbulence. The real impact of the refractive index structure parameter ( C2 n ) on laser beam propagation including effects of non-classical turbulence as well as inner (l °) and outer scale (L °) effects will be examined. Observations clearly show turbulence is often layered and is produced by wave activity and episodic events such as Kelvin-Helmholtz instabilities. Other critical turbulence issues involve the relationship between mechanical and optical turbulence and the effect of path variability of turbulence and inner scale on optical turbulence parameters over long paths. These issues will be examined from data obtained from five systems: a) a new measurement platform using a free-flying balloon that lifts a ring with a boom upon which are mounted several fine wire (1-μm diameter) sensors to measure high-speed temperature and velocity fluctuations, b) a new system using a kite/tethered blimp platform that obtains both profile and measurements at a fixed altitude over time, c) a 50 MHz radar at Vandenberg Air Force Base that senses at high temporal and spatial resolution to 20 km ASL, d) an instrumented aircraft system, and e) a suite of optical systems. The first four systems all provide estimates of C2 n , the eddy dissipation rate (\\Vegr), l ° and L °. Methods of calibration and problems of interpreting results from the measurement systems are discussed.
Optical turbulence in fiber lasers.
Wabnitz, Stefan
2014-03-15
We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency.
Optical properties of a planar turbulent jet.
Joia, I A; Perkins, R J; Uscinski, B J; Balmer, G; Jordan, D; Jakeman, E
1995-10-20
A planar heated air jet was constructed. Its flow properties were characterized and shown to be both reproducible and in good agreement with the results of turbulence theory. The optical properties of the jet were studied with the help of a 632.8-nm He-Ne laser beam. The random phase modulations imposed on the wave front of the beam traversing the jet were measured by interferometric means, and their spectra and variance were determined. The one-dimensional phase fluctuation spectrum obeyed a -8/3 power law as predicted by theory, whereas the phase variance (?(2)) depended on the jet temperature and was studied for values to as high as 0.4 (rad)(2)).
NASA Astrophysics Data System (ADS)
Kaufmann, John E.
1995-04-01
Atmospheric turbulence corrupts both the amplitude and phase of an optical field propagating from space to an earth-based receiver. While aperture averaging can mitigate amplitude scintillation effects, the performance of single spatial-mode receiver systems such as coherent detection or preamplified direction detection can be significantly degraded by the corrupted phase when the ratio of aperture diameter D to atmospheric coherence length r0 exceeds unity. Although adaptive optics may be employed to correct the wavefront, in practice the correction is imperfect and the residual phase errors induce a communications performance loss. That loss is quantified here by Monte Carlo simulation techniques. Single-mode-receiver fade statistics for imperfect phase correction are calculated in terms of the atmospheric Greenwood frequency fg, the adaptive optic servo loop cutoff frequency fc, and the ratio D/r0. From these statistics, link bit-error rate (BER) performance is calculated. The results reveal that conventional performance measures such as Strehl ratio or mean signal-to- noise ratio loss can significantly underestimate receiver BER losses. Only when the ratio fg/fc is 0.1 or less will communications losses be small (about 0.5 dB) over a wide range of D/r0.
Impacts of optical turbulence on underwater imaging
NASA Astrophysics Data System (ADS)
Hou, Weilin; Woods, S.; Goode, W.; Jarosz, E.; Weidemann, A.
2011-06-01
Optical signal transmission underwater is of vital interests to both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties determines the effectiveness of EO technology. These applications include diver visibility, search and rescue, mine detection and identification, and optical communications. The impact of optical turbulence on underwater imaging has been postulated and observed by many researchers. However, no quantative studies have been done until recently, in terms of both the environmental conditions, and impacts on image quality as a function of range and spatial frequencies. Image data collected from field measurements during SOTEX (Skaneateles Optical Turbulence Exercise, July 22-31, 2010) using the Image Measurement Assembly for Subsurface Turbulence (IMAST) are presented. Optical properties of the water column in the field were measured using WETLab's ac-9 and Laser In Situ Scattering and Transmissometer (LISST, Sequoia Scientific), in coordination with physical properties including CTD (Seabird), dissipation rate of kinetic energy and heat, using both the Vector velocimeter and CT combo (Nortek and PME), and shear probe based Vertical Microstructure Profiler (VMP, Rockland). The strong stratification structure in the water column provides great opportunity to observe various dissipation strengths throughout the water column, which corresponds directly with image quality as shown. Initial results demonstrate general agreement between data collected and model prediction, while discrepancies between measurements and model suggest higher spatial and temporal observations are needed in the future.
High Reynolds Number Turbulence
2007-03-27
wall relation of McKeon et al. (2005), and the results for the smallest sandgrain roughness used by Nikuradse (1933). 3 57xI03 "eI : uhp - 2 8 1 6 8 x l 0...Reynolds Number Turbulent Pipe Flow," ASME International Mechanical Engineering Conference and Exposition, Washington, D.C., November 16-21, 2003... Engineering Sciences, Vol. 365 (1852) pp. 699-714, 2007. 14 ’Pipe flow roughness Allen, J.J., Shockling, M.A. and Smits, A.J. "Effects of a machined rough
Optical monitor for observing turbulent flow
Albrecht, Georg F.; Moore, Thomas R.
1992-01-01
The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.
Optical intensity interferometry through atmospheric turbulence
NASA Astrophysics Data System (ADS)
Tan, P. K.; Chan, A. H.; Kurtsiefer, C.
2016-04-01
Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.
Turbulence profiling for adaptive optics tomographic reconstructors
NASA Astrophysics Data System (ADS)
Laidlaw, Douglas J.; Osborn, James; Wilson, Richard W.; Morris, Timothy J.; Butterley, Timothy; Reeves, Andrew P.; Townson, Matthew J.; Gendron, Éric; Vidal, Fabrice; Morel, Carine
2016-07-01
To approach optimal performance advanced Adaptive Optics (AO) systems deployed on ground-based telescopes must have accurate knowledge of atmospheric turbulence as a function of altitude. Stereo-SCIDAR is a high-resolution stereoscopic instrument dedicated to this measure. Here, its profiles are directly compared to internal AO telemetry atmospheric profiling techniques for CANARY (Vidal et al. 20141), a Multi-Object AO (MOAO) pathfinder on the William Herschel Telescope (WHT), La Palma. In total twenty datasets are analysed across July and October of 2014. Levenberg-Marquardt fitting algorithms dubbed Direct Fitting and Learn 2 Step (L2S; Martin 20142) are used in the recovery of profile information via covariance matrices - respectively attaining average Pearson product-moment correlation coefficients with stereo-SCIDAR of 0.2 and 0.74. By excluding the measure of covariance between orthogonal Wavefront Sensor (WFS) slopes these results have revised values of 0.65 and 0.2. A data analysis technique that combines L2S and SLODAR is subsequently introduced that achieves a correlation coefficient of 0.76.
Measurements of optical underwater turbulence under controlled conditions
NASA Astrophysics Data System (ADS)
Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.
2016-05-01
Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.
NASA Astrophysics Data System (ADS)
Robert, Clélia; Conan, Jean-Marc; Wolf, Peter
2016-03-01
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study the impact of turbulence on coherent detection and the related phase noise that restricts time and frequency transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up- and downlink that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end-to-end simulations under realistic turbulence and wind conditions as well as satellite kinematics. These temporally resolved simulations allow characterizing the coherent detection in terms of time series of heterodyne efficiency and phase noise for different system parameters. We show that tip-tilt correction on ground is mandatory at reception for the downlink and as a pre-compensation of the uplink. Besides, thanks to the large tilt angular correlation, the correction is shown to be efficient on uplink despite the point-ahead angle. Very good two-way compensation of turbulent effects is obtained even with the asymmetries. The two-way differential phase noise is reduced to 1 rad2 , with the best fractional frequency stability below 2 ×10-17 after 1-s averaging time.
The simulation of turbulence effect based on the technology of optical wavefront control
NASA Astrophysics Data System (ADS)
Zhao, Hongming; Fei, Jindong; Du, Huijie; Yu, Hong; Du, Jian; Hu, Xinqi; Dong, Bing
2013-09-01
In the process of high-resolution astronomical observation and space optical mapping, the wavefront aberrations caused by atmosphere turbulence effect lead to reduced resolution of optical imaging sensor. Firstly, on the base of influence of atmosphere turbulence effect for the optical observation system, this paper investigates and analyses the development and technical characteristics of deformable mirror, which is the key device of optical wavefront control technology. In this part, the paper describes the basic principles of wavefront control and measurement using the current production line of deformable mirror, including micro-electromechanical systems (MEMS) deformable mirror which is one of the most promising technology for wavefront modulation and Shack-Hartmann wavefront sensors. Secondly, a new method based on the technology of optical wavefront control and the data of optical path difference (OPD) for simulating the effect of optical transmission induced by turbulence is presented in this paper. The modeling and characteristics of atmosphere turbulence effect applied for optical imagery detector of astronomical observation and space optical mapping has been obtained. Finally, based on the theory model of atmosphere turbulence effects and digital simulation results, a preliminary experiment was done and the results verify the feasibility of the new method. The OPD data corresponding to optical propagation effect through turbulent atmosphere can be achieved by the calculation based on the method of ray-tracing and principle of physical optics. It is a common practice to decompose aberrated wavefronts in series over the Zernike polynomials. These data will be applied to the drive and control of the deformable mirror. This kind of simulation method can be applied to simulate the optical distortions effect, such as the dithering and excursion of light spot, in the space based earth observation with the influence of turbulent atmosphere. With the help of the
Development of a lidar technique for profiling optical turbulence
NASA Astrophysics Data System (ADS)
Gimmestad, Gary; Roberts, David; Stewart, John; Wood, Jack
2012-10-01
Many techniques have been proposed for active optical remote sensing of the strength of atmospheric refractive turbulence. The early techniques, based on degradation of laser beams by turbulence, were susceptible to artifacts. In 1999, we began investigating a new idea, based on differential image motion (DIM), which is inherently immune to artifacts. The new lidar technique can be seen as a combination of two astronomical instruments: a laser guide star transmitter/receiver and a DIM monitor. The technique was successfully demonstrated on a horizontal path, with a hard-target analog of a lidar, and then a true lidar was developed. Several investigations were carried out first, including an analysis to predict the system's performance; new hard-target field measurements in the vertical direction; development of a robust inversion technique; and wave optics simulations. A brassboard lidar was then constructed and operated in the field, along with instruments to acquire truth data. The tests revealed many problems and pitfalls that were all solvable with engineering changes, and the results served to verify the new lidar technique for profiling turbulence. The results also enabled accurate performance predictions for future versions of the lidar. A transportable turbulence lidar system is currently being developed to support field tests of high-energy lasers.
NASA Astrophysics Data System (ADS)
Truman, C. Randall; Lee, Moon Joo
1990-05-01
Effects of organized turbulence structures on the propagation of an optical beam in a turbulent shear flow have been analyzed. An instantaneous passive-scalar field in a computed homogeneous turbulent shear flow is used to represent index-of-refraction fluctuations, and phase distortion induced in a coherent optical beam by turbulent fluctuations is calculated. The organized vortical structures (``hairpin-shaped'' eddies) in the turbulent flow give rise to a scalar distribution with elongated regions of intense fluctuation, which have an inclination (about 30°) with respect to the mean flow, similar to that of the characteristic ``hairpin'' eddies. Two-point correlations of vorticity and scalar fluctuations support a proposed physical model in which the regions of intense scalar fluctuation are produced primarily by hairpin vortices. It is found that the spatial distribution of the phase distortion has a substantial variation with the direction of propagation. A highly localized distribution of intense phase distortions is produced when the optical beam propagates at an angle (45°) close to the inclination of hairpin vortices; at larger angles of propagation the distribution shows an elongated pattern with smaller phase distortions. It is also found that the root-mean-square phase distortion depends significantly on the propagation direction, and the phase distortion can be minimized at an angle of propagation approximately normal to the inclination of hairpin eddies. This study shows how the characteristics of an optical beam propagating through a turbulent shear flow are affected by the geometrical configurations of organized vortical structures.
Route diversity analyses for free-space optical wireless links within turbulent scenarios.
Zvanovec, Stanislav; Perez, Joaquin; Ghassemlooy, Zabih; Rajbhandari, Sujan; Libich, Jiri
2013-03-25
Free-Space Optical (FSO) communications link performance is highly affected when propagating through the time-spatially variable turbulent environment. In order to improve signal reception, several mitigation techniques have been proposed and analytically investigated. This paper presents experimental results for the route diversity technique evaluations for a specific case when several diversity links intersects a common turbulent area and concurrently each passing regions with different turbulence flows.
Simple algorithms for calculating optical communication performance through turbulence
NASA Astrophysics Data System (ADS)
Shapiro, J. H.; Harney, R. C.
1981-01-01
Propagation through turbulence can impose severe limitations on the performance of atmospheric optical communication links. Previous studies have established quantitative results for turbulence-induced beam spread, angular spread, and scintillation. This paper develops communication-theory results for single-bit and message transmission through turbulence. Programmable calculator algorithms for evaluating these results are given, and used to examine system performance in some realistic scenarios. These algorithms make it possible for the uninitiated communication engineer to rapidly assess the effects of turbulence on an atmospheric optical communication link.
Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel
2016-05-01
Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.
Turbulence profiling methods applied to ESO's adaptive optics facility
NASA Astrophysics Data System (ADS)
Valenzuela, Javier; Béchet, Clémentine; Garcia-Rissmann, Aurea; Gonté, Frédéric; Kolb, Johann; Le Louarn, Miska; Neichel, Benoît; Madec, Pierre-Yves; Guesalaga, Andrés.
2014-07-01
Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.
Turbulence in unsteady flow at high frequencies
NASA Technical Reports Server (NTRS)
Kuhn, Gary D.
1990-01-01
Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.
Optical Turbulence Characterization by WRF model above Ngari
NASA Astrophysics Data System (ADS)
Wang, H.; Yao, Y.
2013-09-01
Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey for astronomical observatories and optimization of large telescope observing tables, and in the applications of adaptive optics technique and atmospheric optical transportation. The numerical approach, by use of meteorological parameters and according to parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as Cn2 profile, coherent length, coherent time, seeing, isoplanatic angle, and outer scale of turbulence. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by National Astronomical Observatories of China site survey team imply that the south-west Tibet, Ngari, is one of the world best IR and sub-mm sites. For searching the best site in Ngari area of hundreds of kilometers, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are given by the 1°x1°NCEP Global Final Analysis data. The distribution and seasonal variation of optical turbulence parameters over this area are presented. The field investigation for the potential good site are also given.
Turbulence structure at high shear rate
NASA Technical Reports Server (NTRS)
Lee, Moon Joo; Kim, John; Moin, Parviz
1987-01-01
The structure of homogeneous turbulence in the presence of a high shear rate is studied using results obtained from three-dimensional time-dependent numerical simulations of the Navier-Stokes equations on a grid of 512 x 128 x 128 node points. It is shown that high shear rate enhances the streamwise fluctuating motion to such an extent that a highly anisotropic turbulence state with a one-dimensional velocity field and two-dimensional small-scale turbulence develops asymptotically as total shear increases. Instantaneous velocity fields show that high shear rate in homogeneous turbulent shear flow produces structures which are similar to the streaks present in the viscous sublayer of turbulent boundary layers.
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum
Trajectory of an optical vortex in atmospheric turbulence.
Dipankar, A; Marchiano, R; Sagaut, P
2009-10-01
Trajectory of an optical vortex has been identified for its propagation in atmospheric turbulence using numerical simulations. An analytical expression has been found, relating the radial departure of the vortex in plane perpendicular to the direction of propagation, to the refractive index structure function parameter and the inner scale of turbulence. The angular orientation of the vortex in the same transverse plane is found to be related to the anisotropy of the medium. The obtained results provide an alternative way to find turbulent parameters with the help of optical vortices.
Optical Turbulence Characterization by WRF model above Ali, Tibet
NASA Astrophysics Data System (ADS)
Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia
2015-04-01
Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
2010-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical or other telescopes. In addition, the quality of service of a free space optical communications link may also be impacted. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, particularly for OCONUS locations, so simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using the Maui High Performance Computing Centers (MHPCC) Mana cluster. The WRF model is configured to run at 1km horizontal resolution over a domain covering several hundreds of kilometers. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. We are interested in the variations in Cn2 and the Fried Coherence Length (ro). Nearly two years of simulations have been performed over various regions
Gauging the Turbulent Mach Numbers in Optically Thick Clouds
NASA Astrophysics Data System (ADS)
Burkhart, B.; Lazarian, A.; Ossenkopf, V.; Stutzki, J.
2012-07-01
Magnetohydrodynamic (MHD) Turbulence is a critical component of the current paradigms of star formation, particle transport, magnetic reconnection and evolution of the ISM. Progress on this difficult subject is made via theoretical predictions, numerical simulations and observational studies. For star forming molecular clouds in particular, turbulence plays a role in supporting clouds from gravitational collapse and dense filamentary structures created by shocks via supersonic turbulence could act as a catalyst for stellar birth. However, diagnosing turbulence in these dense molecular regions is not straightforward, with additional complications including varying optical depth effects and thermal excitation. We study the probability distribution functions (PDFs) of simulations of MHD turbulence with radiative transfer effects included (specifically looking at the 13CO 2-1 transition) in order to gauge whether the sonic Mach number can be determined in optically thick turbulent environments. From the simulations, we create synthetic integrated intensity maps with different sonic Mach numbers and vary optical depth and thermal excitation by changing the average density(ρ) and molecular abundance (X/H2). We show that PDF descriptors such as the moments and the Tsallis distribution are sensitive to the changes in optical depth as well as the sonic Mach number in 13CO 2-1 integrated intensity maps. This opens up avenues for studying the relationship between the compressibility of GMC clouds and star formation using simple statistical methods.
Cui, Linyan; Xue, Bindang; Zhou, Fugen
2015-11-16
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.
NASA Astrophysics Data System (ADS)
Picozzi, A.; Garnier, J.; Hansson, T.; Suret, P.; Randoux, S.; Millot, G.; Christodoulides, D. N.
2014-09-01
The nonlinear propagation of coherent optical fields has been extensively explored in the framework of nonlinear optics, while the linear propagation of incoherent fields has been widely studied in the framework of statistical optics. However, these two fundamental fields of optics have been mostly developed independently of each other, so that a satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory, which provides a nonequilibrium thermodynamic description of the system of incoherent nonlinear waves. We consider the nonlinear Schrödinger equation as a representative model accounting either for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are derived and discussed. In the spatial domain, when the incoherent wave exhibits inhomogeneous statistical fluctuations, different forms of the (Hamiltonian) Vlasov equation are obtained depending on the amount of nonlocality. This Vlasov approach describes the processes of incoherent modulational instability and localized incoherent soliton structures. In the temporal domain, the causality property inherent to the response function leads to a kinetic formulation analogous to the weak Langmuir turbulence equation, which describes nonlocalized spectral incoherent solitons. In the presence of a highly noninstantaneous response, this formulation reduces to a family of singular integro-differential kinetic equations (e.g., Benjamin-Ono equation), which describe incoherent dispersive shock waves. Conversely, a non-stationary statistics leads to a (non-Hamiltonian) long-range Vlasov formulation, whose self-consistent potential is
Laboratory simulation of atmospheric turbulence induced optical wavefront distortion
NASA Astrophysics Data System (ADS)
Taylor, Travis Shane
1999-11-01
Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as
NASA Astrophysics Data System (ADS)
Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.
2017-02-01
As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.
Laser beam propagation through turbulence and adaptive optics for beam delivery improvement
NASA Astrophysics Data System (ADS)
Nicolas, Stephane
2015-10-01
We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.
Simulation of atmospheric turbulence for optical systems with extended sources.
Safari, Majid; Hranilovic, Steve
2012-11-01
In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.
Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
2012-09-01
Research and Forecasting (WRF) model is used to produce characterizations and forecasts of OT. These forecasts are used for planning FSOC experiments in the 3-24 hour range. The WRF model is configured to run at up to 300 meters horizontal resolution over a 250km by 250km horizontal domain. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere with over 130 vertical levels. The model top is 20 km in altitude. The model is run up to twice per day and generates forecasts out to 27 hours. The WRF model has proven to be a valuable tool for link characterization and forecasting, since it can identify thin relatively layers of optical turbulence that are not represented by standard empirically derived Cn2 profiles. Results show that WRF simulations can accurately predict upcoming turbulence events that may degrade system performance. Demonstrations of these forecasts will be shown at the conference. The near realtime simulations of OT are performed using the Maui High Performance Computing Centers (MHPCC) Mana cluster.
NASA Astrophysics Data System (ADS)
Dutta, Agnibesh; Kumar, Vivek; Kaushal, Hemani; Aennam, Harika; Jain, V. K.; Kar, Subrat; Joseph, Joby
2011-10-01
The performance of laser communication systems operating in the atmosphere is degraded by atmospheric turbulence effects, which causes irradiance fluctuations in the received signal and result in a random signal fades. We propose to simulate this effect in laboratory using an optical turbulence generator chamber and to measure the level of turbulence using CMOS array.
Aeroacoustics of Turbulent High-Speed Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1996-01-01
Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.
Structure of turbulence at high shear rate
NASA Technical Reports Server (NTRS)
Lee, Moon Joo; Kim, John; Moin, Parviz
1990-01-01
The structure of homogeneous turbulence subject to high shear rate has been investigated by using three-dimensional, time-dependent numerical simulations of the Navier-Stokes equations. This study indicates that high shear rate alone is sufficient for generation of the streaky structures, and that the presence of a solid boundary is not necessary. Evolution of the statistical correlations is examined to determine the effect of high shear rate on the development of anisotropy in turbulence. It is shown that the streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic turbulence state with a 'one-component' velocity field and 'two-component' vorticity field develops asymptotically as total shear increases. Because of high-shear rate, rapid distortion theory predicts remarkably well the anisotropic behavior of the structural quantities.
Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion
NASA Astrophysics Data System (ADS)
Taylor, Travis S.; Gregory, Don A.
2002-11-01
Real-time liquid crystal television-based technique for simulating optical wavefront distortion due to atmospheric turbulence is presented and demonstrated. A liquid crystal television (LCTV) operating in the "phase mostly" mode was used as an array of spatially correlated phase delays. A movie of the arrays in motion was then generated and displayed on the LCTV. The turbulence simulation system was verified by passing a collimated and doubled diode pumped Nd:YVO 4 laser beam (532 nm) through the transparent LCTV screen. The beam was then passed through a lens and the power spectra of the turbulence information carrying beam was detected as a measure of the far-field distribution. The same collimated laser beam, without the LCTV, was also transmitted down an open-air range and the power spectra detected as a measure of a real far-field distribution. Accepted turbulence parameters were measured for both arrangements and then compared.
Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves
NASA Astrophysics Data System (ADS)
Picozzi, Antonio; Garnier, Josselin; Xu, Gang; Rica, Sergio
We provide an introduction to different wave turbulence formalisms describing the propagation of partially incoherent optical waves in nonlinear media. We consider the nonlinear Schrödinger equation as a representative model accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. We discuss the wave turbulence kinetic equation describing, e.g., wave condensation or wave thermalization through supercontinuum generation; the Vlasov formalism describing incoherent modulational instabilities and the formation of large scale incoherent localized structures in analogy with long-range gravitational systems; and the weak Langmuir turbulence formalism describing spectral incoherent solitons, as well as spectral shock or collapse singularities. Finally, recent developments and some open questions are discussed, in particular in relation with a wave turbulence formulation of laser systems and different mechanisms of breakdown of thermalization.
Lidar sounding of the optical parameter of atmospheric turbulence
NASA Astrophysics Data System (ADS)
Gurvich, A. S.; Fortus, M. I.
2016-03-01
The operation of a lidar intended for clear air turbulence (CAT) positioning on the basis of the backscatter enhancement (BSE) effect is analyzed using a turbulence model with a power-law spectrum. Systematic distortions occurring due to a need to regularize the lidar positioning problem solution are estimated. It is shown that the effect of molecular viscosity of air on the positioning result can be neglected if the wave parameter, which characterizes the diffraction manifestation, is higher than 3. This corresponds to sounding ranges of more than 1 km for optical or UV lidars. The analysis results show that the BSE lidar positioning accuracy weakly depends on the exponent in the turbulence spectrum in regions of severe turbulence. The results can justify a physical experiment for the design of an aircraft system for the lidar detection of CAT regions ahead of the flight course.
O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.
1997-01-01
This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.
Optical propagation through a homogeneous turbulent shear flow
NASA Technical Reports Server (NTRS)
Truman, C. Randall; Lee, Moon J.
1988-01-01
Effects of organized turbulent structures on the propagation of an optical beam in a homogeneous shear flow were studied. A passive-scalar field in a computed turbulent shear flow is used to represent index-of-refraction fluctuations, and phase errors induced in a coherent optical beam by turbulent fluctuations are computed. The organized vortical structures produce a scalar distribution with elongated regions of intense fluctuations which have an inclination with respect to the mean flow similar to that of the characteristic hairpin eddies. It is found that r.m.s. phase error is minimized by propagating approximately normal to the inclined vortical structures. Two-point correlations of vorticity and scalar fluctuation suggest that the regions of intense scalar fluctuation are produced primarily by the hairpin eddies.
Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.
Dikmelik, Yamaç; Davidson, Frederic M
2005-08-10
High-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and limits the fiber-coupling efficiency. We numerically evaluate the fiber-coupling efficiency for laser light distorted by atmospheric turbulence. We also investigate the use of a coherent fiber array as a receiver structure and find that a coherent fiber array that consists of seven subapertures would significantly increase the fiber-coupling efficiency.
Characterising atmospheric optical turbulence using stereo-SCIDAR
NASA Astrophysics Data System (ADS)
Osborn, James; Butterley, Tim; Föhring, Dora; Wilson, Richard
2015-04-01
Stereo-SCIDAR (SCIntillation Detection and Ranging) is a development to the well known SCIDAR method for characterisation of the Earth's atmospheric optical turbulence. Here we present some interesting capabilities, comparisons and results from a recent campaign on the 2.5 m Isaac Newton Telescope on La Palma.
Investigation of Outer Length Scale In Optical Turbulence
2003-12-01
experimental situations. This thesis investigated three outer scales of turbulence using experimental data from two instruments: microthermal probes...represents the size of the velocity fluctuations and the boundary thermal convective cell size. The microthermal balloon data had excessive scatter...optical structure parameter C than the microthermal balloon data. The separation of daytime convective thermal plumes was found from the acoustic
Geometrical modeling of optical phase difference for analyzing atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Demet; Yuksel, Heba
2013-09-01
Ways of calculating phase shifts between laser beams propagating through atmospheric turbulence can give us insight towards the understanding of spatial diversity in Free-Space Optical (FSO) links. We propose a new geometrical model to estimate phase shifts between rays as the laser beam propagates through a simulated turbulent media. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. The level of turbulence is increased by elongating the range and/or increasing the number of bubbles that the rays interact with along their path. For each statistical representation of the atmosphere, the trajectories of two parallel rays separated by a particular distance are analyzed and computed simultaneously using geometrical optics. The three-dimensional geometry of the spheres is taken into account in the propagation of the rays. The bubble model is used to calculate the correlation between the two rays as their separation distance changes. The total distance traveled by each ray as both rays travel to the target is computed. The difference in the path length traveled will yield the phase difference between the rays. The mean square phase difference is taken to be the phase structure function which in the literature, for a pair of collimated parallel pencil thin rays, obeys a five-third law assuming weak turbulence. All simulation results will be compared with the predictions of wave theory.
Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves
NASA Astrophysics Data System (ADS)
Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.
2016-11-01
A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.
Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves
NASA Astrophysics Data System (ADS)
Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.
2017-02-01
A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r_{0}=15.1.
Incoherent shock waves in long-range optical turbulence
NASA Astrophysics Data System (ADS)
Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A.
2016-10-01
Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin-Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW - the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.
NASA Astrophysics Data System (ADS)
Yuksel, Heba; Harris, Joseph; Tang, Yunxin; Gammon, Robert; Davis, Christopher
2008-08-01
The performance of free space optical (FSO) links in a clear atmosphere is affected by the non-ideal characteristics of the communication channel. Atmospheric turbulence causes fluctuations in the received signal level, which increase the bit errors in a digital communication link. In order to quantify performance limitations, a better understanding of the effect of the intensity fluctuations on the received signal at all turbulence levels is needed. Theory reliably describes the behavior in the weak turbulence regime, but theoretical descriptions in the intermediate and strong turbulence regimes are less well developed. We have developed a flexible empirical approach for characterizing link performance in strong turbulence conditions through image analysis of intensity scintillation patterns coupled with frame aperture averaging on an FSO communication link. These measurements are complemented with direct measurements of temporal and spatial correlation functions. A He-Ne laser beam propagates 106 meters in free-space over flat terrain about a meter above the ground to provide strong atmospheric turbulence conditions. A high performance digital camera with a frame-grabbing computer interface is used to capture received laser intensity distributions at rates up to 30 frames per second and various short shutter speeds, down to 1/16,000s per frame. A scintillometer is used for accurate measurements of the turbulence parameter Cn2. Laboratory measurements use a local strong turbulence generator, which mimics a strong phase screen. Spatial correlation functions are measured using laterally separated point detectors placed in the receiver plane. Correlations and captured image frames are analyzed in Labview to evaluate correlation functions, Cn2, and the aperture averaging factor. The aperture averaging results demonstrate the expected reduction in intensity fluctuations with increasing aperture diameter, and show quantitatively the differences in behavior between
Characterization of optical turbulence in a jet engine exhaust with Shack-Hartmenn wavefront sensor
NASA Astrophysics Data System (ADS)
Deron, R.; Mendez, F.
2008-10-01
Airborne laser countermeasure applications (DIRCM) are hampered by the turbulence of jet engine exhaust. The effects of this source of perturbation on optical propagation have still to be documented and analyzed in order to get a better insight into the different mechanisms of the plume perturbations and also to validate CFD/LES codes. For that purpose, wave front sensing has been used as a non-intrusive optical technique to provide unsteady and turbulent optical measurements through a plume of a jet engine installed at a fixed point on the ground. The experiment has been implemented in October 2007 along with other optical measuring techniques at Volvo Aero Corporation (Trollhättan, Sweden). This study is part of a European research programme dealing with DIRCM issues. The Shack- Hartmann (SH) wave front sensing technique was employed. It consisted of 64 x 64 lenslets coupled to a 1024x1024 pixel Dalsa CCD sensor working at a sampling rate of 40 Hz. A 15 ns pulsed laser synchronized with the SH sensor enabled "freezing" turbulence in each SH image. The ability of the technique to substract a reference permitted a simple calibration procedure to ensure accurate and reliable measurements despite vibration environment. Instantaneous phases are reconstructed using Fourier techniques so as to obtain a better spatial resolution against turbulent effects. Under any given plume condition, overall tilt aberration prevails. Phase power spectra derived from phase statistics are drawn according to the plume main axis and to normal axis. They compare favorably well to the decaying Kolmogorov power law on a useful high spatial frequency range. Averaged phases are also decomposed into Zernike polynomials to analyze optical mode behavior according to engine status and to plume abscissa. With overall tilt removed, turbulent DSP's amplitude drops by a factor of 30 to 40 and mean aberrations by a factor of 10 from an abscissa 1 meter to another 3.5 meters away from the engine
Turbulent Poiseuille & Couette flows at high Re
NASA Astrophysics Data System (ADS)
Lee, Myoungkyu; Moser, Robert D.
2016-11-01
We present the results of direct numerical simulation (DNS) of high Re turbulent Poiseuille and Couette flows. Couette flow has been simulated with a streamwise (x) domain that is 100 πδ long at Reynolds number up to Reτ 500 . In addition Poiseuille flow simulations up to Reτ 5200 were performed. In Couette flow, extremely large scale motions, which are approximately 50 πδ long in the x-direction with very strong intensity, have been observed. In this presentation we will focus on a comparison between these two flows in terms of the vorticity-velocity co-spectra, which are interesting because of the relationship between the Reynolds stress and the velocity-vorticity correlation (∂y =
Analytic improvements to the atmospheric turbulence optical transfer function
NASA Astrophysics Data System (ADS)
Tofsted, David H.
2003-09-01
The standard method used for modeling optical turbulence effects on imaging uses an optical transfer function (OTF). To model this function the short- and long-exposure limiting cases exist. The short-exposure case is handled by modifying the long-exposure case to remove wavefront tilt assessed at the sensor entrance pupil. Then, depending on whether one is in the "near-field" or the "far-field," one of two subcases is used. These evaluations require a model of the refractive index spectrum. Typically this model is assumed to be the Kolmogorov spectrum where an inner scale is set to zero and outer scale is infinite. However, for real atmospheres the inner and outer scales affect turbulence predictions through a modified spectrum. The difficulty using non-limiting values for these parameters is that double integrals must then be assessed. However, in this paper analytic forms are developed to describe the spectrum, permitting analytic solutions to these integrals. The result is that we can express quantities such as the Fried coherence diameter in closed form accounting for both inner and outer scale effects. Also, expressions for the inner and outer scales of turbulence can be written as functions of the atmospheric surface layer stability. Lastly, it is shown that the near/far-field effect does not easily subdivide into two cases. In fact, the distance dependence of the tilt effect is shown to span a range of 107 in the governing dimensionless parameter. To model this continuum a unified treatment is considered.
Whole-Field Measurements of Turbulent Flow for the Study of Aero-optical Effects
2007-11-02
Aerooptical phenomena associated with the propagation of optical beams and imaging through turbulent index-of-refraction fields have been investigated...Using simultaneous imaging of optical -beam distortion and the turbulent index-or-refraction field, we have documented near-field behavior, following...of TECHNOLOGY Pasadena, California 91125 Whole-field measurements of turbulent flow for the study of aero- optical effects Paul E. Dimotakis Air
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
Coherent optical array receiver for PPM signals under atmospheric turbulence
NASA Astrophysics Data System (ADS)
Munoz Fernandez, Michela
The performance of a coherent free-space optical communications system operating in the presence of turbulence is investigated. Maximum Likelihood Detection techniques are employed to optimally detect Pulse Position Modulated signals with a focal-plane detector array and to reconstruct the turbulence-degraded signals. Laboratory equipment and experimental setup used to carry out these experiments at the Jet Propulsion Laboratory are described. The key components include two lasers operating at 1064 nm wavelength for use with coherent detection, a 16 element (4 X 4) InGaAs focal-plane detector array, and a data-acquisition and signal-processing assembly needed to sample and collect the data and analyze the results. The detected signals are combined using the least-mean-square (LMS) algorithm. In the first part of the experimental results we show convergence of the algorithm for experimentally obtained signal tones in the presence of atmospheric turbulence. The second part of the experimental results shows adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of simulated spatial distortions resembling atmospheric turbulence. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot noise. A convergence analysis of the algorithm is presented, and results with both computer-simulated and experimentally obtained PPM signals are analyzed. The third part of the experimental results, in which the main goal of this thesis is achieved, includes an investigation of the performance of the Coherent Optical Receiver Experiment (CORE) at JPL. Bit Error Rate (BER) results are presented for single and multichannel optical receivers where quasi shot noise-limited performance is achieved under simulated turbulence conditions using noncoherent postdetection processing techniques. Theoretical BER expressions are
Nelson, D.H.; Petrin, R.R.; Quick, C.R.; Jolin, L.J.; MacKerrow, E.P.; Schmidtt, M.J.; Foy, B.R.; Koskelo, A.C.; McVey, B.D.; Porch, W.M.; Tiee, J.J.; Fite, C.B.; Archuleta, F.A.; Whitehead, M.C.; Walters, D.L.
1999-07-18
The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. Two of these processes are atmospheric optical turbulence and reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. The effects of this phenomenon include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. The authors have previously developed a Huygens-Fresnel wave optics propagation code to separately simulate the effects of these two processes. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, the authors briefly review a description of the model including the limitations along with a brief summary of previous simulations of individual effects. The performance of the modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, simulation studies have been performed to demonstrate the utility and limitations of the model. Examples presented include assessing the effects for different array sizes on model limitations and effects of varying propagation step sizes on intensity enhancements and intensity probability distributions in the receiver plane.
NASA Technical Reports Server (NTRS)
Truman, C. Randall; Lee, Moon Joo
1990-01-01
Phase distortion in a coherent optical beam propagating through a turbulent shear flow is studied. The instantaneous distribution of the index refraction is represented by a passive-scalar field in a computed homogeneous shear flow. The flow contains organized vortical structures (hairpin eddies), which are characteristic of turbulent shear flows. The phase distortion induced by turbulent fluctuations is calculated from the optical path difference through the flow. A conceptual model is proposed for the distribution of scalar fluctuations produced by the hairpin vortices in the shear flow. It is shown that the phase distortion of an optical beam can be minimized by propagating the beam at an angle approximately normal to the organized vortical structures in a turbulent shear flow.
Closed-Loop Adaptive Optics Control in Strong Atmospheric Turbulence
2008-09-01
Atmospheric Turbulence Todd M. Venema, B.S.E., M.S.E.E. Lieutenant Colonel, USAF Approved: Dr. Juan Vasquez , (Chairman) Date Maj. Jason Schmidt, PhD (Member...to acknowledge the help of Jason Schmidt and Juan Vasquez , my Air Force Institute of Technology advisors. I would also like to acknowledge the help of...Darryl Sanchez and Denis Oesch from the Air Force’s Starfire Optical Range in helping me study my designs in their Atmospheric Simulation and Adaptive
Interleaved convolutional coding for the turbulent atmospheric optical communication channel
NASA Astrophysics Data System (ADS)
Davidson, Frederic M.; Koh, Yutai T.
1988-09-01
The coding gain of a constraint-length-three, rate one-half convolutional code over a long clear-air atmospheric direct-detection optical communication channel using binary pulse-position modulation signaling was directly measured as a function of interleaving delay for both hard- and soft-decision Viterbi decoding. Maximum coding gains theoretically possible for this code with perfect interleaving and physically unrealizable perfect-measurement decoding were about 7 dB under conditions of weak clear-air turbulence, and 11 dB at moderate turbulence levels. The time scale of the fading (memory) of the channel was directly measured to be tens to hundreds of milliseconds, depending on turbulence levels. Interleaving delays of 5 ms between transmission of the first and second channel bits output by the encoder yield coding gains within 1.5 dB of theoretical limits with soft-decision Viterbi decoding. Coding gains of 4-5 dB were observed with only 100 microseconds of interleaving delay. Soft-decision Viterbi decoding always yielded 1-2 dB more coding gain than hard-decision Viterbi decoding.
Effect of optical turbulence along a downward slant path on probability of laser hazard
NASA Astrophysics Data System (ADS)
Gustafsson, K. Ove S.
2016-10-01
The importance of the optical turbulence effect along a slant path downward on probability of exceeding the maximum permissible exposure level (MPE) from a laser is discussed. The optical turbulence is generated by fluctuations (variations) in refractive index of the atmosphere. These fluctuations are caused in turn by changes in atmospheric temperature and humidity. The structure function of refractive index, Cn2, is the single most important parameter in the description of turbulence effects on the propagation of electromagnetic radiation. In the boundary layer, the lowest part of the atmosphere where the ground directly influence the atmosphere, is the variation of Cn2 in Sweden between about 10-17 and 10-12 m-2/3, see Bergström et al. [5]. Along a horizontal path is the Cn 2 often assumed to be constant. The variation of the Cn2 along a slant path is described by the Tatarski model as function of height to the power of -4/3 or -2/3, depending on day or night conditions. The hazard of laser damage of eye is calculated for a long slant path downward. The probability of exceeding the maximum permissible exposure (MPE) level is given as a function of distance in comparison with nominal ocular hazard distance (NOHD) for adopted levels of turbulence. Furthermore, calculations are carried out for a laser pointer or a designator laser from a high altitude and long distance down to a ground target. The used example shows that there is an 10% risk of exceeding the MPE at a distance 2 km beyond the NOHD, in this example 48 km, due to turbulence level of 5·10-15 m-2/3 at ground height. The turbulence influence on a laser beam along horizontal path on NOHD have been shown before by Zilberman et al. [4].
Measurement of optical blurring in a turbulent cloud chamber
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.
2016-10-01
Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the
Turbulent convection at very high Rayleigh numbers
Niemela; Skrbek; Sreenivasan; Donnelly
2000-04-20
Turbulent convection occurs when the Rayleigh number (Ra)--which quantifies the relative magnitude of thermal driving to dissipative forces in the fluid motion--becomes sufficiently high. Although many theoretical and experimental studies of turbulent convection exist, the basic properties of heat transport remain unclear. One important question concerns the existence of an asymptotic regime that is supposed to occur at very high Ra. Theory predicts that in such a state the Nusselt number (Nu), representing the global heat transport, should scale as Nu proportional to Ra(beta) with beta = 1/2. Here we investigate thermal transport over eleven orders of magnitude of the Rayleigh number (10(6) < or = Ra < or = 10(7)), using cryogenic helium gas as the working fluid. Our data, over the entire range of Ra, can be described to the lowest order by a single power-law with scaling exponent beta close to 0.31. In particular, we find no evidence for a transition to the Ra(1/2) regime. We also study the variation of internal temperature fluctuations with Ra, and probe velocity statistics indirectly.
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from large astronomical telescopes and possibly reducing data quality of air to air laser communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using the Maui High Performance Computing Centers Jaws cluster. The WRF model is configured to run at 1km horizontal resolution over a domain covering the islands of Maui and the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. We are interested in the variations in Cn2 and the Fried Coherence Length (ro) between the summits of Haleakala and Mauna Loa. Over six months of simulations have been performed over this area. Simulations indicate that
Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices
NASA Astrophysics Data System (ADS)
Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.
2014-11-01
The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.
High Reynolds numbers scaling of the turbulent/non-turbulent interface
NASA Astrophysics Data System (ADS)
Bettencourt da Silva, Carlos; Silva, Tiago S.; Idmec Team
2016-11-01
The scaling of the turbulent/non-turbulent interface (TNTI) at high Reynolds numbers is assessed using new direct numerical simulations (DNS) of turbulent planar jets (PJET) and shear free turbulence (SFT) with Reynolds numbers ranging from 142 <= Reλ <= 300 . The thickness of the turbulent sublayer (TSL), where the enstrophy production dominates over enstrophy diffusion, is of the order of the Taylor micro-scale, and is roughly one order of magnitude larger than the Kolmogorov micro-scale for these Reynolds numbers, however it clearly scales with the Kolmogorov micro-scale, at sufficiently high Reynolds numbers. It is argued the same scaling should be observed in TNTI from mixing layers, wakes and boundary layers, provided the Reynolds number is sufficiently high.
NASA Astrophysics Data System (ADS)
Alliss, R.
2014-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification
Cui, Linyan; Xue, Bindang
2015-09-01
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. Very recent analyses of angle of arrival (AOA) fluctuations of an optical wave in anisotropic non-Kolmogorov turbulence have adopted the assumption that the propagation path was in the z-direction with circular symmetry of turbulence cells maintained in the orthogonal xy-plane throughout the path, and one single anisotropy factor was adopted in the orthogonal xy-plane to parameterize the asymmetry of turbulence cells or eddies in both horizontal and vertical directions. In this work, the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane is no longer required, and two anisotropy parameters are introduced in the orthogonal xy-plane to investigate the AOA fluctuations. In addition, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. With the Rytov approximation theory, new theoretical models for the variance of AOA fluctuations are developed for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. When the two anisotropic parameters are equal to each other, they reduce correctly to the recently published results (the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane was adopted). Furthermore, when these two anisotropic parameters equal one, they reduce correctly to the previously published analytic expressions for the cases of optical wave propagation through weak isotropic non-Kolmogorov turbulence.
Turbulent Flow past High Temperature Surfaces
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
Insights into Physics of Fluid Turbulence Using High Resolution Simulation
NASA Astrophysics Data System (ADS)
Chen, S.-Y.
2001-06-01
Turbulence is of universal importance in fluid flows. Its correct description thereby impacts such diverse fields as atmospheric pollutant dispersion, weather, commercial chemical processes, aircraft design, ship design, and ocean dynamics. The challenge of understanding turbulence, ``the last unsolved problem in classical statistical mechanics'' (according to Feynman), has been with us over 100 years. The difficulties in the physical understanding and modeling of fluid turbulence arise from the fundamental dynamical properties: strong nonlinearity; the simultaneous presence and interaction of a huge number of degrees of freedom, comprising a wide range of spatial scales; marked departure from statistical equilibrium. With emerging multi-teraflop computers, direct numerical simulation of fluid turbulence at high Reynolds numbers is becoming possible. In this talk, I will give an overview about the latest development of understanding fundamental physics of fluid turbulence, including two-D and three-D Navier-Stokes turbulence and passive scalar advection diffusion system, using high resolution numerical simulation.
Optical turbulence characterization at the SAAO Sutherland site
NASA Astrophysics Data System (ADS)
Catala, L.; Crawford, S. M.; Buckley, D. A. H.; Pickering, T. E.; Wilson, R. W.; Butterley, T.; Shepherd, H. W.; Marang, F.; Matshaya, P.; Fourie, C.
2013-11-01
We present results from the first year of a campaign to characterize and monitor the optical turbulence profile at the South African Astronomical Observatory's Sutherland observing station in South Africa. A Multi Aperture Scintillation Sensor Differential Image Motion Monitor (MASS-DIMM) was commissioned in 2010 March to provide continuous monitoring of the seeing conditions. Over the first month of the campaign, a Slope Detection And Ranging (SLODAR) from Durham University was also installed, allowing an independent verification of the performance of the MASS-DIMM device. After the first year of data collection, the overall median seeing value is found to be 1.32 arcsec as measured at ground level. The ground layer which includes all layers below 1 km accounts for 84 per cent of the turbulence, while the free atmosphere above 1 km accounts for 16 per cent with a median value of 0.41 arcsec. The median isoplanatic angle value is 1.92 arcsec, which is similar to other major astronomical sites. The median coherence time, calculated from corrected MASS measurements, is 2.85 ms. The seeing conditions at the site do show a strong correlation with wind direction, with bad seeing conditions being associated with winds from the south-east.
The dependence of optical turbulence on thermal and mechanical forces over the sea
NASA Astrophysics Data System (ADS)
van Eijk, Alexander M. J.; Sprung, Detlev; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin
2016-09-01
Optical turbulence for over-water conditions was investigated in a long-term experiment over False Bay near Cape Town, South Africa. A sonic anemometer and two boundary-layer scintillometers were deployed to access in-situ turbulence as well as the integrated turbulence over two 1.8 and 8.7 km paths. Statistical analysis reveals spatial temporal variations of the turbulence conditions over False Bay, which might be related to differences in the atmospheric conditions and/or the surface (water) temperatures. An analysis in terms of mechanical and thermal forcing reveals that the latter factor is more dominant in determining the turbulence strength.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.
Impacts of Underwater Turbulence on Acoustical and Optical Signals and Their Linkage
2013-02-12
convected quantities like temperature in turbulence fluid," J. Fluid Mech. 5,113-133(1959). 26. J. W. Goodman , Introduction to Fourier Optics (Roberts...Turbulence on Acoustical and Optical Signals and Their Linkage 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602782N 6...Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise
Effects of very high turbulence on convective heat transfer
NASA Technical Reports Server (NTRS)
Moffat, R. J.; Maciejewski, P. K.
1984-01-01
The effects of high-intensity, large-scale turbulence on turbulent boundary-layer heat transfer are studied. Flow fields were produced with turbulence intensities up to 40% and length scales up to several times the boundary layer thickness. In addition, three different types of turbulence will be compared to see whether they have the same effect on the boundary layer. The three are: the far field of a free jet, flow downstream of a grid, and flow downstream of a simulated gas turbine combustor. Each turbulence field will be characterized by several measures: intensity (by component), scale, and spectrum. Heat transfer will be measured on a 2.5 m long, 0.5 m wide flat plate using the energy-balance technique. The same plate will be used in each of the four flow fields; a low-turbulence tunnel for baseline data, and the three flow situations mentioned.
NASA Astrophysics Data System (ADS)
Borota, Stephen A.; Li, Laurence; Cuzner, Gregor; Hutchison, Sheldon B.; Cochrane, Andrew
2009-05-01
Lockheed Martin Space Systems Company has completed the Large Optical Test and Integration Site (LOTIS) at its Sunnyvale, CA campus. Central to the LOTIS testing facility is a 6.5-meter diameter optical collimator housed in a large, temperature controlled and vibration isolated high-vacuum chamber. A measurement has been made of the atmospheric turbulence inside the LOTIS vacuum chamber testing environment at ambient pressure and temperature near floor level where distorting turbulence may be most persistent. Turbulence is one of the many components that define the overall LOTIS Collimator optical testing capabilities at ambient air pressure. Experimental measurements have been made with a non-phase-shifting Fizeau interferometer along a 50-foot horizontal propagation path in double pass. Results presented here represent root-mean-square (RMS) wavefront error over an 18-inch aperture and the corresponding atmospheric coherence length, ro (Fried's parameter). In addition, an analysis was performed to calculate the optical line-of-sight jitter response of the LOTIS Collimator system and facility due to base-level vibration disturbances. Vibration survey measurements were made using accelerometers mounted to the vacuum chamber foundation to create a Power Spectral Density (PSD) plot of the measured seismic and vacuum chamber mechanically induced vibration disturbances. The measured PSD was used as the base input to a system-level finite element model that included the LOTIS Collimator, the Flat Mirror Positioning structure and a generic Unit Under Test all mounted on the LOTIS Vibration Isolation Bench to assess the whole system jitter response. Results presented here represent the RMS jitter in nanoradians through the optical path of the LOTIS Collimator due to base-level induced seismic and chamber mechanical vibrations.
Investigation of edge turbulence by means of optical and electrical diagnostics in RFP plasmas
NASA Astrophysics Data System (ADS)
Scarin, Paolo; Cavazzana, Roberto; Serianni, Gianluigi; Yagi, Yasuyuki; Sakakita, Hajime
2003-10-01
Electrostatic turbulence in the edge region of RFP is commonly observed with sets of Langmuir probes during low current operation and associated with electrostatic structures. A new diagnostic system is being developed for the investigation of electrostatic turbulence in the edge region of fusion plasmas, at high plasma currents and thermal loads and will be used in the TPE-RX and RFX devices. The system is composed of gas puff nozzle, a double radial array of Langmuir probes and a set of 32 optical chords measuring the HÑ fluctuations. The nozzle will allow the puffing of gas to increase the local optical emissivity; the optical sensors will permit to investigate the optical emissivity turbulent pattern and to perform a two-dimensional analysis of turbulent structures. The Langmuir probes will be used to visualise the floating potential turbulent pattern and to measure the electron density. After assessing the correspondence between the results of the two systems and characterising the properties of the local plasma, the Langmuir probes will be remotely removed and only the optical analysis will be continued at high plasma currents. The gas flow will be characterised so as not to perturb the investigated region, while at the same time increasing the local emissivity. The area of optical view is 60 mm wide (toroidal direction) and 4 mm high (poloidal direction). The fields of view of adjacent chords in the object plane are 5 mm toroidally apart from each other and their diameter is 4 mm. The focus along the line of sight is about 50 mm deep. Each chord views a cone centred on focal point in the outer edge and extending through the plasma. The contributions due to small-scale structures away from the focus will be spatially averaged and so should contribute mainly a constant level to the chord signal. The puffed cloud emission will be collected from 3 optical heads and transferred through 35 m long optical fibres to the detection system, for which standard
Distributed control in adaptive optics: deformable mirror and turbulence modeling
NASA Astrophysics Data System (ADS)
Ellenbroek, Rogier; Verhaegen, Michel; Doelman, Niek; Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten
2006-06-01
Future large optical telescopes require adaptive optics (AO) systems whose deformable mirrors (DM) have ever more degrees of freedom. This paper describes advances that are made in a project aimed to design a new AO system that is extendible to meet tomorrow's specifications. Advances on the mechanical design are reported in a companion paper [6272-75], whereas this paper discusses the controller design aspects. The numerical complexity of controller designs often used for AO scales with the fourth power in the diameter of the telescope's primary mirror. For future large telescopes this will undoubtedly become a critical aspect. This paper demonstrates the feasibility of solving this issue with a distributed controller design. A distributed framework will be introduced in which each actuator has a separate processor that can communicate with a few direct neighbors. First, the DM will be modeled and shown to be compatible with the framework. Then, adaptive turbulence models that fit the framework will be shown to adequately capture the spatio-temporal behavior of the atmospheric disturbance, constituting a first step towards a distributed optimal control. Finally, the wavefront reconstruction step is fitted into the distributed framework such that the computational complexity for each processor increases only linearly with the telescope diameter.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
NASA Astrophysics Data System (ADS)
Frankel, Michael Y.; Livas, Jeff
2005-02-01
This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended
Scintillation fluctuations of optical communication lasers in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Panich, Michael G.; Coffaro, Joseph T.; Belichki, Sara B.; Splitter, Landon J.; Phillips, Ronald L.; Andrews, Larry C.; Fountain, Wayne; Tucker, Frank M.
2014-06-01
The purpose of this research is to evaluate scintillation fluctuations on optical communication lasers and evaluate potential system improvements to reduce scintillation effects. This research attempts to experimentally verify mathematical models developed by Andrews and Phillips [1] for scintillation fluctuations in atmospheric turbulence using two different transmitting wavelengths. Propagation range lengths and detector quantities were varied to confirm the theoretical scintillation curve. In order to confirm the range and wavelength dependent scintillation curve, intensity measurements were taken from a 904nm and 1550nm laser source for an assortment of path distances along the 1km laser range at the Townes Laser Institute. The refractive index structure parameter (Cn2) data was also taken at various ranges using two commercial scintillometers. This parameter is used to characterize the strength of atmospheric turbulence, which induces scintillation effects on the laser beam, and is a vital input parameter to the mathematical model. Data was taken and analyzed using a 4-detector board array. The material presented in this paper outlines the verification and validation of the theoretical scintillation model, and steps to improve the scintillation fluctuation effects on the laser beam through additional detectors and a longer transmitting wavelength. Experimental data was post processed and analyzed for scintillation fluctuations of the two transmitting wavelengths. The results demonstrate the benefit of additional detectors and validate a mathematical model that can be scaled for use in a variety of communications or defense applications. Scintillation is a problem faced by every free space laser communication system and the verification of an accurate mathematical model to simulate these effects has strong application across the industry.
Evaporation of polydispersed droplets in a highly turbulent channel flow
NASA Astrophysics Data System (ADS)
Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S.
2009-09-01
A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector.
NASA Astrophysics Data System (ADS)
Wang, Qian; Mei, Hai-Ping; Qian, Xian-Mei; Rao, Rui-Zhong
2016-10-01
A theory about scales in atmospheric optical turbulence vortex from the point view of spatial correlation function is described. Then an experiment is carried out to prove this theory by the fiber optical turbulence sensor array near the ground. Results show that the outer scale has a mean value of 0.62m and varies from 0.34m to 0.95m by doing a nonlinear fitting on spatial correlation functions. With this method, the value of the outer scale can be given directly without any hypothesis when the optical turbulence is well-developed. A question about how the trend of the spatial correlation function show when the displacement approaches the outer scale is solved. This research can be regarded as a progress about understanding the characters of spatial correlation function in optical turbulence.
Controlled simulation of optical turbulence in a temperature gradient air chamber
NASA Astrophysics Data System (ADS)
Toselli, Italo; Wang, Fei; Korotkova, Olga
2016-05-01
Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.
LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D
2014-06-20
Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.
High Reynolds number turbulent pipe flow
NASA Astrophysics Data System (ADS)
Zhao, Rongrong
Fully developed turbulent pipe is studied in this thesis. Streamwise and wall-normal turbulence components are measured using a crossed hot-wire probe. In the process, a new calibration method for the crossed hot-wire probe is developed, and the binormal cooling error for hot-wire measurement, which is caused by cooling in the direction normal to the hot-wire measurement plane, is studied and found to be the major error contributor for both mean velocity and turbulence intensity measurements using a crossed-wire probe. The new calibration scheme utilizes the fact that the total stress in a fully developed turbulent pipe flow is defined by the streamwise pressure gradient, so directional sensibility calibration could be done by recording the crossed hot-wire signals against a known shear stress distribution. This information, when combined with mean velocity calibration against a Pitot tube measurement, provide a full calibration for crossed hot-wire probes. The new calibration method is especially convenient for pipe and channel flow measurements. For other measurements, the calibration could be done by using a simple pipe apparatus as the calibration device. Streamwise and wall-normal turbulence components are measured over a Reynolds number range from 1.1 x 105 to 9.8 x 10 6. Similarity arguments are studied for turbulence intensity and spectra. The most relevant physical assumption for the 'similarity' is Townsend's distinction between 'active' and 'inactive' motions. Perry's attached eddy hypothesis, which is based on Townsend's work, offers a more detailed physical model and provides extensive quantitative prediction, is also reviewed and discussed in the context of these new measurements. For the wall-normal turbulence intensity, a constant region in u'rms is found for the region 200 ≤ y+ ≤ 0.1R+ in inner and outer scaling for Reynolds numbers up to 1.0 x 106. An increase in u'rms is observed closer to the wall at about y + ˜ 100, and is suggestive of
Cheng, Mingjian; Zhang, Yixin; Gao, Jie; Wang, Fei; Zhao, Fengsheng
2014-06-20
We model the average channel capacity of optical wireless communication systems for cases of weak to strong turbulence channels, using the exponentiation Weibull distribution model. The joint effects of the beam wander and spread, pointing errors, atmospheric attenuation, and the spectral index of non-Kolmogorov turbulence on system performance are included. Our results show that the average capacity decreases steeply as the propagation length L changes from 0 to 200 m and decreases slowly down or tends to a stable value as the propagation length L is greater than 200 m. In the weak turbulence region, by increasing the detection aperture, we can improve the average channel capacity and the atmospheric visibility as an important issue affecting the average channel capacity. In the strong turbulence region, the increase of the radius of the detection aperture cannot reduce the effects of the atmospheric turbulence on the average channel capacity, and the effect of atmospheric visibility on the channel information capacity can be ignored. The effect of the spectral power exponent on the average channel capacity in the strong turbulence region is higher than weak turbulence region. Irrespective of the details determining the turbulent channel, we can say that pointing errors have a significant effect on the average channel capacity of optical wireless communication systems in turbulence channels.
Tunick, Arnold
2008-09-15
Optical turbulence research contributes to improved laser communications, adaptive optics, and long-range imaging systems. This paper presents experimental measurements of scintillation and focal spot displacement to obtain optical turbulence information along a near-horizontal 2.33 km free-space laser propagation path. Calculated values for the refractive index structure constant (C(n)(2)) and Fried parameter (r0) are compared to scintillometer-based measurements for several cases in winter and spring. Optical measurements were investigated using two different laser sources for the first and second parts of the experiment. Scintillation index estimates from recorded signal intensities were corrected to account for aperture averaging. As a result, we found that an earlier calculation algorithm based on analysis of log-amplitude intensity variance was the best estimator of optical turbulence parameters over the propagation path considered.
Integrated approach to free space optical communications in strong turbulence
NASA Astrophysics Data System (ADS)
Tellez, Jason A.
The propagation of a free space optical communication signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades which negatively impact the communications link performance. This research develops an analytical probability density function (PDF) to model the best case scenario of using multiple independent beams to reduce the intensity fluctuations. The PDF was further developed to account for partially correlated beams, such as would be experienced by beams having finite separation. The PDF was validated with results obtained from digital simulations as well as lab experiments. The research showed that as the number of transmitted beams increases the probability of fade decreases. While fade probability is reduced by adding more beams, using more than four transmitters does little to improve the overall performance. Additionally, the use of pulse position modulation (PPM) provided significant improvement over traditional fixed threshold on/off keying with the impact of signal fading reduced. Combining PPM with multiple transmitters produced the best overall bit error rate results.
Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu
2013-02-25
As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
Ames, Forrest; Kingery, Joseph E.
2015-06-17
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs
Effects of atmospheric turbulence and building sway on optical wireless-communication systems.
Arnon, Shlomi
2003-01-15
Urban optical wireless communication (UOWC) systems are considered a last-mile technology. UOWC systems use the atmosphere as a propagation medium. To provide a line of sight the transceivers are placed on high-rise building. However, dynamic wind loads, thermal expansion, and weak earthquakes cause buildings to sway. These sways distort the alignment between transmitter and receiver, causing pointing errors, the outcome of which is fading of the received signal. Furthermore, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, resulting in impaired link performance. A bit-error probability (BEP) model is developed that takes into account both building sway and turbulence-induced log amplitude fluctuations (i.e., fading of signal intensity) in the regime in which the receiver aperture, D0, is smaller than the turbulence coherence diameter, d0. It is assumed that the receiver has knowledge about the marginal statistics of the signal fading and the instantaneous signal-fading state.
Quantification of optical turbulence in the ocean and its effects on beam propagation.
Nootz, Gero; Jarosz, Ewa; Dalgleish, Fraser R; Hou, Weilin
2016-11-01
The influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented. The index of refraction structure constant is extracted from the beam deflection and the results are compared to independently made measures of the turbulence strength (Cn2) by a vertical microstructure profiler. Here we present values of Cn2 taken from aboard the R/V Walton Smith during the Bahamas optical turbulence exercise (BOTEX) in the Tongue of the Ocean between June 30 and July 12, 2011, spanning a range from 10^{-14} to 10^{-10} m^{-2/3}. To the best of our knowledge, this is the first time such measurements are reported for the ocean.
THERMOSONDE 2007: In-Situ Measurement of Optical Turbulence
2007-05-07
A.N., “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl . Akad . Nauk SSSR , Vol. 30, 4, 1941. 4...A.M., “Structure of the temperature field in turbulent flows,” Izvestiya Akademii Nauk SSR, Geogr. and Geophys. Ser., Vol. 13, 58, 1949. 6 Brown, J.H
Mixing in High Schmidt Number Turbulent Jets.
NASA Astrophysics Data System (ADS)
Miller, Paul Lewis
This thesis is an experimental investigation of the passive scalar (species concentration) field in the far-field of round, axisymmetric, high Schmidt number (liquid phase), turbulent jets issuing into a quiescent reservoir, by means of a quantitative laser-induced fluorescence technique. Single -point concentration measurements are made on the jet centerline, at axial locations from 100 to 305 nozzle diameters downstream, and Reynolds numbers of 3,000 to 102,000, yielding data with a resolved temporal dynamic range up to 2.5 times 10^5, and capturing as many as 504 large-scale structure passages. Long-time statistics of the jet concentration are found to converge slowly. Between 100 and 300 large-scale structure passages are required to reduce the uncertainty in the mean to 1%, or so. The behavior of the jet varies with Reynolds number. The centerline concentration pdf's become taller and narrower with increasing Re, and the normalized concentration variances correspondingly decrease with Re. The concentration power spectra also evolve with Re. The behavior of the spectral slopes is examined. No constant -1 (Batchelor) spectral slope range is present. Rather, in the viscous region, the power spectra exhibit log-normal behavior, over a range of scales exceeding a factor of 40, in some cases. The frequency of the beginning of this log-normal range scales like Re^{3/4} (Kolmogorov scaling). Mixing in the far-field is found to be susceptible to initial conditions. Disturbances in the jet plenum fluid and near the nozzle exit strongly influence the scalar variance, with larger disturbances causing larger variances, i.e., less homogeneous mixing. The plenum/nozzle geometry also influences the variance. These effects of initial conditions persist for hundreds of diameters from the nozzle exit, over hundreds of large scales. Mixing in these jets differs from gas-phase, order unity Sc, jet mixing. At low to moderate Re, the higher Sc jet is less well mixed. The difference
PRINCIPAL COMPONENT ANALYSIS STUDIES OF TURBULENCE IN OPTICALLY THICK GAS
Correia, C.; Medeiros, J. R. De; Lazarian, A.; Burkhart, B.; Pogosyan, D.
2016-02-20
In this work we investigate the sensitivity of principal component analysis (PCA) to the velocity power spectrum in high-opacity regimes of the interstellar medium (ISM). For our analysis we use synthetic position–position–velocity (PPV) cubes of fractional Brownian motion and magnetohydrodynamics (MHD) simulations, post-processed to include radiative transfer effects from CO. We find that PCA analysis is very different from the tools based on the traditional power spectrum of PPV data cubes. Our major finding is that PCA is also sensitive to the phase information of PPV cubes and this allows PCA to detect the changes of the underlying velocity and density spectra at high opacities, where the spectral analysis of the maps provides the universal −3 spectrum in accordance with the predictions of the Lazarian and Pogosyan theory. This makes PCA a potentially valuable tool for studies of turbulence at high opacities, provided that proper gauging of the PCA index is made. However, we found the latter to not be easy, as the PCA results change in an irregular way for data with high sonic Mach numbers. This is in contrast to synthetic Brownian noise data used for velocity and density fields that show monotonic PCA behavior. We attribute this difference to the PCA's sensitivity to Fourier phase information.
Detailed thermodynamic analyses of high-speed compressible turbulence
NASA Astrophysics Data System (ADS)
Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2016-11-01
Interactions between high-speed turbulence and flames (or chemical reactions) are important in the dynamics and description of many different combustion phenomena, including autoignition and deflagration-to-detonation transition. The probability of these phenomena to occur depends on the magnitude and spectral content of turbulence fluctuations, which can impact a wide range of science and engineering problems, from the hypersonic scramjet engine to the onset of Type Ia supernovae. In this talk, we present results from new direct numerical simulations (DNS) of homogeneous isotropic turbulence with turbulence Mach numbers ranging from 0 . 05 to 1 . 0 and Taylor-scale Reynolds numbers as high as 700. A set of detailed analyses are described in both Eulerian and Lagrangian reference frames in order to assess coherent (structural) and incoherent (stochastic) thermodynamic flow features. These analyses provide direct insights into the thermodynamics of strongly compressible turbulence. Furthermore, presented results provide a non-reacting baseline for future studies of turbulence-chemistry interactions in DNS with complex chemistry mechanisms. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.
Optical turbulence forecast: ready for an operational application
NASA Astrophysics Data System (ADS)
Masciadri, E.; Lascaux, F.; Turchi, A.; Fini, L.
2017-04-01
One of the main goals of the feasibility study MOSE (MOdelling ESO Sites) is to evaluate the performances of a method conceived to forecast the optical turbulence (OT) above the European Southern Observatory (ESO) sites of the Very Large Telescope (VLT) and the European Extremely Large Telescope (E-ELT) in Chile. The method implied the use of a dedicated code conceived for the OT called ASTRO-MESO-NH. In this paper, we present results we obtained at conclusion of this project concerning the performances of this method in forecasting the most relevant parameters related to the OT (CN^2, seeing ε, isoplanatic angle θ0 and wavefront coherence time τ0). Numerical predictions related to a very rich statistical sample of nights uniformly distributed along a solar year and belonging to different years have been compared to observations, and different statistical operators have been analysed such as the classical bias, root-mean-squared error, σ and more sophisticated statistical operators derived by the contingency tables that are able to quantify the score of success of a predictive method such as the percentage of correct detection (PC) and the probability to detect a parameter within a specific range of values (POD). The main conclusions of the study tell us that the ASTRO-MESO-NH model provides performances that are already very good to definitely guarantee a not negligible positive impact on the service mode of top-class telescopes and ELTs. A demonstrator for an automatic and operational version of the ASTRO-MESO-NH model will be soon implemented on the sites of VLT and E-ELT.
The interaction of high-speed turbulence with flames: Turbulent flame speed
Poludnenko, A.Y.; Oran, E.S.
2011-02-15
Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps
High throughput optical scanner
Basiji, David A.; van den Engh, Gerrit J.
2001-01-01
A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.
Characterization of optical turbulence at the solar observatory at the Mount Teide, Tenerife
NASA Astrophysics Data System (ADS)
Sprung, Detlev; Sucher, Erik
2013-10-01
Optical turbulence represented by the structure function parameter of the refractive index Cn2 is regarded as one of the chief causes of image degradation of ground-based astronomical telescopes operating in visible or infrared wavebands. Especially, it affects the attainable spatial resolution. Therefore since the middle of September 2012 the optical turbulence has been monitored between two German solar telescopes at the Observatory in Tenerife /Canary Islands /Spain. It comprises the solar telescope GREGOR and the vacuum tower telescope VTT mounted on two 30 m high towers. Between the two towers at the level of the telescopes, Cn2 was measured using a Laser-Scintillometer SLS40 (Scintec, Rottenburg, Germany). The horizontal distance of the measurement path was 75 m. The first results of the measurements starting from the 15th September 2012 up to the end of December 2012 are presented and analyzed using simultaneous measured meteorological data of wind, temperature and humidity. Daily and seasonal variations are shown and discussed.
Turbulence and transition modeling for high-speed flows
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1993-01-01
Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.
High density turbulent plasma processes from a shock tube. Final performance report
Johnson, J.A. III
1997-01-01
A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.
Fading losses on the LCRD free-space optical link due to channel turbulence
NASA Astrophysics Data System (ADS)
Moision, Bruce; Piazzolla, Sabino; Hamkins, Jon
2013-03-01
The Laser Communications Relay Demonstration (LCRD) will implement an optical communications link between a pair of Earth terminals via an Earth-orbiting satellite relay. Optical turbulence over the communication paths will cause random uctuations, or fading, in the received signal irradiance. In this paper we characterize losses due to fading caused by optical turbulence. We illustrate the performance of a representative relay link, utilizing a channel interleaver and error-correction-code to mitigate fading, and provide a method to quickly determine the link performance.
Optical and electrical diagnostics for the investigation of edge turbulence in fusion plasmas
Cavazzana, R.; Scarin, P.; Serianni, G.; Agostini, M.; Degli Agostini, F.; Cervaro, V.; Lotto, L.; Yagi, Y.; Sakakita, H.; Koguchi, H.; Hirano, Y.
2004-10-01
A new, two dimensional and fast diagnostic system has been developed for studying the dynamic structure of plasma turbulence; it will be used in the edge of the reversed-field pinch devices TPE-RX and RFX. The system consists of a gas-puffing nozzle, 32 optical channels measuring H{sub {alpha}} emitted from the puffed gas (to study the optical emissivity of turbulent patterns and to analyze structures in two dimensions), and an array of Langmuir probes (to compare the turbulent pattern with the optical method and to measure the local plasma parameters). The signals can be acquired at 10 Msamples/s with 2 MHz band width. The design of the system, calibrations, and tests of the electronic circuitry and the optical sensors are presented.
Cui, Linyan
2015-06-01
Analytic expressions for the temporal power spectra of irradiance fluctuations and angle of arrival (AOA) fluctuations are derived for optical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. In the derivation, the anisotropic non-Kolmogorov spectrum is adopted, which adopts the assumption of circular symmetry in the orthogonal plane throughout the path and the same degree of anisotropy along the propagation direction for all the turbulence cells. The final expressions consider simultaneously the anisotropic factor and general spectral power law values. When the anisotropic factor equals one (corresponding to the isotropic turbulence), the derived temporal power spectral models have good consistency with the known results for the isotropic turbulence. Numerical calculations show that the increased anisotropic factor alleviates the atmospheric turbulence's influence on the final expressions.
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force
Optical diagnostics of turbulent mixing in explosively-driven shock tube
NASA Astrophysics Data System (ADS)
Anderson, James; Hargather, Michael
2016-11-01
Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.
A Microthermal Device for Measuring the Spatial Power Spectrum of Atmospheric Optical Turbulence
NASA Astrophysics Data System (ADS)
Turner, Jonathan; McGraw, J.; Zimmer, P.; Williams, T.; Claver, C.; Krabbendam, V.; Wiecha, O.; Andrew, J.; Warner, M.
2010-01-01
The Measurement Astrophysics group at UNM designed and built a novel microthermal device for characterizing atmospheric optical turbulence at astronomical observatories. This instrument is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors. The device makes differential temperature measurements which are directly related to the index of refraction structure constant, Cn2, which quantifies the strength of optical turbulence. The device is designed to work in two modes. In horizontal mode temperature differentials are measured between adjacent sensors. Measurements are combined to recover the differences over all pairwise sensor baselines. These measurements result in a spatial spectrum of turbulence. Measured turbulent spectra are then fit to standard turbulence models which yield estimates of the outer scale of turbulence and the slope of the power spectra. In vertical mode the device operates with pairs of microthermal sensors distributed vertically, each pair being separated horizontally by approximately one meter. Sensor pairs are suspended at multiple heights above the ground allowing measurement of atmospheric turbulence power as a function of altitude. This device was used to monitor optical turbulence during a site testing campaign at the future LSST site on Cerro Pachón. We present preliminary results from operation in both vertical and horizontal modes from October 2008 to December 2009. The microthermal array remains in operation on Cerro Pachón, and continues to produce valuable atmospheric measurements. Our results support the conclusion that Cerro Pachón is an excellent observatory site. The vertical turbulence profile decreases monotonically with height as expected, and the surface layer does not contribute a significant amount to the overall seeing measured at the site. This work was supported by Air Force Grant No. FA9451-04-2-0355. Instrumentation and travel support was provided in part by
Introducing the concept of anisotropy at different scales for modeling optical turbulence.
Toselli, Italo
2014-08-01
In this paper, the concept of anisotropy at different atmospheric turbulence scales is introduced. A power spectrum and its associated structure function with inner and outer scale effects and anisotropy are also shown. The power spectrum includes an effective anisotropic parameter ζ(eff) to describe anisotropy, which is useful for modeling optical turbulence when a non-Kolmogorov power law and anisotropy along the direction of propagation are present.
Atmospheric turbulence-induced signal fades on optical heterodyne communication links
NASA Astrophysics Data System (ADS)
Winick, K. A.
1986-06-01
The three basic atmospheric propagation effects, absorption, scattering, and turbulence, are reviewed. A simulation approach is then developed to determine signal fade probability distributions on heterodyne-detected satellite links which operate through naturally occurring atmospheric turbulence. The calculations are performed on both angle-tracked and nonangle-tracked downlinks, and on uplinks, with and without adaptive optics. Turbulence-induced degradations in communication performance are determined using signal fade probability distributions, and it is shown that the average signal fade can be a poor measure of the performance degradation.
Determination of Flow Orientation of an Optically Active Turbulent Field by Means of a Single Beam
2013-06-18
optically active turbulent field was determined by Fourier transforming the wander of a laser beam propagating in the ocean. A simple physical model... Fourier transform for the situation depicted on the right and on the left, respectively. July 1, 2013 / Vol. 38, No. 13 / OPTICS LETTERS 2185 0146-9592/13...132185-03$15.00/0 © 2013 Optical Society of America to the flow (see top row of Fig. 3). However, the magni- tude of the Fourier transform, in
Volume Visualizing High-Resolution Turbulence Computations
NASA Astrophysics Data System (ADS)
Clyne, John; Scheitlin, Tim; Weiss, Jeffrey B.
Using several volume-visualization packages including a new package we developed called Volsh, we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We compare surface fitting and direct volume rendering approaches, as well as a number of techniques for producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool has its own advantages and disadvantages, and a combination of tools is most effective at exploring large four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics of coherent vortices.
Modelling and prediction of non-stationary optical turbulence behaviour
NASA Astrophysics Data System (ADS)
Doelman, Niek; Osborn, James
2016-07-01
There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument installed at the Isaac Newton Telescope at La Palma. Based on an estimate of the power spectral density function, a low order stochastic model to capture the temporal variability of r0 is proposed. The impact of this type of stochastic model on the prediction of the coherence length behaviour is shown.
Heat transfer with very high free stream turbulence
NASA Technical Reports Server (NTRS)
Moffat, Robert J.; Maciejewski, Paul K.
1985-01-01
Stanton numbers as much as 350 percent above the accepted correlations for flat plate turbulent boundary layer heat transfer have been found in experiments on a low velocity air flow with very high turbulence (up to 50 percent). These effects are far larger that have been previously reported and the data do not correlate as well in boundary layer coordinates (Stanton number and Reynolds number) as they do in simpler coordinates: h vs. X. The very high relative turbulence levels were achieved by placing the test plate in different positions in the margin of a large diameter free jet. The large increases may be due to organized structures of large scale which are present in the marginal flowfield around a free jet.
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
NASA Technical Reports Server (NTRS)
Nerheim, N.
1989-01-01
Blind pointing of the Deep Space Network (DSN) 70-meter antennas can be improved if distortions of the antenna structure caused by unpredictable environmental loads can be measured in real-time, and the resulting boresight shifts evaluated and incorporated into the pointing control loops. The measurement configuration of a proposed pointing compensation system includes an optical range sensor that measures distances to selected points on the antenna surface. The effect of atmospheric turbulence on the accuracy of optical distance measurements and a method to make in-situ determinations of turbulence-induced measurement errors are discussed.
Turbulent single-photon propagation in the Canary optical link
Capraro, Ivan; Tomaello, Andrea; Dall'Arche, Alberto; Gerlin, Francesca; Vallone, Giuseppe; Villoresi, Paolo; Herbst, Thomas; Ursin, Rupert
2014-12-04
The role of turbulence for Quantum Communications (QC) has been investigated in a 143 km-long link. The analysis of the received signal temporal domain indicate how to exploit constructively its effects in the case of QC along very long free-space links as well satellite links. Novel applications with relevant background noise may be envisaged.
Turbulent Diffusivity under High Winds from Acoustic Measurements of Bubbles
NASA Astrophysics Data System (ADS)
Wang, D. W.; Wijesekera, H. W.; Jarosz, E.; Teague, W. J.; Pegau, W. S.
2015-12-01
Breaking surface waves generate layers of bubble clouds as air parcels entrain into the upper-ocean by the action of turbulent motions. The turbulent diffusivity in the bubble cloud layer was investigated by combining measurements of surface winds, waves, bubble acoustic backscatter, currents, and hydrography. These measurements were made at water depths of 60-90 m on the shelf of the Gulf of Alaska near Kayak Island during late December 2012, a period where the ocean was experiencing winds and significant wave heights up to 22 m s-1 and 9 m, respectively. Vertical profiles of acoustic backscatter decayed exponentially from the wave surface with e-folding lengths of about 0.6 to 6 m, while the bubble penetration depths were about 3 to 30 m. Both e-folding lengths and bubble depths were highly correlated with surface wind and wave conditions. The turbulent diffusion coefficients, inferred from e-folding length and bubble depth, varied from about 0.01 m2 s-1 to 0.4 m2 s-1. Our analysis suggests that the turbulent diffusivity in the bubble layer can be parameterized as a function of the cube of the wind friction velocity with a proportionality coefficient that depends weakly on wave age. Furthermore, in the bubble layer, on average, the shear production of the turbulent kinetic energy estimated by the diffusion coefficients was a similar order magnitude as the dissipation rate predicted by the wall boundary-layer theory.
NASA Astrophysics Data System (ADS)
Lascaux, F.; Masciadri, E.; Hagelin, S.; Stoesz, J.
2009-09-01
Mesoscale model such as Meso-NH have proven to be highly reliable in reproducing 3D maps of optical turbulence (OT).1-3 These last years ground-based astronomy has been looking towards Antarctica, especially its summits and the continental plateau where the OT appears to be confined in a shallow layer close to the surface. However some uncertainties remain. That's why our group is focusing on a detailed study of the atmospheric flow and turbulence in the internal Antarctic Plateau. Our intention in this study is to use the Meso-NH model to do predictions of the atmospheric flow in the internal plateau. The use of this model permits us to have access to informations inside an entire 3D volume, which is not the case with observations only. Two different configurations of the model have been used: one with a low horizontal resolution (ΔX = 100 km) and another one with higher horizontal resolution with the help of the grid-nesting interactive technique (ΔX = 1 km in the innermost domain). The impact of the configuration on the meteorological parameters has already been studied.4 We present here the results obtained with Meso-Nh of forecasted CN2 profiles, surface layer thickness (SLT) and seeing values at Dome C for the 16 winter nights, whose CN2 profiles have been measured by Ref.5.
Prediction of laminar-turbulent transition on an airfoil at high level of free-stream turbulence
NASA Astrophysics Data System (ADS)
Chernoray, V.
2015-06-01
Prediction of laminar-turbulent transition at high level of free-stream turbulence in boundary layers of airfoil geometries with external pressure gradient changeover is in focus. The aim is a validation of a transition model for transition prediction in turbomachinery applications. Numerical simulations have been performed by using a transition model by Langtry and Menter for a number of different cases of pressure gradient, at Reynolds-number range, based on the airfoil chord, 50 000 ≤ Re ≤ 500 000, and free-stream turbulence intensities 2% and 4%. The validation of the computational results against the experimental data showed good performance of used turbulence model for all test cases.
Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2016-09-01
In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing
Adaptive detection technique for optical wireless communication over strong turbulence channels
NASA Astrophysics Data System (ADS)
Wang, Jin; Huang, Dexiu; Xiuhua, Yuan
2007-11-01
Optical wireless communication (OWC) systems use the atmosphere as a propagation medium, so the atmospheric turbulence effects lead to fading related with signal intensity. The received signal of OWC over strong turbulence channels is assumed to be a mixture of K-distributed fading and Gaussian distributed thermal noise. Second-order spectral analysis is unable to separately estimate the mixed signal. In order to mitigate the fading induced by turbulence, the decision threshold-updating algorithm based on second and higher order cumulants is proposed and is able to operate in an unknown turbulence environment. The performance of the adaptive processing scheme has been evaluated by means of Monte Carlo simulations. Simulation results show the improvement of the bit error rate (BER) performance.
The effect of thin turbulent shear layers on the optical quality of imaging systems
NASA Technical Reports Server (NTRS)
Steinmetz, W. J.
1975-01-01
A modified C141 transport was outfitted with a 91.5-cm reflector telescope designed to view objects radiating outside the visible window in the infrared range from 1 micron to 1000 microns. The telescope is situated in a cavity which is operated open port. Spoilers were designed which reduce turbulence-induced excitation of the cavity. The aircraft was designed to operate at altitudes up to 15 km to significantly reduce the effect of the H2O and CO2. Furthermore, the optically degrading influence of the large-scale atmospheric turbulence on land-based telescopes is replaced by the effect of the turbulent shear layer resulting from the spoiler upstream of the cavity. A mathematical model was established to describe the effect of turbulent shear layers on imaging systems and to examine the parameters of interest relevant to potential wind-tunnel experimentation.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.
1996-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.
NASA Astrophysics Data System (ADS)
Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo
2013-03-01
We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.
Bender, Donald A.; Kuklo, Thomas
1994-01-01
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.
Bender, D.A.; Kuklo, T.
1994-11-08
An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.
Zhang, Lanqiang; Guo, Youming; Rao, Changhui
2017-02-20
Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing; Cheng, Qi; Zhang, Dan
2016-06-10
The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment.
Limitations of Segmented Wavefront Control Devices in Emulating Optical Turbulence
2008-03-01
for Adaptive Optics in Vision Science”. IEEE Journal of Selected Topics in Quantum Electronics, 10(3):629–635, May/Jun 2004. 11. Fernandez , Enrique J...and Pablo Artal. “Membrane Deformable Mirror for Adap- tive Optics: Performance Limits in Visual Optics”. Optics Express, 11(9):1056– 1069, May 2003
Random optical beam propagation in anisotropic turbulence along horizontal links.
Wang, Fei; Korotkova, Olga
2016-10-17
Considerable amount of data has been collected in the past asserting that atmospheric turbulence has regions where it exhibits anisotropic statistics. For instance, it is known that the fluctuations in the refractive index within the first meter above the ground are typically stronger in the vertical direction compared with those in the horizontal directions. We have investigated the second-order statistical properties of a Gaussian Schell-model (GSM) beam traversing anisotropic atmospheric turbulence along a horizontal path. Analytical expression is rigorously derived for the cross-spectral density function of a GSM beam. It is shown that the spread of the beam and its coherence properties become different in two transverse directions due to anisotropy. In the limiting case when the source coherence width becomes infinite our results reduce to those for Gaussian beam propagation. Source partial coherence is shown to mitigate anisotropy at sub-kilometer distances.
Resilience of hybrid optical angular momentum qubits to turbulence
NASA Astrophysics Data System (ADS)
Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P.; Sciarrino, Fabio
2015-02-01
Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.
Resilience of hybrid optical angular momentum qubits to turbulence.
Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio
2015-02-12
Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.
Modeling Compressibility Effects in High-Speed Turbulent Flows
NASA Technical Reports Server (NTRS)
Sarkar, S.
2004-01-01
Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.
Assessment of Optical Turbulence Profiles Derived From Probabilistic Climatology
2007-03-01
IRIA) Center,Environmental Research Institute of Michigan, 1993.10. Jumper G. Y., Roadcap J. R ., Adair S. C., Seeley G. P., and Fairley G. Atmo...three dimensional spatial covariance function describes this correlationwithin a volume of space for a random eld u( R ) = (x; y; z; t). The PSD charac...terizes the statistical distribution of the size and number of turbulent eddies in thevolume. [19] In three dimensions, the spatial variable, R , and the
HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS
Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit
2014-07-20
As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.
High-efficiency Autonomous Laser Adaptive Optics
NASA Astrophysics Data System (ADS)
Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit
2014-07-01
As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav
2014-11-01
This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
NASA Astrophysics Data System (ADS)
Ferreyro, S.; Paul, C.; Sircar, A.; Imren, A.; Haworth, D. C.; Roy, S.; Modest, M. F.
2016-11-01
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a two-equation soot model, various radiation heat transfer models, and a particle-based transported composition probability density function (PDF) method to account for composition and temperature. The PDF model results are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot-radiation interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. A photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation reachingthe wall. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of unresolved turbulent fluctuations on radiative heat transfer.
High-resolution simulations of forced compressible isotropic turbulence
NASA Astrophysics Data System (ADS)
Jagannathan, Shriram; Donzis, Diego
2011-11-01
Direct numerical simulations of compressible turbulent flows are several times more expensive than their incompressible counterparts. Therefore, using large computing resources efficiently is even more pressing when studying compressible turbulence. A highly scalable code is presented which is used to perform simulations aimed at understanding fundamental turbulent processes. The code, which is based on a 2D domain decomposition, is shown to scale well up to 128k cores. To attain a statistically stationary state a new scheme is developed which involves large-scale stochastic forcing (solenoidal or dilatational) and a procedure to keep mean internal energy constant. The resulting flows show characteristics consistent with results in the literature. The attainable Reynolds and turbulent Mach numbers for given computational resources depend on the number of grid points and the degree to which the smallest scales are resolved that are given by Kolmogorov scales. A systematic comparison of simulations at different resolutions suggests that the resolution needed depends on the particular statistic being considered. The resulting database is used to investigate small-scale universality, the scaling of spectra of velocity, density and temperature fields, structure functions and the trends towards high-Reynolds number asymptotes. Differences with incompressible results are highlighted.
Delayed diversity for fade resistance in optical wireless communications through turbulent media
NASA Astrophysics Data System (ADS)
Trisno, Sugianto; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.
2004-10-01
Atmospheric turbulence causes fluctuations in both the intensity and phase of the received signal in an optical wireless communication link. These fluctuations, often referred to as scintillation noise, lead to signal fading, which increase bit errors in digital communication links using intensity modulation and direct detection. The performance of an optical link can be improved by the use of a time delayed diversity technique, which takes advantage of the fact that the atmospheric path from transmitter to receiver is statistically independent for time intervals beyond the correlation time of the intensity fluctuations. We have designed and constructed a prototype optical wireless system using this scheme. Bit-error-rate measurements have been used to characterize the link performance for different delay periods under conditions of controlled simulated turbulence. It has been determined that link performance improves significantly, especially in strong turbulence. In addition, we have implemented orthogonal polarization modulation, which works especially well in optical wireless systems. In contrast to fiber optic communications, the polarization state of a laser beam is well preserved on a free space optical path.
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong
2012-10-20
The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.
NASA Astrophysics Data System (ADS)
Miville-Deschênes, M.-A.; Duc, P.-A.; Marleau, F.; Cuillandre, J.-C.; Didelon, P.; Gwyn, S.; Karabal, E.
2016-08-01
Diffuse Galactic light has been observed in the optical since the 1930s. We propose that, when observed in the optical with deep imaging surveys, it can be used as a tracer of the turbulent cascade in the diffuse interstellar medium (ISM), down to scales of about 1 arcsec. Here we present a power spectrum analysis of the dust column density of a diffuse cirrus at high Galactic latitude (l ≈ 198°, b ≈ 32°) as derived from the combination of a MegaCam g-band image, obtained as part of the MATLAS large programme at the CFHT, with Planck radiance and WISE 12 μm data. The combination of these three datasets have allowed us to compute the density power spectrum of the H i over scales of more than three orders of magnitude. We found that the density field is well described by a single power law over scales ranging from 0.01 to 50 pc. The exponent of the power spectrum, γ = -2.9 ± 0.1, is compatible with what is expected for thermally bi-stable and turbulent H i. We did not find any steepening of the power spectrum at small scales indicating that the typical scale at which turbulent energy is dissipated in this medium is smaller than 0.01 pc. The ambipolar diffusion scenario that is usually proposed as the main dissipative agent, is consistent with our data only if the density of the cloud observed is higher than the typical values assumed for the cold neutral medium gas. We discuss the new avenue offered by deep optical imaging surveys for the study of the low density ISM structure and turbulence.
Atmospheric Turbulence Measurements in Support of Adaptive Optics Technology
1989-03-01
Champagne, F. H., C. A. Friehe, J. C. LaRue, and J. C. Wyngaard. 1977. Flux measurements, flux estimation tecniques , and fine scale turbulence measurements...Dr. C. Giuliano 3011 MaLibu Canyon Road MaLibu, CA 90265 DL-3 Lockheed Missiles and Soace Co. Document Management ATTN: Dr. R. Lytetl 3251 Hanover...Laboratory ATTN: Dr. C. Primmerman P.O. Box 73 Lexington. MA 02173 Lockheed Missiles and Space Co. Document Management L556 Mail Station c/51-40 B586 P.O. Box
Fading Losses on the LCRD Free-Space Optical Link Due to Channel Turbulence
NASA Technical Reports Server (NTRS)
Moision, Bruce; Piazzolla, Sabino; Hamkins, Jon
2013-01-01
The Laser Communications Relay Demonstration (LCRD) will implement an optical communications link between a pair of Earth terminals via an Earth-orbiting satellite relay. Clear air turbulence over the communication paths will cause random fluctuations, or fading, in the received signal irradiance. In this paper we characterize losses due to fading caused by clear air turbulence. We illustrate the performance of a representative relay link, utilizing a channel interleaver and error-correction-code to mitigate fading, and provide a method to quickly determine the link performance.
Zhu, Yingbin; Zhao, Daomu
2008-10-01
On the basis of the generalized diffraction integral formula for misaligned optical systems in the spatial domain, an analytical propagation expression for the elements of the cross-spectral density matrix of a random electromagnetic beam passing through a misaligned optical system in turbulent atmosphere is derived. Some analyses are illustrated by numerical examples relating to changes in the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through such an optical system. It is shown that the misalignment has a significant influence on the intensity profile and the state of polarization of the beam, but the influence becomes smaller for the beam propagating in strong turbulent atmosphere. The method in this paper can be applied for sources that are either isotropic or anisotropic. It is shown that the isotropic sources and the anisotropic sources have different polarization properties on beam propagation.
NASA Astrophysics Data System (ADS)
Meneveau, Charles; de Silva, Charitha M.; Philip, Jimmy; Chauhan, Kapil; Marusic, Ivan
2013-11-01
The scaling and surface area properties of the wrinkled surface separating turbulent from non-turbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. PIV data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent/non-turbulent interface experimentally and to determine unambiguously that such surfaces exhibit fractal scaling with box-counting exponent between -1.3 and -1.4. A complementary analysis based on spatial filtering of the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of filter width, with an exponent between -0.3 and -0.4. These results establish that the interface is fractal-like with a multiscale geometry and fractal dimension of D ~ 2.3-2.4. Measurements of viscous, subgrid-scale and turbulent fluxes across the interface at various scales confirm the complementary nature of viscous nibbling at small scales while turbulent and then large-scale engulfment dominate when viewed at large scales. Financial support provided by the Australian Research Council, Fulbright, Melbourne U. and the NSF (CBET 1033942).
NASA Astrophysics Data System (ADS)
Dogan, Eda; Hearst, R. Jason; Ganapathisubramani, Bharathram
2017-03-01
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to `simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.
NASA Astrophysics Data System (ADS)
Donateo, Antonio; Contini, Daniele; Belosi, Franco
In this work the possibility of measuring real-time concentrations of PM2.5 and the corresponding vertical turbulent fluxes using the optical detector Mie pDR-1200, operating synchronously with an ultrasonic anemometer, is investigated. This detector is known to be sensitive to high values of relative humidity (RH) and a new procedure to correct the effect of RH on concentration measurements is presented. Results of optical measurements have been compared with gravimetric detections of PM2.5 and results show a reasonable correlation between them and an improvement of the agreement when RH-correction is used. Results presented have been collected at two measurement sites that can be representative of urban background environments but in one of them was present an industrial area nearby. Post-processing of data has been performed with the eddy-correlation technique that allows evaluation of vertical turbulent fluxes of PM2.5 as well as sensible heat and momentum fluxes. The turbulent mass fluxes, together with the analysis of real-time concentrations and their correlation with meteorology proved to be an useful tool to infer details about the local aerosol dynamics helping to interpret traditional gravimetric analysis of aerosol that is usually performed on a 24 h basis. Results show that the methodology can be useful in identifying the contribution of local sources like ground level emissions or industrial plumes with respect to the contribution of sources located far away from the measurement site.
Adaptive free-space optical communications through turbulence using self-healing Bessel beams
Li, Shuhui; Wang, Jian
2017-01-01
We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076
Adaptive free-space optical communications through turbulence using self-healing Bessel beams
NASA Astrophysics Data System (ADS)
Li, Shuhui; Wang, Jian
2017-02-01
We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions.
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.
High speed turbulent reacting flows: DNS and LES
NASA Technical Reports Server (NTRS)
Givi, Peyman
1990-01-01
Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.
Yi, Xiang; Li, Zan; Liu, Zengji
2015-02-20
In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.
Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong
2014-12-29
In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.
Polarization of radiation of electrons in highly turbulent magnetic fields
NASA Astrophysics Data System (ADS)
Prosekin, A. Yu.; Kelner, S. R.; Aharonian, F. A.
2016-09-01
We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation depends on the spectral index of the distribution.
Experimental in situ investigations of turbulence under high pressure.
Song, Kwonyul; Al-Salaymeh, Ahmed; Jovanovic, Jovan; Rauh, Cornelia; Delgado, Antonio
2010-02-01
In tube injection systems applied in high-pressure processing of packed biomaterials and foods, the pressure-transmitting medium is injected into the vessel to increase the pressure up to 1000 MPa, generating a submerged liquid-free jet. The presence of a turbulent-free jet during the pressurization phase and its positive influence on the homogeneity of the product treatment has already been examined by computational fluid dynamics investigations. However, no experimental data have supported the existence and properties of turbulent flow under high-pressure (HP) conditions up to 400 MPa. This contribution presents the development of two experimental setups: HP-laser Doppler anemometry and HP-hot wire anemometry. For the first time the time-averaged velocity profiles of a free jet during pressurization up to 300 MPa at different Reynolds numbers (Re) have been obtained. In this article, the dependence of the velocity profiles on the Re is discussed in detail. Moreover, the relaminarization phenomenon of the turbulent pipe flow most likely caused by the compressibility effects and viscosity changes of the pressure-transmitting medium is examined.
High Speed Imaging of Edge Turbulence in NSTX
S.J. Zweben; R. Maqueda; D.P. Stotler; A. Keesee; J. Boedo; C. Bush; S. Kaye; B. LeBlanc; J. Lowrance; V. Mastrocola; R. Maingi; N. Nishino; G. Renda; D. Swain; J. Wilgen; the NSTX Team
2003-03-01
The two-dimensional radial versus poloidal structure and motion of edge turbulence in NSTX (National Spherical Torus Experiment) were measured by using high-speed imaging of the visible light emission from a localized neutral gas puff. Edge turbulence images are shown and analyzed for Ohmic, L-mode (low-confinement mode) and H-mode (high-confinement mode) plasma conditions. Typical edge turbulence poloidal correlation lengths as measured using this technique are = 4 {+-} 1 cm and autocorrelation times are 40 {+-} 20 {micro}sec in all three regimes. The relative fluctuation level is typically smaller in H-mode than in L-mode, and transitions from H- to L-mode and can occur remarkably quickly (=30 {micro}sec). The two-dimensional images often show localized regions of strong light emission which move both poloidally and radially through the observed region at a typical speed of =10{sup 5} cm/sec, and sometimes show spatially coherent modes.
Leonardis, E.; Chapman, S. C.; Foullon, C.
2012-02-01
We focus on Hinode Solar Optical Telescope (SOT) calcium II H-line observations of a solar quiescent prominence (QP) that exhibits highly variable dynamics suggestive of turbulence. These images capture a sufficient range of scales spatially ({approx}0.1-100 arcsec) and temporally ({approx}16.8 s-4.5 hr) to allow the application of statistical methods used to quantify finite range fluid turbulence. We present the first such application of these techniques to the spatial intensity field of a long-lived solar prominence. Fully evolved inertial range turbulence in an infinite medium exhibits multifractal scale invariance in the statistics of its fluctuations, seen as power-law power spectra and as scaling of the higher order moments (structure functions) of fluctuations which have non-Gaussian statistics; fluctuations {delta}I(r, L) = I(r + L) - I(r) on length scale L along a given direction in observed spatial field I have moments that scale as ({delta}I(r, L){sup p}) {approx} L{sup {zeta}(p)}. For turbulence in a system that is of finite size, or that is not fully developed, one anticipates a generalized scale invariance or extended self-similarity (ESS) ({delta}I(r, L){sup p}) {approx} G(L){sup {zeta}(p)}. For these QP intensity measurements we find scaling in the power spectra and ESS. We find that the fluctuation statistics are non-Gaussian and we use ESS to obtain ratios of the scaling exponents {zeta}(p): these are consistent with a multifractal field and show distinct values for directions longitudinal and transverse to the bulk (driving) flow. Thus, the intensity fluctuations of the QP exhibit statistical properties consistent with an underlying turbulent flow.
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
Neo, Richard; Goodwin, Michael; Zheng, Jessica; Lawrence, Jon; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel
2016-02-08
In recent years, there have been a series of proposals to exploit the orbital angular momentum (OAM) of light for astronomical applications. The OAM of light potentially represents a new way in which to probe the universe. The study of this property of light entails the development of new instrumentation and problems which must be addressed. One of the key issues is whether we can overcome the loss of the information carried by OAM due to atmospheric turbulence. We experimentally analyze the effect of atmospheric turbulence on the OAM content of a signal over a range of realistic turbulence strengths typical for astronomical observations. With an adaptive optics system we are able to recover up to 89% power in an initial non-zero OAM mode (ℓ = 1) at low turbulence strengths (0.30" FWHM seeing). However, for poorer seeing conditions (1.1" FWHM seeing), the amount of power recovered is significantly lower (5%), showing that for the terrestrial detection of astronomical OAM, a careful design of the adaptive optics system is needed.
Microscale capillary wave turbulence excited by high frequency vibration.
Blamey, Jeremy; Yeo, Leslie Y; Friend, James R
2013-03-19
Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency
NASA Technical Reports Server (NTRS)
Harger, R. O.
1974-01-01
Abstracts are reported relating to the techniques used in the research concerning optical transmission of information. Communication through the turbulent atmosphere, quantum mechanics, and quantum communication theory are discussed along with the results.
Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.
Banakh, V A; Smalikho, I N
2014-09-22
Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.
Turbulence Model Comparisons for a High-Speed Aircraft
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
Four turbulence models are described and evaluated for transonic flows over the High-Speed Research/industry baseline configuration known as Reference H by using the thin-layer, upwind, Navier-Stokes solver known as CFL3D. The turbulence models studied are the equilibrium model of Baldwin-Lomax (B-L) with the Degani-Schiff (D-S) modifications, the one-equation Baldwin-Barth (B-B) model, the one-equation Spalart-Allmaras (S-A) model, and Menter's two-equation Shear Stress Transport (SST) model. The flow conditions, which correspond to tests performed in the National Transonic Facility (NTF) at Langley Research Center, are a Mach number of 0.90 and a Reynolds number of 30 x 10 (exp. 6) based on mean aerodynamic chord for angles of attack of 1 deg., 5 deg., and 10 deg. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Computed forces and surface pressures compare reasonably well with the experimental data for all four turbulence models.
NASA Astrophysics Data System (ADS)
Sprung, Detlev; van Eijk, Alexander M. J.; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin
2016-10-01
The experiment FESTER (First European South African Transmission ExpeRiment) took place in 2015 to investigate the atmospheric influence on electro-optical systems performance across False Bay / South Africa on a long term basis. Several permanent stations for monitoring electro-optical propagation and atmospheric parameters were set up around the Bay. Additional intensive observation periods (IOPs) allowed for boat runs to assess the inhomogeneous atmospheric propagation conditions over water. In this paper we focus on the distribution of optical turbulence over the Bay. The different impact of water masses originating from the Indian Ocean and the Benguela current on the development of optical turbulence is discussed. The seasonal behavior of optical turbulence is presented and its effect on electro-optical system performance examined.
An Optical Spectroscopic Study of HH 110: a Turbulent Mixing Layer?
NASA Astrophysics Data System (ADS)
Ayala, S.; Raga, A. C.; Curiel, S.
2003-01-01
The HH 110 jet extends 3 arcmin in length and consists of numerous knots forming the flow. Noriega-Crespo et al. (1996) found that the turbulent optical and near-infrared morphology of the HH 110 jet is consistent with that of a boundary layer. In this work, we have analyzed some line ratios along and across the jet in order to make a quantitative comparison with the line ratios predicted by the current mixing layer models.
Distribution Models for Optical Scintillation Due to Atmospheric Turbulence
2005-12-12
beam jitter is found to be a dominant effect when this radius is close to unity, and the relationship between pointing error and scintillation is...phase errors in the near Field of the transmitter. If the optical phase at each point in the transmitter plane is described by the residual, 9, within...is close to unity, and the relationship between pointing error and scintillation is examined in detail. As a result of this work, models for the mean
Optical Turbulence on Underwater Image Degradation in Natural Environments
2013-05-31
Arlington, VA 22203-1995 ONR Approved for public release, distribution is unlimited. It is a well-known fact that the major degradation source on electro ...source on electro -optical (EO) imaging underwater is from scattering by the medium itself and the constituents within, namely particles of various...feet. The same applies to regions of strong re- suspension from the bottom, both in coastal regions as well as in the deep sea. The effects of
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.
NASA Astrophysics Data System (ADS)
Sprung, D.; Sucher, E.; Stein, K.; von der Lühe, O.; Berkefeld, Th.
2016-10-01
Local atmospheric turbulence at the telescope level is regarded as a major reason for affecting the performance of the adaptive optics systems using wavelengths in the visible and infrared for solar observations. During the day the air masses around the telescope dome are influenced by flow distortions. Additionally heating of the infrastructure close to telescope causes thermal turbulence. Thereby optical turbulence is produced and leads to quality changes in the local seeing throughout the day. Image degradation will be yielded affecting the performance of adaptive optical systems. The spatial resolution of the solar observations will be reduced. For this study measurements of the optical turbulence, represented by the structure function parameter of the refractive index Cn2 were performed on several locations at the GREGOR telescope at the Teide observatory at Tenerife at the Canary Islands / Spain. Since September 2012 measurements of Cn2 were carried out between the towers of the Vacuum Tower Telescope (VTT) and of GREGOR with a laser-scintillometer. The horizontal distance of the measurement path was about 75 m. Additional from May 2015 up to March 2016 the optical turbulence was determined at three additional locations close to the solar telescope GREGOR. The optical turbulence is derived from sonic anemometer measurements. Time series of the sonic temperature are analyzed and compared to the direct measurements of the laser scintillometer. Meteorological conditions are investigated, especially the influence of the wind direction. Turbulence of upper atmospheric layers is not regarded. The measured local turbulence is compared to the system performance of the GREGOR telescopes. It appears that the mountain ridge effects on turbulence are more relevant than any local causes of seeing close to the telescope. Results of these analyses and comparison of nearly one year of measurements are presented and discussed.
Edwards, M J; Hansen, J; Miles, A R; Froula, D; Gregori, G; Glenzer, S; Edens, A; Dittmire, T
2005-02-08
The possibility of studying compressible turbulent flows using gas targets driven by high power lasers and diagnosed with optical techniques is investigated. The potential advantage over typical laser experiments that use solid targets and x-ray diagnostics is more detailed information over a larger range of spatial scales. An experimental system is described to study shock - jet interactions at high Mach number. This consists of a mini-chamber full of nitrogen at a pressure {approx} 1 atms. The mini-chamber is situated inside a much larger vacuum chamber. An intense laser pulse ({approx}100J in {approx} 5ns) is focused on to a thin {approx} 0.3{micro}m thick silicon nitride window at one end of the mini-chamber. The window acts both as a vacuum barrier, and laser entrance hole. The ''explosion'' caused by the deposition of the laser energy just inside the window drives a strong blast wave out into the nitrogen atmosphere. The spherical shock expands and interacts with a jet of xenon introduced though the top of the mini-chamber. The Mach number of the interaction is controlled by the separation of the jet from the explosion. The resulting flow is visualized using an optical schlieren system using a pulsed laser source at a wavelength of 0.53 {micro}m. The technical path leading up to the design of this experiment is presented, and future prospects briefly considered. Lack of laser time in the final year of the project severely limited experimental results obtained using the new apparatus.
NASA Astrophysics Data System (ADS)
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-01
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.
Gated high speed optical detector
NASA Technical Reports Server (NTRS)
Green, S. I.; Carson, L. M.; Neal, G. W.
1973-01-01
The design, fabrication, and test of two gated, high speed optical detectors for use in high speed digital laser communication links are discussed. The optical detectors used a dynamic crossed field photomultiplier and electronics including dc bias and RF drive circuits, automatic remote synchronization circuits, automatic gain control circuits, and threshold detection circuits. The equipment is used to detect binary encoded signals from a mode locked neodynium laser.
A new approach to highly resolved measurements of turbulent flow
NASA Astrophysics Data System (ADS)
Puczylowski, J.; Hölling, A.; Peinke, J.; Bhiladvala, R.; Hölling, M.
2015-05-01
In this paper we present the design and principle of a new anemometer, namely the 2d-Laser Cantilever Anemometer (2d-LCA), which has been developed for highly resolved flow speed measurements of two components (2d) under laboratory conditions. We will explain the working principle and demonstrate the sensor’s performance by means of comparison measurements of wake turbulence with a commercial X-wire. In the past we have shown that the 2d-LCA is capable of being applied in liquid and particle-laden domains, but we also believe that other challenging areas of operation such as near-wall flows can become accessible.
Very High Resolution Simulations of Compressible, Turbulent Flows
Woodward, P R; Porter, D H; Sytine, I; Anderson, S E; Mirin, A A; Curtis, B C; Cohen, R H; Dannevik, W P; Dimits, A M; Eliason, D E; Winkler, K-H; Hodson, S W
2001-04-26
The steadily increasing power of supercomputing systems is enabling very high resolution simulations of compressible, turbulent flows in the high Reynolds number limit, which is of interest in astrophysics as well as in several other fluid dynamical applications. This paper discusses two such simulations, using grids of up to 8 billion cells. In each type of flow, convergence in a statistical sense is observed as the mesh is refined. The behavior of the convergent sequences indicates how a subgrid-scale model of turbulence could improve the treatment of these flows by high-resolution Euler schemes like PPM. The best resolved case, a simulation of a Richtmyer-Meshkov mixing layer in a shock tube experiment, also points the way toward such a subgrid-scale model. Analysis of the results of that simulation indicates a proportionality relationship between the energy transfer rate from large to small motions and the determinant of the deviatoric symmetric strain as well as the divergence of the velocity for the large-scale field.
Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi
2010-06-20
Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) 'arches' or 'bubbles' that 'inflate' from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex 'roll-up' of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) 'optical flow' code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s{sup -1}, which is supersonic for a {approx}10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s{sup -1}. Typical lifetimes range from 300 to 1000 s ({approx}5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km{sup 2} s{sup -1} reaching maximum projected areas from 2 to 15 Mm{sup 2}. Maximum contrast of the dark flows relative to
High-speed holocinematographic velocimeter for studying turbulent flow control physics
NASA Technical Reports Server (NTRS)
Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.
1985-01-01
Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.
Detection of high k turbulence using two dimensional phase contrast imaging on LHD
Michael, C. A.; Tanaka, K.; Akiyama, T.; Kawahata, K.; Vyacheslavov, L. N.; Sanin, A.; Kharchev, N. K.; Okajima, S.
2008-10-15
High k turbulence, up to 30 cm{sup -1}, can be measured using the two dimensional CO2 laser phase contrast imaging system on LHD. Recent hardware improvements and experimental results are presented. Precise control over the lens positions in the detection system is necessary because of the short depth of focus for high k modes. Remote controllable motors to move optical elements were installed, which, combined with measurements of the response to ultrasound injection, allowed experimental verification and shot-to-shot adjustment of the object plane. Strong high k signals are observed within the first 100-200 ms after the initial electron cyclotron heating (ECH) breakdown, in agreement with gyrotron scattering. During later times in the discharge, the entire k spectrum shifts to lower values (although the total amplitude does not change significantly), and the weaker high k signals are obscured by leakage of low k components at low frequency, and detector noise, at high frequency.
NASA Astrophysics Data System (ADS)
Rampy, Rachel A.
Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and
Lumley decomposition of turbulent boundary layer at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Tutkun, Murat; George, William K.
2017-02-01
The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.
Ensemble 3D PTV for high resolution turbulent statistics
NASA Astrophysics Data System (ADS)
Agüera, Nereida; Cafiero, Gioacchino; Astarita, Tommaso; Discetti, Stefano
2016-12-01
A method to extract turbulent statistics from three-dimensional (3D) PIV measurements via ensemble averaging is presented. The proposed technique is a 3D extension of the ensemble particle tracking velocimetry methods, which consist in summing distributions of velocity vectors calculated on low image density samples and then extract the statistical moments from the velocity vectors within sub-volumes, with the size of the sub-volume depending on the desired number of particles and on the available number of snapshots. The extension to 3D measurements poses the additional difficulty of sparse velocity vectors distributions, thus requiring a large number of snapshots to achieve high resolution measurements with a sufficient degree of accuracy. At the current state, this hinders the achievement of single-voxel measurements, unless millions of samples are available. Consequently, one has to give up spatial resolution and live with still relatively large (if compared to the voxel) sub-volumes. This leads to the further problem of the possible occurrence of a residual mean velocity gradient within the sub-volumes, which significantly contaminates the computation of second order moments. In this work, we propose a method to reduce the residual gradient effect, allowing to reach high resolution even with relatively large interrogation spots, therefore still retrieving a large number of particles on which it is possible to calculate turbulent statistics. The method consists in applying a polynomial fit to the velocity distributions within each sub-volume trying to mimic the residual mean velocity gradient.
NASA Astrophysics Data System (ADS)
Prabu, K.; Kumar, D. Sriram
2015-05-01
An optical wireless communication system is an alternative to radio frequency communication, but atmospheric turbulence induced fading and misalignment fading are the main impairments affecting an optical signal when propagating through the turbulence channel. The resultant of misalignment fading is the pointing errors, it degrades the bit error rate (BER) performance of the free space optics (FSO) system. In this paper, we study the BER performance of the multiple-input multiple-output (MIMO) FSO system employing coherent binary polarization shift keying (BPOLSK) in gamma-gamma (G-G) channel with pointing errors. The BER performance of the BPOLSK based MIMO FSO system is compared with the single-input single-output (SISO) system. Also, the average BER performance of the systems is analyzed and compared with and without pointing errors. A novel closed form expressions of BER are derived for MIMO FSO system with maximal ratio combining (MRC) and equal gain combining (EGC) diversity techniques. The analytical results show that the pointing errors can severely degrade the performance of the system.
In-Situ Turbulence Measurements in the High-Latitude MLT-Region
NASA Astrophysics Data System (ADS)
Rapp, M.; Strelnikov, B.; Becker, E.; Luebken, F.
2008-12-01
Since the beginning of the nineties our research group has launched a total of 40 sounding rockets carrying ionization gauges for the high resolution measurement of neutral density fluctuations. These fluctuations are a suitable tracer for turbulent velocity fluctuations. Since such measurements are made at very high spatial resolution (< 1 m) they can be used to derive the spectral content of the turbulence field from which in turn the turbulent energy dissipation rate can be reliably derived. After a short introductuction to the instrumental and analysis technique we will present mean results of the seasonal and geographical variation of turbulence at high northern latitudes, insights into the mechanism of wave mean flow interaction, and discuss selected instability events. We will further show that modern analysis techniques using wavelet transforms enable us to characterize the actual vertical extent of turbulence layers which can be extremely narrow (order of 100 m). From our measurements we can also tentatively characterize the statistics of turbulence in the MLT indicating that turbulence is highly intermittent. Comparing these results to model estimates from a high resolution GCM, we suggest that this intermittency partly reflects the gravity wave dynamics of the MLT. Future questions to be addressed are among others the relation of turbulent energy dissipation to turbulent mixing and the horizontal structure of turbulent cells.
Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.
Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z
2015-08-10
A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.
Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.
Interaction of two high Reynolds number axisymmetric turbulent wakes
NASA Astrophysics Data System (ADS)
Obligado, M.; Klein, S.; Vassilicos, J. C.
2015-11-01
With the recent discovery of non-equilibrium high Reynolds number scalings in the wake of axisymmetric plates (Nedic et al., PRL, 2013), it has become of importance to develop an experimental technique that permits to easily discriminate between different wake scalings. We propose an experimental setup that tests the presence of non-equilibrium turbulence using the streamwise variation of velocity fluctuations between two bluff bodies facing a flow. We have studied two different sets of plates (one with regular and another with irregular peripheries) with Hot-Wire Anemometry in a wind tunnel. By acquiring streamwise profiles for different plate separations and identifying the wake interaction length for each separation it is possible to estimate the streamwise evolution of the single wake width. From this evolution it is also possible to deduce the turbulence dissipation scalings. This work generalizes previous studies on the interaction of plane wakes (see Gomes-Fernandes et al., JFM, 2012) to include axisymmetric wakes. We find that the wake interaction length proposed in this cited work and a constant anisotropy assumption can be used to collapse the streamwise developments of the first three moments.
NASA Astrophysics Data System (ADS)
Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.
2008-05-01
A multichannel free-space optical (FSO) communication system based on orbital angular momentum (OAM)-carrying beams is studied. We numerically analyze the effects of atmospheric turbulence on the system and find that turbulence induces attenuation and crosstalk among channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied and determine the aggregate capacity of the multichannel system at those conditions. OAM-multiplexed FSO systems that operate in the weak turbulence regime are found to offer good performance. We verify that the aggregate capacity decreases as the turbulence increases. A per-channel bit-error rate evaluation is presented to show the uneven effects of crosstalk on the constituent channels.
KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited
NASA Astrophysics Data System (ADS)
Craig, J.; Allen, C.
1987-05-01
The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.
KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited
NASA Technical Reports Server (NTRS)
Craig, J.; Allen, C.
1987-01-01
The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.
Far-field optical degradation due to near-field transmission through a turbulent heated jet.
Cicchiello, J M; Jumper, E J
1997-09-01
When a laser beam traverses an optically active, turbulent flow field, the laser wave front is aberrated by the flow. Density variations in a heated two-dimensional jet, for example, correspond to index-of-refraction variations, and this modulation of the index in the fluid can imprint an optical phase disturbance, or phase error, onto the laser wave front. Adaptive-optic systems seek to correct the phase error of the wave front, and thus restore the integrity of the far-field irradiance pattern. Given a near-field spatial mapping of a phase disturbance, the far-field irradiance pattern of the affected wave front can be calculated with Fourier-optics techniques. A Fourier-optics computer code was used to study the far-field irradiance patterns arising from actual time-varying measurements of a fluid-induced phase error. The time-averaged Strehl ratio was studied to provide insight into the spatial and temporal design requirements for adaptive-optic systems applied to the time series of near-field spatial phase-error maps.
NASA Astrophysics Data System (ADS)
Goleneva, N. V.; Lavrinov, V.; Lavrinova, L. N.
2015-11-01
The wavefront sensor of Hartmann type consists of two parts: the optical and algorithmic. The parameters of the optical part of the sensor may vary. Since the time of "frozen" turbulence due to the Fried's length and to the cross wind transport turbulent distortion speed, the measurement Shack-Hartmann sensor depend on the intensity of turbulent distortions. In this paper are presented the results of the analysis of the measurements of the sensor according to the size of lens array and to the intensity of turbulent distortions. The analysis is performed on basis of a numerical model of the Shack-Hartmann wavefront sensor and on Kolmogorov's turbulence model.
2008-10-20
propagation to high altitudes (Broutman et al., 2003, 2006, 2008; Eckermann et al., 2006); 3 3. characterization of the statistical potential for...resolution across the forecasting domain. Examples of the turbulence structures for KHI and GW breaking from which we determine turbulence statistics ...improve. deterministic MW and turbulence forecast statistical convective GW and turbulence forecast statistical jet stream GW and
Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.
Chu, Xiuxiang
2007-12-24
The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.
Turbulent phase noise on asymmetric two-way ground-satellite coherent optical links
NASA Astrophysics Data System (ADS)
Robert, Clélia; Conan, Jean-Marc; Wolf, Peter
2015-10-01
Bidirectional ground-satellite laser links suffer from turbulence-induced scintillation and phase distortion. We study how turbulence impacts on coherent detection capacity and on the associated phase noise that restricts clock transfer precision. We evaluate the capacity to obtain a two-way cancellation of atmospheric effects despite the asymmetry between up and down link that limits the link reciprocity. For ground-satellite links, the asymmetry is induced by point-ahead angle and possibly the use, for the ground terminal, of different transceiver diameters, in reception and emission. The quantitative analysis is obtained thanks to refined end-to-end simulations under realistic turbulence and wind conditions as well as satellite cinematic. Simulations make use of the reciprocity principle to estimate both down and up link performance from wave-optics propagation of descending plane waves. These temporally resolved simulations allow characterising the coherent detection in terms of time series of heterodyne efficiency for different system parameters. We show Tip/Tilt correction on ground is mandatory at reception for the down link and as a pre-compensation of the up link. Good correlation between up and down phase noise is obtained even with asymmetric apertures of the ground transceiver and in spite of pointing ahead angle. The reduction to less than 1 rad2 of the two-way differential phase noise is very promising for clock transfer.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
NASA Astrophysics Data System (ADS)
Munoz Fernandez, M.; Vilnrotter, V. A.
2005-05-01
Performance analysis and experimental verification of a coherent free-space optical communications receiver in the presence of simulated atmospheric turbulence is presented. Bit-error rate (BER) performance of ideal coherent detection is analyzed in Section II, and the laboratory equipment and experimental setup used to carry out these experiments are described. The key components include two lasers operating at a 1064-nm wavelength for use with coherent detection, a 16-element (4 x 4) focal-plane detector array, and a data acquisition and signal processing assembly needed to sample and collect the data and analyze the results. The detected signals are combined using the least-mean-square (LMS) algorithm. In Section III, convergence of the algorithm for experimentally obtained signal tones in the presence of atmospheric turbulence is demonstrated. In Section IV, adaptive combining of experimentally obtained heterodyned pulse-position modulated (PPM) signals with pulse-to-pulse coherence, in the presence of simulated spatial distortions resembling atmospheric turbulence, is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot noise. A convergence analysis of the algorithm is presented, and results with both computer-simulated and experimentally obtained PPM signals are analyzed.
Turbulent mass transfer in the furnace of high output boilers
Noskievic, P.; Kolat, P.; Novacek, A.
1995-12-31
The up-to-date identification methods for the evaluation of combustion process quality provide a picture of what is taking place in the furnace. The Energetics Department of VSB-TU Ostrava concentrates its attention on untraditional methods which proceed from an analysis of turbulent transfer phenomena, especially the transfer of mass in the furnace of pulverized boilers. Particularly in the region of burners, this mass transfer influences the quality of the combustion process as well as the formation of solid and gaseous emissions. Measurements of combustion aerodynamics in the furnace of high output boilers are part of the Czech Clean Coal Technology program. A complex approach to these problems could lead to a decrease of pollutants released.
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.
DR 21(OH): A HIGHLY FRAGMENTED, MAGNETIZED, TURBULENT DENSE CORE
Girart, J. M.; Frau, P.; Zhang, Q.; Koch, P. M.; Tang, Y.-W.; Lai, S.-P.; Ho, P. T. P.; Qiu, K.
2013-07-20
We present high angular resolution observations of the massive star-forming core DR21(OH) at 880 {mu}m using the Submillimeter Array (SMA). The dense core exhibits an overall velocity gradient in a Keplerian-like pattern, which breaks at the center of the core where SMA 6 and SMA 7 are located. The dust polarization shows a complex magnetic field, compatible with a toroidal configuration. This is in contrast with the large, parsec-scale filament that surrounds the core, where there is a smooth magnetic field. The total magnetic field strengths in the filament and in the core are 0.9 and 2.1 mG, respectively. We found evidence of magnetic field diffusion at the core scales, far beyond the expected value for ambipolar diffusion. It is possible that the diffusion arises from fast magnetic reconnection in the presence of turbulence. The dynamics of the DR 21(OH) core appear to be controlled energetically in equal parts by the magnetic field, magnetohydrodynamic turbulence, and the angular momentum. The effect of the angular momentum (this is a fast rotating core) is probably causing the observed toroidal field configuration. Yet, gravitation overwhelms all the forces, making this a clear supercritical core with a mass-to-flux ratio of {approx_equal} 6 times the critical value. However, simulations show that this is not enough for the high level of fragmentation observed at 1000 AU scales. Thus, rotation and outflow feedback are probably the main causes of the observed fragmentation.
NASA Technical Reports Server (NTRS)
Blood, S. P.; Mitchell, J. D.; Croskey, C. L.; Raymund, T. D.; Thrane, E. V.; Blix, T. A.; Hoppe, U. P.; Fritts, D. C.; Schmidlin, F. J.
1988-01-01
Measurements of mesospheric small scale turbulence and associated larger scale wave structures were obtained from rocket probe flights during equinox in spring 1985. The measurements were verified by data from the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. Electron density irregularities down to an altitude of about 62 km and fluctuations in positive ion density in the altitude region from 50 to 90 km were measured. Turbulence in the inertial subrange was observed at heights where the fluctuations generally were largest. Measurement of background electron density exhibited gradients relative to the monotonically increasing density profile, suggesting the presence of large amplitude wave motions transporting the plasma by mixing. The radar detected the occurrence of 1-3 km wavelike perturbations superimposed on a 7-km wave in the wind velocity field. It is suggested that the 1-3 km waves are more important in the transport of energy and momentum and in the production of turbulence in the lower mesosphere.
Optical vortex beam based optical fan for high-precision optical measurements and optical switching.
Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen
2014-09-01
The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high-precision optical measurements and high-capacity and high-speed optical communications. Here we show a method for the construction of a simple and robust scheme to rotate a light beam such as a fan, which is based on a combination of these two properties and using the thermal-dispersion and electro-optical effect of birefringent crystals. Using a computer-based digital image-processing technique, we determine the temperature and thermal-dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science, and optical communication networks.
Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds
NASA Technical Reports Server (NTRS)
Frankl, F.
1942-01-01
The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.
High freestream turbulence studies on a scaled-up stator vane
NASA Astrophysics Data System (ADS)
Radomsky, Roger William, Jr.
2000-10-01
Today's gas turbine engines are operating at combustor exit temperatures far exceeding the maximum temperatures of the component alloys downstream of the combustor. These higher temperatures are necessary to increase the efficiency of the engine, and, as such, durability of the downstream components becomes an issue. The highly turbulent flowfield that exists at the exit of the combustor complicates issues further by increasing heat transfer from the hot gas to the component surface. To account for the high heat transfer rates, and provide a better prediction of the applied heat loads, detailed heat transfer and flowfield information is needed at turbulence levels representative those exiting a combustor. Flowfield measurements at high freestream turbulence levels indicated that turbulence, which was isotropic at the inlet, became highly anisotropic in the test section as a result of surface curvature and strain. Turbulent kinetic energy levels were shown to increase in the passage by as much as 131% and 31% for the 10% and 19.5% turbulence levels. Although the turbulent kinetic energy was high, the turbulence level based upon local velocity decreased quickly to levels of 3% and 6% near the suction surface for the 10% and 19.5% turbulence levels. For the pressure surface, local turbulence levels were as high as 10% and 16% for the 10% and 19.5% turbulence levels. High local turbulence levels and heat transfer augmentation were observed near the stagnation location, by as much as 50%, and along the pressure surface, by as much as 80%, where airfoil geometries have shown degradation after prolonged usage. Endwall flowfield measurements on a plane at the stagnation location showed that a horseshoe vortex developed in the juncture region of the vane at high freestream. turbulence similar to that at low freestream turbulence. Measurements near the center of the vortex indicated that the vortex was highly unsteady. In regions where strong secondary flows (horseshoe and
NASA Astrophysics Data System (ADS)
Slabaugh, Carson Daniel
In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the
Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon
2009-11-09
In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.
High Availability in Optical Networks
NASA Astrophysics Data System (ADS)
Grover, Wayne D.; Wosinska, Lena; Fumagalli, Andrea
2005-09-01
Call for Papers: High Availability in Optical Networks Submission Deadline: 1 January 2006 The Journal of Optical Networking (JON) is soliciting papers for a feature Issue pertaining to all aspects of reliable components and systems for optical networks and concepts, techniques, and experience leading to high availability of services provided by optical networks. Most nations now recognize that telecommunications in all its forms -- including voice, Internet, video, and so on -- are "critical infrastructure" for the society, commerce, government, and education. Yet all these services and applications are almost completely dependent on optical networks for their realization. "Always on" or apparently unbreakable communications connectivity is the expectation from most users and for some services is the actual requirement as well. Achieving the desired level of availability of services, and doing so with some elegance and efficiency, is a meritorious goal for current researchers. This requires development and use of high-reliability components and subsystems, but also concepts for active reconfiguration and capacity planning leading to high availability of service through unseen fast-acting survivability mechanisms. The feature issue is also intended to reflect some of the most important current directions and objectives in optical networking research, which include the aspects of integrated design and operation of multilevel survivability and realization of multiple Quality-of-Protection service classes. Dynamic survivable service provisioning, or batch re-provisioning is an important current theme, as well as methods that achieve high availability at far less investment in spare capacity than required by brute force service path duplication or 100% redundant rings, which is still the surprisingly prevalent practice. Papers of several types are envisioned in the feature issue, including outlook and forecasting types of treatments, optimization and analysis, new
NASA Astrophysics Data System (ADS)
Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.
2016-10-01
The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.
Simulation of turbulences and fog effects on the free space optical link inside of experimental box
NASA Astrophysics Data System (ADS)
Latal, Jan; Vitasek, Jan; Hajek, Lukas; Vanderka, Ales; Koudelka, Petr; Kepak, Stanislav; Vasinek, Vladimir
2016-12-01
This paper deals with problematic of Free Space Optical (FSO) Links. The theoretical part describes the effects of atmospheric transmission environment on these FSO connections. The practical part is focused on the creation of an appropriate experimental workplace for turbulences simulation (mechanical and thermal turbulences), fog effects and subsequent measurement of these effects. For definition how big impact these effects on the FSO system have is used the statistical analysis and simulation software Optiwave. Overall there were tested three optical light sources operating at wavelengths of 632.8 nm, 850 nm and 1550 nm respectively. Influences of simulated atmospheric effects on the signal attenuation were observed. Within the frame of simulation in Optiwave software there were studied influences of attenuation on given wavelengths in form of FSO link transmission parameters degradation. Also for the purposes of real measurements it was necessary to fabricate an experimental box. This box was constructed with sizes of 2.5 and 5 meters and was used for simulation of atmospheric environment.
High-resolution Imaging Through Strong Atmospheric Turbulence and Over Wide Fields of View
NASA Astrophysics Data System (ADS)
Jefferies, S.; Hope, D.; Hart, M.; Nagy, J.
2013-09-01
We discuss how high-resolution imaging through strong atmospheric turbulence requires both maximizing the transmission of information through the optical system and accurate estimation of the observed wave front over a wide range of spatial frequencies. We show that both requirements can be met by observing with a dual channel system where one channel employs aperture diversity and the other an imaging Shack-Hartmann wave-front sensor. The imagery from this setup is processed using a blind restoration algorithm that combines the strengths of the multi-aperture phase retrieval and multi-telescope, multi-frame blind deconvolution techniques: it also captures the inherent temporal correlations in the observed phases. This approach, which strengthens the synergy between image acquisition and post-processing, provides near-diffraction-limited imagery at unprecedented levels of atmospheric turbulence. The approach also allows for the separation of the phase perturbations from different layers of the atmosphere. This characteristic offers potential for a beaconless wave-front sensor and for the accurate restoration of images with fields of view substantially larger than the isoplanatic angle. The proposed approach also has application for high-dynamic range imaging.
Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context
2014-09-01
of Turbulent Mixing ,” Phys. Scr ., T142, p. 014014. Fig. 4 Turbulent transport as a fraction of total transport plotted versus Re for each of four...Diffusion in Turbulent Mixing ,” Phys. Scr ., T142, p. 014062. [9] George, E., Glimm, J., Grove, J. W., Li, X.-L., Liu, Y.-J., Xu, Z.-L., and Zhao, N., 2003...ABSTRACT Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context Report Title Mix is a critical input to hydro
The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed
2010-08-05
only effects responsible for altering the turbulent field and redistributing energy between different scales? What are the relative contributions of...6 3.3. What is the flame surface area? ....................................................................................................7...fraction isosurfaces ................................................................10 4.2. Distributions of (Y) and S(Y) and the effects of small
NASA Technical Reports Server (NTRS)
Troyan, V. I.
1974-01-01
The dependence of turbulent velocity on optical depth was studied by use of the Goldberg-Unno method, with allowance made for the influence of deviation from the local thermodynamic equilibrium. It was found that allowance for deviation from local thermodynamic equilibrium displaces the curve of dependence of turbulent velocity on optical depth along two axes.
High-Temperature Optical Sensor
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.
2010-01-01
A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.
Miller, Joseph D; Slipchenko, Mikhail; Meyer, Terrence R; Jiang, Naibo; Lempert, Walter R; Gord, James R
2009-05-01
Burst-mode planar laser-induced fluorescence (PLIF) imaging of the OH radical is demonstrated in laminar and turbulent hydrogen-air diffusion flames with pulse repetition rates up to 50 kHz. Nearly 1 mJ/pulse at 313.526 nm is used to probe the OH P(2)(10) rotational transition in the (0,0) band of the A-X system. The UV radiation is generated by a high-speed-tunable, injection-seeded optical parametric oscillator pumped by a frequency-doubled megahertz-rate burst-mode Nd:YAG laser. Preliminary kilohertz-rate wavelength scanning of the temperature-broadened OH transition during PLIF imaging is also presented for the first time (to our knowledge), and possible strategies for spatiotemporally resolved planar OH spectroscopy are discussed.
Fast calibration of high-order adaptive optics systems.
Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain
2004-06-01
We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.
2013-09-23
optical scattering and sound propagation, the dispersion of insoluble pollutants such as plastic particulates and oil, ship track studies, and the...DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI...Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds Ramsey R. Harcourt Applied Physics Laboratory, University of
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-01-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
NASA Astrophysics Data System (ADS)
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-10-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented--up to now--time-resolved observations of the awaited dynamics. Here, we report temporal `snapshots' of random light using a specially designed `time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by `breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence.
Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number
NASA Astrophysics Data System (ADS)
Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui
2013-11-01
To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.
Rigid spherical particles in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao
2016-11-01
Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Seitzman, Jerry; Lieuwen, Timothy
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide
Turbulence measurements in high-speed flows by resonant fluoresence
NASA Technical Reports Server (NTRS)
Miles, R. B.
1982-01-01
Both mean flow and turbulence measurements were investigated using the resonant Doppler velocimeter in a Mach 3.2 nitrogen flow. Data are presented showing velocity, temperature and pressure measured point by point across the flow field. This data is compared with conventional pitot and temperature surveys. Turbulence was induced by a small metal tab in the flow and observed by both hot wire and RDV techniques. Photographs of the flow field demonstrate the utility of the RDV for quantitative flow field visualization.
An Experimental Study of Turbulent Boundary Layers Subjected to High Free-Stream Turbulence Effects
2005-12-30
ortiLocktim) TOK 36604Tusuel Exit FIN Ph"Floor Flow Directimo Dmwiogs tot to usle Z X Figure 2.4: Schematic of the turbulence generator location in the wind...cm) Figure 3.29: Mean U contour plot (test case 4) 1 -- Velocity vector ( o.) 0 Jet ho• ls 0 0 0 0 0 0 20 0 I /I. . •I I" / I 1 0 Ŕ la, / lllh N1//, 0
Turbulent Boundary Layer in High Rayleigh Number Convection in Air
NASA Astrophysics Data System (ADS)
du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian
2014-03-01
Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra =1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re ≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.
High resolution optical DNA mapping
NASA Astrophysics Data System (ADS)
Baday, Murat
Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.
High bandwidth underwater optical communication
NASA Astrophysics Data System (ADS)
Hanson, Frank; Radic, Stojan
2008-01-01
We report error-free underwater optical transmission measurements at 1 Gbit/s (109 bits/s) over a 2 m path in a laboratory water pipe with up to 36 dB of extinction. The source at 532 nm was derived from a 1064 nm continuous-wave laser diode that was intensity modulated, amplified, and frequency doubled in periodically poled lithium niobate. Measurements were made over a range of extinction by the addition of a Mg(OH)2 and Al(OH)3 suspension to the water path, and we were not able to observe any evidence of temporal pulse broadening. Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1 Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.
High frequency acoustic wave scattering from turbulent premixed flames
NASA Astrophysics Data System (ADS)
Narra, Venkateswarlu
This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
Statistics of High Atwood Number Turbulent Mixing Layers
NASA Astrophysics Data System (ADS)
Baltzer, Jon; Livescu, Daniel
2015-11-01
The statistical properties of incompressible shear-driven planar mixing layers between two miscible streams of fluids with different densities are investigated by means of Direct Numerical Simulations. The simulations begin from a thin interface perturbed by a thin broadband random disturbance, and the mixing layers are allowed to develop to self-similar states. The temporal simulations are performed in unprecedented domain sizes, with grid sizes up to 6144 x 2048 x 1536, which allows turbulent structures to grow and merge naturally. This allows the flow to reach states far-removed from the initial disturbances, thereby enabling high-quality statistics to be obtained for higher moments, pdfs, and other quantities critical to developing closure models. A wide range of Atwood numbers are explored, ranging from nearly constant density to At=0.87. The consequences of increasing the density contrast are investigated for global quantities, such as growth rates, and asymmetries that form in statistical profiles. Additional simulations in smaller domains are performed to study the effects of domain size.
NASA Astrophysics Data System (ADS)
Li, Yiming; Gao, Chao; Liang, Haodong; Miao, Maoke; Li, Xiaofeng
2017-04-01
This paper investigates an adaptive phase estimator for coherent free-space optical (FSO) communication systems. Closed-form solutions for variance of phase errors are derived when the optical beam is subjected to Gamma-Gamma distributed turbulence. The adaptive phase estimator has improved upon the phase error performance in comparison to conventional phase estimators. We also demonstrate notable improvement in BER performance when applying our adaptive phase estimator to coherent FSO communication systems.
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Simon, Terrence W.
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.
Acoustic sounder system design for measurement of optical turbulence and wind profiles
NASA Astrophysics Data System (ADS)
Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.
2000-07-01
An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.
Hasegawa, Akira
2009-01-01
One important discovery in the twentieth century physics is the natural formation of a coherent or a well-ordered structure in continuous media, in contrary to degradation of the state as predicted earlier from the second law of thermodynamics. Here nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are of the major examples. A soliton is formed primarily in one-dimensional medium where the dispersion and nonlinearity play the essential role. Here the temporal evolution can be described by an infinite dimensional Hamiltonian system that is integrable. While a self-organization appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing examples of the optical soliton in dielectric fibers and self-organization of turbulence in a toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The manuscript is intended to describe these discoveries more on philosophical basis with some sacrifice on mathematical details so that the idea is conveyed to those in the wide area of sciences. PMID:19145067
Optics assembly for high power laser tools
Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.
2016-06-07
There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.
Operational optical turbulence forecast for the service mode of top-class ground based telescopes
NASA Astrophysics Data System (ADS)
Masciadri, Elena; Lascaux, Franck; Turchi, Alessio; Fini, Luca
2016-07-01
In this contribution we present the most relevant results obtained in the context of a feasibility study (MOSE) undertaken for ESO. The principal aim of the project was to quantify the performances of an atmospherical non-hydrostatical mesoscale model (Astro-Meso-NH code) in forecasting all the main atmospherical parameters relevant for the ground-based astronomical observations and the optical turbulence (CN2 and associated integrated astroclimatic parameters) above Cerro Paranal (site of the VLT) and Cerro Armazones (site of the E-ELT). A detailed analysis on the score of success of the predictive capacities of the system have been carried out for all the astroclimatic as well as for the atmospherical parameters. Considering the excellent results that we obtained, this study proved the opportunity to implement on these two sites an automatic system to be run nightly in an operational configuration to support the scheduling of scientific programs as well as of astronomical facilities (particularly those supported by AO systems) of the VLT and the E-ELT. At the end of 2016 a new project for the implementation of a demonstrator of an operational system to be run on the two ESO's sites will start. The fact that the system can be run simultaneously on the two sites is an ancillary appealing feature of the system. Our team is also responsible for the implementation of a similar automatic system at Mt.Graham, site of the LBT (ALTA Project). Our system/method will permit therefore to make a step ahead in the framework of the Service Mode for new generation telescopes. Among the most exciting achieved results we cite the fact that we proved to be able to forecast CN2 profiles with a vertical resolution as high as 150 m. Such a feature is particularly crucial for all WFAO systems that require such detailed information on the OT vertical stratification on the whole 20 km above the ground. This important achievement tells us that all the WFAO systems can rely on automatic
High speed all optical networks
NASA Technical Reports Server (NTRS)
Chlamtac, Imrich; Ganz, Aura
1990-01-01
An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.
High speed optical tomography for flow visualization
NASA Technical Reports Server (NTRS)
Snyder, Ray; Hesselink, Lambertus
1987-01-01
A novel optical architecture (based on holographic optical elements) for making high speed tomographic measurements is presented. The system is designed for making density or species concentration measurements in a nonsteady fluid or combustion flow. Performance evaluations of the optical system are discussed, and a test phase object was successfully reconstructed using this optical arrangement.
NASA Astrophysics Data System (ADS)
Ghassemlooy, Zabih; Popoola, Wasiu O.; Ahmadi, Vahid; Leitgeb, Erich
In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects.
Implications of turbulence interactions: A path toward addressing very high Reynolds number flows
Zhou, Y
2006-05-15
The classical 'turbulence problem' is narrowed down and redefined for scientific and engineering applications. From an application perspective, accurate computation of large-scale transport of the turbulent flows is needed. In this paper, a scaling analysis that allows for the large-scales of very high Reynolds number turbulent flows - to be handled by the available supercomputers is proposed. Current understanding of turbulence interactions of incompressible turbulence, which forms the foundation of our argument, is reviewed. Furthermore, the data redundancy in the inertial range is demonstrated. Two distinctive interactions, namely, the distance and near-grid interactions, are inspected for large-scale simulations. The distant interactions in the subgrid scales in an inertial range can be effectively modelled by an eddy damping. The near-grid interactions must be carefully incorporated.
Prediction of High-Lift Flows using Turbulent Closure Models
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild
1997-01-01
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.
A high-order immersed boundary method for high-fidelity turbulent combustion simulations
NASA Astrophysics Data System (ADS)
Minamoto, Yuki; Aoki, Kozo; Osawa, Kosuke; Shi, Tuo; Prodan, Alexandru; Tanahashi, Mamoru
2016-11-01
Direct numerical simulations (DNS) have played important roles in the research of turbulent combustion. With the recent advancement in high-performance computing, DNS of slightly complicated configurations such as V-, various jet and swirl flames have been performed, and such DNS will further our understanding on the physics of turbulent combustion. Since these configurations include walls that do not necessarily conform with the preferred mesh coordinates for combustion DNS, most of these simulations use presumed profiles for inflow/near-wall flows as boundary conditions. A high-order immersed boundary method suited for parallel computation is one way to improve these simulations. The present research implements such a boundary technique in a combustion DNS code, and simulations are performed to confirm its accuracy and performance. This work was partly supported by Council for Science, Technology and Innovation, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Innovative Combustion Technology" (Funding agency: JST).
High pressure optical combustion probe
Woodruff, S.D.; Richards, G.A.
1995-06-01
The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.
NASA Astrophysics Data System (ADS)
Li, Kangning; Ma, Jing; Belmonte, Aniceto; Tan, Liying; Yu, Siyuan
2015-12-01
The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed turbulence are studied for a multiple-aperture receiver system. Equal gain-combining (EGC) and selection-combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence under thermal-noise-limited conditions. Bit-error rate (BER) performances for on-off keying-modulated direct detection and outage probabilities are analyzed and compared for SC diversity receptions using analytical results and for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple-aperture receiver system, BER performances and outage probabilities of EGC and SC receiver systems are compared with a single monolithic-aperture receiver system with the same total aperture area (same average total incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are also verified by Monte-Carlo simulations.
Ma, Jing; Li, Kangning; Tan, Liying; Yu, Siyuan; Cao, Yubin
2015-09-01
The performances of satellite-to-ground downlink optical communications over Gamma-Gamma distributed atmospheric turbulence are studied for a coherent detection receiving system with spatial diversity. Maximum ratio combining (MRC) and selection combining (SC) techniques are considered as practical schemes to mitigate the atmospheric turbulence. Bit-error rate (BER) performances for binary phase-shift keying modulated coherent detection and outage probabilities are analyzed and compared for SC diversity using analytical results and for MRC diversity through an approximation method with different numbers of receiving aperture each with the same aperture area. To show the net diversity gain of a multiple aperture receiver system, BER performances and outage probabilities of MRC and SC multiple aperture receiver systems are compared with a single monolithic aperture with the same total aperture area (same total average incident optical power) for satellite-to-ground downlink optical communications. All the numerical results are verified by Monte-Carlo simulations.
Aero-Optical Turbulent Boundary Layer/Shear Layer Experiment On The KC-135 Aircraft Revisited
NASA Astrophysics Data System (ADS)
Craig, James E.; Allen, C.
1985-06-01
This paper examines the aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers. The data present comparisons of observed optical performances with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microseconds temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite-aperture, time-averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q-switched Nd:YAG double-pulsed laser and a holographic camera that recorded the random flow field in a double-pass, double-pulse mode. Aero-dynamic parameters were measured using hot film anemometer probes and a five-hole pressure probe. Each technique is described with its associated theo-retical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered. The results presented represent five flights flown at altitudes from 1.8 km to 10.7 km and at Mach numbers from 0.32 to 0.79. Single-pass phase deviations for the boundary layer were from 0.06 to 0.17 waves (at X = 0.53 ;Am) with piston and tilt components removed. Measured phase deviations for the artificially induced shear flows were from 0.10 to 0.279 waves (at X = 0.53 /um) with piston and tilt components removed. However, when low order aberrations through coma were removed, the remaining deviations were only 0.09 to 0.18 waves. This resulted in a 33 to 250% increase in the Strehl ratio at the 14 cm optical aperture. It was further shown that the low order aberrations corresponded to the longer wavelengths in the random flow, and these waves propagated with a longer characteristic time than the higher order
High-resolution Quantification of Turbulent Mixing in the North Indian Ocean During the Monsoons
2014-09-30
High-resolution quantification of turbulent mixing in the North Indian Ocean during the monsoons Sutanu Sarkar Department of Mechanical and...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE High-resolution Quantification of Turbulent Mixing in the North Indian Ocean During the...the upper ocean surface of the Bay of Bengal. Understanding such processes will help improve the parametrization of momentum and heat fluxes across
Turbulent boundary layer measurements over high-porosity surfaces
NASA Astrophysics Data System (ADS)
Efstathiou, Christoph; Luhar, Mitul
2016-11-01
Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.
High-Reynolds Number Taylor-Couette Turbulence
NASA Astrophysics Data System (ADS)
Grossmann, Siegfried; Lohse, Detlef; Sun, Chao
2016-01-01
Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. One key response of the system is the torque required to retain constant angular velocities, which can be connected to the angular velocity transport through the gap. Whereas the low-Reynolds number regime was well explored in the 1980s and 1990s of the past century, in the fully turbulent regime major research activity developed only in the past decade. In this article, we review this recent progress in our understanding of fully developed Taylor-Couette turbulence from the experimental, numerical, and theoretical points of view. We focus on the parameter dependence of the global torque and on the local flow organization, including velocity profiles and boundary layers. Next, we discuss transitions between different (turbulent) flow states. We also elaborate on the relevance of this system for astrophysical disks (quasi-Keplerian flows). The review ends with a list of challenges for future research on turbulent Taylor-Couette flow.
Hanson, Frank; Lasher, Mark
2010-06-01
We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.
Johnsen, Eric Larsson, Johan Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.
2010-02-20
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen
2009-02-02
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Im, Hong G; Trouve, Arnaud; Rutland, Christopher J; Chen, Jacqueline H
2012-08-13
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
NASA Astrophysics Data System (ADS)
Hillert, W.; Lübken, F.-J.; Lehmacher, G.
1994-12-01
An improved version of a rocket-borne instrument ('TOTAL'), optimized for high resolution measurements of relative density variations, was successfully employed during the DYANA campaign in winter 1990. Both the inertial-convective subrange and the viscous-diffusive subrange of turbulence were observed in the power spectra derived from density fluctuations. An extended spectral model which comprises both subranges has been used to analyse the data. In this paper we present altitude profiles of turbulent parameters, such as turbulent energy dissipation rates ɛ and turbulent diffusion coefficients K, which were derived from a total of eight successfully launched instruments at high (Andoya, 69°N) and middle (Biscarosse, 44°N) latitudes. The limitations of the measurement technique as well as instrumental errors are discussed. The results mainly show small values of ɛ and K throughout the whole campaign period. The turbopause was found at an altitude of 95 ± 3 km.
Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.
1998-09-01
The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.
Vorticity spectra in high Reynolds number anisotropic turbulence
NASA Astrophysics Data System (ADS)
Morris, Scott C.; Foss, John F.
2005-08-01
Assuming a turbulent flow to be homogeneous and isotropic allows for significant theoretical simplification in the description of its motions. The validity of these assumptions, first put forth by Kolmogorov [A. N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers," C. R. Acad. Sci. URSS 30, 301 (1941)], has been the subject of considerable analytical development and extensive research as they are applied to actual flows. The present investigation describes the one-dimensional vorticity spectra of two flow fields: a single stream shear layer and the near surface region of an atmospheric boundary layer. Both flow fields exhibit a power-law region with a slope of -1 in the one-dimensional spectra of the spanwise component of vorticity in the same wave-number range for which the velocity spectra indicated the isotropic behavior. This is in strong disagreement with the isotropic prediction, which does not exhibit a power-law behavior.
Quasi-static magnetohydrodynamic turbulence at high Reynolds number
NASA Astrophysics Data System (ADS)
Delache, A.; Favier, B.; Godeferd, F. S.; Cambon, C.; Bos, W. J. T.
2011-12-01
We analyse the anisotropy of turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, using the quasi-static approximation. In the linear limit, the kinetic energy of velocity components normal to the magnetic field decays faster than the kinetic energy of the component along the magnetic field (Moffatt, 1967). However, numerous numerical studies predict a different behaviour, wherein the final state is characterised by dominant horizontal energy. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations (DNS) and spectral closures based on Eddy Damping Quasi-Normal Markovian (EDQNM) models. The initial temporal evolution of the decaying flow indicates that the turbulence is very similar to the so-called "two-and-a-half-dimensional" flow (Montgomery & Turner, 1982) which explains the observations in numerical studies. EDQNM models confirm this statement at higher Reynolds number.
Drickamer, H.G.
1981-01-01
High pressure experimentation may concern intrinsically high pressure phenomena, or it may be used to gain a better understanding of states or processes at one atmosphere. The latter application is probably more prevelant in condensed matter physics. Under this second rubric one may either use high pressure to perturb various electronic energy levels and from this pressure tuning characterize states or processes, or one can use pressure to change a macroscopic parameter in a controlled way, then measure the effect on some molecular property. In this paper, the pressure tuning aspect is emphasized, with a lesser discussion of macroscopic - molecular relationships. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand modification at one atmosphere. Photochromic crystals change color upon irradiation due to occupation of a metastable ground state. In thermochromic crystals, raising the temperature accomplishes the same results. For a group of molecular crystals (anils) at high pressure, the metastable state can be occupied at room temperature. The relative displacement of the energy levels at high pressure also inhibits the optical process. Effects on luminescence intensity are shown to be consistent. In the area of microscopic - molecular relationships, the effect of viscosity and dielectric properties on rates of non-radiative (thermal) and radiative emission, and on peak energy for luminescence is demonstrated. For systems which can emit from either of two excited states depending on the interaction with the environment, the effect of rigidity of the medium on the rate of rearrangement of the excited state is shown.
The high-order statistics of APG turbulent boundary layers
NASA Astrophysics Data System (ADS)
Maciel, Yvan; Gungor, Ayse G.; Simens, Mark P.; Soria, Julio
2013-11-01
One and two-point statistics are presented from a new direct numerical simulation of an adverse pressure gradient boundary layer, at Reθ = 250 - 2175 , in which the transition to turbulence is triggered by a trip wire which is modeled using the immersed boundary method. Mean velocity results in the attached turbulent region do not show log law profiles. Departure from the law of the wall occurs throughout the inner region. The production and Reynolds stress peaks move to roughly the middle of the boundary layer. The profiles of the uv correlation factor reveal that de-correlation between u and v takes place throughout the boundary layer, but especially near the wall, as the mean velocity defect increases. The non-dimensional stress ratios and quadrant analysis of uv indicate changes to the turbulence structure. The structure parameter is low, similar to equilibrium APG flows and mixing layers in the present flow and seems to be decreasing as the mean velocity defect increases. The statistics of the upper half of the APG flow show resemblance with results for a mixing layer. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.
Turbulence modeling of free shear layers for high-performance aircraft
NASA Technical Reports Server (NTRS)
Sondak, Douglas L.
1993-01-01
The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1994-01-01
The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.
Brown, David M; Juarez, Juan C; Brown, Andrea M
2013-12-01
A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.
High Reynolds number and turbulence effects on aerodynamics and heat transfer in a turbine cascade
NASA Technical Reports Server (NTRS)
Yeh, Frederick C.; Hippensteele, Steven A.; Vanfossen, G. James; Poinsatte, Philip E.; Ameri, Ali
1993-01-01
Experimental data on pressure distribution and heat transfer on a turbine airfoil were obtained over a range of Reynolds numbers from 0.75 to 7.5 x 10 exp 6 and a range of turbulence intensities from 1.8 to about 15 percent. The purpose of this study was to obtain fundamental heat transfer and pressure distribution data over a wide range of high Reynolds numbers and to extend the heat transfer data base to include the range of Reynolds numbers encountered in the Space Shuttle main engine (SSME) turbopump turbines. Specifically, the study aimed to determine (1) the effect of Reynolds number on heat transfer, (2) the effect of upstream turbulence on heat transfer and pressure distribution, and (3) the relationship between heat transfer at high Reynolds numbers and the current data base. The results of this study indicated that Reynolds number and turbulence intensity have a large effect on both the transition from laminar to turbulent flow and the resulting heat transfer. For a given turbulence intensity, heat transfer for all Reynolds numbers at the leading edge can be correlated with the Frossling number developed for lower Reynolds numbers. For a given turbulence intensity, heat transfer for the airfoil surfaces downstream of the leading edge can be approximately correlated with a dimensionless parameter. Comparison of the experimental results were also made with a numerical solution from a two-dimensional Navier-Stokes code.
Optical design of a high power fiber optic coupler
English, R.E. Jr.; Halpin, J.M.; House, F.A.; Paris, R.D.
1991-06-19
Fiber optic beam delivery systems are replacing conventional mirror delivery systems for many reasons (e.g., system flexibility and redundancy, stability, and ease of alignment). Commercial products are available that use of fiber optic delivery for laser surgery and materials processing. Also, pump light of dye lasers can be delivered by optical fibers. Many laser wavelengths have been transported via optical fibers; high power delivery has been reported for argon, Nd:YAG, and excimer. We have been developing fiber optic beam delivery systems for copper vapor laser light; many of the fundamental properties of these systems are applicable to other high power delivery applications. A key element of fiber optic beam delivery systems is the coupling of laser light into the optical fiber. For our application this optical coupler must be robust to a range of operating parameters and laser characteristics. We have access to a high power copper vapor laser beam that is generated by a master oscillator/power amplifier (MOPA) chain comprised of three amplifiers. The light has a pulse width of 40--50 nsec with a repetition rate of about 4 kHz. The average power (nominal) to be injected into a fiber is 200 W. (We will refer to average power in this paper.) In practice, the laser beam's direction and collimation change with time. These characteristics plus other mechanical and operational constraints make it difficult for our coupler to be opto-mechanically referenced to the laser beam. We describe specifications, design, and operation of an optical system that couples a high-power copper vapor laser beam into a large core, multimode fiber. The approach used and observations reported are applicable to fiber optic delivery applications. 6 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin
2016-11-01
Three-dimensional PIV and PTV provides the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other commercialized 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (namely DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. Here we will report our latest work on improving DIH-PTV method through an integration of deconvolution algorithm, iterative removal method and GPU computation to overcome some of abovementioned limitations. We will also present the application of our DIH-PTV for measurements in the following sample cases: (i) flows in bio-filmed microchannel with 50-60 μm vector spacing within sampling volumes of 1 mm (streamwise) x 1 mm (wall-normal) x 1 mm (spanwise); (ii) turbulent flows over smooth and rough surfaces (1.1 mm vector spacing within 15 mm x 50 mm x 15 mm); (iii) 3D distribution and kinematics of inertial particles in turbulent air duct flow.
Adaptive optics for high data rate satellite to ground laser link
NASA Astrophysics Data System (ADS)
Védrenne, N.; Conan, J.-M.; Petit, C.; Michau, V.
2016-03-01
To match the increasing need for high data rate between high altitude platforms and ground free space optics links are investigated. Part of the growing interest is motivated by the possibility to reap the benefits of the technological maturity of the fibered components. This requires the injection of the received wave into a single mode fiber. To reduce injection losses on the ground terminal the use of adaptive optics (AO) is investigated. The AO system must work for a wide variety of turbulence conditions: by daytime and nighttime, at potentially very low elevations for LEO satellites, with localizations of optical ground stations that could be unfavorable regarding atmospheric turbulence. Contrary to astronomy where the quantity optimized is the average Strehl ratio, for free space communications statistical and temporal characteristics of the injection losses must be taken into account. The consequences of a partial correction are investigated here by numerical simulation for both GEO and LEO to ground links.
Toselli, Italo; Korotkova, Olga
2015-06-01
We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.
Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.
2011-01-01
Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.
Time-averaged Turbulent Flow Characteristics over a Highly Spatially Heterogeneous Gravel-Bed
NASA Astrophysics Data System (ADS)
Sarkar, Sankar
2016-10-01
The present study focuses on the time-averaged turbulence characteristics over a highly spatially-heterogeneous gravel-bed. The timeaveraged streamwise velocity, Reynolds shear and normal stresses, turbulent kinetic energy, higher-order moments of velocity fluctuations, length scales, and the turbulent bursting were measured over a gravel-bed with an array of larger gravels. It was observed that the turbulence characteristics do not vary significantly above the crest level of the array as compared to those below the array. The nondimensional streamwise velocity decreases considerably with a decrease in depth below the array. Below the array, the Reynolds shear stress (RSS) deviates from the gravity- law of RSS distributions. Turbulence intensities reduce below the crest level of the gravel-bed. The third-order moments of velocity fluctuations increase below the crest level of the gravel-bed and give a clear indication of sweeps as the predominating event which were further verified with the quadrant analysis plots. The turbulent length scales values change significantly below the crest level of the gravel-bed.
NASA Astrophysics Data System (ADS)
Molin, S.; Dolfi, D.; Doisy, M.; Seraudie, A.; Arnal, D.; Coustols, E.; Mandle, J.
2010-09-01
We demonstrate the feasibility of detection of the nature (laminar/turbulent/transitional) of the aerodynamic boundary layer of a profile of a wing aircraft model, using a Distributed FeedBack (DFB) Fiber Laser as optical fiber sensor. Signals to be measured are pressure variations : ΔP~1Pa at few 100Hz in the laminar region and ΔP~10Pa at few kHz in the turbulent region. Intermittent regime occurring in-between these two regions (transition) is characterized by turbulent bursts in laminar flow. Relevant pressure variations have been obtained in a low-speed research-type wind tunnel of ONERA Centre of Toulouse. In order to validate the measurements, a "classical" hot film sensor, the application and use of which have been formerly developed and validated by ONERA, has been placed at the neighborhood of the fiber sensor. The hot film allows measurement of the boundary layer wall shear stress whose characteristics are a well known signature of the boundary layer nature (laminar, intermittent or turbulent) [1]. In the three regimes, signals from the fiber sensor and the hot film sensor are strongly correlated, which allows us to conclude that a DFB fiber laser sensor is a good candidate for detecting the boundary layer nature, and thus for future integration in an aircraft wing. The work presented here has been realized within the framework of "Clean Sky", a Joint Technology Initiative of the European Union.
NASA Astrophysics Data System (ADS)
Wang, Yi; Du, Fan; Ma, Jing; Tan, Liying
2014-12-01
A novel theoretical model of a circular polarization shift keying (CPolSK) system for free space optical links through an atmospheric turbulence channel, is proposed. Intensity scintillation and phase fluctuation induced in atmospheric turbulence, from weak to strong levels, are specifically researched with respect to circular polarization control error caused by the system design. We derive closed form expressions of the bit error rate (BER) and outage probability for evaluating the BER performance and communication interruption in the Gamma-Gamma distributed channel model. Simulation results show that atmospheric turbulence and circular polarization control error have significant effects on the BER performance and interruption of communication in the CPolSK system. The deterioration in BER performance, caused by intensity scintillation and phase fluctuation, is augmented by the power penalty conditioned by the circular polarization control error. This consequently adds to the demand for emissive power from the CPolSK system. Furthermore, we demonstrate that controlling the circular polarization control error below 8° as well as the normalized threshold within 8 dB, 9 dB and 10 dB in turbulent scenarios from weak to strong levels can significantly reduce the probability of communication interruption occurring. This study provides reference material for further design of the CPolSK system.
Boynton-Jarrett, Renée; Hair, Elizabeth; Zuckerman, Barry
2013-10-01
Turbulent social environments are associated with health and developmental risk, yet mechanisms have been understudied. Guided by a life course framework and stress theory, this study examined the association between turbulent life transitions (including frequent residential mobility, school transitions, family structure disruptions, and homelessness) and exposure to violence during adolescence and high school completion, mental health, and health risk behaviors in young adulthood. Participants (n = 4834) from the U.S. National Longitudinal Survey of Youth, 1997 cohort were followed prospectively from age 12-14 years for 10 years. We used structural equation models to investigate pathways between turbulence and cumulative exposure to violence (CEV), and high school completion, mental health, and health risk behaviors, while accounting for early life socio-demographics, family processes, and individual characteristics. Results indicated that turbulence index was associated with cumulative exposure to violence in adolescence. Both turbulence index and cumulative exposure to violence were positively associated with higher health risk behavior, poorer mental health, and inversely associated with high school completion. These findings highlight the importance of considering the cumulative impact of turbulent and adverse social environments when developing interventions to optimize health and developmental trajectory for adolescents transitioning into adulthood.
High-beta turbulence in two-dimensional magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1975-01-01
Incompressible turbulent flows were investigated in the framework of ideal magnetohydrodynamics. Equilibrium canonical distributions are determined in a phase whose coordinates are the real and imaginary parts of the Fourier coefficients for the field variables. The magnetic field and fluid velocity have variable x and y components, and all field quantities are independent of z. Three constants of the motion are found which survive the truncation in Fourier space and permit the construction of canonical distributions with three independent temperatures. Spectral densities are calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long wavelength, self-generated, magnetic fields ("magnetic islands"). In the presence of finite dissipation, energy cascades to higher wave numbers can be accompanied by vector potential cascades to lower wave numbers, in much the same way that in the fluid dynamic case, energy cascades to lower wave numbers accompany entropy cascades to higher wave numbers.
Binary tree models of high-Reynolds-number turbulence
NASA Astrophysics Data System (ADS)
Aurell, Erik; Dormy, Emmanuel; Frick, Peter
1997-08-01
We consider hierarchical models for turbulence, that are simple generalizations of the standard Gledzer-Ohkitani-Yamada shell models (E. B. Gledzer, Dokl, Akad. Nauk SSSR 209, 5 (1973) [Sov. Phys. Dokl. 18, 216 (1973)]; M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn. 56, 4210 (1987)). The density of degrees of freedom is constant in wave-number space. Looking only at this behavior and at the quadratic invariants in the inviscid unforced limit, the models can be thought of as systems living naturally in one spatial dimension, but being qualitatively similar to hydrodynamics in two (2D) and three dimensions. We investigated cascade phenomena and intermittency in the different cases. We observed and studied a forward cascade of enstrophy in the 2D case.
Studies of the structure of turbulence by high-resolution simulation and theory
Chen, Shiyi; Kraichnan, R.; Zemach, C.
1998-12-31
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a study of structures of fluid turbulence using high-resolution direct numerical simulation and the theory development based on observations and measurements on the numerical simulations. Significant advances have been made in the study of fundamental fluid turbulence through numerical and theoretical work. The research has been focussed on the following areas: (1) The dynamics of advected passive scalar: Using the equations of motion, we analytically predict the anomalous scaling exponents for a passive scalar advected by fluid turbulence. The exponents are verified through large-scale simulation with 8192{sup 2} mesh points. This is the first case in which anomalous scaling exponents for a turbulence problem have been deduced from the equations of motion. (2) The inertial range scaling in three-dimensional (3D) turbulence: High-resolution direct numerical simulations of 3D Navier-Stokes turbulence with normal viscosity and hyperviscosity are carried out to study the inertial-range statistics. It is found that both the scalings and the probability distribution functions are independent of the dissipation mechanism, but the near-dissipation-range fluctuations show significant structural differences; (3) Statistics and structures of pressure field, vorticity, and dissipation in three-dimensional incompressible isotropic turbulence have been studied. The statistical relations among pressure, vorticity, dissipation, and kinetic energy are investigated using a conditional averaging process; and (4) The refined similarity hypothesis: We studied the conditionally averaged velocity increments as a function of the locally averaged dissipation. Our results provide direct evidence in support of the refined similarity hypotheses.
Gilles, L; Ellerbroek, B L
2010-11-01
Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.
2017-01-01
Atmospheric turbulence is a major impairment that degrades the performance of free space optical (FSO) communication systems. Spatial modulation (SM) with receive spatial diversity is considered as a powerful technique to mitigate the fading effect induced by atmospheric turbulence. In this paper, the performance of free space optical spatial modulation (FSO-SM) system under Gamma-Gamma atmospheric turbulence is presented. We studied the Average Bit Error Rate (ABER) for the system by employing spatial diversity combiners such Maximum Ratio Combining (MRC) and Equal Gain Combining (EGC) at the receiving end. In particular, we provide a theoretical framework for the system error by deriving Average Pairwise Error Probability (APEP) expression using a generalized infinite power series expansion approach and union bounding technique is applied to obtain the ABER for each combiner. Based on this study, it was found that spatial diversity combiner significantly improved the system error rate where MRC outperforms the EGC. The performance of this system is also compared with other well established diversity combiner systems. The proposed system performance is further improved by convolutional coding technique and our analysis confirmed that the system performance of MRC coded system is enhanced by approximately 20 dB while EGC falls within 17 dB.
A high-fidelity method to analyze perturbation evolution in turbulent flows
Unnikrishnan, S. Gaitonde, Datta V.
2016-04-01
terms or turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.
The high-energy-density counterpropagating shear experiment and turbulent self-heating
Doss, F. W.; Fincke, J. R.; Loomis, E. N.; Welser-Sherrill, L.; Flippo, K. A.
2013-12-06
The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.
The evolution of a wave packet to turbulent spot in the boundary layer at high speeds
NASA Astrophysics Data System (ADS)
Sidorenko, A. A.; Polivanov, P. A.; Gromyko, Y. V.; Bountin, D. A.; Maslov, A. A.
2016-10-01
Hypersonic boundary layer stability and transition were studied experimentally for the test cases of 7 deg half-angle sharp and blunted cones. The experiments were performed for M=6. Wall pressure pulsations were recorded synchronously with high speed Schlieren visualization. The combined data processing algorithm for coupling of unsteady pressure sensors with high-speed Schlieren images is proposed. Analysis of the wall pressure pulsations evolution reveals that the turbulent spot may arise in different ways. It was found that for the blunted model the role of the second mode in origination of the turbulent spot is more evident.
Improved detection of atmospheric turbulence with SLODAR.
Goodwin, Michael; Jenkins, Charles; Lambert, Andrew
2007-10-29
We discuss several improvements in the detection of atmospheric turbulence using SLOpe Detection And Ranging (SLODAR). Frequently, SLODAR observations have shown strong ground-layer turbulence, which is beneficial to adaptive optics. We show that current methods which neglect atmospheric propagation effects can underestimate the strength of high altitude turbulence by up to ~ 30%. We show that mirror and dome seeing turbulence can be a significant fraction of measured ground-layer turbulence, some cases up to ~ 50%. We also demonstrate a novel technique to improve the nominal height resolution, by a factor of 3, called Generalized SLODAR. This can be applied when sampling high-altitude turbulence, where the nominal height resolution is the poorest, or for resolving details in the important ground-layer.
Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels
Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher
2014-01-24
This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.
Extending the restricted nonlinear model for wall-turbulence to high Reynolds numbers
NASA Astrophysics Data System (ADS)
Bretheim, Joel; Meneveau, Charles; Gayme, Dennice
2016-11-01
The restricted nonlinear (RNL) model for wall-turbulence is motivated by the long-observed streamwise-coherent structures that play an important role in these flows. The RNL equations, derived by restricting the convective term in the Navier-Stokes equations, provide a computationally efficient approach due to fewer degrees of freedom in the underlying dynamics. Recent simulations of the RNL system have been conducted for turbulent channel flows at low Reynolds numbers (Re), yielding insights into the dynamical mechanisms and statistics of wall-turbulence. Despite the computational advantages of the RNL system, simulations at high Re remain out-of-reach. We present a new Large Eddy Simulation (LES) framework for the RNL system, enabling its use in engineering applications at high Re such as turbulent flows through wind farms. Initial results demonstrate that, as observed at moderate Re, restricting the range of streamwise varying structures present in the simulation (i.e., limiting the band of x Fourier components or kx modes) significantly affects the accuracy of the statistics. Our results show that only a few well-chosen kx modes lead to RNL turbulence with accurate statistics, including the mean profile and the well-known inner and outer peaks in energy spectra. This work is supported by NSF (WindInspire OISE-1243482).
High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume
NASA Astrophysics Data System (ADS)
Crimaldi, J. P.; Koseff, J. R.
Two techniques are described for measuring the scalar structure of turbulent flows. A planar laser-induced fluorescence technique is used to make highly resolved measurements of scalar spatial structure, and a single-point laser-induced fluorescence probe is used to make highly resolved measurements of scalar temporal structure. The techniques are used to measure the spatial and temporal structure of an odor plume released from a low-momentum, bed-level source in a turbulent boundary layer. For the experimental setup used in this study, a spatial resolution of 150μm and a temporal resolution of 1,000Hz are obtained. The results show a wide range of turbulent structures in rich detail; the nature of the structure varies significantly in different regions of the plume.
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.
High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows
NASA Astrophysics Data System (ADS)
Coriton, Bruno; Steinberg, Adam M.; Frank, Jonathan H.
2014-06-01
High-speed tomographic particle image velocimetry (TPIV) is demonstrated in turbulent reactive flows at acquisition rates ranging from 10 to 16 kHz. The 10-kHz TPIV measurements are combined with planar laser-induced fluorescence (PLIF) imaging of OH to mark the high-temperature reaction zone of the flame. Simultaneous TPIV/OH PLIF measurements are applied to the stabilization region of a weakly turbulent lifted dimethyl ether (DME)/air jet flame ( Re D = 7,600) and the mixing layer of a turbulent partially premixed DME/air jet flame ( Re D = 29,300). In the lifted jet flame, vortical structures exhibit time-dependent morphological changes and eventually dissipate as they approach the flame. In the near field of the turbulent jet flame, dynamics of localized extinction are captured as coherent structures with high compressive strain rates interact with the reaction zone and subsequently break apart. The principal axis of compressive strain has a strong preferential orientation at 45° with respect to the jet axis. The three-dimensional velocity field measurements are used to evaluate biases in two-dimensional (2D) measurements of compressive strain rates in a turbulent jet flame. The biases in the 2D measurements primarily stem from out-of-plane orientation of the principal axis of compressive strain. Comparisons with a constant density turbulent non-reactive jet ( Re D = 22,600) show that the jet flame has larger coherent structures that are confined near the reaction zone. Data from the non-reactive jet are also used to evaluate effects of noise, bias, and spatial averaging on measurements of the velocity and velocity gradients.
NASA Astrophysics Data System (ADS)
Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.
2014-12-01
For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.
High-resolution 2D3V simulations of forced hybrid-kinetic turbulence
NASA Astrophysics Data System (ADS)
Cerri, Silvio Sergio; Califano, Francesco; Rincon, Francois; Told, Daniel; Jenko, Frank; Pegoraro, Francesco
2016-10-01
The understanding of the kinetic processes at play in plasma turbulence is a frontier problem in plasma physics and among the topics currently of most interest in space plasma research. Here we investigate the properties of turbulence from the end of the magnetohydrodynamic (MHD) cascade to scales well below the ion gyroradius (i.e., the so-called ``dissipation'' or ``dispersion'' range) by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in a 2D3V phase-space (two real-space and three velocity-space dimensions). Different values of the plasma beta parameter typical of the solar wind (SW) are investigated. Several aspects of turbulence at small-scales emerging from the simulations are presented and discussed. Even within the limitations of the hybrid approach in 2D3V, a reasonable agreement with SW observations and with theory is found. Finally, we identify possible implications and questions related to SW turbulence which arise from this study. This research has been funded by European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No.277870 and by Euratom research and training programme 2014-2018. Simulations were performed on Fermi (CINECA, IT) and Hydra (MPCDF, DE).
High Reynolds number rough-wall turbulent boundary layers
NASA Astrophysics Data System (ADS)
Squire, Dougal; Morrill-Winter, Caleb; Schultz, Michael; Hutchins, Nicholas; Klewicki, Joseph; Marusic, Ivan
2015-11-01
In his review of turbulent flows over rough-walls, Jimenez (2004) concludes that there are gaps in the current database of relevant experiments. The author calls for measurements in which δ / k and k+ are both large--low blockage, fully-rough flow--and where δ / k is large and k+ is small--low blockage, transitionally-rough flow--to help clarify ongoing questions regarding the physics of rough-wall-bounded flows. The present contribution details results from a large set of measurements carried out above sandpaper in the Melbourne Wind Tunnel. The campaign spans 45 rough-wall measurements using single and multiple-wire hot-wire anemometry sensors and particle image velocimetry. A floating element drag balance is employed to obtain the rough-wall skin friction force. The data span 20
Variational multiscale turbulence modelling in a high order spectral element method
Wasberg, Carl Erik Gjesdal, Thor Reif, Bjorn Anders Pettersson Andreassen, Oyvind
2009-10-20
In the variational multiscale (VMS) approach to large eddy simulation (LES), the governing equations are projected onto an a priori scale partitioning of the solution space. This gives an alternative framework for designing and analyzing turbulence models. We describe the implementation of the VMS LES methodology in a high order spectral element method with a nodal basis, and discuss the properties of the proposed scale partitioning. The spectral element code is first validated by doing a direct numerical simulation of fully developed plane channel flow. The performance of the turbulence model is then assessed by several coarse grid simulations of channel flow at different Reynolds numbers.
Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications
NASA Technical Reports Server (NTRS)
Nichols, Robert H.; Tramel, Robert W.; Rahman, Zia-Ur
2006-01-01
An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2.
Blob identification algorithms applied to laser speckle to characterize optical turbulence
NASA Astrophysics Data System (ADS)
Cauble, Galen D.; Wayne, David T.
2015-09-01
Laser beam speckle resulting from atmospheric turbulence contains information about the propagation channel. The number and size of the speckle cells can be used to infer the spatial coherence and thus the Cn2 along a path. The challenge with this technique is the rapidly evolving speckle pattern and non-uniformity of the speckle cells. In this paper we investigate modern blob counting techniques used in biology, microscopy, and medical imaging. These methods are then applied to turbulent speckle images to estimate the number and size of the speckle cells. Speckle theory is reviewed for different beam types and different regimes of turbulence. Algorithms are generated to calculate path Cn2 from speckle information and path geometry. The algorithms are tested on speckle images from experimental data collected over a turbulent 1km path and compared to Cn2 measurements collected in parallel.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie
2014-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate in conditions of low Reynolds number and a wide range in incidence resulting from rotational speed variation. A comprehensive data set obtained in a linear cascade which includes the effects of Reynolds number, free-stream turbulence and incidence is now available and this paper concerns itself with the post-diction of boundary layer transitionseparation, blade pressure loading and total pressure loss pertaining to the conditions set for measurements in that data set. The distinction between the state of the measured data presented here and the earlier publications is the addition of high free-stream turbulence intensity. We will, for the purposes of the numerical post-diction, present some of the higher free stream turbulence data in this paper but defer a comprehensive presentation and treatment of the measured data will be done elsewhere.
Turbulent Potential Model Predictions of High Re Flow Around the S809 Airfoil
NASA Astrophysics Data System (ADS)
Develder, Nathaniel
2015-11-01
Utility scale wind turbines operate at a range of chord-based Reynolds numbers often between 106 and 107. Reynolds Averaged Navier-Stokes (RANS) models offer computational efficiency at high Reynolds numbers. As a model that avoids the eddy-viscosity hypothesis, the Turbulent Potential Model, a time-varying RANS model, is identified as an appropriate balance between computational resource usage and physical fidelity. Development of the Turbulent Potential Model is discussed. Comparisons are made between Turbulent Potential Model results and Moser's Direct Numerical Simulation Reτ =590 channel flow. S809 airfoil simulations at α = 0 .02° , α = 4 .03° , α = 10 .03° , and α = 20 .11° are compared to results from the k - ωSST , Spalart-Allmaras, and v2 - f models, as well as wind tunnel results from Ohio State University.
NASA Astrophysics Data System (ADS)
Thompson, D. S.
1980-05-01
The full Navier-Stokes equations for incompressible turbulent flow must be solved to accurately represent all flow phenomena which occur in a high Reynolds number incompressible flow. A two layer algebraic eddy viscosity turbulence model is used to represent the Reynolds stress in the primitive variable formulation. The development of the boundary-fitted coordinate systems makes the numerical solution of these equations feasible for arbitrarily shaped bodies. The nondimensional time averaged Navier-Stokes equations, including the turbulence mode, are represented by finite difference approximations in the transformed plane. The resulting coupled system of nonlinear algebraic equations is solved using a point successive over relaxation iteration. The test case considered was a NACA 64A010 airfoil section at an angle of attack of two degrees and a Reynolds number of 2,000,000.
NASA Astrophysics Data System (ADS)
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
Vortex Clusters and Their Time Evolution in High- Reynolds-Number Turbulence
NASA Astrophysics Data System (ADS)
Ishihara, Takashi; Uno, Atsuya; Morishita, Koji; Yokokawa, Mitsuo; Kaneda, Yukio
2016-11-01
Time series data (with a time interval of 4τη) obtained by high-resolution direct numerical simulations (DNSs) of forced incompressible turbulence in a periodic box, with a maximum of 122883 grid points and Taylor micro-scale Reynolds numbers Rλ up to 2300, are used to study the vortex dynamics in high Reynolds number (Re) turbulent flows. Here τη is the Kolmogorov time scale. A visualization method to handle such large-scale data was developed for this study. In the high Re turbulence generated by the DNS, we observed the dynamics of tube-like vortex clusters of various sizes, which are constructed by strong micro vortices. For example, we observed the generation of the tube-like clusters of various sizes and the processes of their merging and breakdown. We also observed layer-like vortex clusters of the order of the integral length scale forming shear layers in the high Re turbulence. This research used computational resources of the K computer and other computers of the HPCI system provided by the AICS and the ITC of Nagoya University through the HPCI System Research Project (Project ID:hp150174, hp160102).
NASA Technical Reports Server (NTRS)
Rostand, Philippe
1988-01-01
The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practical way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.
RELATIVISTIC ACCRETION MEDIATED BY TURBULENT COMPTONIZATION
Socrates, Aristotle E-mail: socrates@astro.princeton.ed
2010-08-10
Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.
High-Temperature Optical Window Design
NASA Technical Reports Server (NTRS)
Roeloffs, Norman; Taranto, Nick
1995-01-01
A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.
A controlled laboratory environment to study EO signal degradation due to underwater turbulence
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley; Liu, Guigen; Han, Ming; Kanaev, Andrey; Restaino, Sergio
2015-05-01
Temperature microstructure in the ocean can lead to localized changes in the index of refraction and can distort underwater electro-optical (EO) signal transmission. A similar phenomenon is well-known from atmospheric optics and generally referred to as "optical turbulence". Though turbulent fluctuations in the ocean distort EO signal transmission and can impact various underwater applications, from diver visibility to active and passive remote sensing, there have been few studies investigating the subject. To provide a test bed for the study of impacts from turbulent flows on underwater EO signal transmission, and to examine and mitigate turbulence effects, we set up a laboratory turbulence environment allowing the variation of turbulence intensity. Convective turbulence is generated in a large Rayleigh- Bénard tank and the turbulent flow is quantified using high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The turbulence measurements are complemented by computational fluid dynamics simulations of convective turbulence emulating the tank environment. These numerical simulations supplement the sparse laboratory measurements. The numerical data compared well to the laboratory data and both conformed to the Kolmogorov spectrum of turbulence and the Batchelor spectrum of temperature fluctuations. The controlled turbulence environment can be used to assess optical image degradation in the tank in relation to turbulence intensity, as well as to apply adaptive optics techniques. This innovative approach that combines optical techniques, turbulence measurements and numerical simulations can help understand how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as advance optical techniques to probe oceanic processes.
Maunz, Peter Lukas Wilhelm
2016-01-26
The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.
Bulk Comptonization by turbulence in accretion discs
NASA Astrophysics Data System (ADS)
Kaufman, J.; Blaes, O. M.
2016-06-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.
Wang, Yao; Basu, Sukanta
2016-05-15
In this Letter, an artificial neural network (ANN) approach is proposed for the estimation of optical turbulence (Cn2) in the atmospheric surface layer. Five routinely available meteorological variables are used as the inputs. Observed Cn2 data near the Mauna Loa Observatory, Hawaii are utilized for validation. The proposed approach has demonstrated its prowess by capturing the temporal evolution of Cn2 remarkably well. More interestingly, this ANN approach is found to outperform a widely used similarity theory-based conventional formulation for all the prevalent atmospheric conditions (including strongly stratified conditions).
An investigation of small scales of turbulence in a boundary layer at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Wallace, James M.; Ong, L.; Balint, J.-L.
1993-01-01
The assumption that turbulence at large wave-numbers is isotropic and has universal spectral characteristics which are independent of the flow geometry, at least for high Reynolds numbers, has been a cornerstone of closure theories as well as of the most promising recent development in the effort to predict turbulent flows, viz. large eddy simulations. This hypothesis was first advanced by Kolmogorov based on the supposition that turbulent kinetic energy cascades down the scales (up the wave-numbers) of turbulence and that, if the number of these cascade steps is sufficiently large (i.e. the wave-number range is large), then the effects of anisotropies at the large scales are lost in the energy transfer process. Experimental attempts were repeatedly made to verify this fundamental assumption. However, Van Atta has recently suggested that an examination of the scalar and velocity gradient fields is necessary to definitively verify this hypothesis or prove it to be unfounded. Of course, this must be carried out in a flow with a sufficiently high Reynolds number to provide the necessary separation of scales in order unambiguously to provide the possibility of local isotropy at large wave-numbers. An opportunity to use our 12-sensor hot-wire probe to address this issue directly was made available at the 80'x120' wind tunnel at the NASA Ames Research Center, which is normally used for full-scale aircraft tests. An initial report on this high Reynolds number experiment and progress toward its evaluation is presented.
Coherent Detection of High-Rate Optical PPM Signals
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Fernandez, Michela Munoz
2006-01-01
A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-15
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its
NASA Astrophysics Data System (ADS)
Movahed, Pooya
High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments. To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores
NASA Astrophysics Data System (ADS)
Sprung, D.; Sucher, E.; Ramkilowan, A.; Griffith, D. J.
2014-10-01
Optical turbulence represented by the structure function parameter of the refractive index Cn 2 is a relevant parameter for the performance of electro-optical systems and characterization of the atmospheric influence on imaging. It was investigated during a field trial above an Highveld grassland in the atmospheric surface layer at the Rietvlei Nature Reserve close to Pretoria in South Africa from 18th June to 30th June 2013. This campaign was performed to compare different measurement techniques analyzing the diurnal formation of the vertical distribution of optical turbulence up to a height of 16 m above ground. The chosen time period was characterized by a pronounced diurnal cycle of the meteorological conditions, i.e. low variations from day to day. Ultra sonic anemometers were used to measure high frequency time series (50 Hz) of temperature at single points. From the statistical analysis of these time series Cn 2 was derived. Three instruments were mounted at a portable mast in the center of slant path measurements over a horizontal distance of 1000 m using large aperture scintillometers (Boundary layer scintillometer BLS 900). Averaging over a time period of 5 minutes, the results of both methods are compared. The agreement in the results of optical turbulence is quite good. Discrepancies and agreement are analyzed with respect to the atmospheric stability and other meteorological parameters. Lowest values of Cn 2 at 4.6 m above ground amount to about 8*10-17 m-2/3, daily maxima to 6*10-13 m-2/3. Additional to the nearly constant meteorological conditions in the diurnal cycle, the uniformity of the terrain let the results of this measurement campaign an ideal data set for investigating methodological questions regarding a comparison of single point measurements with integrated measurements over a horizontal distance. Four stability regimes were identified in the diurnal cycle and investigated. These are convective conditions during the day, neutral
High spatial range velocity measurements in a high Reynolds number turbulent boundary layer
NASA Astrophysics Data System (ADS)
de Silva, C. M.; Gnanamanickam, E. P.; Atkinson, C.; Buchmann, N. A.; Hutchins, N.; Soria, J.; Marusic, I.
2014-02-01
Here, we detail and analyse a multi-resolution particle image velocity measurement that resolves the wide range of scales prevalent in a zero pressure gradient turbulent boundary layer at high Reynolds numbers (up to Reτ ≈ 20 000). A unique configuration is utilised, where an array of eight high resolution cameras at two magnification levels are used simultaneously to obtain a large field of view, while still resolving the smaller scales prevalent in the flow. Additionally, a highly magnified field of view targeted at the near wall region is employed to capture the viscous sublayer and logarithmic region, with a spatial resolution of a few viscous length scales. Flow statistics from these measurements show good agreement with prior, well resolved hot-wire anemometry measurements. Analysis shows that the instantaneous wall shear stress can be reliably computed, which is historically known to be challenging in boundary layers. A statistical assessment of the wall shear stress shows good agreement with existing correlations, prior experimental and direct numerical simulation data, extending this view to much higher Reynolds numbers. Furthermore, conditional analysis using multiple magnification levels is detailed, to study near-wall events associated with high skin friction fluctuations and their associated overlaying structures in the log region. Results definitively show that the passage of very large-scale positive (or negative) velocity fluctuations are associated with increased (or reduced) small-scale variance in wall shear stress fluctuations.
Turbulence patterns and neutrino flavor transitions in high-resolution supernova models
Borriello, Enrico; Mirizzi, Alessandro; Chakraborty, Sovan; Janka, Hans-Thomas; Lisi, Eligio E-mail: sovan@mppmu.mpg.de E-mail: eligio.lisi@ba.infn.it
2014-11-01
During the shock-wave propagation in a core-collapse supernova (SN), matter turbulence may affect neutrino flavor conversion probabilities. Such effects have been usually studied by adding parametrized small-scale random fluctuations (with arbitrary amplitude) on top of coarse, spherically symmetric matter density profiles. Recently, however, two-dimensional (2D) SN models have reached a space resolution high enough to directly trace anisotropic density profiles, down to scales smaller than the typical neutrino oscillation length. In this context, we analyze the statistical properties of a large set of SN matter density profiles obtained in a high-resolution 2D simulation, focusing on a post-bounce time (2 s) suited to study shock-wave effects on neutrino propagation on scales as small as O(100) km and possibly below. We clearly find the imprint of a broken (Kolmogorov-Kraichnan) power-law structure, as generically expected in 2D turbulence spectra. We then compute the flavor evolution of SN neutrinos along representative realizations of the turbulent matter density profiles, and observe no or modest damping of the neutrino crossing probabilities on their way through the shock wave. In order to check the effect of possibly unresolved fluctuations at scales below O(100) km, we also apply a randomization procedure anchored to the power spectrum calculated from the simulation, and find consistent results within ± 1σ fluctuations. These results show the importance of anchoring turbulence effects on SN neutrinos to realistic, fine-grained SN models.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.
2014-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.
2015-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.
Induction system effects on small-scale turbulence in a high-speed diesel engine
Catania, A.E.; Mittica, A.
1987-10-01
The influence of the induction system on small-scale turbulence in a high-speed, automotive diesel engine was investigated under variable swirl conditions. The induction system was made up of two equiverse swirl tangential ducts, and valves of the same size and lift. Variable swirl conditions were obtained by keeping one of the inlet valves either closed or functioning, and by changing engine speed. The investigation was carried out for two induction system configurations: with both ducts operating and with only one of them operating. Two different engine speeds were considered, one relatively low (1600 rpm) and the other quite high (3000 rpm), the latter being the highest speed at which engine turbulence has been measured up to now. Cycle-resolved hot-wire anemometry measurements of air velocity were performed throughout the induction and compression strokes, under motored conditions, along a radial direction at an axial level that was virtually in the middle of the combustion chamber at top dead center. The velocity data were analyzed using the nonstationary time-averaging procedure previously developed by the authors. Correlation and spectral analysis of the small-scale turbulence so determined was also performed. The turbulence intensity and its degree of nonhomogeneity and anisotropy were sensibly influenced by the variable swirl conditions, depending on both the intake system configuration and engine speed.
Yura, Harold T; Fields, Renny A
2011-06-20
Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.
Heat transfer with very high free-stream turbulence and streamwise vortices
NASA Technical Reports Server (NTRS)
Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne
1986-01-01
Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.
Self-similar decay of high Reynolds number Taylor-Couette turbulence
NASA Astrophysics Data System (ADS)
Verschoof, Ruben A.; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2016-10-01
We study the decay of high-Reynolds-number Taylor-Couette turbulence, i.e., the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder (Re i=2 ×106 , the outer cylinder is at rest) is stopped within 12 s, thus fully removing the energy input to the system. Using a combination of laser Doppler anemometry and particle image velocimetry measurements, six decay decades of the kinetic energy could be captured. First, in the absence of cylinder rotation, the flow-velocity during the decay does not develop any height dependence in contrast to the well-known Taylor vortex state. Second, the radial profile of the azimuthal velocity is found to be self-similar. Nonetheless, the decay of this wall-bounded inhomogeneous turbulent flow does not follow a strict power law as for decaying turbulent homogeneous isotropic flows, but it is faster, due to the strong viscous drag applied by the bounding walls. We theoretically describe the decay in a quantitative way by taking the effects of additional friction at the walls into account.
Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose
2014-12-01
This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.
Particle-turbulence-acoustic interactions in high-speed free-shear flows
NASA Astrophysics Data System (ADS)
Shallcross, Gregory; Buchta, David; Capecelatro, Jesse
2016-11-01
Experimental studies have shown that the injection of micro-water droplets in turbulent flows can be used to reduce the intensity of near-field pressure fluctuations. In this study, direct numerical simulation (DNS) is used to evaluate the effects of particle-turbulence-acoustic coupling for the first time. Simulations of temporally developing mixing layers are conducted for a range of Mach numbers and mass loadings. Once the turbulence reaches a self-similar state, the air-density shear layer is seeded with a random distribution of mono disperse water-density droplets. For M =0.9 to M =1.75, preliminary results show reductions in the near-field pressure fluctuations for moderate mass loadings, consistent with experimental studies under similar conditions. At high speed, the principle reduction of the normal velocity fluctuations, which increases with particle mass loading, appears to correlate to the reduction of the near-field radiated pressure fluctuations. These findings demonstrate that the DNS reproduces the observed particle-turbulence-acoustic phenomenology, and its complete space-time database can be used to further understand their interactions.
High-Schmidt-number mass transport mechanisms from a turbulent flow to absorbing sediments
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Piomelli, Ugo; Boegman, Leon
2012-11-01
We have investigated the mechanisms involved in dissolved oxygen (DO) transfer from a turbulent flow to an underlying organic sediment bed, populated with DO-absorbing bacteria, relying on the coupling between the bio-geochemistry of the sediment layer and large-eddy simulation for the transport on the water side [Scalo et al., J. Geophys. Res., 117(C6), 2012]. Time correlations at the sediment-water interface (SWI) show that the diffusive sublayer acts as a de-noising filter with respect to the overlying turbulence; the mass flux is not affected by low-amplitude background fluctuations in the wall-shear stress but, rather, by energetic and coherent near-wall transport events, in agreement with the surface renewal theory. The spatial and temporal distribution of the mass flux is therefore modulated by rapidly evolving near-wall high-speed streaks (associated with intermittent peaks in the wall-shear stress) transporting patches of (rich-in-oxygen) fluid to the edge of the diffusive sublayer, leaving slowly-regenerating elongated patches of positive DO concentration fluctuation and mass flux at the SWI. The sediment surface retains the signature of the overlying turbulent transport over long time scales, allowed by the slow bacterial absorption. Currently postdoctoral fellow at Center for Turbulence Research (scalo@stanford.edu).
Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges
Doerk, H.; Dunne, M.; Ryter, F.; Schneider, P. A.; Wolfrum, E.; Jenko, F.
2015-04-15
Modern tokamak H-mode discharges routinely operate at high plasma beta. Dedicated experiments performed on multiple machines measure contradicting dependence of the plasma confinement on this important parameter. In view of designing high-performance scenarios for next-generation devices like ITER, a fundamental understanding of the involved physics is crucial. Theoretical results—most of which have been obtained for simplified setups—indicate that increased beta does not only modify the characteristics of microturbulence but also potentially introduces fundamentally new physics. Empowered by highly accurate measurements at ASDEX Upgrade, the GENE turbulence code is used to perform a comprehensive gyrokinetic study of dedicated H-Mode plasmas. We find the stabilization of ion-temperature-gradient driven turbulence to be the most pronounced beta effect in these experimentally relevant cases. The resulting beta-improved core confinement should thus be considered for extrapolations to future machines.
High-Sensitivity Microwave Optics.
ERIC Educational Resources Information Center
Nunn, W. M., Jr.
1981-01-01
Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…
Lidar Measurement of Optical Turbulence: Theory of the Crossed Path Technique
1991-07-08
17Mathewn, J. and Walker. R.L. (1970) Methods of Mathematical Physics , 2"d edn., WA. Benjamin, Reading, MA. ’Bracewell, R.N. (1978) The Fourier...Propagation in a Turbulent Medium, McGraw-Hill, New York. 7Mathews, J., and Walker, R.L. (1970) Methods of Mathematical Physics , 2’ edn., W.A. Ben- jamin
Advanced high-bandwidth optical fuzing technology
NASA Astrophysics Data System (ADS)
Liu, Jony J.; von der Lippe, Christian M.
2005-10-01
A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.
High precision optical surface metrology using deflectometry
NASA Astrophysics Data System (ADS)
Huang, Run
Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.
NASA Astrophysics Data System (ADS)
Krappel, Timo; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander; Flurl, Benedikt; Unger, Friedeman; Galpin, Paul
2016-11-01
The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and especially in the draft tube. At the hub of the runner outlet a rotating vortex rope within a low pressure zone arises and propagates into the draft tube cone. The investigated part load operating point is at about 72% discharge of best efficiency. To reduce the possible influence of boundary conditions on the solution, a flow simulation of a complete Francis turbine is conducted consisting of spiral case, stay and guide vanes, runner and draft tube. As the flow has a strong swirling component for the chosen operating point, it is very challenging to accurately predict the flow and in particular the flow losses in the diffusor. The goal of this study is to reach significantly better numerical prediction of this flow type. This is achieved by an improved resolution of small turbulent structures. Therefore, the Scale Adaptive Simulation SAS-SST turbulence model - a scale resolving turbulence model - is applied and compared to the widely used RANS-SST turbulence model. The largest mesh contains 300 million elements, which achieves LES-like resolution throughout much of the computational domain. The simulations are evaluated in terms of the hydraulic losses in the machine, evaluation of the velocity field, pressure oscillations in the draft tube and visual comparisons of turbulent flow structures. A pre-release version of ANSYS CFX 17.0 is used in this paper, as this CFD solver has a parallel performance up to several thousands of cores for this application which includes a transient rotor-stator interface to support the relative motion between the runner and the stationary portions of the water turbine.
An anemometer for highly turbulent or recirculating flows
NASA Technical Reports Server (NTRS)
Durbin, P. A.; Mckinzie, D. J.; Durbin, E. J.
1987-01-01
An anemometer which determines flow velocity by ionizing air and sensing the convective displacement of the ions is described. It is suited to measurement in low speed, highly unsteady gas flows. Comparisons to hot wire spectra suggest the corona anemometer has adequate frequency response to make it a useful tool for fluid dynamics measurement.
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-01-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585
Faridzadeh, Monire; Gholami, Asghar; Ghassemlooy, Zabih; Rajbhandari, Sujan
2012-08-01
In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ(1)(2)>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 10(-6). The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.
NASA Astrophysics Data System (ADS)
Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki
2016-01-01
To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.
Reconfigurable high-speed optical signal processing and high-capacity optical transmitter
NASA Astrophysics Data System (ADS)
Chitgarha, Mohammad Reza
The field of optics and photonics enables several technologies including communication, bioimaging, spectroscopy, Ladars, microwave photonics and data processing [1-139]. The ability to use and manipulate large amounts of data is transforming many vital areas of society. The high capacity that optics brought to communications might also bring advantages to increase performance in signal processing by using a novel all-optical implementation of a tapped-delay-line, a fundamental building block for digital signal processing. This all-optical alternative provides real-time processing of amplitude- and phase-encoded optical fields, such that the overall potential speed-up is 10-100 fold faster than individual electronic processors with 5 GHz clock speeds. It can also enhance the optical data generation and transmission techniques by using different optical nonlinear processes to achieve higher baud rate data with more complex modulation format. Here, we demonstrate a reconfigurable high- speed optical tapped-delay-line, enabling several fundamental real-time signal processing functions such as equalization, correlation and discrete Fourier transform. Using nonlinear optics and dispersive elements, continuous tunability in time, amplitude and phase of the tapped-delay-line can be achieved at high speed. We also demonstrate a reconfigurable optical generation of higher-order modulation formats including pulse-amplitude-modulation (PAM) signals and quadrature-amplitude-modulation (QAM) signals [140-195].
Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas
NASA Astrophysics Data System (ADS)
Deng, Zhao; Waltz, R. E.; Wang, Xiaogang
2016-10-01
Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/ F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low- Ω* values
Detached eddy simulation of high-Reynolds-number turbulent flows using the immersed boundary method
NASA Astrophysics Data System (ADS)
Bernardini, Matteo; Pirozzoli, Sergio; Orlandi, Paolo
2015-11-01
Detached Eddy Simulation based on the Spalart-Allmaras turbulence model is applied in conjunction with the immersed boundary method to simulate high-Reynolds number turbulent flows in complex geometries. A fourth-order, finite-difference solver capable of discretely preserving the kinetic energy in the limit of inviscid flow is adopted to solve the compressible Navier-Stokes equations and model-consistent, adaptive wall functions are employed to provide the proper numerical boundary conditions at the fluid/solid interface. Numerical tests, performed for several configurations involving massively separated flows, demonstrate that computations at high-Reynolds number, as typically occurring in flows of industrial relevance, can be successfully carried out using the immersed boundary strategy, providing predictions whose accuracy is comparable to that of standard, body-fitted, structured or unstructured flow solvers.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization A Final Report
NASA Technical Reports Server (NTRS)
Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.
2000-01-01
Experimental evidence exists which suggests turbulent boundary layer relaminarization may play an important role in the inverse Reynolds number effect in high-lift systems. An experimental investigation of turbulent boundary layer relaminarization has been undertaken at the University of Notre Dame's Hessert Center for Aerospace Research in cooperation with NASA Dryden Flight Research Center. A wind tunnel facility has been constructed at the Hessert Center and relaminarization achieved. Preliminary evidence suggests the current predictive tools available are inadequate at determining the onset of relaminarization. In addition, an in-flight relaminarization experiment for the NASA Dryden FTF-II has been designed to explore relaminarization at Mach and Reynolds numbers more typical of commercial high-lift systems.
Unconventional optical imaging using a high-speed neural network based smart sensor
NASA Astrophysics Data System (ADS)
Arrasmith, William W.
2006-05-01
The advancement of neural network methods and technologies is finding applications in many fields and disciplines of interest to the defense, intelligence, and homeland security communities. Rapidly reconfigurable sensors for real or near-real time signal or image processing can be used for multi-functional purposes such as image compression, target tracking, image fusion, edge detection, thresholding, pattern recognition, and atmospheric turbulence compensation to name a few. A neural network based smart sensor is described that can accomplish these tasks individually or in combination, in real-time or near real-time. As a computationally intensive example, the case of optical imaging through volume turbulence is addressed. For imaging systems in the visible and near infrared part of the electromagnetic spectrum, the atmosphere is often the dominant factor in reducing the imaging system's resolution and image quality. The neural network approach described in this paper is shown to present a viable means for implementing turbulence compensation techniques for near-field and distributed turbulence scenarios. Representative high-speed neural network hardware is presented. Existing 2-D cellular neural network (CNN) hardware is capable of 3 trillion operations per second with peta-operations per second possible using current 3-D manufacturing processes. This hardware can be used for high-speed applications that require fast convolutions and de-convolutions. Existing 3-D artificial neural network technology is capable of peta-operations per second and can be used for fast array processing operations. Methods for optical imaging through distributed turbulence are discussed, simulation results are presented and computational and performance assessments are provided.
NASA Astrophysics Data System (ADS)
Sprung, Detlev; Stein, Karin; Sucher, Erik; Englander, Abraham; Fastig, Salomon; Porat, Omar
2016-10-01
The German-Israeli intercomparison experiment on the investigation of vertical profiles of horizontal wind speed and optical turbulence in the lower atmospheric boundary layer from 4th to 7th May 2015 was characterized by frontal activity in the atmosphere. The newly developed remote LIDAR-device of the Soreq institute for the investigation of the vertical wind and turbulence field was compared to the routinely performed measurements at the VerTurM (Vertical Turbulence Measurements) field site in Meppen, Germany. The long-term experiment VerTurM is focused on measurements of the optical turbulence and comprises scintillometer measurements close to the ground (1.15 m height), sonic anemometer measurements on a tall tower at 4 m, 8 m, 32 m, and 64 m and a SODAR-RASS-system. The temporal development of the vertical profiles of horizontal wind speed and optical turbulence Cn 2 during the frontal passage is investigated. Additional radiosonde measurements were performed to characterize the boundary layer height during the day.
Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1998-01-01
This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.
Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
previously generated at Sandia are employed for the analysis: a non-premixed temporal jet flame of ethylene-air diluted with N2 (DNS by D.O. Lignell...flame temperature). Both the DNS datasets were generated from Sandia’s multi-million-CPU-hour supercomputing and are high fidelity data sources for...computational diagnostic benchmarking and turbulent combustion model creation and validation. The CEMA result for the non-premixed temporal jet flame
Turbulent convective flows in a cubic cavity at high Prandtl number
NASA Astrophysics Data System (ADS)
Vasiliev, A.; Sukhanovskii, A.; Frick, P.
2016-10-01
Characteristics of turbulent convective flows in a cubic cell is studied experimentally for high values of Prandtl number. The first set was carriied out with propylene glycol (Pr = 64 and the second one with 25% water solution of propylene glycol (Pr = 24). It was found that increasing of Pr from 6.1 to 24 leads only to the slight change of intensity of the flow but during the next increasing of Pr from 24 to 64 the flow changes its structure.
Invariant high resolution optical skin imaging
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-02-01
Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.
NASA Astrophysics Data System (ADS)
Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin
2015-08-01
An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control.
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Goldburg, Walter I.
2002-01-01
A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.
High performance fluoride optical coatings for DUV optics
NASA Astrophysics Data System (ADS)
Zhang, Lichao; Cai, Xikun
2014-08-01
In deep ultraviolet region that typical applications are used on the ArF wavelength, coated optics should meet stringent requirements of optical systems. To meet these requirements, systematical researches are carried out on fabrication and characterization methods of fluoride coatings. First, by optimizing of deposition processes, dense coatings with the refractive index of ~1.7 for LaF3 and ~1.4 for MgF2, together with extinction coefficients of ~2×10-4 on 193nm were realized. The transmission of AR coating for 193nm achieved by using optimized deposition techniques is 99.8%. Second, a method of designing shadowing masks was developed to solve the problem of correcting coating thickness distributions for complex DUV systems. By using the method, the thickness distribution error specification of 3% PV has been achieved on substrates with ~300mm diameters and large curvatures. Finally, the laser calorimetry method is used to evaluate the laser radiation stability of fluoride coatings. It is turned out that the damage coefficients of fluoride coatings, which are defined as the values of unrecoverable increase of the absorption during the laser irradiation process, are much lower than that of fused silica substrates. The above progresses could further support the realization of high performance DUV optical systems.
Effective capacity of MIMO free-space optical systems over gamma-gamma turbulence channels
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Weidong
2017-01-01
In this paper, we provide the capacity limits of multiple-input multiple-output (MIMO) free-space optical communication (FSO) system in the presence of quality of service (QoS) requirements. Closed-form expression for the effective capacity of MIMO FSO system with equal gain combining (EGC) is derived. In order to provide insights into the impact of various system parameters, asymptotic expressions are further analyzed in the high signal-to-noise ratio (SNR) regime. Special cases are provided according to the derived results at the same time. Numerical results are given to validate all the analytical results, and the influences of QoS requirements and MIMO configurations are also illustrated.
Temporal decorrelation of optical turbulence as a function of altitude in the atmosphere
NASA Astrophysics Data System (ADS)
Avilés, J. L.; Avila, R.; Carrasco, E.; Sánchez, L. J.; Chun, M.; Butterley, T.; Wilson, R.; Urbiola, F. J.
2016-05-01
Here, we propose a new method to evaluate the Taylor's frozen-flow hypothesis with the Generalized SCIntillation Detection And Ranging technique (G-SCIDAR). Unlike the work previously reported in the literature, we take into consideration the wind-speed fluctuation effects when examining the spatiotemporal cross-covariance functions computed according to the G-SCIDAR method. We show that under the assumption of having turbulent layers driven by fluctuating wind-velocity vectors, it is correct examining the encircled volume of smeared cross-covariance peaks. The method was used to process 60 spatiotemporal cross-covariance functions of the stellar scintillation patterns retrieved at the 2.2 m telescope of the University of Hawaii along a two hours observation run. We found that most of the time the structure of atmospheric refraction-index inhomogeneities decorrelates linearly with time for individual turbulent layers. Moreover, contrary to the behaviour expected under the assumption of having a slowly evolving structure of turbulent eddies, being translated by a much greater wind-velocity vector, which should strengthen the hypothesis of a frozen flow, we found that the temporal decorrelation of such structure increases as the overall layer displacement velocity increases.
A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.
2003-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Franci, Luca; Verdini, Andrea; Landi, Simone; Matteini, Lorenzo; Hellinger, Petr
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2012-01-01
Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.
Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
NASA Astrophysics Data System (ADS)
Coudert, S.; Foucaut, J. M.; Kostas, J.; Stanislas, M.; Braud, P.; Fourment, C.; Delville, J.; Tutkun, M.; Mehdi, F.; Johansson, P.; George, W. K.
2011-01-01
An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.
1994-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.
Local isotropy in distorted turbulent boundary layers at high Reynolds number
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.
1993-01-01
This is a report on the continuation of our experimental investigations of the hypothesis of local isotropy in shear flows. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation. Since Kolmogorov proposed his theory, there have been many experiments, conducted in wakes, jets, mixing layers, a tidal channel, and atmospheric and laboratory boundary layers, in which attempts have been made to verify - or refute - the local-isotropy hypothesis. However, a review of the literature over the last five decades indicated that, despite all these experiments in shear flows, there was no consensus in the scientific community regarding this hypothesis, and, therefore, it seemed worthwhile to undertake a fresh experimental investigation into this question.
Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
van der Veen, Roeland C. A.; Huisman, Sander G.; Dung, On-Yu; Tang, Ho L.; Sun, Chao; Lohse, Detlef
2016-06-01
We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta =1011 to 9 ×1012 by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinders. The multiple states are found to be very robust and are expected to persist beyond Ta =1013 . The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. By mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states are again observed. Here they are characterized by even richer roll structure phenomena, including an antisymmetrical roll state.
Viscous dissipation effects on heat transfer from turbulent flow with high Prandtl number fluids
NASA Astrophysics Data System (ADS)
Chung, B. T. F.; Pang, Y.; Thomas, L. C.
A comprehensive surface renewal type model, namely, the surface rejuvenation model, is employed to determine the viscous dissipation effect on heat transfer from turbulent flow with high Prandtl number fluids. In this work, the probability distributions for the stochastic variables which include the approach distance, the contact time, the residence time, and the initial temperature profile of the incoming eddies near the wall region are utilized. The Nusselt number, recovery factor, and temperature profile are obtained in integral forms which are then solved numerically. The ratio of Nusselt numbers in the presence of viscous effect to that in the absence of dissipation is presented in terms of Brinkman number, Prandtl number and Reynolds number for both cases of wall heating and cooling. Comparisons of the predicted recovery factor for turbulent pipe flow are also made based on the present model, previous eddy diffusivity models and the elementary surface renewal model for a wide range of Prandtl number.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.; Vidoni, T. J.
1991-01-01
The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented.
High-density fiber optic biosensor arrays
NASA Astrophysics Data System (ADS)
Epstein, Jason R.; Walt, David R.
2002-02-01
Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast
NASA Astrophysics Data System (ADS)
Lazarian, Alex
2003-07-01
HST and FUSE spectra of distant UV-bright sources reveal interstellar absorption lines of high stages of ionization {O VI, C IV, N V, Si IV} arising in many different astrophysical environments such as superbubbles, interstellar chimneys, high-velocity clouds, galaxy halos and cosmic filaments. Turbulence, always present in the magnetized ISM, must mix the hot { 10^6 K} gas with cooler gas within "turbulent mixing layers". Present theory, based on 1D steady-state flows, suggest the line ratios in these layers differ significantly from photoionized gas, radiative shocks, cooling zones, or conduction fronts. These models are use to infer mass and energy fluxes important to understanding the ISM. We propose to develop a suite of 3D time-dependent models that properly calculate turbulent mixing. We will produce synthetic UV absorption lines and optical emission lines directly relevant to HST observations that use GHRS, STIS, and eventually, COS. These models will allow us to explore the sensitivity of the spectral diagnostics to magnetic field strength, turbulence intensity, and relative velocity of the hot and cold gas. We will publish the resulting grid of spectral diagnostics and make them available through the Web.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Mean rate of energy transfer in a high Reynolds number turbulent boundary layer
NASA Astrophysics Data System (ADS)
Priyadarshana, Paththage; Klewicki, Joseph
2002-11-01
Recently Wyngaard(Phys. Fluids, 14, 2002) derived a physical space representation of the mean rate of energy transfer from resolvable scales to sub-filter scales in a turbulent flow field as Π = \\overlineu_i^ru_j^rs_ij^s - \\overlineu_i^su_j^ss_ij^r . Here, u_i^r , and u_i^r are the resolvable scale and sub-filter scale velocities and s_ij^r and s_ij^r are the respective strain rates. He also derived that the joint transport of turbulent kinetic energy(TKE) as -\\overlinefracpartialu_i^ru_i^su_jpartialx_j. In this research, some of the terms in the above expressions are explored using high Reynolds number turbulent boundary layer data. The data were acquired under near-neutral conditions in the atmospheric surface layer that flows over the salt playa of western Utah. The momentum deficit thickness Reynolds number of the flow was approximately 5 × 10^6. Hot wire anemometry was used with custom designed six-wire probes. The spatial resolution of sensors, about 10 viscous units, was very good. Top-hat high-pass and low-pass temporal filtering is used to segregate the experimental time series into resolved and sub-filter scales. Contributions to the energy budget are computed for both scales and compared. In addition, results of the contributions to the mean energy transfer rate will be presented as a function of varying cut-off frequency.
Krishnakumar, S; Gaudana, Sandeep B; Viswanathan, Ganesh A; Pakrasi, Himadri B; Wangikar, Pramod P
2013-09-01
Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (KL a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4 h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria.
HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.
BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.
2005-08-21
Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.
Turbulence Decorrelation via Controlled Ex B Shear in High-Performance Plasmas
NASA Astrophysics Data System (ADS)
McKee, G. R.
2015-11-01
Multi-scale spatiotemporal turbulence properties are significantly altered as toroidal rotation and resulting ExB shearing rate profile are systematically varied in advanced-inductive H-mode plasmas on DIII-D (βN ~ 2.7, q95=5.1). Density, electron and ion temperature profiles and dimensionless parameters (βN, q95, ν*, ρ*, and Te/Ti) are maintained nearly fixed during the rotation scan. Low-wavenumber turbulence (k⊥ρS < 1), measured with Beam Emission Spectroscopy, exhibits increased decorrelation rates (reduced eddy lifetime) as the ExB shear rises across the radial zone of maximum shearing rate (0.55 < ρ < 0 . 75), while the fluctuation amplitude undergoes little change. The poloidal wavenumber is reduced at higher shear, indicating a change in the wavenumber spectrum: eddies elongate in the direction orthogonal to shear and field. At both low and high shear, the 2D turbulence correlation function exhibits a tilted structure, consistent with flow shear. At mid-radius (ρ ~ 0.5), low-k density fluctuations show localized amplitude reduction, consistent with linear GYRO growth rates and ωExB shearing rates. Intermediate and high wavenumber fluctuations measured with Doppler Back-Scattering (k⊥ρS ~ 2.5-3.5) at ρ=0.7 and Phase Contrast Imaging (k⊥ρS > 5) exhibit decreasing amplitude at higher rotation. The energy confinement time increases from 105 ms to 150 ms as the toroidal Mach number (M=vTOR / vth , i) increases to Mo ~ 0.5, while transport decreases. TGLF calculations match the Ti profile with modest discrepancies in the Te and ne profiles. These results clarify the complex mechanisms by which ExB shear affects turbulence. Work supported in part by the US DOE under DE-FG02-08ER54999, DE-FC02-04ER54698.
Deng, Zhao; Waltz, R. E.
2015-05-15
This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup }< 100 where Ω*{sup }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of
High sensitivity optically pumped quantum magnetometer.
Tiporlini, Valentina; Alameh, Kamal
2013-01-01
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.
Highly automated optical characterization with FTIR spectrometry
NASA Technical Reports Server (NTRS)
Perry, G. L. E.; Szofran, F. R.
1989-01-01
The procedure for evaluating the characteristics of II-VI semiconducting infrared sensor materials with a Fourier Transform Infrared (FTIR) spectrometer system will be discussed. While the method of mapping optical characteristics with a spectrometer has been employed previously, this system is highly automated compared to other systems where the optical transmission data are obtained using a FTIR system with a small stationary aperture in the optical path and moving the specimen behind the aperture. The hardware and software, including an algorithm developed for extracting cut-on wavelengths of spectra, as well as several example results, are described to illustrate the advanced level of the system. Additionally, data from transverse slices and longitudinal wafers of the aforementioned semiconductors will be used to show the accuracy of the system in predicting trends in materials such as shapes of growth interfaces and compositional uniformity.
NASA Astrophysics Data System (ADS)
Fazal, Muhammad Irfan
The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters
NASA Astrophysics Data System (ADS)
Yang, You-quan; Chi, Xue-fen; Shi, Jia-lin; Zhao, Lin-lin
2015-05-01
To facilitate the efficient support of quality-of-service (QoS) for promising free-space optical (FSO) communication systems, it is essential to model and analyze FSO channels in terms of delay QoS. However, most existing works focus on the average capacity and outage capacity for FSO, which are not enough to characterize the effective transmission data rate when delay-sensitive service is applied. In this paper, the effective capacity of FSO communication systems under statistical QoS provisioning constraints is investigated to meet heterogeneous traffic demands. A novel closed-form expression for effective capacity is derived under the combined effects of atmospheric turbulence conditions, pointing errors, beam widths, detector sizes and QoS exponents. The obtained results reveal the effects of some significant parameters on effective capacity, which can be used for the design of FSO systems carrying a wide range of services with diverse QoS requirements.
Highly Sensitive Electro-Optic Modulators
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.
Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.
Caulfield, H John; Dolev, Shlomi; Green, William M J
2009-08-01
The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.
Method and apparatus of highly linear optical modulation
DeRose, Christopher; Watts, Michael R.
2016-05-03
In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
Velocity and turbulence measurements in combustion systems
NASA Astrophysics Data System (ADS)
Goldstein, R. J.; Lau, K. Y.; Leung, C. C.
1983-06-01
A laser-Doppler velocimeter is used in the measurement of high-temperature gas flows. A two-stage fluidization particle generator provides magnesium oxide particles to serve as optical scattering centers. The one-dimensional dual-beam system is frequency shifted to permit measurements of velocities up to 300 meters per second and turbulence intensities greater than 100 percent. Exiting flows from can-type gas turbine combustors and burners with pre-mixed oxy-acetylene flames are described in terms of the velocity, turbulence intensity, and temperature profiles. The results indicate the influence of the combustion process on turbulence.
Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Wu, Minwei
2012-01-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.
Leong, Doris; Ross, Tetjana; Lavery, Andone
2012-08-01
High-frequency broadband (120-600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50 kHz to 2 MHz could help improve identification of the dominant sources of backscattering anisotropy.
The effects of an algal biofilm on the turbulent boundary layer at high Reynolds number
NASA Astrophysics Data System (ADS)
Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Flack, Karen; Steppe, Cecily; Reidenbach, Matthew
2016-11-01
Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to increased drag. As with other types of roughness on aquatic surfaces, biofilms increase skin friction and thus induce severe drag penalties. In fact, slime layers appear to induce greater drag than would be predicted by the roughness height alone. Our work indicates that this is likely due to two characteristics of algal biofilms: i) flexible streamers that protrude into the flow, and ii) the compliant nature of a biofilm layer. High resolution PIV was used to measure the turbulent boundary layer flow over diatomaceous biofilm grown under dynamic conditions. Local mean streamwise velocity profiles were used to estimate the local wall shear stresses and to determine the similarity between the inner and outer layers of the boundary layer and those of a smooth wall. Spatially explicit turbulent kinetic energy (TKE), Reynolds shear stress (RSS), swirling strength and quadrant analyses over the biofilm were compared to those over a smooth wall and a rigid mesh roughness. We found that the combination of canopy flow due to streamers coupled with compliant wall-flow interactions result in large wall shear stresses and higher turbulence. Funding provided by the ONR NURP program and the NSF GRIP program.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Lakshmanan, B.
1993-01-01
A high-speed shear layer is studied using compressibility corrected Reynolds stress turbulence model which employs newly developed model for pressure-strain correlation. MacCormack explicit prediction-corrector method is used for solving the governing equations and the turbulence transport equations. The stiffness arising due to source terms in the turbulence equations is handled by a semi-implicit numerical technique. Results obtained using the new model show a sharper reduction in growth rate with increasing convective Mach number. Some improvements were also noted in the prediction of the normalized streamwise stress and Reynolds shear stress. The computed results are in good agreement with the experimental data.
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
High-Schmidt-number mass transport mechanisms from a turbulent flow to absorbing sediments
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Piomelli, Ugo; Boegman, Leon
2012-08-01
We have investigated the mechanisms involved in dissolved oxygen (DO) transfer from a turbulent flow to an underlying organic sediment bed populated with DO-absorbing bacteria. Our numerical study relies on a previously developed and tested computational tool that couples a bio-geochemical model for the sediment layer and large-eddy simulation for transport on the water side. Simulations have been carried out in an open channel configuration for different Reynolds numbers (Reτ = 180-1000), Schmidt numbers (Sc = 400-1000), and bacterial populations (χ* = 100-700 mg l-1). We show that the average oxygen flux across the sediment-water interface (SWI) changes with Reτ and Sc, in good agreement with classic heat-and-mass-transfer parametrizations. Time correlations at the SWI show that intermittent peaks in the wall-shear stress initiate the mass transfer and modulate its distribution in space and time. The diffusive sublayer acts as a de-noising filter with respect to the overlying turbulence; the instantaneous mass flux is not affected by low-amplitude background fluctuations in the wall-shear stress but, on the other hand, it is receptive to energetic and coherent near-wall transport events, in agreement with the surface renewal theory. The three transport processes involved in DO depletion (turbulent transport, molecular transport across the diffusive sublayer, and absorption in the organic sediment layer) exhibit distinct temporal and spatial scales. The rapidly evolving near-wall high-speed streaks transport patches of fluid to the edge of the diffusive sublayer, leaving slowly regenerating elongated patches of positive DO concentration fluctuations and mass flux at the SWI. The sediment surface retains the signature of the overlying turbulent transport over long time scales, allowed by the slow bacterial absorption.
Wavefront metrology for high resolution optical systems
NASA Astrophysics Data System (ADS)
Miyakawa, Ryan H.
Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image
NASA Astrophysics Data System (ADS)
Chatterjee, Monish R.; Mohamed, Fathi H. A.
2014-10-01
In recent research, propagation of plane electromagnetic (EM) waves through a turbulent medium with modified von Karman phase characteristics was modeled and numerically simulated using transverse planar apertures representing narrow phase turbulence along the propagation path. The case for extended turbulence was also studied by repeating the planar phase screens multiple times over the propagation path and incorporating diffractive effects via a split-step algorithm. The goal of the research reported here is to examine two random phenomena: (a) atmospheric turbulence due to von Karman-type phase fluctuations, and (b) chaos generated in an acousto-optic (A-O) Bragg cell under hybrid feedback. The latter problem has been thoroughly examined for its nonlinear dynamics and applications in secure communications. However, the statistical characteristics (such as the power spectral density (PSD)) of the chaos have not been estimated in recent work. To that end, treating the chaos phenomena as a random process, the time waveforms of the chaos intensity and their spectra are numerically evaluated over a (large) number of time iterations. These spectra are then averaged to derive the equivalent PSD of the A-O chaos. For the turbulence problem, an optical beam passing through an input pinhole is propagated through a random phase screen (placed at different locations) to a desired distance (typically near-field) under different levels of turbulence strength. The resulting spatial intensity profile is then averaged and the process repeated over a (large) number of pre-specified time intervals. From this data, once again, the turbulence PSD is calculated via the Fourier spectra of the average intensity snapshots. The results for the two systems are compared.
Hybrid optical antenna with high directivity gain.
Bonakdar, Alireza; Mohseni, Hooman
2013-08-01
Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Optical multichannel analyzer techniques for high resolution optical spectroscopy
Chao, J.L.
1980-06-01
The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.
NASA Astrophysics Data System (ADS)
Deng, Zhao
2014-10-01
Gyrokinetic simulations of L-mode near edge tokamak plasmas with the GYRO code underpredict both the transport and the turbulence levels by 5 to 10 fold, which suggest either some important mechanism is missing from current gyrokinetic codes like GYRO or the gyrokinetic approximation itself is breaking down. It is known that GYRO drift-kinetic simulations with gyro-averaging suppressed recover most of the missing transport. With these motivations, we developed a flux tube nonlinear cyclokinetic code rCYCLO with the parallel motion and variation suppressed. rCYCLO dynamically follows the high frequency ion gyro-phase motion (with no averaging) which is nonlinearly coupled into the low frequency drift-waves thereby interrupting and possibly suppressing the gyro-averaging. By comparison with the corresponding gyrokinetic simulations, we can test the conditions for the breakdown of gyrokinetics. rCYCLO nonlinearly couples ∇B driven ion temperature gradient (ITG) modes and collisional fluid electron drift modes to ion cyclotron (IC) modes. As required, rCYCLO cyclokinetic transport recovers gyrokinetics at high relative ion cyclotron frequency (Ω*) and low turbulence levels. However, because the IC modes are stable and act as a turbulence sink, we have found that at high turbulence levels and low-Ω* cyclokinetic transport is lower (not higher) than gyrokinetic transport. Work is in progress with unstable IC modes to explore the possibility of driving cyclokinetic transport higher than gyrokinetic transport. Supported by the CSC, NSFC No. 1126114032, No. 10975012 ITER-CN No. 2013GB112006 and the US DOE under DE-FG02-95ER54309.
NASA Astrophysics Data System (ADS)
Zhi, Dong; Tao, Rumao; Zhou, Pu; Ma, Yanxing; Wu, Wuming; Wang, Xiaolin; Si, Lei
2017-03-01
A new ring Airy Gaussian (RAiG) vortex beam generation method by coherent combination of Gaussian beam array has been proposed. To validate the feasibility of this method, the propagation properties of the RAiG vortex beam and the coherent combining beam in vacuum have been studied and analyzed. From the comparisons of the intensity distributions and phase patterns along the propagation path, we can conclude that the coherent combining beam has the same properties as those of the ideal RAiG vortex beam. So this method can be used to obtain RAiG vortex beam in practice. Then the general analytical expression of the root-mean-square (RMS) beam width of the RAiG vortex beam, which is appropriately generated by coherent combining method, through anisotropic non-Kolmogorov turbulence has been derived. The influence of anisotropic turbulence on RMS beam width of the generated RAiG vortex beam has been numerically calculated. This generation method has good appropriation to the ideal RAiG vortex beam and is very useful for deriving the analytical expression of propagation properties through a random media. The conclusions are useful in practical applications, such as laser communication and remote sensing systems.
Towards green high capacity optical networks
NASA Astrophysics Data System (ADS)
Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.
2011-09-01
The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.
Towards green high capacity optical networks
NASA Astrophysics Data System (ADS)
Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.
2012-02-01
The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.
Model of Atmospheric Links on Optical Communications from High Altitude
NASA Technical Reports Server (NTRS)
Subich, Christopher
2004-01-01
Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a
Turbulent Flow Physics and Noise in High Reynolds Number Compressible Jets
NASA Astrophysics Data System (ADS)
Glauser, Mark
2016-11-01
In this talk I will present a snapshot of our ongoing research in high Reynolds number turbulent compressible jets. The high speed axisymmetric jet work (Mach 0.6 - 1.1) has been jointly performed with Spectral Energies LLC through AFRL support and involves 10 kHz and large window PIV data extracted from the near field jet plume, simultaneously sampled with near field pressure and far field noise. We have learned from the simultaneously sampled 10 kHz PIV near field plume and far field noise data, using POD/OID and Wavelet filtering, that there are certain "loud" velocity modes that have low averaged turbulent kinetic energy content but strongly correlate with the far field noise. From the large window PIV data obtained at Mach 1.0 and 1.1, specific POD modes were found to contain important physics of the problem. For example, the large-scale structure of the jet, shock-related fluctuations, and turbulent mixing regions of the flow were isolated through POD. By computing cross correlations, particular POD modes were found to be related to particular noise spectra. I will conclude with a description of our complex nozzle work which uses the multi-stream supersonic single expansion rectangular nozzle (SERN) recently installed in our large anechoic chamber at SU. This work is funded from both AFOSR (joint with OSU with a primary focus on flow physics) and Spectral Energies LLC (via AFRL funds with a focus on noise). Particular emphasis will be on insight gained into this complex 3D flow field (and its relationship to the far field noise) from applications of POD, Wavelet filtering and DMD to various numerical (LES) and experimental (PIV, high speed schlieren, near and far field pressure) data sets, at a core nozzle Mach number of 1.6 and a second stream Mach number of 1.0.
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
NASA Astrophysics Data System (ADS)
Monkewitz, Peter A.; Chauhan, Kapil A.; Nagib, Hassan M.
2007-11-01
The asymptotic behavior of mean velocity and integral parameters in flat plate turbulent boundary layers under zero pressure gradient are studied for Reynolds numbers approaching infinity. Using the classical two-layer approach of Millikan, Rotta, and Clauser with a logarithmic velocity profile in the overlap region between "inner" and "outer" layers, a fully self-consistent leading-order description of the mean velocity profile and all integral parameters is developed. It is shown that this description fits most high Reynolds number data, and in particular their Reynolds number dependence, exceedingly well; i.e., within experimental errors.
Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection.
Xia, Ke-Qing; Lam, Siu; Zhou, Sheng-Qi
2002-02-11
We report Nusselt number measurements from high Prandtl number turbulent thermal convection experiments. The experiments are conducted in four fluids with the Prandtl number Pr varying from 4 to 1350 and the Rayleigh number Ra from 2x10(7) to 3x10(10), all in a single convection cell of unity aspect ratio. We find that the measured Nusselt number decreased about 20% over the range of Pr spanned in the experiment. The measure data are also found in good agreement with the prediction of a recent theory over the extended range of Pr covered in the experiment.
Wide swath and high resolution optical imaging satellite of Japan
NASA Astrophysics Data System (ADS)
Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu
2016-05-01
The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.
NASA Astrophysics Data System (ADS)
Hurricane, O. A.; Smalyuk, V. A.; Raman, K.; Schilling, O.; Hansen, J. F.; Langstaff, G.; Martinez, D.; Park, H.-S.; Remington, B. A.; Robey, H. F.; Greenough, J. A.; Wallace, R.; Di Stefano, C. A.; Drake, R. P.; Marion, D.; Krauland, C. M.; Kuranz, C. C.
2012-10-01
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009)PHPAEN1070-664X10.1063/1.3096790; Harding et al., Phys. Rev. Lett. 103, 045005 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.045005], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to constrain turbulent mixing models. The estimated Reynolds number (˜106), Liepmann-Taylor scale (˜0.5μm), and inner viscous scale (˜0.17μm) in the postshock plasma flow are consistent with an “inertial subrange,” within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.
Optics of high-performance electron microscopes.
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.
High precision Woelter optic calibration facility
Morales, R.I.; Remington, B.A.; Schwinn, T. )
1995-01-01
We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter type I x-ray optics used at Nova. The primary component of the facility is a new, very versatile, high brightness x-ray source consisting of a focused DC electron beam incident onto a precision manipulated target-pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray charge-coupled device camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An [ital in] [ital situ] laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.
High-sensitivity fiber optic acoustic sensors
NASA Astrophysics Data System (ADS)
Lu, Ping; Liu, Deming; Liao, Hao
2016-11-01
Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.
Optics of high-performance electron microscopes*
Rose, H H
2008-01-01
During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933
Time resolved, near wall PIV measurements in a high Reynolds number turbulent pipe flow
NASA Astrophysics Data System (ADS)
Willert, C.; Soria, J.; Stanislas, M.; Amili, O.; Bellani, G.; Cuvier, C.; Eisfelder, M.; Fiorini, T.; Graf, N.; Klinner, J.
2016-11-01
We report on near wall measurements of a turbulent pipe flow at shear Reynolds numbers up to Reτ = 40000 acquired in the CICLoPE facility near Bologna, Italy. With 900 mm diameter and 110 m length the facility offers a well-established turbulent flow with viscous length scales ranging from y+ = 85 μ m at Reτ = 5000 to y+ = 11 μ m at Reτ = 40000 . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. For the measurement the light of a high-speed, double-pulse laser is focused into a 300 μ m thin light sheet that is introduced radially into the pipe. The light scattered by 1 μ m water-glycerol droplet seeding is observed from the side by the camera via a thin high-aspect ratio mirror with a field of view covering 20mm in wall-normal and 5mm in stream-wise direction. Statistically converged velocity profiles could be achieved using 70000 samples per sequence acquired at low laser repetition rates (100Hz). Higher sampling rates of 10 kHz provide temporally coherent data from which frequency spectra can be derived. Preliminary analysis of the data shows a well resolved inner peak that grows with increasing Reynolds number. (Project funding through EuHIT - www.euhit.org)
High star formation rates as the origin of turbulence in early and modern disk galaxies.
Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G
2010-10-07
Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.
NASA Astrophysics Data System (ADS)
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-03-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.
NASA Astrophysics Data System (ADS)
Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.
2017-04-01
The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.
NASA Astrophysics Data System (ADS)
Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; Larson, E. J. L.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.
2017-02-01
The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.
NASA Astrophysics Data System (ADS)
Arrasmith, William W.; Sullivan, Sean F.
2008-04-01
Phase diversity imaging methods work well in removing atmospheric turbulence and some system effects from predominantly near-field imaging systems. However, phase diversity approaches can be computationally intensive and slow. We present a recently adapted, high-speed phase diversity method using a conventional, software-based neural network paradigm. This phase-diversity method has the advantage of eliminating many time consuming, computationally heavy calculations and directly estimates the optical transfer function from the entrance pupil phases or phase differences. Additionally, this method is more accurate than conventional Zernike-based, phase diversity approaches and lends itself to implementation on parallel software or hardware architectures. We use computer simulation to demonstrate how this high-speed, phase diverse imaging method can be implemented on a parallel, highspeed, neural network-based architecture-specifically the Cellular Neural Network (CNN). The CNN architecture was chosen as a representative, neural network-based processing environment because 1) the CNN can be implemented in 2-D or 3-D processing schemes, 2) it can be implemented in hardware or software, 3) recent 2-D implementations of CNN technology have shown a 3 orders of magnitude superiority in speed, area, or power over equivalent digital representations, and 4) a complete development environment exists. We also provide a short discussion on processing speed.
Application of optical methods to the study of jet noise and turbulence
NASA Technical Reports Server (NTRS)
Sava, P. G.; Haertig, J.
1980-01-01
Optical methods are generally applied in fluid mechanics for either visualization or measurement. The use of a laser anemometer to study flow velocity in a jet and its relaton to the sound radiated is described. The same acoustic emission phenomenon is also measued by combining the signals from four Schlieren systems with that from an interferometer. The use of an optical Fourier transformation approach with real time analysis to determine the spatio-temporal structure of a field of mass volume such as a waveguide or free jet is also examined.
Effects of beam wander on free-space optical communications through turbulent atmosphere
NASA Astrophysics Data System (ADS)
Zhao, Zhijun; Liao, Rui
2010-04-01
Effects of beam wander on uncoded bit-error-rate (BER) of direct-detection OOK modulated FSO communication systems using collimated and focused Gaussian beams are studied. Channel fading statistics are obtained from large-scale wave optics simulations and compared with the closed-form log-normal and gamma-gamma models. The avalanche photodiode (APD) is chosen for photodetection. The accurate McIntyre-Conradi APD model is adopted for performance evaluation. Results show that large performance gain (more than 15dB) can be achieved with fast-tracked focused beams. The upper bound of higher-order adaptive optics gain beyond tracking gain is also studied.
High data rate optical transceiver terminal
NASA Technical Reports Server (NTRS)
Clarke, E. S.
1973-01-01
The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.
A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays
NASA Technical Reports Server (NTRS)
Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence
2017-01-01
Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Pecenak, Zachary K.; Cao, Lujie; Woodward, Scott H.; Liang, Zach; Meng, Hui
2016-03-01
Enclosed flow apparatuses with negligible mean flow are emerging as alternatives to wind tunnels for laboratory studies of homogeneous and isotropic turbulence (HIT) with or without aerosol particles, especially in experimental validation of Direct Numerical Simulation (DNS). It is desired that these flow apparatuses generate HIT at high Taylor-microscale Reynolds numbers ({{R}λ} ) and enable accurate measurement of turbulence parameters including kinetic energy dissipation rate and thereby {{R}λ} . We have designed an enclosed, fan-driven, highly symmetric truncated-icosahedron ‘soccer ball’ airflow apparatus that enables particle imaging velocimetry (PIV) and other whole-field flow measurement techniques. To minimize gravity effect on inertial particles and improve isotropy, we chose fans instead of synthetic jets as flow actuators. We developed explicit relations between {{R}λ} and physical as well as operational parameters of enclosed HIT chambers. To experimentally characterize turbulence in this near-zero-mean flow chamber, we devised a new two-scale PIV approach utilizing two independent PIV systems to obtain both high resolution and large field of view. Velocity measurement results show that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48 mm diameter) of the chamber. From PIV-measured velocity fields, we obtained turbulence dissipation rates and thereby {{R}λ} by using the second-order velocity structure function. A maximum {{R}λ} of 384 was achieved. Furthermore, experiments confirmed that the root mean square (RMS) velocity increases linearly with fan speed, and {{R}λ} increases with the square root of fan speed. Characterizing turbulence in such apparatus paves the way for further investigation of particle dynamics in particle-laden homogeneous and isotropic turbulence.
Characterisation of a turbulent module for the MITHIC high-contrast imaging testbed
NASA Astrophysics Data System (ADS)
Vigan, A.; Postnikova, M.; Caillat, A.; Sauvage, J.-F.; Dohlen, K.; El Hadi, K.; Fusco, T.; Lamb, M.; N'Diaye, M.
2016-07-01
Future high-contrast imagers on ground-based extremely large telescopes will have to deal with the segmentation of the primary mirrors. Residual phase errors coming from the phase steps at the edges of the segments will have to be minimized in order to reach the highest possible wavefront correction and thus the best contrast performance. To study these effects, we have developed the MITHIC high-contrast testbed, which is designed to test various strategies for wavefront sensing, including the Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations (ZELDA) and COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection (COFFEE). We recently equipped the bench with a new atmospheric turbulence simulation module that offers both static phase patterns representing segmented primary mirrors and continuous phase strips representing atmospheric turbulence filtered by an AO or an XAO system. We present a characterisation of the module using different instruments and wavefront sensors, and the first coronagraphic measurements obtained on MITHIC.
NASA Astrophysics Data System (ADS)
Medvedev, Mikhail V.
2017-01-01
Faraday effect - a common and useful probe of cosmic magnetic fields - is the result of magnetically-induced birefringence in plasmas causing rotation of the polarization plane of a linearly polarized electromagnetic wave. Classically, the rotation angle scales with the wavelength as Δϕ =RMλ2 , where RM is the rotation measure. Although a typical RM in the Milky Way is of the order of a few hundred to a few thousand, a famous Cygnus region shows anomalously small, even negative rotation measures. Moreover, Faraday rotation measurements seem to be inconsistent with the standard λ2-law. We argue that fast micro-turbulence can cause this anomaly. We demonstrate that electromagnetic high-frequency and/or small-scale fluctuations can lead to effective plasma collisionality by scattering electrons over pitch-angle. We show that such quasi-collisionality radically alters Faraday rotation and other radiative transport properties, e.g., absorption, transmission and reflection. Thus, we explain the Cygnus puzzle by anomalous Faraday rotation in a thin ``blanket'' of highly turbulent plasma at the front of an interstellar bubble/shock. Supported by DOE grant DE-SC0016368.
Adjoint-field errors in high fidelity compressible turbulence simulations for sound control
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan
2013-11-01
A consistent discrete adjoint for high-fidelity discretization of the three-dimensional Navier-Stokes equations is used to quantify the error in the sensitivity gradient predicted by the continuous adjoint method, and examine the aeroacoustic flow-control problem for free-shear-flow turbulence. A particular quadrature scheme for approximating the cost functional makes our discrete adjoint formulation for a fourth-order Runge-Kutta scheme with high-order finite differences practical and efficient. The continuous adjoint-based sensitivity gradient is shown to to be inconsistent due to discretization truncation errors, grid stretching and filtering near boundaries. These errors cannot be eliminated by increasing the spatial or temporal resolution since chaotic interactions lead them to become O (1) at the time of control actuation. Although this is a known behavior for chaotic systems, its effect on noise control is much harder to anticipate, especially given the different resolution needs of different parts of the turbulence and acoustic spectra. A comparison of energy spectra of the adjoint pressure fields shows significant error in the continuous adjoint at all wavenumbers, even though they are well-resolved. The effect of this error on the noise control mechanism is analyzed.
A methodology for high performance computation of fully inhomogeneous turbulent flows
NASA Astrophysics Data System (ADS)
You, Donghyun; Wang, Meng; Mittal, Rajat
2007-02-01
A large-eddy simulation methodology for high performance parallel computation of statistically fully inhomogeneous turbulent flows on structured grids is presented. Strategies and algorithms to improve the memory efficiency as well as the parallel performance of the subgrid-scale model, the factored scheme, and the Poisson solver on shared-memory parallel platforms are proposed and evaluated. A novel combination of one-dimensional red-black/line Gauss-Seidel and two-dimensional red-black/line Gauss-Seidel methods is shown to provide high efficiency and performance for multigrid relaxation of the Poisson equation. Parallel speedups are measured on various shared-distributed memory systems. Validations of the code are performed in large-eddy simulations of turbulent flows through a straight channel and a square duct. Results obtained from the present solver employing a Lagrangian dynamic subgrid-scale model show good agreements with other available data. The capability of the code for more complex flows is assessed by performing a large-eddy simulation of the tip-leakage flow in a linear cascade.
NASA Astrophysics Data System (ADS)
Benjanirat, Sarun
Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
NASA Astrophysics Data System (ADS)
Smith, Timothy; Lu, Xiaoyi; Ranjan, Reetesh; Pantano, Carlos
2016-11-01
We describe a two-way coupled turbulent dispersed flow computational model using a high-order kernel density function (KDF) method. The carrier-phase solution is obtained using a high-order spatial and temporal incompressible Navier-Stokes solver while the KDF dispersed-phase solver uses the high-order Legendre WENO method. The computational approach is used to model carrier-phase turbulence modulation by the dispersed phase, and particle dispersion by turbulence as a function of momentum coupling strength (particle loading) and number of KDF basis functions. The use of several KDF's allows the model to capture statistical effects of particle trajectory crossing to high degree. Details of the numerical implementation and the coupling between the incompressible flow and dispersed-phase solvers will be discussed, and results at a range of Reynolds numbers will be presented. This work was supported by the National Science Foundation under Grant DMS-1318161.
A Spherical Electro Optic High Voltage Sensor
1989-06-01
electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The
Research on characteristics of free-space optical communication link in weak atmospheric turbulence
NASA Astrophysics Data System (ADS)
Cui, Liguo; Hou, Zaihong; Li, Fei
2013-08-01
Research on characteristics of atmospheric communication link becomes a subject of current interest, and often mainly focuses on some fading parameters including the probability of fade, the mean fade number and the mean fade time. The contribution of false alarm to bit error rate has been considered, however, the temporal characteristic is rarely mentioned., To make up the deficiency, parameters integrating the influence of false alarm and fading were defined. On one hand, the laser communication link were modeled for Gamma-Gamma distribution of irradiance fluctuation subjected to weak atmospheric turbulence. Accordingly the mathematical expressions of these parameters were deduced. On the other hand, characteristic of the parameters were obtained by numerical simulation with various channel environment parameters, such as mean signal-to-noise ratio (SNR), zenith angle and detection threshold. Compared with other researches on fade characteristic, some different conclusions can be drawn from simulation results. With the same SNR and zenith angle, there is an optimum value of detection threshold corresponding to the minimum mean error number, which deviates obviously from that obtained according to the minimum error probability. Either increasing SNR or decreasing zenith angle can reduce mean error number and the optimum threshold. Different from mean error number, mean error time is slightly influenced with channel environment parameters and constant at the order of milliseconds.
NASA Astrophysics Data System (ADS)
Schumacher, Jörg; Bodenschatz, Eberhard
2012-09-01
at Ra = 1708 in the form of convection rolls, whose periodicity is given by the layer height. When the temperature difference, and thus the Rayleigh number, increases, i.e., to the order of Ra ~ 107 and larger, the fluid flow becomes turbulent in the bulk and the flow is controlled by instabilities at the boundary layer. The turbulent fluctuations in turn conspire to create large-scale sweeping flows, the so-called 'mean winds' that couple back to the boundary layer dynamics. In addition to the idealized situation of RBC in a Boussinesq fluid, situations closer to the convective flows occuring in nature are of increasingly central interest. One such is the influence of rotation around a vertical axis, with its application to planetary flows, and another is convection with phase changes, with its application to convection and cloud formation in the atmosphere. The global transport of heat and momentum is the persistent riddle in high-Rayleigh number turbulent convection. Detailed knowledge of the physics is required to better understand the energy budgets in the atmospheric flows of stars and planets. The fundamental challenge lies in basic physics, namely the understanding of the complex interaction of boundary layer instabilities, bulk turbulence, coupling to the large-scale sweeping flows, and the trends of the dynamics with increasing Rayleigh number. In this focus issue, the cutting-edge questions of the field are addressed. How important are the boundary layers of the temperature and velocity fields for the global transport? Which flow structures are connected with the local transport processes of heat and momentum? Is there an 'ultimate' regime for heat transport for very high Rayleigh number? How are the transport properties affected when thermodynamic phase changes of the working fluid or rotation are present? These are some of the topics discussed in the contributions to this issue, invited papers from around the world, comprising numerical, theoretical and
NASA Astrophysics Data System (ADS)
Masciadri, Elena; Lascaux, Franck
2012-07-01
We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint / validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the ground as well as in the free atmosphere, is critical and fundamental because the optical turbulence depends on most of these parameters. This approach permits us to provide an exhaustive and complete analysis of the model performances and to better define the model operational application. This also helps us to identify the sources of discrepancies with optical turbulence measurements (when they appear) and to discriminate between different origins of the problem: model parameterization, initial conditions, ... Preliminary results indicate a great accuracy of the model in reproducing most of the main meteorological parameters in statistical terms as well as in each individual night in the free atmosphere and in proximity of the surface. The study is co-funded by ESO and INAF-Arcetri (Italy).
Energy spectrum in high-resolution direct numerical simulations of turbulence
NASA Astrophysics Data System (ADS)
Ishihara, Takashi; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya; Kaneda, Yukio
2016-12-01
A study is made about the energy spectrum E (k ) of turbulence on the basis of high-resolution direct numerical simulations (DNSs) of forced incompressible turbulence in a periodic box using a Fourier spectral method with the number of grid points and the Taylor scale Reynolds number Rλ up to 12 2883 and approximately 2300, respectively. The DNS data show that there is a wave-number range (approximately 5 ×10-3
Progress on the Two-Wheel High Acceleration Experiment to Study Rayleigh-Taylor Turbulence
NASA Astrophysics Data System (ADS)
Haley, Aaron; Banerjee, Arindam
2011-11-01
A new two-wheel experiment, scaled by a factor of 4 from the previously presented proof of concept, is used to study turbulent incompressible Rayleigh-Taylor (RT) instability. Two counter rotating wheels are mounted side by side such that axes of rotation are normal to gravity. A test section containing pairs of either miscible or immiscible fluids is attached to the first wheel and rotated so that a stable stratification is formed. The test section is then transferred to the adjacent wheel using a pneumatically actuated transfer mechanism. RT instability is effected by the inverted density stratification relative to the centrifugal acceleration. Late time RT turbulence at buoyancy Re ~ 230 , 000 is achieved. Details of the mixing layer development and growth constants are captured using high speed backlit imaging. A variety of fluid combinations (immiscible and miscible) are utilized to investigate development of RT mixing over a range of Atwood numbers and results are compared with data available in the literature. Funded by NSF-CBET-Fluid Dynamics Grant # 0967672 and DOE Los Alamos National Laboratory subcontract # 123141.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
NASA Astrophysics Data System (ADS)
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Mininni, P D; Alexakis, A; Pouquet, A
2008-03-01
We analyze the data stemming from a forced incompressible hydrodynamic simulation on a grid of 2048(3) regularly spaced points, with a Taylor Reynolds number of R(lambda) ~ 1300. The forcing is given by the Taylor-Green vortex, which shares similarities with the von Kàrmàn flow used in several laboratory experiments; the computation is run for ten turnover times in the turbulent steady state. At this Reynolds number the anisotropic large scale flow pattern, the inertial range, the bottleneck, and the dissipative range are clearly visible, thus providing a good test case for the study of turbulence as it appears in nature. Triadic interactions, the locality of energy fluxes, and longitudinal structure functions of the velocity increments are computed. A comparison with runs at lower Reynolds numbers is performed and shows the emergence of scaling laws for the relative amplitude of local and nonlocal interactions in spectral space. Furthermore, the scaling of the Kolmogorov constant, and of skewness and flatness of velocity increments is consistent with previous experimental results. The accumulation of energy in the small scales associated with the bottleneck seems to occur on a span of wave numbers that is independent of the Reynolds number, possibly ruling out an inertial range explanation for it. Finally, intermittency exponents seem to depart from standard models at high R(lambda), leaving the interpretation of intermittency an open problem.
Turbulent impinging flow simulation for high-level waste storage and processing applications
Rhea, Simon; Fairweather, Michael
2007-07-01
The efficient storage and processing of high-level nuclear waste could be improved by a better understanding of the behaviour of the particle-laden fluid flows involved. This work reports a mathematical modeling study of impinging single and two-phase turbulent jets that is of relevance to the flows used industrially to prevent the settling of solid particles in storage tanks, and to re-suspend particles that form a bed. A computational fluid dynamic model, that embodies a Lagrangian particle tracking technique, is applied to the prediction of these flows. Predictions in the free flow and wall regions, and along the stagnation line, of the single phase flow are in reasonable accord with data, although the addition of particles results in less satisfactory agreement between predictions and measurements. The influence of particles is, however, reproduced qualitatively by the mathematical model, with quantitative differences attributable to a lack of particle drag in the simulations. Uncertainties in experimental parameters may be responsible for some of the differences between predictions and data, and examination of the data used casts doubts on its reliability. Further work is required in terms of the use of more advanced turbulence modeling techniques, and the provision of detailed and reliable data sets. (authors)
Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet
Hussein, H.J.; Capp, S.P.; George, W.K.
1994-01-01
The turbulent flow resulting from a top-hat jet exhausting into a large room was investigated. The Reynolds number based on exit conditions was approximately 10(exp 5). Velocity moments to third order were obtained using flying and stationary hot-wire and burst-mode laser-Doppler anemometry (LDA) techniques. The entire room was fully seeded for the LDA measurements. The measurements are shown to satisfy the differential and integral momentum equations for a round jet in an infinite environment. The results differ substantially from those reported by some earlier investigators, both in the level and shape of the profiles. These differences are attributed to the smaller enclosures used in the earlier works and the recirculation within them. Also, the flying hot-wire and burst-mode LDA measurements made here differ from the stationary wire measurements, especially the higher moments and away from the flow centreline. These differences are attributed to the cross-flow and rectification errors on the latter at the high turbulence intensities present in this flow (30% minimum at centreline). The measurements are used, together with recent dissipation measurements, to compute the energy balance for the jet, and an attempt is made to estimate the pressure-velocity and pressure-strain rate correlations.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame
NASA Astrophysics Data System (ADS)
You, Jiaping; Yang, Yue
2016-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).
High-temperature, high-pressure optical cell
NASA Technical Reports Server (NTRS)
Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)
1986-01-01
The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.
TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS
Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.
2014-11-10
Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.
Berman, Gennady P.; Bishop, Alan R.; Nguyen, Dinh C.; Chernobrod, Boris M.; Gorshkov, Vacheslav N.
2009-10-13
A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.
Suppressed ion-scale turbulence in a hot high-β plasma
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-01-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675
Suppressed ion-scale turbulence in a hot high-β plasma.
Schmitz, L; Fulton, D P; Ruskov, E; Lau, C; Deng, B H; Tajima, T; Binderbauer, M W; Holod, I; Lin, Z; Gota, H; Tuszewski, M; Dettrick, S A; Steinhauer, L C
2016-12-21
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
Suppressed ion-scale turbulence in a hot high-β plasma
NASA Astrophysics Data System (ADS)
Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.
2016-12-01
An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.
High resolution wavefront measurement of aspheric optics
NASA Astrophysics Data System (ADS)
Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.
2008-08-01
With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.
Highly stretchable, printable nanowire array optical polarizers.
Kwon, Soonshin; Lu, Dylan; Sun, Zhelin; Xiang, Jie; Liu, Zhaowei
2016-09-21
Designing optical components such as polarizers on substrates with high mechanical deformability have potential to realize new device platforms in photonics, wearable electronics, and sensors. Conventional manufacturing approaches that rely highly on top-down lithography, deposition and the etching process can easily confront compatibility issues and high fabrication complexity. Therefore, an alternative integration scheme is necessary. Here, we demonstrate fabrication of highly flexible and stretchable wire grid polarizers (WGPs) by printing bottom-up grown Ge or Ge/Si core/shell nanowires (NWs) on device substrates in a highly dense and aligned fashion. The maximum contrast ratio of 104 between transverse electric (TE) and transverse magnetic (TM) fields and above 99% (maximum 99.7%) of light blocking efficiency across the visible spectrum range are achieved. Further systematic analyses are performed both in experimental and numerical models to reveal the correspondence between physical factors (coverage ratio of NW arrays and diameter) and polarization efficiency. Moreover, we demonstrate distinctive merits of our approach: (i) high flexibility in the choice of substrates such as glass, plastic, or elastomer; (ii) easy combination with additional novel functionalities, for example, air permeability, flexibility/stretchability, biocompatibility, and a skin-like low mechanical modulus; (iii) selective printing of polarizers on a designated local area.
Shu, Chi-Wang
2013-01-13
In this article, we give a brief overview on high-order accurate shock capturing schemes with the aim of applications in compressible turbulence simulations. The emphasis is on the basic methodology and recent algorithm developments for two classes of high-order methods: the weighted essentially non-oscillatory and discontinuous Galerkin methods.
NASA Astrophysics Data System (ADS)
Barone, Mario; Lombardi, Simone; Continillo, Gaetano; Sementa, Paolo; Vaglieco, Bianca Maria
2016-12-01
This paper illustrates the analysis conducted on high-definition, high sampling rate image sequences collected in experiments with a single spark ignition optically accessible engine. Images are first processed to identify the reaction front, and then analyzed by an optical flow estimation technique. The results show that each velocity component of the estimated flow field has an ECDF very similar to the CDF of a Gaussian distribution, whereas the velocity magnitude has an ECDF well fitted by a Rayleigh probability distribution. The proposed non-intrusive method provides a fast statistical characterization of the flame propagation phenomenon in the engine combustion chamber.
Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C
2012-10-12
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.
Wall Cooling Effects on Hypersonic Transitional/Turbulent Boundary Layers at High Reynolds Numbers
NASA Technical Reports Server (NTRS)
Watson, Ralph D.
1975-01-01
A 4 degree wedge was used to produce a thick turbulent boundary layer with an edge Mach number of 11. By using a two-dimensional model, the boundary layer was nearly free from upstream history effects associated with nozzle wall turbulent boundary layers. Heat-transfer distributions were used to define regions of laminar, transitional, and turbulent flow at several values of T(sub w)/T(sub t) for an edge unit Reynolds number of 0.47 x lot per cm. Pitot and total temperature profiles and skin-friction measurements were obtained at selected stations along the model. Turbulence parameters (mixing length/sigma and epsilon) were derived from the fully turbulent profiles and used to more completely define the "low Reynolds number" effect. Turbulent Prandtl number distributions are also presented.
Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument
NASA Astrophysics Data System (ADS)
Blary, F.; Ziad, A.; Borgnino, J.; Fantéï-Caujolle, Y.; Aristidi, Eric; Lantéri, H.
2014-07-01
Wide-Field Adaptive Optics (WFAO) have been proposed for the next generation of telescopes. In order to be efficient, correction using WFAO require knowledge of atmospheric turbulence parameters. The structure constant of index-of-refraction fluctuations (C2 N ) being one of them. Indirect methods implemented in instruments as SCIDAR, MASS, SLODAR, CO-SLIDAR and MOSP have been proposed to measure C2 N (h) pro le through different layers of the atmosphere. A new monitor called the Profiler of Moon Limb (PML) is presented. In this instrument, C2 N (h) pro les are retrieved from the transverse covariance via minimization of a maximum likelihood criterion under positivity constraint using an iterative gradient method. An other approach using a regularization method (RM) is also studied. Instrument errors are mainly related to the detection of the Moon limb position and are mostly due to photon noise. Numerical simulations have been used to evaluate the error on the extracted pro le and its propagation from the detection to the inverse technique.
Optical techniques for measurement of high temperatures
Veligdan, J.T.
1991-10-25
The availability of instrumentation to measure the high outlet gas temperature of a particle bed reactor is a topic of some concern. There are a number of possible techniques with advantages and disadvantages. In order to provide some baseline choice of instrumentation, a review has been conducted of these various technologies. This report summarizes the results of this review for a group of technologies loosely defined as optical techniques (excluding optical pyrometry). The review has concentrated on a number of questions for each technology investigated. These are: (1) Description of the technology, (2) Anticipated sensitivity and accuracy, (3) Requirements for implementation, (4) Necessary development time and costs, (5) Advantages and disadvantages of the technology. Each of these areas was considered for a technology and a large number of technologies were considered in a review of the literature. Based upon this review it was found that a large number of methods exist to measure temperatures in excess of 2000 K. None of the methods found were ideal. Four methods, however, appeared to warrant further consideration: opto-mechanical expansion thermometry, surface Raman spectroscopy, gas-phase Raman spectroscopy and coherent anti-Stokes Raman spectroscopy (CARS). These techniques will be discussed further in this document.
NASA Astrophysics Data System (ADS)
Graeger, Helmut
Drag reduction in turbulent pipe flow is obtained by addition of polymeric flow accelerator. Turbulent flow pattern is described on the basis of existing theories and reduction of loss of pressure heads is discussed. A turbulence rheometer is developed permitting the measurement of friction reduction for Reynolds numbers 1100 to 90,000. Effectiveness of water soluble polymer systems like polyacrylamide and coacrylate is studied in dependence of concentration, chemical composition, product aging and polymer chain deformation.
High pressure fiber optic sensor system
Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N
2013-11-26
The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.
The Calern atmospheric turbulence station
NASA Astrophysics Data System (ADS)
Chabé, Julien; Ziad, Aziz; Fantéï-Caujolle, Yan; Aristidi, Éric; Renaud, Catherine; Blary, Flavien; Marjani, Mohammed
2016-07-01
From its long expertise in Atmospheric Optics, the Observatoire de la Côte d'Azur and the J.L. Lagrange Laboratory have equipped the Calern Observatory with a station of atmospheric turbulence measurement (CATS: Calern Atmospheric Turbulence Station). The CATS station is equipped with a set of complementary instruments for monitoring atmospheric turbulence parameters. These new-generation instruments are autonomous within original techniques for measuring optical turbulence since the first meters above the ground to the borders of the atmosphere. The CATS station is also a support for our training activities as part of our Masters MAUCA and OPTICS, through the organization of on-sky practical works.
Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non
A High Bandwidth Optically Pumped Atomic Magnetometer
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, Ricardo; Griffith, Clark W.; Knappe, Svenja; Kitching, John
2009-10-01
The measurement of magnetic fields has proved to be relevant in many realms of basic and applied science. Among the different techniques to measure magnetic fields, that of optically pumped atomic magnetometers has experienced considerable attention recently. This interest stems from the development of atomic magnetometers that achieve sensitivities in the sub-femto Tesla range, and the development of techniques that enable highly miniaturized, compact, with low-power consumption magnetometers. The sensitivity and bandwidth of atomic magnetometers is set by their spin coherence time, which in most magnetometers is limited by atomic collisions. Better sensitivities are achieved by suppressing the spin decoherence introduced by atomic collisions, but at a cost of lower bandwidth. For certain applications, a magnetometer with a high bandwidth is useful. Here we present a technique to achieve high bandwidth while preserving high sensitivity. We support the technique with table-top measurements showing that a bandwidth of 10 KHz and sensitivity of 10 pTrms/(Hz)^1/2 can be achieved in a compact device. We also highlight the current development of a miniature atomic magnetometer based on this technique.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
A hot-wire method for high-intensity turbulent flows
NASA Technical Reports Server (NTRS)
Mueller, U. R.
1983-01-01
A measuring technique for determing instantaneous, three-dimensional velocity vectors in highly turbulent flows by means of a 4-sensor hot-wire probe is described. As is well known, the hot-wire signal received in reversing flows cannot uniquely be interpreted. This difficulty is circumvented by tracking the thermal wake of a heated wire. Whenever the approximate flow direction is indicated by a temperature-sensitive wake detector, all components of the instantaneous velocity vector are evaluated by means of a digital data reduction method. Uniqueness of the solution derived from the triple-hot-wire response equations is examined. A first application of the proposed measuring technique in the recirculating flow downstream of a backward-facing step is described.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
J. KAO; D. COOPER; ET AL
2000-11-01
As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.
NASA Astrophysics Data System (ADS)
Atkinson, Callum; Amili, Omid; Stanislas, Michel; Cuvier, Christophe; Foucaut, Jean-Marc; Srinath, Sricharan; Laval, Jean-Philippe; Kaehler, Christian; Hain, Rainer; Scharnowski, Sven; Schroeder, Andreas; Geisler, Reinhard; Agocs, Janos; Roese, Anni; Willert, Christian; Klinner, Joachim; Soria, Julio
2016-11-01
The study of adverse pressure gradient turbulent boundary layers is complicated by the need to characterise both the local pressure gradient and it's upstream flow history. It is therefore necessary to measure a significant streamwise domain at a resolution sufficient to resolve the small scales features. To achieve this collaborative particle image velocimetry (PIV) measurements were performed in the large boundary layer wind-tunnel at the Laboratoire de Mecanique de Lille, including: planar measurements spanning a streamwise domain of 3.5m using 16 cameras covering 15 δ spanwise wall-normal stereo-PIV measurements, high-speed micro-PIV of the near wall region and wall shear stress; and streamwise wall-normal PIV in the viscous sub layer. Details of the measurements and preliminary results will be presented.
Instability of high-frequency acoustic waves in accretion disks with turbulent viscosity
NASA Astrophysics Data System (ADS)
Khoperskov, A. V.; Khrapov, S. S.
1999-05-01
The dynamics of linear perturbations in a differentially rotating accretion disk with a non-homogeneous vertical structure is investigated. We find that turbulent viscosity results in instability of both pinching oscillations, and bending modes. Not only the low-frequency fundamental modes, but also the high-frequency reflective harmonics appear to be unstable. The question of the limits of applicability of the thin disk model (MTD) is also investigated. Some differences in the dispersion properties of the MTD and of the three-dimensional model appear for wave numbers k <~ (1-3)/h (h is the half-thickness of a disk). In the long-wavelength limit, the relative difference between the eigenfrequencies of the unstable acoustic mode in the 3D-model and the MTD is smaller than 5%. In the short wavelength case (kh > 1) these differences are increased.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
High nonlinear optical anisotropy of urea nanofibers
NASA Astrophysics Data System (ADS)
Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.
2010-07-01
Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-02
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
NASA Astrophysics Data System (ADS)
Eliasson, B.; Milikh, G.; Shao, X.; Mishin, E. V.; Papadopoulos, K.
2015-04-01
We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10-20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.
NASA Technical Reports Server (NTRS)
Viegas, John R.; Rubesin, Morris W.
1991-01-01
Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.
Angioni, C.
2015-10-15
A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.
Turbulence measurement in a reacting and non-reacting shear layer at a high subsonic Mach number
NASA Technical Reports Server (NTRS)
Chang, C. T.; Marek, C. J.; Wey, C.; Jones, R. A.; Smith, M. J.
1993-01-01
The results of two component velocity and turbulence measurements are presented which were obtained on a planar reacting shear layer burning hydrogen. Quantitative LDV and temperature measurements are presented with and without chemical reaction within the shear layer at a velocity ratio of 0.34 and a high speed Mach number of 0.7. The comparison showed that the reacting shear layer grew faster than that without reaction. Using a reduced width coordinate, the reacting and non-reacting profiles were very similar. The peak turbulence for both cases was 20 percent.
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
1993-01-01
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Astrophysics Data System (ADS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
NASA Astrophysics Data System (ADS)
Roberts, L.; Francis, S.; Sibley, P.; Ward, R.; Smith, C.; McClelland, D.; Shaddock, D.
2016-09-01
Optical phased arrays (OPAs) provide a way to scale optical power beyond the capabilities of conventional CW lasers via coherent beam combination. By stabilising the relative output phase of multiple spatially separate lasers, OPAs form a coherent optical wavefront in the far field. Since the phase of each laser can be controlled independently, OPAs also have the ability to manipulate the distribution of optical power in the far field, and therefore may provide the capability to compensate for atmospheric turbulence. Combined with their inherent scalability and high power handling capabilities, OPAs are a promising technology for CW space debris ranging and manoeuvring. The OPA presented here is unique in its ability to sense the phase of each laser internally, without requiring any external sampling optics between it and the telescope. This allows the internally sensed OPA to be constructed entirely within fibre, utilising high-power fiber amplifiers to scale optical power beyond the limits of any conventional single lasers. The total power that can be delivered by each emitter in the OPA is limited only by the onset of stimulated Brillouin scattering, a non-linear effect that clamps the amount of power that can be delivered through a fiber waveguide. A three element internally sensed OPA developed at the Australian National University has been demonstrated to coherently combine three commercial 15 Watt fiber amplifiers with an output phase stability of one 200th of a wavelength. We have also demonstrated the ability to dynamically manipulate the distribution of optical power in the far-field at a bandwidth of up to 10 kHz. Since the OPA's control system is implemented using field-programmable gate-array technology, the system may be scaled beyond 100 emitters, potentially reaching the kilowatt level optical powers required to perturb the orbit of space debris.
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
NASA Technical Reports Server (NTRS)
Murthy, S. V.; Steinle, F. W.
1986-01-01
Based on the existing boundary layer transition data, the effects of compressibility, pressure fluctuations, and free-stream turbulence have been reexamined for subsonic and transonic flow speeds. It is confirmed that the compressibility effects may be adequately expressed in terms of a simple correlation with free-stream Mach number. Pressure fluctuations, especially at low levels, do not seem to significantly affect the transition phenomenon. Effects of free-stream turbulence in high-subsonic and transonic flows are similar to the trends observed for low-speed flows and the transition process is hastened. The trends, as seen from slender cone flow data, seem to suggest power law correlations between transition Reynolds number and free-stream turbulence.
NASA Technical Reports Server (NTRS)
Thompson, D. S.
1980-01-01
The full Navier-Stokes equations for incompressible turbulent flow must be solved to accurately represent all flow phenomena which occur in a high Reynolds number incompressible flow. A two layer algebraic eddy viscosity turbulence model is used to represent the Reynolds stress in the primitive variable formulation. The development of the boundary-fitted coordinate systems makes the numerical solution of these equations feasible for arbitrarily shaped bodies. The nondimensional time averaged Navier-Stokes equations, including the turbulence mode, are represented by finite difference approximations in the transformed plane. The resulting coupled system of nonlinear algebraic equations is solved using a point successive over relaxation iteration. The test case considered was a NACA 64A010 airfoil section at an angle of attack of two degrees and a Reynolds number of 2,000,000.
NASA Astrophysics Data System (ADS)
Xu, Jinglei; Li, Meng; Zhang, Yang; Chen, Longfei
2016-12-01
The von Karman length scale is able to reflect the size of the local turbulence structure. However, it is not suitable for the near wall region of wall-bounded flows, for its value is almost infinite there. In the present study, a simple and novel length scale combining the wall distance and the von Karman length scale is proposed by introducing a structural function. The new length scale becomes the von Karman length scale once local unsteady structures are detected. The proposed method is adopted in a series of turbulent channel flows at different Reynolds numbers. The results show that the proposed length scale with the structural function can precisely simulate turbulence at high Reynolds numbers, even with a coarse grid resolution.
Telescope Adaptive Optics Code
Phillion, D.
2005-07-28
The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST
A Novel, High-Resolution, High-Speed Fiber-Optic Temperature Sensor for Oceanographic Applications
2015-05-11
sharp thermo -gradient underwater. Keywords— Fiber-optic thermometer; Fabry-Pérot interferometer; ocean microstructure; turbulence I...in this paper is based on a FP cavity formed by thin crystalline silicon film attached to the end face of a single-mode fiber. Due to the thermo ...the dynamic temperature variations associated with a strong microstructure thermo -gradient is demonstrated. A. Sensitivity (a) (b) Fig. 1. (a
All-optical relative intensity noise suppression method for the high precision fiber optic gyroscope
NASA Astrophysics Data System (ADS)
Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Zhang, Yuhui
2016-10-01
The relative intensity noise (RIN) is a main factor that limits the detection accuracy of the high precision fiber optic gyroscope (FOG). The RIN spectrum is determined by the normalized autocorrelation of the optical spectrum of the broadband source and is intrinsically different from other fundamental noises. In this paper, we propose an all-optical technique to suppress the RIN. With the power addition of the optical waves from the signal optical path and the reference optical path, the RIN is effectively eliminated at the eigen frequency of the FOG, which is also the demodulation window for the rotation rate signal. Compared with the traditional optical configuration of the FOG, there is only one additional optical component. Experimental results show that, with this method, we can achieve a nearly 3-fold improvement in the angular random walk coefficient. The improved optical configuration for RIN suppression is simple to realize and suitable for engineering application.
NASA Technical Reports Server (NTRS)
Rostand, Philippe
1989-01-01
The incorporation of algebraic turbulence models in a solver for the 2-D compressible Navier-Stokes equations using triangular grids is described. A practial way to use the Cebeci Smith model, and to modify it in separated regions is proposed. The ability of the model to predict high speed, perfect gas boundary layers is investigated from a numerical point of view.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2002-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Sound radiation from a high speed axial flow fan due to the inlet turbulence quadrupole interaction
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Rosenbaum, B. M.; Albers, L. U.
1974-01-01
A formula is obtained for the total acoustic power spectra radiated out the front of the fan as a function of frequency. The formula involves the design parameters of the fan as well as the statistical properties of the incident turbulence. Numerical results are calculated for values of the parameters in the range of interest for quiet fans tested at the Lewis Research Center. As in the dipole analysis, when the turbulence correlation lengths become equal to the interblade spacing, the predicted spectra exhibit peaks around the blade passing frequency and its harmonics. There has recently been considerable conjecture about whether the stretching of turbulent eddies as they enter a stationary fan could result in the inlet turbulence being the dominant source of pure tones from nontranslating fans. The results of the current analysis show that, unless the turbulent eddies become quite elongated, this noise source contributes predominantly to the broadband spectrum.
Turbulence-induced persistence in laser beam wandering.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G
2015-07-01
We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.
Optical autofocus for high resolution laser photoplotting
NASA Astrophysics Data System (ADS)
Alonso, Jose; Crespo, Daniel; Jimenez, Isidoro; Bernabeu, Eusebio
2005-07-01
An all optical autofocus has been designed and tested for tight line width control in a high NA laser photoplotter system. The laser system is based in a GaN semiconductor laser with power 30 mW and wavelength 405 nm. The advantage of using this laser, despite the relatively long wavenlength, is compactness and easy for high frequency modulation. The autofocus system is based in a secondary 635 nm GaAlAs laser without need for wavelength, neither power stabilization. The two beams are delivered coaxially through the focusing lens by means of a dichroic beamsplitter. Focusing lens need no correction for chromatic aberration, as this is compensed by appropriate autofocus beam divergence. After reflection in the sample, the autofocus beam is separated from the returning writing beam and then guided to a collimation sensor, in which defocus of about 1/20 of the Rayleigh range of the writing beam can be detected and compensated by an analogue PID electronic control. Stable linewidth within 5% is achieved with different numerical aperture focusing lenses.
Turbulent flame speeds and NOx kinetics of HHC fuels with contaminants and high dilution levels
Petersen, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankar; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Aul, Christopher; Petersen, Eric
2012-09-30
This progress report documents the second year of the project, from October 1, 2011 through September 30, 2012. Characterization of the new turbulent flame speed vessel design was completed. Turbulence statistics of three impellers with different geometric features were measured using particle image velocimetry inside a Plexiglas model (~1:1 scale) of a cylindrical flame speed vessel (30.5 cm ID × 35.6 cm L). With four impellers arranged in a central-symmetric configuration, turbulence intensities between 1.2 and 1.7 m/s with negligible mean flow (0.1u´) were attained at the lowest fan speeds. Acceptable ranges for homogeneity and isotropy ratios of the velocity fields were set within a narrow bandwidth near unity (0.9-1.1). Homogeneity ratios were unaffected by changes to the impeller geometry, and the prototype with the higher number of blades caused the flow to become anisotropic. The integral length scale of the flow fields varied between 27 and 20 mm, which correlates well with those typically observed inside a gas turbine combustor. The mechanism to independently vary the intensity level and the integral length scale was established, where turbulence intensity level was dependent on the rotational speed of the fan, and the integral length scale decreased with increasing blade pitch angle. Ignition delay times of H₂/O₂ mixtures highly diluted with Ar and doped with various amounts of N₂O (100, 400, 1600, 3200 ppm) were measured in a shock tube behind reflected shock waves over a wide range of temperatures (940-1675 K). The pressure range investigated during this work (around 1.6, 13, and 30 atm) allows studying the effect of N₂O on hydrogen ignition at pressure conditions that have never been heretofore investigated. Ignition delay times were decreased when N₂O was added to the mixture only for the higher nitrous oxide concentrations, and some changes in the activation energy were also observed at 1.5 and 30 atm. When it occurred, the decrease in
Niu, Mingbo; Cheng, Julian; Holzman, Jonathan F
2010-06-21
Exact error rate performances are studied for coherent free-space optical communication systems under strong turbulence with diversity reception. Equal gain and selection diversity are considered as practical schemes to mitigate turbulence. The exact bit-error rate for binary phase-shift keying and outage probability are developed for equal gain diversity. Analytical expressions are obtained for the bit-error rate of differential phase-shift keying and asynchronous frequency-shift keying, as well as for outage probability using selection diversity. Furthermore, we provide the closed-form expressions of diversity order and coding gain with both diversity receptions. The analytical results are verified by computer simulations and are suitable for rapid error rates calculation.
The design of space optical communications terminal with high efficient
NASA Astrophysics Data System (ADS)
Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei
2015-02-01
In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.