Oglesby, Mary E; Schmidt, Norman B
2017-07-01
Intolerance of uncertainty (IU) has been proposed as an important transdiagnostic variable within mood- and anxiety-related disorders. The extant literature has suggested that individuals high in IU interpret uncertainty more negatively. Furthermore, theoretical models of IU posit that those elevated in IU may experience an uncertain threat as more anxiety provoking than a certain threat. However, no research to date has experimentally manipulated the certainty of an impending threat while utilizing an in vivo stressor. In the current study, undergraduate participants (N = 79) were randomized to one of two conditions: certain threat (participants were told that later on in the study they would give a 3-minute speech) or uncertain threat (participants were told that later on in the study they would flip a coin to determine whether or not they would give a 3-minute speech). Participants also completed self-report questionnaires measuring their baseline state anxiety, baseline trait IU, and prespeech state anxiety. Results indicated that trait IU was associated with greater state anticipatory anxiety when the prospect of giving a speech was made uncertain (i.e., uncertain condition). Further, findings indicated no significant difference in anticipatory state anxiety among individuals high in IU when comparing an uncertain versus certain threat (i.e., uncertain and certain threat conditions, respectively). Furthermore, results found no significant interaction between condition and trait IU when predicting state anticipatory anxiety. This investigation is the first to test a crucial component of IU theory while utilizing an ecologically valid paradigm. Results of the present study are discussed in terms of theoretical models of IU and directions for future work. Copyright © 2017. Published by Elsevier Ltd.
Possible world based consistency learning model for clustering and classifying uncertain data.
Liu, Han; Zhang, Xianchao; Zhang, Xiaotong
2018-06-01
Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsai, F. T.; Elshall, A. S.; Hanor, J. S.
2012-12-01
Subsurface modeling is challenging because of many possible competing propositions for each uncertain model component. How can we judge that we are selecting the correct proposition for an uncertain model component out of numerous competing propositions? How can we bridge the gap between synthetic mental principles such as mathematical expressions on one hand, and empirical observation such as observation data on the other hand when uncertainty exists on both sides? In this study, we introduce hierarchical Bayesian model averaging (HBMA) as a multi-model (multi-proposition) framework to represent our current state of knowledge and decision for hydrogeological structure modeling. The HBMA framework allows for segregating and prioritizing different sources of uncertainty, and for comparative evaluation of competing propositions for each source of uncertainty. We applied the HBMA to a study of hydrostratigraphy and uncertainty propagation of the Southern Hills aquifer system in the Baton Rouge area, Louisiana. We used geophysical data for hydrogeological structure construction through indictor hydrostratigraphy method and used lithologic data from drillers' logs for model structure calibration. However, due to uncertainty in model data, structure and parameters, multiple possible hydrostratigraphic models were produced and calibrated. The study considered four sources of uncertainties. To evaluate mathematical structure uncertainty, the study considered three different variogram models and two geological stationarity assumptions. With respect to geological structure uncertainty, the study considered two geological structures with respect to the Denham Springs-Scotlandville fault. With respect to data uncertainty, the study considered two calibration data sets. These four sources of uncertainty with their corresponding competing modeling propositions resulted in 24 calibrated models. The results showed that by segregating different sources of uncertainty, HBMA analysis provided insights on uncertainty priorities and propagation. In addition, it assisted in evaluating the relative importance of competing modeling propositions for each uncertain model component. By being able to dissect the uncertain model components and provide weighted representation of the competing propositions for each uncertain model component based on the background knowledge, the HBMA functions as an epistemic framework for advancing knowledge about the system under study.
NASA Astrophysics Data System (ADS)
Bakker, Alexander; Louchard, Domitille; Keller, Klaus
2016-04-01
Sea-level rise threatens many coastal areas around the world. The integrated assessment of potential adaptation and mitigation strategies requires a sound understanding of the upper tails and the major drivers of the uncertainties. Global warming causes sea-level to rise, primarily due to thermal expansion of the oceans and mass loss of the major ice sheets, smaller ice caps and glaciers. These components show distinctly different responses to temperature changes with respect to response time, threshold behavior, and local fingerprints. Projections of these different components are deeply uncertain. Projected uncertainty ranges strongly depend on (necessary) pragmatic choices and assumptions; e.g. on the applied climate scenarios, which processes to include and how to parameterize them, and on error structure of the observations. Competing assumptions are very hard to objectively weigh. Hence, uncertainties of sea-level response are hard to grasp in a single distribution function. The deep uncertainty can be better understood by making clear the key assumptions. Here we demonstrate this approach using a relatively simple model framework. We present a mechanistically motivated, but simple model framework that is intended to efficiently explore the deeply uncertain sea-level response to anthropogenic climate change. The model consists of 'building blocks' that represent the major components of sea-level response and its uncertainties, including threshold behavior. The framework's simplicity enables the simulation of large ensembles allowing for an efficient exploration of parameter uncertainty and for the simulation of multiple combined adaptation and mitigation strategies. The model framework can skilfully reproduce earlier major sea level assessments, but due to the modular setup it can also be easily utilized to explore high-end scenarios and the effect of competing assumptions and parameterizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong
Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less
Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong; ...
2016-12-08
Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less
Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method
NASA Astrophysics Data System (ADS)
Tsai, F. T. C.; Elshall, A. S.
2014-12-01
Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.
Learning to integrate reactivity and deliberation in uncertain planning and scheduling problems
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Gervasio, Melinda T.; Dejong, Gerald F.
1992-01-01
This paper describes an approach to planning and scheduling in uncertain domains. In this approach, a system divides a task on a goal by goal basis into reactive and deliberative components. Initially, a task is handled entirely reactively. When failures occur, the system changes the reactive/deliverative goal division by moving goals into the deliberative component. Because our approach attempts to minimize the number of deliberative goals, we call our approach Minimal Deliberation (MD). Because MD allows goals to be treated reactively, it gains some of the advantages of reactive systems: computational efficiency, the ability to deal with noise and non-deterministic effects, and the ability to take advantage of unforseen opportunities. However, because MD can fall back upon deliberation, it can also provide some of the guarantees of classical planning, such as the ability to deal with complex goal interactions. This paper describes the Minimal Deliberation approach to integrating reactivity and deliberation and describe an ongoing application of the approach to an uncertain planning and scheduling domain.
Lightning NOx and Impacts on Air Quality
NASA Technical Reports Server (NTRS)
Murray, Lee T.
2016-01-01
Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.
Altered subjective reward valuation among female heavy marijuana users.
Hefner, Kathryn R; Starr, Mark J
2017-02-01
Maladaptive decision-making is a cardinal feature of drug use, contributing to ongoing use, and reflecting alterations in how drug users assess uncertain reward value. Accumulating evidence indicates the consequences of heavy marijuana use are worse for female versus male animals and humans, but research assessing sex differences in reward-related decision-making among marijuana users remains scarce. We examined sex differences in the subjective valuation of certain and uncertain rewards among heavy marijuana users (52; 26 male and 26 female) and controls (52; 26 male and 26 female). We offered male and female heavy marijuana users and controls monetary rewards of certain and uncertain (probabilistic) values. We measured how preferences for uncertain rewards varied by the objective value of those rewards, moderators of reward uncertainty, Marijuana Group and Sex. Men were more sensitive to changes in the objective value of uncertain rewards than women. However, this effect of Sex differed by Marijuana Group. Female heavy marijuana users were more sensitive to changes in uncertain reward value, particularly when the "stakes" were high (i.e., greater difference between potential uncertain rewards), than female controls. Female heavy marijuana users' sensitivity to changes in the value of high stakes uncertain rewards was comparable to male marijuana users and controls. In contrast, male marijuana users' sensitivity to changes in the value of high stakes uncertain rewards did not differ from male controls. These results suggest sex differences in sensitivity to high risk rewards may be one pathway contributing to severer consequences of heavy marijuana use among women. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Altered subjective reward valuation among female heavy marijuana users
Hefner, Kathryn R.; Starr, Mark. J.
2016-01-01
Maladaptive decision-making is a cardinal feature of drug use, contributing to ongoing use, and reflecting alterations in how drug users assess uncertain reward value. Accumulating evidence indicates the consequences of heavy marijuana use are worse for female versus male animals and humans, but research assessing sex differences in reward-related decision-making among marijuana users remains scarce. We examined sex differences in the subjective valuation of certain and uncertain rewards among heavy marijuana users (52; 26 male and 26 female) and controls (52; 26 male and 26 female). We offered male and female heavy marijuana users and controls monetary rewards of certain and uncertain (probabilistic) values. We measured how preferences for uncertain rewards varied by the objective value of those rewards, moderators of reward uncertainty, marijuana use, and sex. Men were more sensitive to changes in the objective value of uncertain rewards than women. However, this effect of sex differed by marijuana group. Female heavy marijuana users were more sensitive to changes in uncertain reward value, particularly when the ‘stakes’ were high (i.e., greater difference between potential uncertain rewards), than female controls. Female heavy marijuana users’ sensitivity to changes in the value of high stakes uncertain rewards was comparable to male marijuana users and controls. In contrast, male marijuana users’ sensitivity to changes in the value of high stakes uncertain rewards did not differ from male controls. These results suggest sex differences in sensitivity to high risk rewards may be one pathway contributing to severer consequences of heavy marijuana use among women. PMID:27936816
Autonomous Spacecraft Navigation Using Above-the-Constellation GPS Signals
NASA Technical Reports Server (NTRS)
Winternitz, Luke
2017-01-01
GPS-based spacecraft navigation offers many performance and cost benefits, and GPS receivers are now standard GNC components for LEO missions. Recently, more and more high-altitude missions are taking advantage of the benefits of GPS navigation as well. High-altitude applications pose challenges, however, because receivers operating above the GPS constellations are subject to reduced signal strength and availability, and uncertain signal quality. This presentation will present the history and state-of-the-art in high-altitude GPS spacecraft navigation, including early experiments, current missions and receivers, and efforts to characterize and protect signals available to high-altitude users. Recent results from the very-high altitude MMS mission are also provided.
Using Negotiated Joining to Construct and Fill Open-ended Roles in Elite Culinary Groups.
Tan, Vaughn
2015-03-01
This qualitative study examines membership processes in groups operating in an uncertain environment that prevents them from fully predefining new members' roles. I describe how nine elite high-end, cutting-edge culinary groups in the U.S. and Europe, ranging from innovative restaurants to culinary R&D groups, use negotiated joining-a previously undocumented process-to systematically construct and fill these emergent, open-ended roles. I show that negotiated joining is a consistently patterned, iterative process that begins with a role that both aspirant and target group explicitly understand to be provisional. This provisional role is then jointly modified and constructed by the aspirant and target group through repeated iterations of proposition, validation through trial and evaluation, and selective integration of validated role components. The initially provisional role stabilizes and the aspirant achieves membership if enough role components are validated; otherwise the negotiated joining process is abandoned. Negotiated joining allows the aspirant and target group to learn if a mutually desirable role is likely and, if so, to construct such a role. In addition, the provisional roles in negotiated joining can support absorptive capacity by allowing novel role components to enter target groups through aspirants' efforts to construct stable roles for themselves, while the internal adjustment involved in integrating newly validated role components can have the unintended side effect of supporting adaptation by providing opportunities for the groups to use these novel role components to modify their role structure and goals to suit a changing and uncertain environment. Negotiated joining thus reveals role ambiguity's hitherto unexamined beneficial consequences and provides a foundation for a contingency theory of new-member acquisition.
Using Negotiated Joining to Construct and Fill Open-ended Roles in Elite Culinary Groups
Tan, Vaughn
2015-01-01
This qualitative study examines membership processes in groups operating in an uncertain environment that prevents them from fully predefining new members’ roles. I describe how nine elite high-end, cutting-edge culinary groups in the U.S. and Europe, ranging from innovative restaurants to culinary R&D groups, use negotiated joining—a previously undocumented process—to systematically construct and fill these emergent, open-ended roles. I show that negotiated joining is a consistently patterned, iterative process that begins with a role that both aspirant and target group explicitly understand to be provisional. This provisional role is then jointly modified and constructed by the aspirant and target group through repeated iterations of proposition, validation through trial and evaluation, and selective integration of validated role components. The initially provisional role stabilizes and the aspirant achieves membership if enough role components are validated; otherwise the negotiated joining process is abandoned. Negotiated joining allows the aspirant and target group to learn if a mutually desirable role is likely and, if so, to construct such a role. In addition, the provisional roles in negotiated joining can support absorptive capacity by allowing novel role components to enter target groups through aspirants’ efforts to construct stable roles for themselves, while the internal adjustment involved in integrating newly validated role components can have the unintended side effect of supporting adaptation by providing opportunities for the groups to use these novel role components to modify their role structure and goals to suit a changing and uncertain environment. Negotiated joining thus reveals role ambiguity’s hitherto unexamined beneficial consequences and provides a foundation for a contingency theory of new-member acquisition. PMID:26273105
Neural basis of uncertain cue processing in trait anxiety.
Zhang, Meng; Ma, Chao; Luo, Yanyan; Li, Ji; Li, Qingwei; Liu, Yijun; Ding, Cody; Qiu, Jiang
2016-02-19
Individuals with high trait anxiety form a non-clinical group with a predisposition for an anxiety-related bias in emotional and cognitive processing that is considered by some to be a prerequisite for psychiatric disorders. Anxious individuals tend to experience more worry under uncertainty, and processing uncertain information is an important, but often overlooked factor in anxiety. So, we decided to explore the brain correlates of processing uncertain information in individuals with high trait anxiety using the learn-test paradigm. Behaviorally, the percentages on memory test and the likelihood ratios of identifying novel stimuli under uncertainty were similar to the certain fear condition, but different from the certain neutral condition. The brain results showed that the visual cortex, bilateral fusiform gyrus, and right parahippocampal gyrus were active during the processing of uncertain cues. Moreover, we found that trait anxiety was positively correlated with the BOLD signal of the right parahippocampal gyrus during the processing of uncertain cues. No significant results were found in the amygdala during uncertain cue processing. These results suggest that memory retrieval is associated with uncertain cue processing, which is underpinned by over-activation of the right parahippocampal gyrus, in individuals with high trait anxiety.
Interactions in Massive Colliding Wind Binaries
NASA Technical Reports Server (NTRS)
Corcoran, M.
2012-01-01
The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.
Fresh squeezed orange juice odor: a review.
Perez-Cacho, Pilar Ruiz; Rouseff, Russell L
2008-08-01
Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.
Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis
Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan
2016-01-01
Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
Acquisition Research for Design and Service Enterprises
2014-02-02
better than refurbishment. Replacement: Replacing a component means to swap in a new component. Consequently, the efficiency after replacement is...objectives are fueled by anticipation of future gains; and transaction encapsulates the reluctance to change currencies /investments because of the fixed...those for holding currency . It can be argued that the exception is when goods are held in reserve to meet uncertain demands, with the objective of
Does intolerance of uncertainty predict anticipatory startle responses to uncertain threat?
Nelson, Brady D; Shankman, Stewart A
2011-08-01
Intolerance of uncertainty (IU) has been proposed to be an important maintaining factor in several anxiety disorders, including generalized anxiety disorder, obsessive-compulsive disorder, and social phobia. While IU has been shown to predict subjective ratings and decision-making during uncertain/ambiguous situations, few studies have examined whether IU also predicts emotional responding to uncertain threat. The present study examined whether IU predicted aversive responding (startle and subjective ratings) during the anticipation of temporally uncertain shocks. Sixty-nine participants completed three experimental conditions during which they received: no shocks, temporally certain/predictable shocks, and temporally uncertain shocks. Results indicated that IU was negatively associated with startle during the uncertain threat condition in that those with higher IU had a smaller startle response. IU was also only related to startle during the uncertain (and not the certain/predictable) threat condition, suggesting that it was not predictive of general aversive responding, but specific to responses to uncertain aversiveness. Perceived control over anxiety-related events mediated the relation between IU and startle to uncertain threat, such that high IU led to lowered perceived control, which in turn led to a smaller startle response. We discuss several potential explanations for these findings, including the inhibitory qualities of IU. Overall, our results suggest that IU is associated with attenuated aversive responding to uncertain threat. Copyright © 2011 Elsevier B.V. All rights reserved.
Reliability prediction of large fuel cell stack based on structure stress analysis
NASA Astrophysics Data System (ADS)
Liu, L. F.; Liu, B.; Wu, C. W.
2017-09-01
The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.
NASA Astrophysics Data System (ADS)
Pan, X. G.; Wang, J. Q.; Zhou, H. Y.
2013-05-01
The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.
Local gravity disturbance estimation from multiple-high-single-low satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Jekeli, Christopher
1989-01-01
The idea of satellite-to-satellite tracking in the high-low mode has received renewed attention in light of the uncertain future of NASA's proposed low-low mission, Geopotential Research Mission (GRM). The principal disadvantage with a high-low system is the increased time interval required to obtain global coverage since the intersatellite visibility is often obscured by Earth. The U.S. Air Force has begun to investigate high-low satellite-to-satellite tracking between the Global Positioning System (GPS) of satellites (high component) and NASA's Space Transportation System (STS), the shuttle (low component). Because the GPS satellites form, or will form, a constellation enabling continuous three-dimensional tracking of a low-altitude orbiter, there will be no data gaps due to lack of intervisibility. Furthermore, all three components of the gravitation vector are estimable at altitude, a given grid of which gives a stronger estimate of gravity on Earth's surface than a similar grid of line-of-sight gravitation components. The proposed Air Force mission is STAGE (Shuttle-GPS Tracking for Anomalous Gravitation Estimation) and is designed for local gravity field determinations since the shuttle will likely not achieve polar orbits. The motivation for STAGE was the feasibility to obtain reasonable accuracies with absolutely minimal cost. Instead of simulating drag-free orbits, STAGE uses direct measurements of the nongravitational forces obtained by an inertial package onboard the shuttle. The sort of accuracies that would be achievable from STAGE vis-a-vis other satellite tracking missions such as GRM and European Space Agency's POPSAT-GRM are analyzed.
Mendy, Vincent L; Azevedo, Mario J; Sarpong, Daniel F; Rosas, Sylvia E; Ekundayo, Olugbemiga T; Sung, Jung Hye; Bhuiyan, Azad R; Jenkins, Brenda C; Addison, Clifton
2014-01-01
Approximately 26.3 million people in the United States have chronic kidney disease and many more are at risk of developing the condition. The association between specific metabolic syndrome components and chronic kidney disease in African American individuals is uncertain. Baseline data from 4,933 participants of the Jackson Heart Study were analyzed. Logistic regression models were used to estimate the odds and 95% confidence intervals of chronic kidney disease associated with individual components, metabolic syndrome, the number of components, and specific combinations of metabolic syndrome components. Metabolic syndrome was common with a prevalence of 42.0%. Chronic kidney disease was present in 19.4% of participants. The prevalence of metabolic components was high: elevated blood pressure (71.8%), abdominal obesity (65.8%), low fasting high density lipoprotein cholesterol (37.3%), elevated fasting glucose (32.2%) and elevated triglycerides (16.2%). Elevated blood pressure, triglycerides, fasting blood glucose, and abdominal obesity were significantly associated with increased odds of chronic kidney disease. Participants with metabolic syndrome had a 2.22-fold (adjusted odds ratio (AOR) 2.22; 95% CI, 1.78-2.78) increase in the odds of chronic kidney disease compared to participants without metabolic syndrome. The combination of elevated fasting glucose, elevated triglycerides, and abdominal obesity was associated with the highest odds for chronic kidney disease (AOR 25.11; 95% CI, 6.94-90.90). Metabolic syndrome as well as individual or combinations of metabolic syndrome components are independently associated with chronic kidney disease in African American adults.
Does a better model yield a better argument? An info-gap analysis
NASA Astrophysics Data System (ADS)
Ben-Haim, Yakov
2017-04-01
Theories, models and computations underlie reasoned argumentation in many areas. The possibility of error in these arguments, though of low probability, may be highly significant when the argument is used in predicting the probability of rare high-consequence events. This implies that the choice of a theory, model or computational method for predicting rare high-consequence events must account for the probability of error in these components. However, error may result from lack of knowledge or surprises of various sorts, and predicting the probability of error is highly uncertain. We show that the putatively best, most innovative and sophisticated argument may not actually have the lowest probability of error. Innovative arguments may entail greater uncertainty than more standard but less sophisticated methods, creating an innovation dilemma in formulating the argument. We employ info-gap decision theory to characterize and support the resolution of this problem and present several examples.
Chase, H W; Fournier, J C; Bertocci, M A; Greenberg, T; Aslam, H; Stiffler, R; Lockovich, J; Graur, S; Bebko, G; Forbes, E E; Phillips, M L
2017-01-01
High trait impulsive sensation seeking (ISS) is common in 18–25-year olds, and is associated with risky decision-making and deleterious outcomes. We examined relationships among: activity in reward regions previously associated with ISS during an ISS-relevant context, uncertain reward expectancy (RE), using fMRI; ISS impulsivity and sensation-seeking subcomponents; and risky decision-making in 100, transdiagnostically recruited 18–25-year olds. ISS, anhedonia, anxiety, depression and mania were measured using self-report scales; clinician-administered scales also assessed the latter four. A post-scan risky decision-making task measured ‘risky' (possible win/loss/mixed/neutral) fMRI-task versus ‘sure thing' stimuli. ‘Bias' reflected risky over safe choices. Uncertain RE-related activity in left ventrolateral prefrontal cortex and bilateral ventral striatum was positively associated with an ISS composite score, comprising impulsivity and sensation-seeking–fun-seeking subcomponents (ISSc; P⩽0.001). Bias positively associated with sensation seeking–experience seeking (ES; P=0.003). This relationship was moderated by ISSc (P=0.009): it was evident only in high ISSc individuals. Whole-brain analyses showed a positive relationship between: uncertain RE-related left ventrolateral prefrontal cortical activity and ISSc; uncertain RE-related visual attention and motor preparation neural network activity and ES; and uncertain RE-related dorsal anterior cingulate cortical activity and bias, specifically in high ISSc participants (all ps<0.05, peak-level, family-wise error corrected). We identify an indirect pathway linking greater levels of uncertain RE-related activity in reward, visual attention and motor networks with greater risky decision-making, via positive relationships with impulsivity, fun seeking and ES. These objective neural markers of high ISS can guide new treatment developments for young adults with high levels of this debilitating personality trait. PMID:28418404
A quantitative approach to combine sources in stable isotope mixing models
Stable isotope mixing models, used to estimate source contributions to a mixture, typically yield highly uncertain estimates when there are many sources and relatively few isotope elements. Previously, ecologists have either accepted the uncertain contribution estimates for indiv...
Mackinger, Barbara; Jonas, Eva; Mühlberger, Christina
2017-01-01
When making financial decisions bank customers are confronted with two types of uncertainty: first, return on investments is uncertain and there is a risk of losing money. Second, customers cannot be certain about their financial advisor's true intentions. This might decrease customers' willingness to cooperate with advisors. However, the uncertainty management model and fairness heuristic theory predict that in uncertain situations customers are willing to cooperate with financial advisors when they perceive fairness. In the current study, we investigated how perceived fairness in the twofold uncertain situations increased people's intended future cooperation with an advisor. We asked customers of financial consultancies about their experienced uncertainty regarding both the investment decision and the advisor's intentions. Moreover, we asked them about their perceived fairness, as well as their intention to cooperate with the advisor in the future. A three-way moderation analysis showed that customers who faced high uncertainty regarding the investment decision and high uncertainty regarding the advisor's true intentions indicated the lowest intended cooperation with the advisor but high fairness increased their cooperation. Interestingly, when people were only uncertain about the advisor's intentions (but certain about the decision) they indicated less cooperation than when they were only uncertain about the decision (but certain about the advisor's intentions). A mediated moderation analysis revealed that this relationship was explained by customers' lower trust in their advisors.
Girls' Groups as a Component of Anti-Sexist Practice--One Primary School's Experience.
ERIC Educational Resources Information Center
Reay, Diane
1990-01-01
In an effort to improve their achievement and confidence, girls at a London elementary school were segregated and taught subjects designed to counter traditional role limitations. Boys, meanwhile, felt their status was being undermined, and teachers were uncertain about the rightness of countering societal norms. (DM)
Critical Thinking in Criminology: Critical Reflections on Learning and Teaching
ERIC Educational Resources Information Center
Howes, Loene M.
2017-01-01
Fostering critical thinking abilities amongst students is one component of preparing them to navigate uncertain and complex social lives and employment circumstances. One conceptualisation of critical thinking, valuable in higher education, draws from critical theory to promote social justice and redress power inequities. This study explored how…
Does Mother Nature Really Sell Margarine?: The Uncertain Rural Future.
ERIC Educational Resources Information Center
Schwartz, Peter
There exists a question as to whether United States society and its agricultural system will continue to follow the long-term trend of Western civilization or move in a new direction. The "modernization trend" of Western civilization has 4 components: scientification of knowledge, secularization of human values, industrialization of…
Decomposing Trends in Inequality in Earnings into Forecastable and Uncertain Components
Cunha, Flavio; Heckman, James
2015-01-01
A substantial empirical literature documents the rise in wage inequality in the American economy. It is silent on whether the increase in inequality is due to components of earnings that are predictable by agents or whether it is due to greater uncertainty facing them. These two sources of variability have different consequences for both aggregate and individual welfare. Using data on two cohorts of American males we find that a large component of the rise in inequality for less skilled workers is due to uncertainty. For skilled workers, the rise is less pronounced. PMID:27087741
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Christiansen, Eric L.; Fleming, Michael L.
1990-01-01
A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime.
High carbohydrate-low protein consumption maximizes Drosophila lifespan
Bruce, Kimberley D.; Hoxha, Sany; Carvalho, Gil B.; Yamada, Ryuichi; Wang, Horng-Dar; Karayan, Paul; He, Shan; Brummel, Ted; Kapahi, Pankaj; Ja, William W.
2013-01-01
Dietary restriction extends lifespan in a variety of organisms, but the key nutritional components driving this process and how they interact remain uncertain. In Drosophila, while a substantial body of research suggests that protein is the major dietary component affecting longevity, recent studies claim that carbohydrates also play a central role. To clarify how nutritional factors influence longevity, nutrient consumption and lifespan were measured on a series of diets with varying yeast and sugar content. We show that optimal lifespan requires both high carbohydrate and low protein consumption, but neither nutrient by itself entirely predicts lifespan. Increased dietary carbohydrate or protein concentration does not always result in reduced feeding—the regulation of food consumption is best described by a constant daily caloric intake target. Moreover, due to differences in food intake, increased concentration of a nutrient within the diet does not necessarily result in increased consumption of that particular nutrient. Our results shed light on the issue of dietary effects on lifespan and highlight the need for accurate measures of nutrient intake in dietary manipulation studies. PMID:23403040
Status of DORIS stations in Antarctica for precise geodesy
NASA Technical Reports Server (NTRS)
Willis, P.; Amalvict, M.; Shibuya, K.
2005-01-01
In Antarctica, besides the quite numerous GPS stations, four DORIS stations are permanently operating. In addition to the permanent DORIS stations, episodic campaigns took place at DomeC/Conccordia and on Sorsdal and Lambert glaciers. In this paper, we first collect general information concerning the stations and the campaigns (location, start of measurements, etc). We then present the results of observations of the permanent stations keeping in mind that we are primarily interested here in the vertical component, which is the most uncertain component.
Zhang, Huiming; Tamakoshi, Koji; Yatsuya, Hiroshi; Murata, Chiyoe; Wada, Keiko; Otsuka, Rei; Nagasawa, Nobue; Ishikawa, Miyuki; Sugiura, Kaichiro; Matsushita, Kunihiro; Hori, Yoko; Kondo, Takaaki; Toyoshima, Hideaki
2005-01-01
The relation between weight fluctuation and the risk of cardiovascular disease (CVD) is fairly consistent, although the physiologic basis for the relationship is uncertain. In the present study the association between long-term weight fluctuation and the development of metabolic syndrome (MS), a potent CVD risk factor, was investigated. A cross-sectional study of 664 Japanese men aged 40-49 years was conducted. The root mean square error around the slope of weight on age (weight - RMSE) was calculated by a simple linear regression model, in which the subject's actual weights at ages 20, 25, 30 years and 5 years prior to the study, as well as current weight, were dependent variables against the subject's age as the independent variable. Weight-RMSE was significantly and positively associated with the prevalence of each MS components (high blood pressure, hypertriglyceridemia, low-high density lipoprotein-cholesterol, high fasting glucose, and obesity). Such associations, as well as clustering of the MS component together with RMSE increase, were apparent among subjects with body mass index (BMI) <25 kg/m2, although the prevalence of MS or its components was much higher among overweight subjects (BMI >or=25 kg/m2). Development of MS possibly explains the risk of CVD not only in overweight or obese persons, but also in normal-weight persons with large weight fluctuation.
Comprehensive risk assessment method of catastrophic accident based on complex network properties
NASA Astrophysics Data System (ADS)
Cui, Zhen; Pang, Jun; Shen, Xiaohong
2017-09-01
On the macro level, the structural properties of the network and the electrical characteristics of the micro components determine the risk of cascading failures. And the cascading failures, as a process with dynamic development, not only the direct risk but also potential risk should be considered. In this paper, comprehensively considered the direct risk and potential risk of failures based on uncertain risk analysis theory and connection number theory, quantified uncertain correlation by the node degree and node clustering coefficient, then established a comprehensive risk indicator of failure. The proposed method has been proved by simulation on the actual power grid. Modeling a network according to the actual power grid, and verified the rationality of the proposed method.
Conceptual Challenges in Coordinating Theoretical and Data-Centered Estimates of Probability
ERIC Educational Resources Information Center
Konold, Cliff; Madden, Sandra; Pollatsek, Alexander; Pfannkuch, Maxine; Wild, Chris; Ziedins, Ilze; Finzer, William; Horton, Nicholas J.; Kazak, Sibel
2011-01-01
A core component of informal statistical inference is the recognition that judgments based on sample data are inherently uncertain. This implies that instruction aimed at developing informal inference needs to foster basic probabilistic reasoning. In this article, we analyze and critique the now-common practice of introducing students to both…
Carbon sequestration and greenhouse gas fluxes in agriculture: Challenges and opportunities
USDA-ARS?s Scientific Manuscript database
Globally, agriculture accounts for 13.5% of GHG emissions. In the United States, agriculture is a small but significant component of the country’s and world’s GHG emissions. We are moving into an uncertain and changing climate pattern that could affect agriculture production, sea levels, and human h...
Carbon dioxide and water vapor exchange in a warm temperate grassland
K.A. Novick; P.C. Stoy; G.G. Katul; D.S. Ellsworth; M.B.S. Siqueira; J. Juang; R. Oren
2004-01-01
Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and it components, ecosystem carbon assimilation (Ac...
In North America, the dry component of total nitrogen and sulfur deposition remains uncertain due to a lack of measurements of sufficient chemical speciation and temporal extent to develop complete annual mass budgets or of sufficient process level detail to improve current air-s...
How Stress Management Improves Quality of Life after Treatment for Breast Cancer
ERIC Educational Resources Information Center
Antoni, Michael H.; Lechner, Suzanne C.; Kazi, Aisha; Wimberly, Sarah R.; Sifre, Tammy; Urcuyo, Kenya R.; Phillips, Kristin; Gluck, Stefan; Carver, Charles S.
2006-01-01
The range of effects of psychosocial interventions on quality of life among women with breast cancer remains uncertain. Furthermore, it is unclear which components of multimodal interventions account for such effects. To address these issues, the authors tested a 10-week group cognitive-behavioral stress management intervention among 199 women…
Forest Management Under Uncertainty for Multiple Bird Population Objectives
Clinton T. Moore; W. Todd Plummer; Michael J. Conroy
2005-01-01
We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in...
Thomson, Fiona C; MacKenzie, Rhoda K; Anderson, Marie; Denison, Alan R; Currie, Graeme P
2017-11-15
Volunteer patients (also known as patient partners (PPs)) play a vital role in undergraduate healthcare curricula. They frequently take part in objective structured clinical examinations (OSCE) and rate aspects of students' performance. However, the inclusion and weighting of PP marks varies, while attitudes and opinions regarding how (and if) they should contribute towards the pass/fail outcome are uncertain. A prospective observational study was conducted to explore beliefs of PPs regarding inclusion of their scores in a high stakes undergraduate OSCE in a single UK medical school. All PPs delivering components of the local MBChB curriculum were asked to participate in the questionnaire study. Quantitative and qualitative data were analysed using descriptive statistics and framework analysis respectively. Fifty out of 160 (31% response rate) PPs completed the questionnaire; 70% had participated in a final year OSCE. Thirty (60%) felt their marks should be incorporated into a student's overall score, while 28% were uncertain. The main reasons for inclusion were recognition of the patient perspective (31%) and their ability to assess attitudes and professionalism (27%), while reasons against inclusion included lack of PP qualification/training (18%) and concerns relating to consistency (14%). The majority of PPs were uncertain what proportion of the total mark they should contribute, although many felt that 5-10% of the total score was reasonable. Most respondents (70%) felt that globally low PP scores should not result in an automatic fail and many (62%) acknowledged that prior to mark inclusion, further training was required. These data show that most respondents considered it reasonable to "formalise their expertise" by contributing marks in the overall assessment of students in a high stakes OSCE, although what proportion they believe this should represent was variable. Some expressed concerns that using marks towards progress decisions may alter PP response patterns. It would therefore seem reasonable to compare outcomes (i.e. pass/fail status) using historical data both incorporating and not incorporating PP marks to evaluate the effects of doing so. Further attention to existing PP training programmes is also required in order to provide clear instruction on how to globally rate students to ensure validity and consistency.
An Exemplar-Model Account of Feature Inference from Uncertain Categorizations
ERIC Educational Resources Information Center
Nosofsky, Robert M.
2015-01-01
In a highly systematic literature, researchers have investigated the manner in which people make feature inferences in paradigms involving uncertain categorizations (e.g., Griffiths, Hayes, & Newell, 2012; Murphy & Ross, 1994, 2007, 2010a). Although researchers have discussed the implications of the results for models of categorization and…
Miettinen, Markku M; Antonescu, Cristina R; Fletcher, Christopher D M; Kim, Aerang; Lazar, Alexander J; Quezado, Martha M; Reilly, Karlyne M; Stemmer-Rachamimov, Anat; Stewart, Douglas R; Viskochil, David; Widemann, Brigitte; Perry, Arie
2017-09-01
Patients with neurofibromatosis 1 (NF1) develop multiple neurofibromas, with 8% to 15% of patients experiencing malignant peripheral nerve sheath tumor (MPNST) during their lifetime. Prediction of transformation, typically from plexiform neurofibroma, is clinically and histologically challenging. In this overview, after a consensus meeting in October 2016, we outline the histopathologic features and molecular mechanisms involved in the malignant transformation of neurofibromas. Nuclear atypia alone is generally insignificant. However, with atypia, loss of neurofibroma architecture, high cellularity, and/or mitotic activity >1/50 but <3/10 high-power fields, the findings are worrisome for malignancy. We propose the term "atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP)" for lesions displaying at least 2 of these features. This diagnosis should prompt additional sampling, clinical correlation, and possibly, expert pathology consultation. Currently, such tumors are diagnosed inconsistently as atypical neurofibroma or low-grade MPNST. Most MPNSTs arising from neurofibromas are high-grade sarcomas and pose little diagnostic difficulty, although rare nonnecrotic tumors with 3-9 mitoses/10 high-power fields can be recognized as low-grade variants. Although neurofibromas contain numerous S100 protein/SOX10-positive Schwann cells and CD34-positive fibroblasts, both components are reduced or absent in MPNST. Loss of p16/CDKN2A expression, elevated Ki67 labeling, and extensive nuclear p53 positivity are also features of MPNST that can to some degree already occur in atypical neurofibromatous neoplasms of uncertain biologic potential. Complete loss of trimethylated histone 3 lysine 27 expression is potentially more reliable, being immunohistochemically detectable in about half of MPNSTs. Correlated clinicopathological, radiologic, and genetic studies should increase our understanding of malignant transformation in neurofibromas, hopefully improving diagnosis and treatment soon. Published by Elsevier Inc.
Liu, Fei; Zhang, Xi; Jia, Yan
2015-01-01
In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.
NASA Astrophysics Data System (ADS)
Song, Qi; Song, Y. D.; Cai, Wenchuan
2011-09-01
Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.
Platelet composite coatings for tin whisker mitigation
Rohwer, Lauren E. S.; Martin, James E.
2015-09-14
In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF 2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less
Platelet Composite Coatings for Tin Whisker Mitigation
NASA Astrophysics Data System (ADS)
Rohwer, Lauren E. S.; Martin, James E.
2015-11-01
Reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohwer, Lauren E. S.; Martin, James E.
In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF 2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less
Autophagy: not good OR bad, but good AND bad.
Altman, Brian J; Rathmell, Jeffrey C
2009-05-01
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.
Wood CO2 efflux in a primary tropical rain forest
Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan
2006-01-01
The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem-scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable...
ERIC Educational Resources Information Center
Gerstner, Jerusha J.; Finney, Sara J.
2013-01-01
Implementation fidelity assessment provides a means of measuring the alignment between the planned program and the implemented program. Unfortunately, the implemented program can differ from the planned program, resulting in ambiguous inferences about the planned program's effectiveness (i.e., it is uncertain if poor results are due to an…
Food insecurity as a driver of obesity in humans: The insurance hypothesis.
Nettle, Daniel; Andrews, Clare; Bateson, Melissa
2017-01-01
Integrative explanations of why obesity is more prevalent in some sectors of the human population than others are lacking. Here, we outline and evaluate one candidate explanation, the insurance hypothesis (IH). The IH is rooted in adaptive evolutionary thinking: The function of storing fat is to provide a buffer against shortfall in the food supply. Thus, individuals should store more fat when they receive cues that access to food is uncertain. Applied to humans, this implies that an important proximate driver of obesity should be food insecurity rather than food abundance per se. We integrate several distinct lines of theory and evidence that bear on this hypothesis. We present a theoretical model that shows it is optimal to store more fat when food access is uncertain, and we review the experimental literature from non-human animals showing that fat reserves increase when access to food is restricted. We provide a meta-analysis of 125 epidemiological studies of the association between perceived food insecurity and high body weight in humans. There is a robust positive association, but it is restricted to adult women in high-income countries. We explore why this could be in light of the IH and our theoretical model. We conclude that although the IH alone cannot explain the distribution of obesity in the human population, it may represent a very important component of a pluralistic explanation. We also discuss insights it may offer into the developmental origins of obesity, dieting-induced weight gain, and anorexia nervosa.
NASA Astrophysics Data System (ADS)
Gottlieb, Ore; Nakar, Ehud; Piran, Tsvi
2018-01-01
Short gamma-ray bursts are believed to arise from compact binary mergers (either neutron star-neutron star or black hole-neutron star). If so, their jets must penetrate outflows that are ejected during the merger. As a jet crosses the ejecta, it dissipates its energy, producing a hot cocoon that surrounds it. We present here 3D numerical simulations of jet propagation in mergers' outflows, and we calculate the resulting emission. This emission consists of two components: the cooling emission, the leakage of the thermal energy of the hot cocoon, and the cocoon macronova that arises from the radioactive decay of the cocoon's material. This emission gives a brief (∼1 h) blue, wide angle signal. While the parameters of the outflow and jet are uncertain, for the configurations we have considered, the signal is bright (∼-14 to -15 absolute magnitude) and outshines all other predicted ultraviolet-optical signals. The signal is brighter when the jet breakout time is longer, and its peak brightness does not depend strongly on the highly uncertain opacity. A rapid search for such a signal is a promising strategy to detect an electromagnetic merger counterpart. A detected candidate could be then followed by deep infrared searches for the longer but weaker macronova arising from the rest of the ejecta.
Investigation of lunar crustal structure and isostasy
NASA Technical Reports Server (NTRS)
Thurber, Clifford H.
1987-01-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.
Brachinite-Like Clast in the Kaidun Meteorite: First Report of Primitive Achondrite Material
NASA Technical Reports Server (NTRS)
Higashi, K.; Hasegawa, H.; Mikouchi, T.; Zolensky, M. E.
2017-01-01
Kaidun is a brecciated meteorite containing many different types of meteorites. It is composed of carbonaceous, enstatite, ordinary and R chondrites with smaller amounts of basaltic achondrites, impact melt products and unknown [1, 2]. Because of the multiple components and high abundance of carbonaceous chondrites, the Kaidun parent body was probably a large C-type asteroid in order to have accumulated clasts of many unrelated asteroids, and thus Kaidun contains previously unknown materials[1]. It has been suggested that the Kaidun parent body trawled through different regions of the solar system [3], but the formation of Kaidun meteorite is still uncertain. In this abstract, we report the first discovery of a brachinite-like clast in Kaidun.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
The role of uncertain self-esteem in self-handicapping.
Harris, R N; Snyder, C R
1986-08-01
In this article, the hypothesis that some individuals confronted with an intellectual evaluation use a lack of preparation as a "self-handicapping" strategy (Jones & Berglas, 1978) was studied. Sex and both level and certainty of self-esteem were examined in regard to the self-handicapping strategy of lack of effort. Subjects were 54 men and 54 women, certain and uncertain, high and low self-esteem college students, who believed that the experiment was designed to update local norms for a nonverbal test of intellectual ability. After subjects' level of state anxiety was assessed, they were instructed in the benefits of practicing for the evaluation. Subsequently, subjects' state anxiety and preparatory efforts (the primary dependent variables) were measured. Subjects' practice, self-protective attributions, and related affect supported a self-handicapping interpretation for uncertain males but not for uncertain females.
Foliar and ecosystem respiration in an old-growth tropical rain forest
Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan
2008-01-01
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...
Causal uncertainty, claimed and behavioural self-handicapping.
Thompson, Ted; Hepburn, Jonathan
2003-06-01
Causal uncertainty beliefs involve doubts about the causes of events, and arise as a consequence of non-contingent evaluative feedback: feedback that leaves the individual uncertain about the causes of his or her achievement outcomes. Individuals high in causal uncertainty are frequently unable to confidently attribute their achievement outcomes, experience anxiety in achievement situations and as a consequence are likely to engage in self-handicapping behaviour. Accordingly, we sought to establish links between trait causal uncertainty, claimed and behavioural self-handicapping. Participants were N=72 undergraduate students divided equally between high and low causally uncertain groups. We used a 2 (causal uncertainty status: high, low) x 3 (performance feedback condition: success, non-contingent success, non-contingent failure) between-subjects factorial design to examine the effects of causal uncertainty on achievement behaviour. Following performance feedback, participants completed 20 single-solution anagrams and 12 remote associate tasks serving as performance measures, and 16 unicursal tasks to assess practice effort. Participants also completed measures of claimed handicaps, state anxiety and attributions. Relative to low causally uncertain participants, high causally uncertain participants claimed more handicaps prior to performance on the anagrams and remote associates, reported higher anxiety, attributed their failure to internal, stable factors, and reduced practice effort on the unicursal tasks, evident in fewer unicursal tasks solved. These findings confirm links between trait causal uncertainty and claimed and behavioural self-handicapping, highlighting the need for educators to facilitate means by which students can achieve surety in the manner in which they attribute the causes of their achievement outcomes.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
The Financial Cost of Export Credit Guarantee Programs,
1987-06-01
a percentage of a high esti- mate of payments due. Table A.5 RATIOS, TERMS, AND RECOVERY RATES Item Hermes ECGD COFACE Eximbank Ratio of outstanding...Immediate Liquidation Case ...... 8 2. Income Statement: Hold to Maturity, Certain Repayment ................................... 9 3. Income Statement: Hold ...to Maturity, Uncertain Repayment, Risk Neutrality .................... 10 4. Income Statement: Hold to Maturity, Uncertain Repayment, Risk Aversion
Structures for handling high heat fluxes
NASA Astrophysics Data System (ADS)
Watson, R. D.
1990-12-01
The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2. Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components.
NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.
Peng, Yifan; Wang, Xiaosong; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald; Lu, Zhiyong
2018-01-01
Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers that are indicative of negation or uncertainty. We evaluated NegBio on four datasets, including two public benchmarking corpora of radiology reports, a new radiology corpus that we annotated for this work, and a public corpus of general clinical texts. Evaluation on these datasets demonstrates that NegBio is highly accurate for detecting negative and uncertain findings and compares favorably to a widely-used state-of-the-art system NegEx (an average of 9.5% improvement in precision and 5.1% in F1-score). https://github.com/ncbi-nlp/NegBio.
Investigation of lunar crustal structure and isostasy. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurber, C.H.
1987-07-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less
Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.
Geng, Haiyang; Wang, Yi; Gu, Ruolei; Luo, Yue-Jia; Xu, Pengfei; Huang, Yuxia; Li, Xuebing
2018-06-08
In the research field of anxiety, previous studies generally focus on emotional responses following threat. A recent model of anxiety proposes that altered anticipation prior to uncertain threat is related with the development of anxiety. Behavioral findings have built the relationship between anxiety and distinct anticipatory processes including attention, estimation of threat, and emotional responses. However, few studies have characterized the brain organization underlying anticipation of uncertain threat and its role in anxiety. In the present study, we used an emotional anticipation paradigm with functional magnetic resonance imaging (fMRI) to examine the aforementioned topics by employing brain activation and general psychophysiological interactions (gPPI) analysis. In the activation analysis, we found that high trait anxious individuals showed significantly increased activation in the thalamus, middle temporal gyrus (MTG), and dorsomedial prefrontal cortex (dmPFC), as well as decreased activation in the precuneus, during anticipation of uncertain threat compared to the certain condition. In the gPPI analysis, the key regions including the amygdala, dmPFC, and precuneus showed altered connections with distributed brain areas including the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), insula, para-hippocampus gyrus (PHA), thalamus, and MTG involved in anticipation of uncertain threat in anxious individuals. Taken together, our findings indicate that during the anticipation of uncertain threat, anxious individuals showed altered activations and functional connectivity in widely distributed brain areas, which may be critical for abnormal perception, estimation, and emotion reactions during the anticipation of uncertain threat. © 2018 Wiley Periodicals, Inc.
Complex Atheromatosis of the Aortic Arch in Cerebral Infarction
Capmany, Ramón Pujadas; Ibañez, Montserrat Oliveras; Pesquer, Xavier Jané
2010-01-01
In many stroke patients it is not possible to establish the etiology of stroke. However, in the last two decades, the use of transesophageal echocardiography in patients with stroke of uncertain etiology reveals atherosclerotic plaques in the aortic arch, which often protrude into the lumen and have mobile components in a high percentage of cases. Several autopsy series and retrospective studies of cases and controls have shown an association between aortic arch atheroma and arterial embolism, which was later confirmed by prospectively designed studies. The association with ischemic stroke was particularly strong when atheromas were located proximal to the ostium of the left subclavian artery, when the plaque was ≥ 4 mm thick and particularly when mobile components are present. In these cases, aspirin might not prevent adequately new arterial ischemic events especially stroke. Here we review the evidence of aortic arch atheroma as an independent risk factor for stroke and arterial embolism, including clinical and pathological data on atherosclerosis of the thoracic aorta as an embolic source. In addition, the impact of complex plaques (≥ 4 mm thick, or with mobile components) on increasing the risk of stroke is also reviewed. In non-randomized retrospective studies anticoagulation was superior to antiplatelet therapy in patients with stroke and aortic arch plaques with mobile components. In a retrospective case-control study, statins significantly reduced the relative risk of new vascular events. However, given the limited data available and its retrospective nature, randomized prospective studies are needed to establish the optimal secondary prevention therapeutic regimens in these high risk patients. PMID:21804777
Complex atheromatosis of the aortic arch in cerebral infarction.
Capmany, Ramón Pujadas; Ibañez, Montserrat Oliveras; Pesquer, Xavier Jané
2010-08-01
In many stroke patients it is not possible to establish the etiology of stroke. However, in the last two decades, the use of transesophageal echocardiography in patients with stroke of uncertain etiology reveals atherosclerotic plaques in the aortic arch, which often protrude into the lumen and have mobile components in a high percentage of cases. Several autopsy series and retrospective studies of cases and controls have shown an association between aortic arch atheroma and arterial embolism, which was later confirmed by prospectively designed studies. The association with ischemic stroke was particularly strong when atheromas were located proximal to the ostium of the left subclavian artery, when the plaque was ≥ 4 mm thick and particularly when mobile components are present. In these cases, aspirin might not prevent adequately new arterial ischemic events especially stroke. Here we review the evidence of aortic arch atheroma as an independent risk factor for stroke and arterial embolism, including clinical and pathological data on atherosclerosis of the thoracic aorta as an embolic source. In addition, the impact of complex plaques (≥ 4 mm thick, or with mobile components) on increasing the risk of stroke is also reviewed. In non-randomized retrospective studies anticoagulation was superior to antiplatelet therapy in patients with stroke and aortic arch plaques with mobile components. In a retrospective case-control study, statins significantly reduced the relative risk of new vascular events. However, given the limited data available and its retrospective nature, randomized prospective studies are needed to establish the optimal secondary prevention therapeutic regimens in these high risk patients.
2010-03-23
nationwide virtual science libary adapted for Afghanistan’s needs. Prepare for an Uncertain Future In preparing for an uncertain future, a...to assess the military implications of the ubiquitous availability of high performance analog, digital , electro-optical, radio frequency and signal
Effects of Uncertainty on ERPs to Emotional Pictures Depend on Emotional Valence
Lin, Huiyan; Jin, Hua; Liang, Jiafeng; Yin, Ruru; Liu, Ting; Wang, Yiwen
2015-01-01
Uncertainty about the emotional content of an upcoming event has found to modulate neural activity to the event before its occurrence. However, it is still under debate whether the uncertainty effects occur after the occurrence of the event. To address this issue, participants were asked to view emotional pictures that were shortly after a cue, which either indicated a certain emotion of the picture or not. Both certain and uncertain cues were used by neutral symbols. The anticipatory phase (i.e., inter-trial interval, ITI) between the cue and the picture was short to enhance the effects of uncertainty. In addition, we used positive and negative pictures that differed only in valence but not in arousal to investigate whether the uncertainty effect was dependent on emotional valence. Electroencephalography (EEG) was recorded during the presentation of the pictures. Event-related potential (ERP) results showed that negative pictures evoked smaller P2 and late LPP but larger N2 in the uncertain as compared to the certain condition; whereas we did not find the uncertainty effect in early LPP. For positive pictures, the early LPP was larger in the uncertain as compared to the certain condition; however, there were no uncertainty effects in some other ERP components (e.g., P2, N2, and late LPP). The findings suggest that uncertainty modulates neural activity to emotional pictures and this modulation is altered by the valence of the pictures, indicating that individuals alter the allocation of attentional resources toward uncertain emotional pictures dependently on the valence of the pictures. PMID:26733916
Broadening the study of inductive reasoning: confirmation judgments with uncertain evidence.
Mastropasqua, Tommaso; Crupi, Vincenzo; Tentori, Katya
2010-10-01
Although evidence in real life is often uncertain, the psychology of inductive reasoning has, so far, been confined to certain evidence. The present study extends previous research by investigating whether people properly estimate the impact of uncertain evidence on a given hypothesis. Two experiments are reported, in which the uncertainty of evidence is explicitly (by means of numerical values) versus implicitly (by means of ambiguous pictures) manipulated. The results show that people's judgments are highly correlated with those predicted by normatively sound Bayesian measures of impact. This sensitivity to the degree of evidential uncertainty supports the centrality of inductive reasoning in cognition and opens the path to the study of this issue in more naturalistic settings.
Interpretation bias for uncertain threat: A replication and extension.
Oglesby, Mary E; Raines, Amanda M; Short, Nicole A; Capron, Daniel W; Schmidt, Norman B
2016-06-01
Intolerance of uncertainty (IU) has been proposed as an important transdiagnostic variable within various anxiety-related disorders. Research has suggested that individuals high in IU may interpret ambiguous information in a more threatening manner, suggesting a negative interpretation bias for uncertain information. However, interpretation biases within IU have not been adequately tested in the literature. The current study evaluated negative interpretation biases for uncertain information by directly measuring an individual's interpretations of ambiguous information across two samples. Participants consisted of 76 (Study 1; 72.4% female) and 31 (Study 2; 81% female) undergraduate students. Results indicated that individuals high in IU interpret ambiguous scenarios as more threatening compared to negative and/or positive scenarios (β = .45, p = .02). In addition, individuals high in IU showed a negative interpretation bias for ambiguous information, but not benign information (Study 1: β = -.40, p < .001; Study 2: β = -.57, p = .002). Future research should attempt to replicate these findings within clinical populations. In addition, future work would benefit from the inclusion of behavioral assessments of IU. These findings are the first to detect the presence of a negative interpretation bias for uncertain information among individuals high in IU utilizing a task designed to directly measure an individual's interpretation of information. Given the efficacy and low economic burden associated with interpretation bias modification protocols, and the transdiagnostic nature of IU, targeting IU within these protocols could have a tremendous public health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
Polynomial chaos expansion with random and fuzzy variables
NASA Astrophysics Data System (ADS)
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.
2010-01-01
The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.
Identifying and quantifying urban recharge: a review
NASA Astrophysics Data System (ADS)
Lerner, David N.
2002-02-01
The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.
Robust and Opportunistic Autonomous Science for a Potential Titan Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Schaffer, Steve; Castano, Rebecca; Elfes, Alberto
2010-01-01
We are developing onboard planning and execution technologies to provide robust and opportunistic mission operations for a potential Titan aerobot. Aerobot have the potential for collecting a vast amount of high priority science data. However, to be effective, an aerobot must address several challenges including communication constraints, extended periods without contact with Earth, uncertain and changing environmental conditions, maneuverability constraints and potentially short-lived science opportunities. We are developing the AerOASIS system to develop and test technology to support autonomous science operations for a potential Titan Aerobot. The planning and execution component of AerOASIS is able to generate mission operations plans that achieve science and engineering objectives while respecting mission and resource constraints as well as adapting the plan to respond to new science opportunities. Our technology leverages prior work on the OASIS system for autonomous rover exploration. In this paper we describe how the OASIS planning component was adapted to address the unique challenges of a Titan Aerobot and we describe a field demonstration of the system with the JPL prototype aerobot.
Christensen, Jeanette Reffstrup; Bredahl, Thomas Viskum Gjelstrup; Hadrévi, Jenny; Sjøgaard, Gisela; Søgaard, Karen
2016-10-24
Several RCT studies have aimed to reduce either musculoskeletal disorders, sickness presenteeism, sickness absenteeism or a combination of these among females with high physical work demands. These studies have provided evidence that workplace health promotion (WHP) interventions are effective, but long-term effects are still uncertain. These studies either lack to succeed in maintaining intervention effects or lack to document if effects are maintained past a one-year period. This paper describes the background, design and conceptual model of the FRIDOM (FRamed Intervention to Decrease Occupational Muscle pain) WHP program among health care workers. A job group characterized by having high physical work demands, musculoskeletal disorders, high sickness presenteeism - and absenteeism. FRIDOM aimed to reduce neck and shoulder pain. Secondary aims were to decrease sickness presenteeism, sickness absenteeism and lifestyle-diseases such as other musculoskeletal disorders as well as metabolic-, and cardiovascular disorders - and to maintain participation to regular physical exercise training, after a one year intervention period. The entire concept was tailored to a population of female health care workers. This was done through a multi-component intervention including 1) intelligent physical exercise training (IPET), dietary advice and weight loss (DAW) and cognitive behavioural training (CBT). The FRIDOM program has the potential to provide evidence-based knowledge of the pain reducing effect of a multi component WHP among a female group of employees with a high prevalence of musculoskeletal disorders and in a long term perspective evaluate the effects on sickness presenteeism and absenteeism as well as risk of life-style diseases. NCT02843269 , 06.27.2016 - retrospectively registered.
Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems
NASA Technical Reports Server (NTRS)
Cao, Chengyu (Inventor); Hovakimyan, Naira (Inventor); Xargay, Enric (Inventor)
2014-01-01
Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation.
Overcoming Learning Aversion in Evaluating and Managing Uncertain Risks.
Cox, Louis Anthony Tony
2015-10-01
Decision biases can distort cost-benefit evaluations of uncertain risks, leading to risk management policy decisions with predictably high retrospective regret. We argue that well-documented decision biases encourage learning aversion, or predictably suboptimal learning and premature decision making in the face of high uncertainty about the costs, risks, and benefits of proposed changes. Biases such as narrow framing, overconfidence, confirmation bias, optimism bias, ambiguity aversion, and hyperbolic discounting of the immediate costs and delayed benefits of learning, contribute to deficient individual and group learning, avoidance of information seeking, underestimation of the value of further information, and hence needlessly inaccurate risk-cost-benefit estimates and suboptimal risk management decisions. In practice, such biases can create predictable regret in selection of potential risk-reducing regulations. Low-regret learning strategies based on computational reinforcement learning models can potentially overcome some of these suboptimal decision processes by replacing aversion to uncertain probabilities with actions calculated to balance exploration (deliberate experimentation and uncertainty reduction) and exploitation (taking actions to maximize the sum of expected immediate reward, expected discounted future reward, and value of information). We discuss the proposed framework for understanding and overcoming learning aversion and for implementing low-regret learning strategies using regulation of air pollutants with uncertain health effects as an example. © 2015 Society for Risk Analysis.
An exploration of Intolerance of Uncertainty and memory bias.
Francis, Kylie; Dugas, Michel J; Ricard, Nathalie C
2016-09-01
Research suggests that individuals high in Intolerance of Uncertainty (IU) have information processing biases, which may explain the close relationship between IU and worry. Specifically, high IU individuals show an attentional bias for uncertainty, and negatively interpret uncertain information. However, evidence of a memory bias for uncertainty among high IU individuals is limited. This study therefore explored the relationship between IU and memory for uncertainty. In two separate studies, explicit and implicit memory for uncertain compared to other types of words was assessed. Cognitive avoidance and other factors that could influence information processing were also examined. IUS Factor 1 was a significant positive predictor of explicit memory for positive words, and IUS Factor 2 a significant negative predictor of implicit memory for positive words. Stimulus relevance and vocabulary were significant predictors of implicit memory for uncertain words. Cognitive avoidance was a significant predictor of both explicit and implicit memory for threat words. Female gender was a significant predictor of implicit memory for uncertain and neutral words. Word stimuli such as those used in these studies may not be the optimal way of assessing information processing biases related to IU. In addition, the predominantly female, largely student sample may limit the generalizability of the findings. Future research focusing on IU factors, stimulus relevance, and both explicit and implicit memory, was recommended. The potential role of cognitive avoidance on memory, information processing, and worry was explored. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using Bayesian Networks and Decision Theory to Model Physical Security
2003-02-01
Home automation technologies allow a person to monitor and control various activities within a home or office setting. Cameras, sensors and other...components used along with the simple rules in the home automation software provide an environment where the lights, security and other appliances can be...monitored and controlled. These home automation technologies, however, lack the power to reason under uncertain conditions and thus the system can
Electronics Manufacturing Seminar Proceedings. 17th Annual
1992-12-01
a CFC Solvent Cleaning Alternative Page 3 In operation dirty parts are immersed in the boil cham- ber where they contact the agitated mixture of...component. Some glycol ethers have an uncertain regulatory future due to a variety of health concerns. Semi-aqueous solvents can have a strong odor . Proper...thermoset 5 materials, elastomers, marking inks, sealants, and locking compounds after repeated exposure to the selected cleaners. Epoxy and polyimide PWBs
Reliability and Productivity Modeling for the Optimization of Separated Spacecraft Interferometers
NASA Technical Reports Server (NTRS)
Kenny, Sean (Technical Monitor); Wertz, Julie
2002-01-01
As technological systems grow in capability, they also grow in complexity. Due to this complexity, it is no longer possible for a designer to use engineering judgement to identify the components that have the largest impact on system life cycle metrics, such as reliability, productivity, cost, and cost effectiveness. One way of identifying these key components is to build quantitative models and analysis tools that can be used to aid the designer in making high level architecture decisions. Once these key components have been identified, two main approaches to improving a system using these components exist: add redundancy or improve the reliability of the component. In reality, the most effective approach to almost any system will be some combination of these two approaches, in varying orders of magnitude for each component. Therefore, this research tries to answer the question of how to divide funds, between adding redundancy and improving the reliability of components, to most cost effectively improve the life cycle metrics of a system. While this question is relevant to any complex system, this research focuses on one type of system in particular: Separate Spacecraft Interferometers (SSI). Quantitative models are developed to analyze the key life cycle metrics of different SSI system architectures. Next, tools are developed to compare a given set of architectures in terms of total performance, by coupling different life cycle metrics together into one performance metric. Optimization tools, such as simulated annealing and genetic algorithms, are then used to search the entire design space to find the "optimal" architecture design. Sensitivity analysis tools have been developed to determine how sensitive the results of these analyses are to uncertain user defined parameters. Finally, several possibilities for the future work that could be done in this area of research are presented.
Narravula, Alekhya; Garber, Kathryn B; Askree, S Hussain; Hegde, Madhuri; Hall, Patricia L
2017-01-01
As exome and genome sequencing using high-throughput sequencing technologies move rapidly into the diagnostic process, laboratories and clinicians need to develop a strategy for dealing with uncertain findings. A commitment must be made to minimize these findings, and all parties may need to make adjustments to their processes. The information required to reclassify these variants is often available but not communicated to all relevant parties. To illustrate these issues, we focused on three well-characterized monogenic, metabolic disorders included in newborn screens: classic galactosemia, caused by GALT variants; phenylketonuria, caused by PAH variants; and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, caused by ACADM variants. In 10 years of clinical molecular testing, we have observed 134 unique GALT variants, 46 of which were variants of uncertain significance (VUS). In PAH, we observed 132 variants, including 17 VUS, and for ACADM, we observed 64 unique variants, of which 33 were uncertain. After this review, 17 VUS (37%; 7 in ACADM, 9 in GALT, and 1 in PAH) were reclassified from uncertain (6 to benign or likely benign and 11 to pathogenic or likely pathogenic). We identified common types of missing information that would have helped make a definitive classification and categorized this information by ease and cost to obtain.Genet Med 19 1, 77-82.
Mishra, U.; Jastrow, J.D.; Matamala, R.; Hugelius, G.; Koven, C.D.; Harden, Jennifer W.; Ping, S.L.; Michaelson, G.J.; Fan, Z.; Miller, R.M.; McGuire, A.D.; Tarnocai, C.; Kuhry, P.; Riley, W.J.; Schaefer, K.; Schuur, E.A.G.; Jorgenson, M.T.; Hinzman, L.D.
2013-01-01
The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.
Capability of GPGPU for Faster Thermal Analysis Used in Data Assimilation
NASA Astrophysics Data System (ADS)
Takaki, Ryoji; Akita, Takeshi; Shima, Eiji
A thermal mathematical model plays an important role in operations on orbit as well as spacecraft thermal designs. The thermal mathematical model has some uncertain thermal characteristic parameters, such as thermal contact resistances between components, effective emittances of multilayer insulation (MLI) blankets, discouraging make up efficiency and accuracy of the model. A particle filter which is one of successive data assimilation methods has been applied to construct spacecraft thermal mathematical models. This method conducts a lot of ensemble computations, which require large computational power. Recently, General Purpose computing in Graphics Processing Unit (GPGPU) has been attracted attention in high performance computing. Therefore GPGPU is applied to increase the computational speed of thermal analysis used in the particle filter. This paper shows the speed-up results by using GPGPU as well as the application method of GPGPU.
The predictive consequences of parameterization
NASA Astrophysics Data System (ADS)
White, J.; Hughes, J. D.; Doherty, J. E.
2013-12-01
In numerical groundwater modeling, parameterization is the process of selecting the aspects of a computer model that will be allowed to vary during history matching. This selection process is dependent on professional judgment and is, therefore, inherently subjective. Ideally, a robust parameterization should be commensurate with the spatial and temporal resolution of the model and should include all uncertain aspects of the model. Limited computing resources typically require reducing the number of adjustable parameters so that only a subset of the uncertain model aspects are treated as estimable parameters; the remaining aspects are treated as fixed parameters during history matching. We use linear subspace theory to develop expressions for the predictive error incurred by fixing parameters. The predictive error is comprised of two terms. The first term arises directly from the sensitivity of a prediction to fixed parameters. The second term arises from prediction-sensitive adjustable parameters that are forced to compensate for fixed parameters during history matching. The compensation is accompanied by inappropriate adjustment of otherwise uninformed, null-space parameter components. Unwarranted adjustment of null-space components away from prior maximum likelihood values may produce bias if a prediction is sensitive to those components. The potential for subjective parameterization choices to corrupt predictions is examined using a synthetic model. Several strategies are evaluated, including use of piecewise constant zones, use of pilot points with Tikhonov regularization and use of the Karhunen-Loeve transformation. The best choice of parameterization (as defined by minimum error variance) is strongly dependent on the types of predictions to be made by the model.
Russian Nuclear Weapons: Past, Present, and Future
2011-11-01
the administration’s plans to de - ploy BMD components in Bulgaria and Romania by 2015, and has fiercely criticized global zero both in terms of the...Military Doctrine, Moscow tried to fight off politically and diplomatically the expanding U.S. BMD program and, in particular, U.S. plans to de - ploy a...has encountered major de - lays and its future remains uncertain. Modernization of the air leg has been postponed—Russia plans to rely on existing
Bateganya, Moses H; Dong, Maxia; Oguntomilade, John; Suraratdecha, Chutima
2015-04-15
Social service interventions have been implemented in many countries to help people living with HIV (PLHIV) and household members cope with economic burden as a result of reduced earning or increased spending on health care. However, the evidence for specific interventions-economic strengthening and legal services-on key health outcomes has not been appraised. We searched electronic databases from January 1995 to May 2014 and reviewed relevant literature from resource-limited settings on the impact of social service interventions on mortality, morbidity, retention in HIV care, quality of life, and ongoing HIV transmission and their cost-effectiveness. Of 1685 citations, 8 articles reported the health impact of economic strengthening interventions among PLHIV in resource-limited settings. None reported on legal services. Six of the 8 studies were conducted in sub-Saharan Africa: 1 reported on all 5 outcomes and 2 reported on 4 and 2 outcomes, respectively. The remaining 5 reported on 1 outcome each. Seven studies reported on quality of life. Although all studies reported some association between economic strengthening interventions and HIV care outcomes, the quality of evidence was rated fair or poor because studies were of low research rigor (observational or qualitative), had small sample size, or had other limitations. The expected impact of economic strengthening interventions was rated as high for quality of life but uncertain for all the other outcomes. Implementation of economic strengthening interventions is expected to have a high impact on the quality of life for PLHIV but uncertain impact on mortality, morbidity, retention in care, and HIV transmission. More rigorous research is needed to explore the impact of more targeted intervention components on health outcomes.
Vaccinating in disease-free regions: a vaccine model with application to yellow fever.
Codeço, Claudia T; Luz, Paula M; Coelho, Flavio; Galvani, Alison P; Struchiner, Claudio
2007-12-22
Concerns regarding natural or induced emergence of infectious diseases have raised a debate on the pros and cons of pre-emptive vaccination of populations under uncertain risk. In the absence of immediate risk, ethical issues arise because even smaller risks associated with the vaccine are greater than the immediate disease risk (which is zero). The model proposed here seeks to formalize the vaccination decision process looking from the perspective of the susceptible individual, and results are shown in the context of the emergence of urban yellow fever in Brazil. The model decomposes the individual's choice about vaccinating or not into uncertain components. The choice is modelled as a function of (i) the risk of a vaccine adverse event, (ii) the risk of an outbreak and (iii) the probability of receiving the vaccine or escaping serious disease given an outbreak. Additionally, we explore how this decision varies as a function of mass vaccination strategies of varying efficiency. If disease is considered possible but unlikely (risk of outbreak less than 0.1), delay vaccination is a good strategy if a reasonably efficient campaign is expected. The advantage of waiting increases as the rate of transmission is reduced (low R0) suggesting that vector control programmes and emergency vaccination preparedness work together to favour this strategy. The opposing strategy, vaccinating pre-emptively, is favoured if the probability of yellow fever urbanization is high or if expected R0 is high and emergency action is expected to be slow. In summary, our model highlights the nonlinear dependence of an individual's best strategy on the preparedness of a response to a yellow fever outbreak or other emergent infectious disease.
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.
Aldweib, Nael; Negishi, Kazuaki; Seicean, Sinziana; Jaber, Wael A; Hachamovitch, Rory; Cerqueira, Manuel; Marwick, Thomas H
2013-09-01
Appropriate use criteria (AUC) for stress single-photon emission computed tomography (SPECT) are only one step in appropriate use of imaging. Other steps include pretest clinical risk evaluation and optimal management responses. We sought to understand the link between AUC, risk evaluation, management, and outcome. We used AUC to classify 1,199 consecutive patients (63.8 ± 12.5 years, 56% male) undergoing SPECT as inappropriate, uncertain, and appropriate. Framingham score for asymptomatic patients and Bethesda angina score for symptomatic patients were used to classify patients into high (≥5%/y), intermediate, and low (≤1%/y) risk. Subsequent patient management was defined as appropriate or inappropriate based on the concordance between management decisions and the SPECT result. Patients were followed up for a median of 4.8 years, and cause of death was obtained from the social security death registry. Overall, 62% of SPECTs were appropriate, 18% inappropriate, and 20% uncertain (only 5 were unclassified). Of 324 low-risk studies, 108 (33%) were inappropriate, compared with 94 (15%) of 621 intermediate-risk and 1 (1%) of 160 high-risk studies (P < .001). There were 79 events, with outcomes of inappropriate patients better than uncertain and appropriate patients. Management was appropriate in 986 (89%), and appropriateness of patient management was unrelated to AUC (P = .65). Pretest clinical risk evaluation may be helpful in appropriateness assessment because very few high-risk patients are inappropriate, but almost half of low-risk patients are inappropriate or uncertain. Appropriate patient management is independent of appropriateness of testing. © 2013.
Patel, Manesh R; Bailey, Steven R; Bonow, Robert O; Chambers, Charles E; Chan, Paul S; Dehmer, Gregory J; Kirtane, Ajay J; Wann, L Samuel; Ward, R Parker
2012-05-29
The American College of Cardiology Foundation, in collaboration with the Society for Cardiovascular Angiography and Interventions and key specialty and subspecialty societies, conducted a review of common clinical scenarios where diagnostic catheterization is frequently considered. The indications (clinical scenarios) were derived from common applications or anticipated uses, as well as from current clinical practice guidelines and results of studies examining the implementation of noninvasive imaging appropriate use criteria. The 166 indications in this document were developed by a diverse writing group and scored by a separate independent technical panel on a scale of 1 to 9, to designate appropriate use (median 7 to 9), uncertain use (median 4 to 6), and inappropriate use (median 1 to 3). Diagnostic catheterization may include several different procedure components. The indications developed focused primarily on 2 aspects of diagnostic catheterization. Many indications focused on the performance of coronary angiography for the detection of coronary artery disease with other procedure components (e.g., hemodynamic measurements, ventriculography) at the discretion of the operator. The majority of the remaining indications focused on hemodynamic measurements to evaluate valvular heart disease, pulmonary hypertension, cardiomyopathy, and other conditions, with the use of coronary angiography at the discretion of the operator. Seventy-five indications were rated as appropriate, 49 were rated as uncertain, and 42 were rated as inappropriate. The appropriate use criteria for diagnostic catheterization have the potential to impact physician decision making, healthcare delivery, and reimbursement policy. Furthermore, recognition of uncertain clinical scenarios facilitates identification of areas that would benefit from future research.
Importance of dynamic topography in Himalaya-Tibetan plateau region
NASA Astrophysics Data System (ADS)
Ghosh, A.; Singh, S.
2017-12-01
Himalaya-Tibetan plateau region has the highest topography in the world. Various studies have been done to understand the mechanisms responsible for sustaining this high topography. However, the existence of dynamic topography in this region is still uncertain, though there have been some studies exploring the role of channel flow in lower crust leading to some topography. We investigated the role of radial mantle flow in this region by studying the relationship between geoid and topography. High geoid-to-topography ratios (GTR) were observed along the Himalayas suggesting deeper compensation mechanisms. However, further north, the geoid and topography relationship became a lot more complex as high as well as low GTR values were observed. The high GTR regions also coincided with area of high filtered free air gravity anomalies, indicating dynamic support. We also looked at the spectral components of gravity, geoid and topography, and calculated response functions to distinguish between different compensation mechanisms. We estimated the average elastic thickness of the whole region to be around 40 km from coherence and admittance studies. The GTR and admittance-coherence studies suggest deeper mass anomalies playing a role in supporting the topography along Himalayas and the area between Altyn Tagh and Kunlun faults.
NASA Astrophysics Data System (ADS)
Yu, C.; Li, Z.; Penna, N. T.
2016-12-01
Precipitable water vapour (PWV) can be routinely retrieved from ground-based GPS arrays in all-weather conditions and also in real-time. But to provide dense spatial coverage maps, for example for calibrating SAR images, for correcting atmospheric effects in Network RTK GPS positioning and which may be used for numerical weather prediction, the pointwise GPS PWV measurements must be interpolated. Several previous interpolation studies have addressed the importance of the elevation dependency of water vapour, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. We present a tropospheric turbulence iterative decomposition model that decouples the total PWV into (i) a stratified component highly correlated with topography which therefore delineates the vertical troposphere profile, and (ii) a turbulent component resulting from disturbance processes (e.g., severe weather) in the troposphere which trigger uncertain patterns in space and time. We will demonstrate that the iterative decoupled interpolation model generates improved dense tropospheric water vapour fields compared with elevation dependent models, with similar accuracies obtained over both flat and mountainous terrain, as well as for both inland and coastal areas. We will also show that our GPS-based model may be enhanced with ECMWF zenith tropospheric delay and MODIS PWV, producing multi-data sources high temporal-spatial resolution PWV fields. These fields were applied to Sentinel-1 SAR interferograms over the Los Angeles region, for which a maximum noise reduction due to atmosphere artifacts reached 85%. The results reveal that the turbulent troposphere noise, especially those in a SAR image, often occupy more than 50% of the total zenith tropospheric delay and exert systematic, rather than random patterns.
RXTE Observation of the Tycho Supernova Remnant
NASA Technical Reports Server (NTRS)
The, Lih-Sin
1998-01-01
SN1006 [4] and Cas A [1, 9] supernova remnants have been shown convincingly to have a hard X-ray power-law continuum. This continuum is thought to be the synchrotron radiation from accelerated electrons of approx. 100 TeV at the shock fronts. Our goal of AO2 RXTE observation is to detect the hard X-ray continuum and to determine the nature of the continuum from Tycho SNR. A detection of a power-law continuum from Tycho SNR can strongly argue for SNRs are the source of cosmic rays with the first order Fermi acceleration as the energizing process. We report the results of our AO2 RXTE 1 x 10(exp 5) sec observation of Tycho SNR. We detect two components of the X-ray spectrum from Tycho SNR both at better than 3 omega confidence. The best two component models are: bremsstrahlung (kT=2.67 +/- 0.13 keV) + bremsstrahlung (kT=7.07 +/- 2.21/1.72 keV) or bremsstrahlung (kT=2.36 +/- 0.21/0.57 keV) + power-law (gamma=2.58 +/- 0.12/0.09 ). This result is an improvement compaxed with the previous most sensitive X-ray measurements by Ginga which shows Tycho's observed X-ray continuum requires a two-component model to yield acceptable fits with the hard component parameters being highly uncertain. Our RXTE measurements constrain all parameter within 3o, ranges. However, we cannot yet distinguish between thermal and nonthermal models for the hard component. In the followings, we describe what we accomplished in the period covered by the grant proposal.
A statistical study of magnetopause structures: Tangential versus rotational discontinuities
NASA Astrophysics Data System (ADS)
Chou, Y.-C.; Hau, L.-N.
2012-08-01
A statistical study of the structure of Earth's magnetopause is carried out by analyzing two-year AMPTE/IRM plasma and magnetic field data. The analyses are based on the minimum variance analysis (MVA), the deHoffmann-Teller (HT) frame analysis and the Walén relation. A total of 328 magnetopause crossings are identified and error estimates associated with MVA and HT frame analyses are performed for each case. In 142 out of 328 events both MVA and HT frame analyses yield high quality results which are classified as either tangential-discontinuity (TD) or rotational-discontinuity (RD) structures based only on the Walén relation: Events withSWA ≤ 0.4 (SWA ≥ 0.5) are classified as TD (RD), and rest (with 0.4 < SWA < 0.5) is classified as "uncertain," where SWA refers to the Walén slope. With this criterion, 84% of 142 events are TDs, 12% are RDs, and 4% are uncertain events. There are a large portion of TD events which exhibit a finite normal magnetic field component Bnbut have insignificant flow as compared to the Alfvén velocity in the HT frame. Two-dimensional Grad-Shafranov reconstruction of forty selected TD and RD events show that single or multiple X-line accompanied with magnetic islands are common feature of magnetopause current. A survey plot of the HT velocity associated with TD structures projected onto the magnetopause shows that the flow is diverted at the subsolar point and accelerated toward the dawn and dusk flanks.
Hess, Paul L; Al-Khalidi, Hussein R; Friedman, Daniel J; Mulder, Hillary; Kucharska-Newton, Anna; Rosamond, Wayne R; Lopes, Renato D; Gersh, Bernard J; Mark, Daniel B; Curtis, Lesley H; Post, Wendy S; Prineas, Ronald J; Sotoodehnia, Nona; Al-Khatib, Sana M
2017-08-23
Prior studies have demonstrated a link between the metabolic syndrome and increased risk of cardiovascular mortality. Whether the metabolic syndrome is associated with sudden cardiac death is uncertain. We characterized the relationship between sudden cardiac death and metabolic syndrome status among participants of the ARIC (Atherosclerosis Risk in Communities) Study (1987-2012) free of prevalent coronary heart disease or heart failure. Among 13 168 participants, 357 (2.7%) sudden cardiac deaths occurred during a median follow-up of 23.6 years. Participants with the metabolic syndrome (n=4444) had a higher cumulative incidence of sudden cardiac death than those without it (n=8724) (4.1% versus 2.3%, P <0.001). After adjustment for participant demographics and clinical factors other than components of the metabolic syndrome, the metabolic syndrome was independently associated with sudden cardiac death (hazard ratio, 1.70, 95% confidence interval, 1.37-2.12, P <0.001). This relationship was not modified by sex (interaction P =0.10) or race (interaction P =0.62) and was mediated by the metabolic syndrome criteria components. The risk of sudden cardiac death varied according to the number of metabolic syndrome components (hazard ratio 1.31 per additional component of the metabolic syndrome, 95% confidence interval, 1.19-1.44, P <0.001). Of the 5 components, elevated blood pressure, impaired fasting glucose, and low high-density lipoprotein were independently associated with sudden cardiac death. We observed that the metabolic syndrome was associated with a significantly increased risk of sudden cardiac death irrespective of sex or race. The risk of sudden cardiac death was proportional to the number of metabolic syndrome components. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
The Effects of the Previous Outcome on Probabilistic Choice in Rats
Marshall, Andrew T.; Kirkpatrick, Kimberly
2014-01-01
This study examined the effects of previous outcomes on subsequent choices in a probabilistic-choice task. Twenty-four rats were trained to choose between a certain outcome (1 or 3 pellets) versus an uncertain outcome (3 or 9 pellets), delivered with a probability of .1, .33, .67, and .9 in different phases. Uncertain outcome choices increased with the probability of uncertain food. Additionally, uncertain choices increased with the probability of uncertain food following both certain-choice outcomes and unrewarded uncertain choices. However, following uncertain-choice food outcomes, there was a tendency to choose the uncertain outcome in all cases, indicating that the rats continued to “gamble” after successful uncertain choices, regardless of the overall probability or magnitude of food. A subsequent manipulation, in which the probability of uncertain food varied within each session as a function of the previous uncertain outcome, examined how the previous outcome and probability of uncertain food affected choice in a dynamic environment. Uncertain-choice behavior increased with the probability of uncertain food. The rats exhibited increased sensitivity to probability changes and a greater degree of win–stay/lose–shift behavior than in the static phase. Simulations of two sequential choice models were performed to explore the possible mechanisms of reward value computations. The simulation results supported an exponentially decaying value function that updated as a function of trial (rather than time). These results emphasize the importance of analyzing global and local factors in choice behavior and suggest avenues for the future development of sequential-choice models. PMID:23205915
Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries--a review.
Eshun, Kojo; He, Qian
2004-01-01
Scientific investigations on Aloe vera have gained more attention over the last several decades due to its reputable medicinal properties. Some publications have appeared in reputable Scientific Journals that have made appreciable contributions to the discovery of the functions and utilizations of Aloe--"nature's gift." Chemical analysis reveals that Aloe vera contains various carbohydrate polymers, notably glucomannans, along with a range of other organic and inorganic components. Although many physiological properties of Aloe vera have been described, it still remains uncertain as to which of the component(s) is responsible for these physiological properties. Further research needs to be done to unravel the myth surrounding the biological activities and the functional properties of A. vera. Appropriate processing techniques should be employed during the stabilization of the gel in order to affect and extend its field of utilization.
A study of crystal growth by solution technique. [triglycine sulfate single crystals
NASA Technical Reports Server (NTRS)
Lal, R. B.
1979-01-01
The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.
Eggington, J M; Bowles, K R; Moyes, K; Manley, S; Esterling, L; Sizemore, S; Rosenthal, E; Theisen, A; Saam, J; Arnell, C; Pruss, D; Bennett, J; Burbidge, L A; Roa, B; Wenstrup, R J
2014-09-01
Genetic testing has the potential to guide the prevention and treatment of disease in a variety of settings, and recent technical advances have greatly increased our ability to acquire large amounts of genetic data. The interpretation of this data remains challenging, as the clinical significance of genetic variation detected in the laboratory is not always clear. Although regulatory agencies and professional societies provide some guidance regarding the classification, reporting, and long-term follow-up of variants, few protocols for the implementation of these guidelines have been described. Because the primary aim of clinical testing is to provide results to inform medical management, a variant classification program that offers timely, accurate, confident and cost-effective interpretation of variants should be an integral component of the laboratory process. Here we describe the components of our laboratory's current variant classification program (VCP), based on 20 years of experience and over one million samples tested, using the BRCA1/2 genes as a model. Our VCP has lowered the percentage of tests in which one or more BRCA1/2 variants of uncertain significance (VUSs) are detected to 2.1% in the absence of a pathogenic mutation, demonstrating how the coordinated application of resources toward classification and reclassification significantly impacts the clinical utility of testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Komal
2018-05-01
Nowadays power consumption is increasing day-by-day. To fulfill failure free power requirement, planning and implementation of an effective and reliable power management system is essential. Phasor measurement unit(PMU) is one of the key device in wide area measurement and control systems. The reliable performance of PMU assures failure free power supply for any power system. So, the purpose of the present study is to analyse the reliability of a PMU used for controllability and observability of power systems utilizing available uncertain data. In this paper, a generalized fuzzy lambda-tau (GFLT) technique has been proposed for this purpose. In GFLT, system components' uncertain failure and repair rates are fuzzified using fuzzy numbers having different shapes such as triangular, normal, cauchy, sharp gamma and trapezoidal. To select a suitable fuzzy number for quantifying data uncertainty, system experts' opinion have been considered. The GFLT technique applies fault tree, lambda-tau method, fuzzified data using different membership functions, alpha-cut based fuzzy arithmetic operations to compute some important reliability indices. Furthermore, in this study ranking of critical components of the system using RAM-Index and sensitivity analysis have also been performed. The developed technique may be helpful to improve system performance significantly and can be applied to analyse fuzzy reliability of other engineering systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crockett, R. G. M.; Perrier, F.; Richon, P.
2009-04-01
Building on independent investigations by research groups at both IPGP, France, and the University of Northampton, UK, hourly-sampled radon time-series of durations exceeding one year have been investigated for periodic and anomalous phenomena using a variety of established and novel techniques. These time-series have been recorded in locations having no routine human behaviour and thus are effectively free of significant anthropogenic influences. With regard to periodic components, the long durations of these time-series allow, in principle, very high frequency resolutions for established spectral-measurement techniques such as Fourier and maximum-entropy. However, as has been widely observed, the stochastic nature of radon emissions from rocks and soils, coupled with sensitivity to a wide variety influences such as temperature, wind-speed and soil moisture-content has made interpretation of the results obtained by such techniques very difficult, with uncertain results, in many cases. We here report developments in the investigation of radon-time series for periodic and anomalous phenomena using spectral-decomposition techniques. These techniques, in variously separating ‘high', ‘middle' and ‘low' frequency components, effectively ‘de-noise' the data by allowing components of interest to be isolated from others which (might) serve to obscure weaker information-containing components. Once isolated, these components can be investigated using a variety of techniques. Whilst this is very much work in early stages of development, spectral decomposition methods have been used successfully to indicate the presence of diurnal and sub-diurnal cycles in radon concentration which we provisionally attribute to tidal influences. Also, these methods have been used to enhance the identification of short-duration anomalies, attributable to a variety of causes including, for example, earthquakes and rapid large-magnitude changes in weather conditions. Keywords: radon; earthquakes; tidal-influences; anomalies; time series; spectral-decomposition.
Bakker, Alexander M R; Wong, Tony E; Ruckert, Kelsey L; Keller, Klaus
2017-06-20
There is a growing awareness that uncertainties surrounding future sea-level projections may be much larger than typically perceived. Recently published projections appear widely divergent and highly sensitive to non-trivial model choices . Moreover, the West Antarctic ice sheet (WAIS) may be much less stable than previous believed, enabling a rapid disintegration. Here, we present a set of probabilistic sea-level projections that approximates the deeply uncertain WAIS contributions. The projections aim to inform robust decisions by clarifying the sensitivity to non-trivial or controversial assumptions. We show that the deeply uncertain WAIS contribution can dominate other uncertainties within decades. These deep uncertainties call for the development of robust adaptive strategies. These decision-making needs, in turn, require mission-oriented basic science, for example about potential signposts and the maximum rate of WAIS-induced sea-level changes.
Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake
Takahashi, Kei; Kohno, Hiromi
2016-01-01
Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert
2016-05-24
The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.
NASA Technical Reports Server (NTRS)
Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph;
2016-01-01
The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.
Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...
2016-05-24
The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less
Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert
2016-01-01
The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566
Flassig, Robert J; Migal, Iryna; der Zalm, Esther van; Rihko-Struckmann, Liisa; Sundmacher, Kai
2015-01-16
Understanding the dynamics of biological processes can substantially be supported by computational models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure, predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or non-identifiable parameters, rational experimental design based on various approaches has shown to significantly reduce parameter uncertainties with minimal amount of effort. In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an experimental design objective for selecting new, informative readouts in combination with intervention site identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts. Having data and profile likelihood samples at hand, the here proposed uncertainty quantification based on prediction samples from the profile likelihood provides a simple way for determining individual contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of specific model predictions allows identifying regions, where model predictions have to be considered with care. Such uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and parameter sensitivities of the specific prediction.
NASA Astrophysics Data System (ADS)
Aguilera, Victor; Escribano, Ruben; Herrera, Liliana
2009-08-01
Autotrophic and heterotrophic nanoplankton and microplankton vary widely in quantity and composition in coastal upwelling zones, causing a highly heterogeneous distribution of food resources for higher trophic levels. Here, we assessed daily changes in size-fractioned biomass and community structure of nanoplankton and microplankton at two upwelling sites off northern Chile, Mejillones (23°S) and Chipana (21°S), during summer 2006, winter 2006 and summer 2007 as related to changes in oceanographic conditions upon upwelling variation. We found highly-significant changes in quantity and community structure (species diversity and richness) of both nanoplankton and microplankton fractions after 3-5 days of observations. These changes were coupled to an intermittent upwelling regime reflected in the alongshore component of the wind. After a few days the whole community was modified in terms of species and size structure. Over-imposing this variability, during winter 2006 there was a strong perturbation of remote origin that substantially impacted temperature, oxygenation and stratification of the water column. This "abnormal" warming event altered the upwelling regime, but its impact on abundance and composition of the nanoplankton and microplankton fractions was uncertain. Over the short-time scale however, we found a strong coupling between daily changes in the alongshore component of wind and nanoplankton and microplankton abundances and their structure. All these findings indicate that despite the high biological productivity of this upwelling region, high frequency variation induced by wind forcing may be a major regulator of food resources (quantity and quality) for primary consumers, such as zooplankton, fish larvae and benthic organisms in the near-shore area. This high frequency variation may also impose a key constrain for prey-predator encounter rates and survival of short-lived zooplankton and invertebrate and fish larvae in the upwelling zone.
NASA Astrophysics Data System (ADS)
Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa
2018-04-01
While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.
Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge
NASA Astrophysics Data System (ADS)
Michard, A.; Montigny, R.; Schlich, R.
1986-05-01
Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.
Childhood maxillary myxoma: case report and review of management.
Tincani, Alfio Jose; Araújo, Priscila P C; DelNegro, André; Altemani, Albina; Martins, Antonio Santos
2007-11-01
Myxomas are benign neoplasms of uncertain origin and etiology. First described by Virchow in 1863, they are derived from primitive mesenchymal structures and feature components of the umbilical cord. More recently, in 1995, Takahashi et al., through extensive research confirmed the fibroblastic and histiocytic origin of the tumor. We present a case in a female infant whose outcome and follow-up are discussed as well as a literature review in order to discuss many features of this rare pathology.
Uncertainty is associated with increased selective attention and sustained stimulus processing.
Dieterich, Raoul; Endrass, Tanja; Kathmann, Norbert
2016-06-01
Uncertainty about future threat has been found to be associated with an overestimation of threat probability and is hypothesized to elicit additional allocation of attention. We used event-related potentials to examine uncertainty-related dynamics in attentional allocation, exploiting brain potentials' high temporal resolution and sensitivity to attention. Thirty participants performed a picture-viewing task in which cues indicated the subsequent picture valence. A certain-neutral and a certain-aversive cue accurately predicted subsequent picture valence, whereas an uncertain cue did not. Participants overestimated the effective frequency of aversive pictures following the uncertain cue, both during and after the task, signifying expectancy and covariation biases, and they tended to express lower subjective valences for aversive pictures presented after the uncertain cue. Pictures elicited increased P2 and LPP amplitudes when their valence could not be predicted from the cue. For the LPP, this effect was more pronounced in response to neutral pictures. Uncertainty appears to enhance the engagement of early phasic and sustained attention for uncertainly cued targets. Thus, defensive motivation related to uncertainty about future threat elicits specific attentional dynamics implicating prioritization at various processing stages, especially for nonthreatening stimuli that tend to violate expectations.
Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)
High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
NASA Astrophysics Data System (ADS)
Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.
2018-06-01
Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.
ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.
Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer
2018-06-26
Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Hovakimyan, N; Nardi, F; Calise, A; Kim, Nakwan
2002-01-01
We consider adaptive output feedback control of uncertain nonlinear systems, in which both the dynamics and the dimension of the regulated system may be unknown. However, the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. The classical approach requires a state observer. Finding a good observer for an uncertain nonlinear system is not an obvious task. We argue that it is sufficient to build an observer for the output tracking error. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. The theoretical results are illustrated in the design of a controller for a fourth-order nonlinear system of relative degree two and a high-bandwidth attitude command system for a model R-50 helicopter.
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1998-01-01
The evolution of multidisciplinary design optimization (MDO) over the past several years has been one of rapid expansion and development. In this paper, the evolution of MDO as a field is investigated as well as the evolution of its individual linguistic components: multidisciplinary, design, and optimization. The theory and application of each component have indeed evolved on their own, but the true net gain for MDO is how these piecewise evolutions coalesce to form the basis for MDO, present and future. Originating in structural applications, MDO technology has also branched out into diverse fields and application arenas. The evolution and diversification of MDO as a discipline is explored but details are left to the references cited.
NASA Astrophysics Data System (ADS)
Sharma, A.; Woldemeskel, F. M.; Sivakumar, B.; Mehrotra, R.
2014-12-01
We outline a new framework for assessing uncertainties in model simulations, be they hydro-ecological simulations for known scenarios, or climate simulations for assumed scenarios representing the future. This framework is illustrated here using GCM projections for future climates for hydrologically relevant variables (precipitation and temperature), with the uncertainty segregated into three dominant components - model uncertainty, scenario uncertainty (representing greenhouse gas emission scenarios), and ensemble uncertainty (representing uncertain initial conditions and states). A novel uncertainty metric, the Square Root Error Variance (SREV), is used to quantify the uncertainties involved. The SREV requires: (1) Interpolating raw and corrected GCM outputs to a common grid; (2) Converting these to percentiles; (3) Estimating SREV for model, scenario, initial condition and total uncertainty at each percentile; and (4) Transforming SREV to a time series. The outcome is a spatially varying series of SREVs associated with each model that can be used to assess how uncertain the system is at each simulated point or time. This framework, while illustrated in a climate change context, is completely applicable for assessment of uncertainties any modelling framework may be subject to. The proposed method is applied to monthly precipitation and temperature from 6 CMIP3 and 13 CMIP5 GCMs across the world. For CMIP3, B1, A1B and A2 scenarios whereas for CMIP5, RCP2.6, RCP4.5 and RCP8.5 representing low, medium and high emissions are considered. For both CMIP3 and CMIP5, model structure is the largest source of uncertainty, which reduces significantly after correcting for biases. Scenario uncertainly increases, especially for temperature, in future due to divergence of the three emission scenarios analysed. While CMIP5 precipitation simulations exhibit a small reduction in total uncertainty over CMIP3, there is almost no reduction observed for temperature projections. Estimation of uncertainty in both space and time sheds lights on the spatial and temporal patterns of uncertainties in GCM outputs, providing an effective platform for risk-based assessments of any alternate plans or decisions that may be formulated using GCM simulations.
NASA Astrophysics Data System (ADS)
Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.
2014-04-01
Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.
The Prediction of Long-Term Thermal Aging in Cast Austenitic Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Yang, Ying; Lach, Timothy G.
Cast austenitic stainless steel (CASS) materials are extensively used for many massive primary coolant system components of light water reactors (LWRs) including coolant piping, valve bodies, pump casings, and piping elbows. Many of these components are operated in complex and persistently damaging environments of elevated temperature, high pressure, corrosive environment, and sometimes radiation for long periods of time. Since a large number of CASS components are installed in every nuclear power plant and replacing such massive components is prohibitively expensive, any significant degradation in mechanical properties that affects structural integrity, cracking resistance in particular, of CASS components will raise amore » serious concern on the performance of entire power plant. The CASS materials for nuclear components are highly corrosion-resistant Fe-Cr-Ni alloys with 300 series stainless steel compositions and mostly austenite (γ)–ferrite (δ) duplex structures, which result from the casting processes consisting of alloy melting and pouring or injecting liquid metal into a static or spinning mold. Although the commonly used static and centrifugal casting processes enable the fabrication of massive components with proper resistance to environmental attacks, the alloying and microstructural conditions are not highly controllable in actual fabrication, especially in the casting processes of massive components. In the corrosion-resistant Fe-Cr-Ni alloy system, the minor phase (i.e., the δ-ferrite phase) is inevitably formed during the casting process, and is in a non-equilibrium state subject to detrimental changes during exposure to elevated temperature and/or radiation. In general, relatively few critical degradation modes are expected within the current design lifetime of 40 years, given that the CASS components have been processed properly. It has been well known, however, that both the thermal aging and the neutron irradiation can cause degradation of static and impact toughness in the cast stainless steels, and if combined with any flaws formed during the fabrication process or in service, the thermal degradation in CASS components can be a serious concern for the integrity of the power plant. On the integrity of the CASS components during the extended lifetime of 60 years or longer, no conclusive prediction has been possible, primarily because no direct experience with these materials currently exists, and the aging behavior of CASS alloys still remains largely uncertain. The ongoing research for CASS aging, as part of the LWRS Program/Materials Aging and Degradation Pathway, is an integrated research using holistic experimental and modeling means to provide both the scientific understanding on the aging and failure phenomena and the practical models to predict the degree of property degradation.« less
Sediment load from major rivers into Puget Sound and its adjacent waters
Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Grossman, Eric E.; Curran, Christopher A.; Gendaszek, Andrew S.; Dinicola, Richard S.
2011-01-01
Each year, an estimated load of 6.5 million tons of sediment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaciated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river's sediment load occurs during floods.
Anxiety associated with diagnostic uncertainty in early pregnancy.
Richardson, A; Raine-Fenning, N; Deb, S; Campbell, B; Vedhara, K
2017-08-01
To determine anxiety levels of women presenting to an early pregnancy assessment unit (EPAU) with abdominal pain and/or vaginal bleeding and to assess how these levels change over time and according to ultrasonographic diagnosis. We undertook a prospective cohort study in an EPAU in a large UK teaching hospital. Women with abdominal pain and/or vaginal bleeding in early pregnancy (< 12 weeks' gestation) presenting for the first time were eligible for inclusion in the study. State anxiety levels were assessed using the standardized short form of Spielberger's state-trait anxiety inventory (STAI) on three occasions (before, immediately after and 48-72 hours after an ultrasound scan). Scores were correlated with ultrasonographic diagnosis. The diagnosis was either certain or uncertain. Certain diagnoses were either positive, i.e. a viable intrauterine pregnancy (IUP), or negative, i.e. a non-viable IUP or ectopic pregnancy. Uncertain diagnoses included pregnancy of unknown location and pregnancy of uncertain viability. Statistical analysis involved mixed ANOVAs and the post-hoc Tukey-Kramer test. A total of 160 women were included in the study. Anxiety levels decreased over time for women with a certain diagnosis (n = 128), even when negative (n = 64), and increased over time for women with an uncertain diagnosis (n = 32). Before the ultrasound examination, anxiety levels were high (STAI value, 21.96 ± 1.11) and there was no significant difference between the five groups. Immediately after the ultrasound examination, anxiety levels were lower in the viable IUP group (n = 64; 7.75 ± 1.13) than in any other group. The difference between the five groups was significant (P < 0.005). After 48-72 hours, women with a certain diagnosis had significantly lower anxiety levels than had those with an uncertain diagnosis (10.77 ± 4.30 vs 22.94 ± 1.65; P < 0.005). The experience of abdominal pain and/or vaginal bleeding in early pregnancy is highly anxiogenic. Following an ultrasound examination, the certainty of the diagnosis affects anxiety levels more than does the positive or negative connotations associated with the diagnosis per se. Healthcare providers should be aware of this when communicating uncertain diagnoses. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.
2008-12-01
Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.
Li, Qiudan; Zhan, Yongcheng; Wang, Lei; Leischow, Scott J; Zeng, Daniel Dajun
2016-07-30
The electronic cigarette (e-cigarette) market has grown rapidly in recent years. However, causes of e-cigarette related symptoms among users and their impact on health remain uncertain. This research aims to mine the potential relationships between symptoms and e-liquid components, such as propylene glycol (PG), vegetable glycerine (VG), flavor extracts, and nicotine, using user-generated data collected from Reddit. A total of 3605 e-liquid related posts from January 1st, 2011 to June 30th, 2015 were collected from Reddit. Then the patterns of VG/PG distribution among different flavors were analyzed. Next, the relationship between throat hit, which was a typical symptom of e-cigarette use, and e-liquid components was studied. Finally, other symptoms were examined based on e-liquid components and user sentiment. We discovered 3 main sets of findings: 1) We identified three groups of flavors in terms of VG/PG ratios. Fruits, cream, and nuts flavors were similar. Sweet, menthol, and seasonings flavors were classified into one group. Tobacco and beverages flavors were the third group. 2) Throat hit was analyzed and we found that menthol and tobacco flavors, as well as high ratios of PG and nicotine level, could produce more throat hit. 3) A total of 9 systems of 25 symptoms were identified and analyzed. Components including VG/PG ratio, flavor, and nicotine could be possible reasons for these symptoms. E-liquid components shown to be associated with e-cigarette use symptomology were VG/PG ratios, flavors, and nicotine levels. Future analysis could be conducted based on the structure of e-liquid components categories built in this study. Information revealed in this study could be utilized by e-cigarette users to understand the relationship between e-liquid type and symptoms experienced, by vendors to choose appropriate recipes of e-liquid, and by policy makers to develop new regulations.
Lapointe, Stephen L; Barros-Parada, Wilson; Fuentes-Contreras, Eduardo; Herrera, Heidy; Kinsho, Takeshi; Miyake, Yuki; Niedz, Randall P; Bergmann, Jan
2017-12-01
Field experiments were carried out to study responses of male moths of the carpenterworm, Chilecomadia valdiviana (Lepidoptera: Cossidae), a pest of tree and fruit crops in Chile, to five compounds previously identified from the pheromone glands of females. Previously, attraction of males to the major component, (7Z,10Z)-7,10-hexadecadienal, was clearly demonstrated while the role of the minor components was uncertain due to the use of an experimental design that left large portions of the design space unexplored. We used mixture designs to study the potential contributions to trap catch of the four minor pheromone components produced by C. valdiviana. After systematically exploring the design space described by the five pheromone components, we concluded that the major pheromone component alone is responsible for attraction of male moths in this species. The need for appropriate experimental designs to address the problem of assessing responses to mixtures of semiochemicals in chemical ecology is described. We present an analysis of mixture designs and response surface modeling and an explanation of why this approach is superior to commonly used, but statistically inappropriate, designs.
Food insecurity as a driver of obesity in humans: The insurance hypothesis
Nettle, Daniel; Andrews, Clare; Bateson, Melissa
2016-01-01
Short abstract Common sense says that obesity is the consequence of too much food. Adaptive reasoning says something rather different: individuals should store fat when access to food is insecure, to buffer themselves against future shortfall. Applied to humans, this principle suggests that food insecurity should be a risk factor for overweight and obesity. We provide a meta-analysis of the extensive epidemiological literature, finding that food insecurity robustly predicts high body weight, but only amongst women in high-income countries. We discuss the relevance of food insecurity to understanding the global obesity problem. Long abstract Integrative explanations of why obesity is more prevalent in some sectors of the human population than others are lacking. Here, we outline and evaluate one candidate explanation, the insurance hypothesis (IH). The IH is rooted in adaptive evolutionary thinking: the function of storing fat is to provide a buffer against shortfall in the food supply. Thus, individuals should store more fat when they receive cues that access to food is uncertain. Applied to humans, this implies that an important proximate driver of obesity should be food insecurity rather than food abundance per se. We integrate several distinct lines of theory and evidence that bear on this hypothesis. We present a theoretical model that shows it is optimal to store more fat when food access is uncertain, and we review the experimental literature from non-human animals showing that fat reserves increase when access to food is restricted. We provide a meta-analysis of 125 epidemiological studies of the association between perceived food insecurity and high body weight in humans. There is a robust positive association, but it is restricted to adult women in high-income countries. We explore why this could be in light of the IH and our theoretical model. We conclude that whilst the IH alone cannot explain the distribution of obesity in the human population, it may represent a very important component of a pluralistic explanation. We also discuss insights it may offer into the developmental origins of obesity, dieting-induced weight gain, and Anorexia Nervosa. PMID:27464638
NASA Technical Reports Server (NTRS)
1975-01-01
High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.
Skutan, Stefan; Aschenbrenner, Philipp
2012-12-01
Components with extraordinarily high analyte contents, for example copper metal from wires or plastics stabilized with heavy metal compounds, are presumed to be a crucial source of errors in refuse-derived fuel (RDF) analysis. In order to study the error generation of those 'analyte carrier components', synthetic samples spiked with defined amounts of carrier materials were mixed, milled in a high speed rotor mill to particle sizes <1 mm, <0.5 mm and <0.2 mm, respectively, and analyzed repeatedly. Copper (Cu) metal and brass were used as Cu carriers, three kinds of polyvinylchloride (PVC) materials as lead (Pb) and cadmium (Cd) carriers, and paper and polyethylene as bulk components. In most cases, samples <0.2 mm delivered good recovery rates (rec), and low or moderate relative standard deviations (rsd), i.e. metallic Cu 87-91% rec, 14-35% rsd, Cd from flexible PVC yellow 90-92% rec, 8-10% rsd and Pb from rigid PVC 92-96% rec, 3-4% rsd. Cu from brass was overestimated (138-150% rec, 13-42% rsd), Cd from flexible PVC grey underestimated (72-75% rec, 4-7% rsd) in <0.2 mm samples. Samples <0.5 mm and <1 mm spiked with Cu or brass produced errors of up to 220% rsd (<0.5 mm) and 370% rsd (<1 mm). In the case of Pb from rigid PVC, poor recoveries (54-75%) were observed in spite of moderate variations (rsd 11-29%). In conclusion, time-consuming milling to <0.2 mm can reduce variation to acceptable levels, even given the presence of analyte carrier materials. Yet, the sources of systematic errors observed (likely segregation effects) remain uncertain.
Rubinstein, Helena; Marcu, Afrodita; Yardley, Lucy; Michie, Susan
2015-02-27
During the 2009-2010 A(H1N1) pandemic, many people did not seek care quickly enough, failed to take a full course of antivirals despite being authorised to receive them, and were not vaccinated. Understanding facilitators and barriers to the uptake of vaccination and antiviral medicines will help inform campaigns in future pandemic influenza outbreaks. Increasing uptake of vaccines and antiviral medicines may need to address a range of drivers of behaviour. The aim was to identify facilitators of and barriers to being vaccinated and taking antiviral medicines in uncertain and severe pandemic influenza scenarios using a theoretical model of behaviour change, COM-B. Focus groups and interviews with 71 members of the public in England who varied in their at-risk status. Participants responded to uncertain and severe scenarios, and to messages giving advice on vaccination and antiviral medicines. Data were thematically analysed using the theoretical framework provided by the COM-B model. Influences on uptake of vaccines and antiviral medicines - capabilities, motivations and opportunities - are part of an inter-related behavioural system and different components influenced each other. An identity of being healthy and immune from infection was invoked to explain feelings of invulnerability and hence a reduced need to be vaccinated, especially during an uncertain scenario. The identity of being a 'healthy person' also included beliefs about avoiding medicine and allowing the body to fight disease 'naturally'. This was given as a reason for using alternative precautionary behaviours to vaccination. This identity could be held by those not at-risk and by those who were clinically at-risk. Promoters and barriers to being vaccinated and taking antiviral medicines are multi-dimensional and communications to promote uptake are likely to be most effective if they address several components of behaviour. The benefit of using the COM-B model is that it is at the core of an approach that can identify effective strategies for behaviour change and communications for the future. Identity beliefs were salient for decisions about vaccination. Communications should confront identity beliefs about being a 'healthy person' who is immune from infection by addressing how vaccination can boost wellbeing and immunity.
Patel, Manesh R; Bailey, Steven R; Bonow, Robert O; Chambers, Charles E; Chan, Paul S; Dehmer, Gregory J; Kirtane, Ajay J; Wann, L Samuel; Ward, R Parker; Douglas, Pamela S; Patel, Manesh R; Bailey, Steven R; Altus, Philip; Barnard, Denise D; Blankenship, James C; Casey, Donald E; Dean, Larry S; Fazel, Reza; Gilchrist, Ian C; Kavinsky, Clifford J; Lakoski, Susan G; Le, D Elizabeth; Lesser, John R; Levine, Glenn N; Mehran, Roxana; Russo, Andrea M; Sorrentino, Matthew J; Williams, Mathew R; Wong, John B; Wolk, Michael J; Bailey, Steven R; Douglas, Pamela S; Hendel, Robert C; Kramer, Christopher M; Min, James K; Patel, Manesh R; Shaw, Leslee; Stainback, Raymond F; Allen, Joseph M
2012-09-01
The American College of Cardiology Foundation, in collaboration with the Society for Cardiovascular Angiography and Interventions and key specialty and subspecialty societies, conducted a review of common clinical scenarios where diagnostic catheterization is frequently considered. The indications (clinical scenarios) were derived from common applications or anticipated uses, as well as from current clinical practice guidelines and results of studies examining the implementation of noninvasive imaging appropriate use criteria. The 166 indications in this document were developed by a diverse writing group and scored by a separate independent technical panel on a scale of 1 to 9, to designate appropriate use (median 7 to 9), uncertain use (median 4 to 6), and inappropriate use (median 1 to 3). Diagnostic catheterization may include several different procedure components. The indications developed focused primarily on 2 aspects of diagnostic catheterization. Many indications focused on the performance of coronary angiography for the detection of coronary artery disease with other procedure components (e.g., hemodynamic measurements, ventriculography) at the discretion of the operator. The majority of the remaining indications focused on hemodynamic measurements to evaluate valvular heart disease, pulmonary hypertension, cardiomyopathy, and other conditions, with the use of coronary angiography at the discretion of the operator. Seventy-five indications were rated as appropriate, 49 were rated as uncertain, and 42 were rated as inappropriate. The appropriate use criteria for diagnostic catheterization have the potential to impact physician decision making, healthcare delivery, and reimbursement policy. Furthermore, recognition of uncertain clinical scenarios facilitates identification of areas that would benefit from future research. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Cerulean Warbler Occurrence Atlas for Military Installations
2010-04-01
Army Ammuniton Plant (Closed) IN NO 2009 Army IOWA ARMY AMMUNITION PLANT IA UNCERTAIN 2009 USACE J. Percy Priest Lake TN UNCERTAIN 2009 USACE J...Stonewall Jackson Lake WV UNCERTAIN 2009 USACE Summersville Lake WV no POC Army Sunflower Army Ammunition Plant KS no POC USACE Sutton Lake WV UNCERTAIN
Oemisch, Mariann; Watson, Marcus R.; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior. PMID:29163113
Oemisch, Mariann; Watson, Marcus R; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior.
Design of supply chain in fuzzy environment
NASA Astrophysics Data System (ADS)
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Multivariate Analysis of Mixed Lipid Aggregate Phase Transitions Monitored Using Raman Spectroscopy.
Neal, Sharon L
2018-01-01
The phase behavior of aqueous 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) mixtures between 8.0 ℃ and 41.0 ℃ were monitored using Raman spectroscopy. Temperature-dependent Raman matrices were assembled from series of spectra and subjected to multivariate analysis. The consensus of pseudo-rank estimation results is that seven to eight components account for the temperature-dependent changes observed in the spectra. The spectra and temperature response profiles of the mixture components were resolved by applying a variant of the non-negative matrix factorization (NMF) algorithm described by Lee and Seung (1999). The rotational ambiguity of the data matrix was reduced by augmenting the original temperature-dependent spectral matrix with its cumulative counterpart, i.e., the matrix formed by successive integration of the spectra across the temperature index (columns). Successive rounds of constrained NMF were used to isolate component spectra from a significant fluorescence background. Five major components exhibiting varying degrees of gel and liquid crystalline lipid character were resolved. Hydrogen-bonded water networks exhibiting varying degrees of organization are associated with the lipid components. Spectral parameters were computed to compare the chain conformation, packing, and hydration indicated by the resolved spectra. Based on spectral features and relative amounts of the components observed, four components reflect long chain lipid response. The fifth component could reflect the response of the short chain lipid, DHPC, but there were no definitive spectral features confirming this assignment. A minor component of uncertain assignment that exhibits a striking response to the DMPC pre-transition and chain melting transition also was recovered. While none of the spectra resolved exhibit features unequivocally attributable to a specific aggregate morphology or step in the gelation process, the results are consistent with the evolution of mixed phase bicelles (nanodisks) and small amounts of worm-like DMPC/DHPC aggregates, and perhaps DHPC micelles, at low temperature to suspensions of branched and entangled worm-like aggregates above the DMPC gel phase transition and perforated multi-lamellar aggregates at high temperature.
NASA Astrophysics Data System (ADS)
Seiller, G.; Anctil, F.; Roy, R.
2017-09-01
This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Massa, Luca; Wang, Jonathan; Freund, Jonathan B.
2018-05-01
We introduce an efficient non-intrusive surrogate-based methodology for global sensitivity analysis and uncertainty quantification. Modified covariance-based sensitivity indices (mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is applied to simulations of a complex plasma-coupled combustion system with disparate uncertain parameters in sub-models for chemical kinetics and a laser-induced breakdown ignition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces and a polynomial dimensional decomposition (PDD) representing its multi-dimensional components. The coefficients of the PDD expansion are obtained using a least-squares regression, which both avoids the direct computation of high-dimensional integrals and affords an attractive flexibility in choosing sampling points. This facilitates importance sampling using a Bayesian calibrated posterior distribution, which is fast and thus particularly advantageous in common practical cases, such as our large-scale demonstration, for which the asymptotic convergence properties of polynomial expansions cannot be realized due to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correlation of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then proposed in order to bound this magnitude ∈ [ 0 , 1 ]. The polynomial expansion is coupled with an adaptive ANOVA strategy to provide an accurate surrogate as the union of several low-dimensional spaces, avoiding the typical computational cost of a high-dimensional expansion. It is also adaptively simplified according to the relative contribution of the different polynomials to the total variance. The approach is demonstrated for a laser-induced turbulent combustion simulation model, which includes parameters with correlated effects.
Flexible design in water and wastewater engineering--definitions, literature and decision guide.
Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje
2015-02-01
Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.
,; Fontes Júnior, Hélio Martins; Makrakis, Sergio; Gomes, Luiz Carlos; Latini, João Dirço
2012-01-01
The majority of the fish passages built in the Neotropical region are characterised by low efficiency and high selectivity; in many cases, the benefits to fish populations are uncertain. Studies conducted in the Canal da Piracema at Itaipu dam on the Parana River indicate that the system component designated as the Discharge channel in the Bela Vista River (herein named Canal de deságue no rio Bela Vista or CABV), a 200 m long technical section, was the main barrier to the upstream migration. The aim of this study was to evaluate the degree of restriction imposed by the CABV on upstream movements of Prochilodus lineatus and Leporinus elongatus, Characiformes. Fish were tagged with passive integrated transponders (PIT tags) and released both downstream and upstream of this critical section. Individuals of both species released downstream of the CABV took much more time to reach the upper end of the system (43.6 days vs. 15.9 days), and passed in much lower proportions (18% vs. 60.8%) than those tagged upstream of this component. Although more work is needed to differentiate between fishway effects and natural variation in migratory motivation, the results clearly demonstrate passage problems at the CABV.
NASA Technical Reports Server (NTRS)
Laurent, C.; Vidal-Madjar, A.; York, D. G.
1979-01-01
Deuterium absorption features in spectra of Delta, Epsilon, and Iota Ori obtained with Copernicus are analyzed. The Iota Ori line-of-sight analysis, which is quite detailed because of the high-velocity H I components superposed on the deuterium features, gives a D/H ratio (which is uncertain because of a complex profile) of 0.000014. A D/H ratio of the order of 7 millionths is determined for Delta and Epsilon Ori. For the complex line profiles involved, one may regard this as a formal lower limit. Several attempts were made to increase the ratio N(D I)/N(H I) in the context of reasonable models for the line of sight, but with no success; the derived values are therefore regarded as actual values, not lower limits. Since the derived value is an average on the line of sight, the possibility cannot be ruled out that the true ratios N(D I)/N(H I) in individual nearby components differ from the mean values. The mean value for these two directions is lower by a factor of 4 than the best value for the Zeta Pup line of sight (the highest yet derived for path lengths greater than 50 pc).
UNCERTAINTY AND SENSITIVITY ANALYSES FOR VERY HIGH ORDER MODELS
While there may in many cases be high potential for exposure of humans and ecosystems to chemicals released from a source, the degree to which this potential is realized is often uncertain. Conceptually, uncertainties are divided among parameters, model, and modeler during simula...
Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments
NASA Astrophysics Data System (ADS)
Jin, Xin; Ray, Asok
2014-04-01
In the context of oil spill cleaning by autonomous vehicles in dynamic and uncertain environments, this paper presents a multi-resolution algorithm that seamlessly integrates the concepts of local navigation and global navigation based on the sensory information; the objective here is to enable adaptive decision making and online replanning of vehicle paths. The proposed algorithm provides a complete coverage of the search area for clean-up of the oil spills and does not suffer from the problem of having local minima, which is commonly encountered in potential-field-based methods. The efficacy of the algorithm is tested on a high-fidelity player/stage simulator for oil spill cleaning in a harbour, where the underlying oil weathering process is modelled as 2D random-walk particle tracking. A preliminary version of this paper was presented by X. Jin and A. Ray as 'Coverage Control of Autonomous Vehicles for Oil Spill Cleaning in Dynamic and Uncertain Environments', Proceedings of the American Control Conference, Washington, DC, June 2013, pp. 2600-2605.
NASA Astrophysics Data System (ADS)
Garner, G. G.; Keller, K.
2017-12-01
Sea-level rise poses considerable risks to coastal communities, ecosystems, and infrastructure. Decision makers are faced with deeply uncertain sea-level projections when designing a strategy for coastal adaptation. The traditional methods have provided tremendous insight into this decision problem, but are often silent on tradeoffs as well as the effects of tail-area events and of potential future learning. Here we reformulate a simple sea-level rise adaptation model to address these concerns. We show that Direct Policy Search yields improved solution quality, with respect to Pareto-dominance in the objectives, over the traditional approach under uncertain sea-level rise projections and storm surge. Additionally, the new formulation produces high quality solutions with less computational demands than the traditional approach. Our results illustrate the utility of multi-objective adaptive formulations for the example of coastal adaptation, the value of information provided by observations, and point to wider-ranging application in climate change adaptation decision problems.
Pan, Wei; Guo, Ying; Jin, Lei; Liao, ShuJie
2017-01-01
With the high accident rate of civil aviation, medical resource inventory becomes more important for emergency management at the airport. Meanwhile, medical products usually are time-sensitive and short lifetime. Moreover, we find that the optimal medical resource inventory depends on multiple factors such as different risk preferences, the material shelf life and so on. Thus, it becomes very complex in a real-life environment. According to this situation, we construct medical resource inventory decision model for emergency preparation at the airport. Our model is formulated in such a way as to simultaneously consider uncertain demand, stochastic occurrence time and different risk preferences. For solving this problem, a new programming is developed. Finally, a numerical example is presented to illustrate the proposed method. The results show that it is effective for determining the optimal medical resource inventory for emergency preparation with uncertain demand and stochastic occurrence time under considering different risk preferences at the airport. PMID:28931007
Pan, Wei; Guo, Ying; Jin, Lei; Liao, ShuJie
2017-01-01
With the high accident rate of civil aviation, medical resource inventory becomes more important for emergency management at the airport. Meanwhile, medical products usually are time-sensitive and short lifetime. Moreover, we find that the optimal medical resource inventory depends on multiple factors such as different risk preferences, the material shelf life and so on. Thus, it becomes very complex in a real-life environment. According to this situation, we construct medical resource inventory decision model for emergency preparation at the airport. Our model is formulated in such a way as to simultaneously consider uncertain demand, stochastic occurrence time and different risk preferences. For solving this problem, a new programming is developed. Finally, a numerical example is presented to illustrate the proposed method. The results show that it is effective for determining the optimal medical resource inventory for emergency preparation with uncertain demand and stochastic occurrence time under considering different risk preferences at the airport.
Evangeli, Michael; Kafaar, Zuhayr; Kagee, Ashraf; Swartz, Leslie; Bullemor-Day, Philippa
2013-01-01
It is vital that enough participants are willing to participate in clinical trials to test HIV vaccines adequately. It is, therefore, necessary to explore what affects peoples' willingness to participate (WTP) in such trials. Studies have only examined individual factors associated with WTP and not the effect of messages about trial participation on potential participants (e.g., whether losses or gains are emphasized, or whether the outcome is certain or uncertain). This study explores whether the effects of message framing on WTP in a hypothetical HIV vaccine trial are consistent with Prospect Theory. This theory suggests that people are fundamentally risk averse and that (1) under conditions of low risk and high certainty, gain-framed messages will be influential (2) under conditions of high risk and low certainty, loss-framed messages will be influential. This cross-sectional study recruited 283 HIV-negative students from a South African university who were given a questionnaire that contained matched certain gain-framed, certain loss-framed, uncertain gain-framed, and uncertain loss-framed statements based on common barriers and facilitators of WTP. Participants were asked to rate how likely each statement was to result in their participation in a hypothetical preventative HIV vaccine trial. Consistent with Prospect Theory predictions, for certain outcomes, gain-framed messages were more likely to result in WTP than loss-framed messages. Inconsistent with predictions, loss-framed message were not more likely to be related to WTP for uncertain outcomes than gain-framed messages. Older students were less likely to express their WTP across the different message frames. Recruitment for HIV vaccine trials should pay attention to how messages about the trial are presented to potential participants.
Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy
2015-01-01
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on DaTScan. PMID:26190980
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
Manifold learning in machine vision and robotics
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-02-01
Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.
Interventions for preventing abuse in the elderly.
Baker, Philip R A; Francis, Daniel P; Hairi, Noran N; Othman, Sajaratulnisah; Choo, Wan Yuen
2016-08-16
Maltreatment of older people (elder abuse) includes psychological, physical, sexual abuse, neglect and financial exploitation. Evidence suggests that 10% of older adults experience some form of abuse, and only a fraction of cases are actually reported or referred to social services agencies. Elder abuse is associated with significant morbidity and premature mortality. Numerous interventions have been implemented to address the issue of elder maltreatment. It is, however, unclear which interventions best serve to prevent or reduce elder abuse. The objective of this review was to assess the effectiveness of primary, secondary and tertiary intervention programmes used to reduce or prevent abuse of the elderly in their own home, in organisational or institutional and community settings. The secondary objective was to investigate whether intervention effects are modified by types of abuse, types of participants, setting of intervention, or the cognitive status of older people. We searched 19 databases (AgeLine, CINAHL, Psycinfo, MEDLINE, Embase, Proquest Central, Social Services Abstracts, ASSIA, Sociological Abstracts, ProQuest Dissertations & Theses Global, Web of Science, LILACS, EPPI, InfoBase, CENTRAL, HMIC, Opengrey and Zetoc) on 12 platforms, including multidisciplinary disciplines covering medical, health, social sciences, social services, legal, finance and education. We also browsed related organisational websites, contacted authors of relevant articles and checked reference lists. Searches of databases were conducted between 30 August 2015 and 16 March 2016 and were not restricted by language. We included randomised controlled trials (RCTs), cluster-randomised trials, and quasi-RCTs, before-and-after studies, and interrupted time series. Only studies with at least 12 weeks of follow-up investigating the effect of interventions in preventing or reducing abuse of elderly people and those who interact with the elderly were included. Two review authors independently extracted data and assessed the studies' risk of bias. Studies were categorised as: 1) education on elder abuse, 2) programmes to reduce factors influencing elder abuse, 3) specific policies for elder abuse, 4) legislation on elder abuse, 5) programmes to increase detection rate on elder abuse, 6) programmes targeted to victims of elder abuse, and 7) rehabilitation programmes for perpetrators of elder abuse. All studies were assessed for study methodology, intervention type, setting, targeted audience, intervention components and intervention intensity. The search and selection process produced seven eligible studies which included a total of 1924 elderly participants and 740 other people. Four of the above seven categories of interventions were evaluated by included studies that varied in study design. Eligible studies of rehabilitation programmes, specific policies for elder abuse and legislation on elder abuse were not found. All included studies contained a control group, with five of the seven studies describing the method of allocation as randomised. We used the Cochrane 'Risk of bias' tool and EPOC assessment criteria to assess risk of bias. The results suggest that risk of bias across the included body of research was high, with at least 40% of the included studies judged as being at high risk of bias. Only one study was judged as having no domains at high risk of bias, with two studies having two of 11 domains at high risk. One study was judged as being at high risk of bias across eight of 11 domains.All included studies were set in high-income countries, as determined by the World Bank economic classification (USA four, Taiwan one, UK two). None of the studies provided specific information or analysis on equity considerations, including by socio-economic disadvantage, although one study was described as being set in a housing project. One study performed some form of cost-effectiveness analysis on the implementation of their intervention programmes, although there were few details on the components and analysis of the costing.We are uncertain whether these interventions reduce the occurrence or recurrence of elder abuse due to variation in settings, measures and effects reported in the included studies, some of which were very small and at a high risk of bias (low- and very low-quality evidence).Two studies measured the occurrence of elder abuse. A high risk of bias study found a difference in the post-test scores (P value 0.048 and 0.18). In a low risk of bias study there was no difference found (adjusted odds ratio (OR) =0.48, 95% 0.18 to 1.27) (n = 214). For interventions measuring abuse recurrence, one small study (n = 16) reported no difference in post-test means, whilst another found higher levels of abuse reported for the intervention arms (Cox regression, combined intervention hazard ratio (HR) = 1.78, alpha level = 0.01).It is uncertain whether targeted educational interventions improve the relevant knowledge of health professionals and caregivers (very low-quality evidence), although they may improve detection of resident-to-resident abuse. The concept of measuring improvement in detection or reporting as opposed to measuring the occurrence or recurrence of abuse is complicated. An intervention of public education and support services aimed at victims may also improve rates of reporting, however it is unclear whether this was due to an increase in abuse recurrence or better reporting of abuse.The effectiveness of service planning interventions at improving the assessment and documentation of related domains is uncertain. Unintended outcomes were not reported in the studies. There is inadequate trustworthy evidence to assess the effects of elder abuse interventions on occurrence or recurrence of abuse, although there is some evidence to suggest it may change the combined measure of anxiety and depression of caregivers. There is a need for high-quality trials, including from low- or middle-income countries, with adequate statistical power and appropriate study characteristics to determine whether specific intervention programmes, and which components of these programmes, are effective in preventing or reducing abuse episodes among the elderly. It is uncertain whether the use of educational interventions improves knowledge and attitude of caregivers, and whether such programmes also reduce occurrence of abuse, thus future research is warranted. In addition, all future research should include a component of cost-effectiveness analysis, implementation assessment and equity considerations of the specific interventions under review.
Cluster synchronization transmission of different external signals in discrete uncertain network
NASA Astrophysics Data System (ADS)
Li, Chengren; Lü, Ling; Chen, Liansong; Hong, Yixuan; Zhou, Shuang; Yang, Yiming
2018-07-01
We research cluster synchronization transmissions of different external signals in discrete uncertain network. Based on the Lyapunov theorem, the network controller and the identification law of uncertain adjustment parameter are designed, and they are efficiently used to achieve the cluster synchronization and the identification of uncertain adjustment parameter. In our technical scheme, the network nodes in each cluster and the transmitted external signal can be different, and they allow the presence of uncertain parameters in the network. Especially, we are free to choose the clustering topologies, the cluster number and the node number in each cluster.
Spring and summer contrast in new particle formation over nine forest areas in North America
Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions ...
NASA Astrophysics Data System (ADS)
Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.
2015-10-01
Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.
Distributed control systems with incomplete and uncertain information
NASA Astrophysics Data System (ADS)
Tang, Jingpeng
Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
Physical fitness and academic performance in youth: A systematic review.
Santana, C C A; Azevedo, L B; Cattuzzo, M T; Hill, J O; Andrade, L P; Prado, W L
2017-06-01
Physical fitness (PF) is a construct of health- and skill-related attributes which have been associated with academic performance (AP) in youth. This study aimed to review the scientific evidence on the association among components of PF and AP in children and adolescents. A systematic review of articles using databases PubMed/Medline, ERIC, LILACS, SciELO, and Web of Science was undertaken. Cross-sectional and longitudinal studies examining the association between at least one component of PF and AP in children and adolescents, published between 1990 and June 2016, were included. Independent extraction of articles was carried out by the two authors using predefined data fields. From a total of 45 studies included, 25 report a positive association between components of PF with AP and 20 describe a single association between cardiorespiratory fitness (CRF) and AP. According to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines: 12 were classified as low, 32 as medium risk, and 1 as high risk of bias. Thirty-one studies reported a positive association between AP and CRF, six studies with muscular strength, three studies with flexibility, and seven studies reported a positive association between clustered of PF components and AP. The magnitude of the associations is weak to moderate (β = 0.10-0.42 and odds = 1.01-4.14). There is strong evidence for a positive association between CRF and cluster of PF with AP in cross-sectional studies; and evidence from longitudinal studies for a positive association between cluster of PF and AP; the relationship between muscular strength and flexibility with AP remains uncertain. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Taha, Ahmad Fayez
Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts. The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE. The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.
Climate science: Clouds unfazed by haze
NASA Astrophysics Data System (ADS)
Stevens, Bjorn
2017-06-01
The extent to which aerosols affect climate is highly uncertain. Observations of clouds interacting with aerosols from a volcanic eruption suggest that the effect is much smaller than was once feared. See Article p.485
NASA Astrophysics Data System (ADS)
Roux Oliveira, Tiago; Jacoud Peixoto, Alessandro; Hsu, Liu
2015-09-01
This paper addresses the design of a sliding mode controller for a class of high-order uncertain nonlinear plants with unmatched state-dependent nonlinearities and unknown sign of the high frequency gain, i.e., the control direction is assumed unknown. Differently from most previous studies, the control direction is allowed to switch its sign. We show that it is possible to obtain global exact tracking using only output-feedback by coupling a relay periodic switching function with a norm state observer. One significant advantage of the new scheme is its robustness and improved transient response under arbitrary changes of the control direction which have been theoretically demonstrated for jump variations and successfully tested by simulations. The proposed controller is also evaluated with a DC motor control experiment.
Robinson, Mike J F; Anselme, Patrick; Fischer, Adam M; Berridge, Kent C
2014-06-01
Uncertainty is a component of many gambling games and may play a role in incentive motivation and cue attraction. Uncertainty can increase the attractiveness for predictors of reward in the Pavlovian procedure of autoshaping, visible as enhanced sign-tracking (or approach and nibbles) by rats of a metal lever whose sudden appearance acts as a conditioned stimulus (CS+) to predict sucrose pellets as an unconditioned stimulus (UCS). Here we examined how reward uncertainty might enhance incentive salience as sign-tracking both in intensity and by broadening the range of attractive CS+s. We also examined whether initially induced uncertainty enhancements of CS+ attraction can endure beyond uncertainty itself, and persist even when Pavlovian prediction becomes 100% certain. Our results show that uncertainty can broaden incentive salience attribution to make CS cues attractive that would otherwise not be (either because they are too distal from reward or too risky to normally attract sign-tracking). In addition, uncertainty enhancement of CS+ incentive salience, once induced by initial exposure, persisted even when Pavlovian CS-UCS correlations later rose toward 100% certainty in prediction. Persistence suggests an enduring incentive motivation enhancement potentially relevant to gambling, which in some ways resembles incentive-sensitization. Higher motivation to uncertain CS+s leads to more potent attraction to these cues when they predict the delivery of uncertain rewards. In humans, those cues might possibly include the sights and sounds associated with gambling, which contribute a major component of the play immersion experienced by problematic gamblers. Copyright © 2014 Elsevier B.V. All rights reserved.
Løvvik, Camilla; Øverland, Simon; Hysing, Mari; Broadbent, Elizabeth; Reme, Silje E
2014-03-01
Mental health symptoms (MHSs) may affect people's work capacity and lead to sickness absence and disability. Expectations and perceptions of illness have been shown to influence return to work (RTW) across health conditions, but we know little about illness perceptions and RTW-expectations in MHSs. The aim of this study was to investigate the association between illness perceptions and RTW-expectations in a group struggling with work participation due to MHSs. Cross-sectional associations between illness perceptions and return to work expectations at baseline were analyzed for 1,193 participants who reported that MHSs affected their work participation. The study was part of a randomized controlled trial evaluating the effect of job focused Cognitive Behavioral Therapy (CBT) combined with supported employment (IPS). Participants were from a working age population with diverse job status. There was a strong and salient relationship between illness perceptions and RTW-expectations. When adjusting for demographic and clinical variables, the components consequences, personal control, identity and illness concern remained significantly associated with uncertain and negative RTW-expectations. Less illness understanding remained significantly associated with uncertain RTW-expectations, while timeline and emotional representations remained significantly associated with negative RTW-expectations. In the fully adjusted model only the consequences component (believing that illness has more severe consequences) remained significantly associated with RTW-expectations. Openly asked, participants reported work, personal relationships and stress as main causes of their illness. In people with MHSs who struggle with work participation, perceptions and beliefs about their problems are strongly associated with their expectations to return to work.
Robinson, Mike J. F.; Anselme, Patrick; Fischer, Adam M.; Berridge, Kent C.
2014-01-01
Uncertainty is a component of many gambling games and may play a role in incentive motivation and cue attraction. Uncertainty can increase the attractiveness for predictors of reward in the Pavlovian procedure of autoshaping, visible as enhanced sign-tracking (or approach and nibbles) by rats of a metal lever whose sudden appearance acts as a conditioned stimulus (CS+) to predict sucrose pellets as an unconditioned stimulus (UCS). Here we examined how reward uncertainty might enhance incentive salience as sign-tracking both in intensity and by broadening the range of attractive CS+s. We also examined whether initially-induced uncertainty enhancements of CS+ attraction can endure beyond uncertainty itself, and persist even when Pavlovian prediction becomes 100% certain. Our results show that uncertainty can broaden incentive salience attribution to make CS cues attractive that would otherwise not be (either because they are too distal from reward or too risky to normally attract sign-tracking). In addition, uncertainty enhancement of CS+ incentive salience, once induced by initial exposure, persisted even when Pavlovian CS-UCS correlations later rose toward 100% certainty in prediction. Persistence suggests an enduring incentive motivation enhancement potentially relevant to gambling, which in some ways resembles incentive-sensitization. Higher motivation to uncertain CS+s leads to more potent attraction to these cues when they predict the delivery of uncertain rewards. In humans, those cues might possibly include the sights and sounds associated with gambling, which contribute a major component of the play immersion experienced by problematic gamblers. PMID:24631397
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.
Determining the Supply of Material Resources for High-Rise Construction: Scenario Approach
NASA Astrophysics Data System (ADS)
Minnullina, Anna; Vasiliev, Vladimir
2018-03-01
This article presents a multi-criteria approach to determining the supply of material resources for high-rise construction under certain and uncertain conditions, which enables integrating a number of existing models into a fairly compact generalised economic and mathematical model developed for two extreme scenarios.
Characterizing traffic under uncertain disruptions : an experimental approach.
DOT National Transportation Integrated Search
2013-03-01
The objective of the research is to study long-term traffic patterns under uncertain disruptions using : data collected from human subjects who simultaneously make route choices in controlled PC-based : laboratory experiments. Uncertain disruptions t...
A novel medical information management and decision model for uncertain demand optimization.
Bi, Ya
2015-01-01
Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.
Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs
NASA Astrophysics Data System (ADS)
Petrucci, P.-O.; Ursini, F.; De Rosa, A.; Bianchi, S.; Cappi, M.; Matt, G.; Dadina, M.; Malzac, J.
2018-03-01
The X-ray spectra of many active galactic nuclei (AGNs) show a soft X-ray excess below 1-2 keV on top of the extrapolated high-energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection or the high-energy tail of thermal Comptonization in a warm (kT 1 keV), optically thick (τ ≃ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGNs with XMM-Newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal Comptonization components to fit the broadband spectra, one for the warm corona emission and one for the high-energy continuum. In the optical/UV, we also include the reddening, the small blue bump, and the Galactic extinction. In the X-rays, we include a warm absorber and a neutral reflection. The model gives a good fit (reduced χ2 < 1.5) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range 10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disk, i.e., that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim
2015-08-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars
NASA Astrophysics Data System (ADS)
Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.
2016-05-01
We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.
NASA Astrophysics Data System (ADS)
Mohamad, Daud; Shaharani, Saidatull Akma; Kamis, Nor Hanimah
2017-08-01
The concept of Z-number which was introduced by Zadeh in 2010 has captured attention by many due to its enormous applications in the area of Computing with Words (CWW). A Z-number is an ordered pair of fuzzy numbers, (A, R), where A essentially plays the role of fuzzy restriction which is a real-valued uncertain variable and R is a measure of reliability of the first component. Besides its theoretical development, Z-numbers have been successfully applied to decision making problems under uncertain environment. In any decision making evaluation using Z-number, ideally the final outcome of the calculation should also be in Z-number. A question will arise: how do we order the Z-numbers so that the preference of the alternatives can be ranked appropriately? In this paper, we propose a method of ordering the Z-number via the transformation of the Z-numbers to fuzzy numbers. The Z-number will then be ranked using a ranking fuzzy number method. The proposed method will be tested in several combinations of Z-numbers to investigate its effectiveness. The effect of different values of A and R towards the ordering of Z-numbers is analyzed and discussed.
ERIC Educational Resources Information Center
Kelly, Andrew P.
2015-01-01
The path to economic mobility increasingly runs through postsecondary education. Although the combination of rising tuition prices and a difficult labor market have raised questions about the value of education after high school, degree and certificate holders are still better off than those with just a high school diploma. As a group, young…
The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference
Deng, Changjian
2013-01-01
Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613
NASA Astrophysics Data System (ADS)
Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua
2016-04-01
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
High-order sliding-mode control for blood glucose regulation in the presence of uncertain dynamics.
Hernández, Ana Gabriela Gallardo; Fridman, Leonid; Leder, Ron; Andrade, Sergio Islas; Monsalve, Cristina Revilla; Shtessel, Yuri; Levant, Arie
2011-01-01
The success of blood glucose automatic regulation depends on the robustness of the control algorithm used. It is a difficult task to perform due to the complexity of the glucose-insulin regulation system. The variety of model existing reflects the great amount of phenomena involved in the process, and the inter-patient variability of the parameters represent another challenge. In this research a High-Order Sliding-Mode Control is proposed. It is applied to two well known models, Bergman Minimal Model, and Sorensen Model, to test its robustness with respect to uncertain dynamics, and patients' parameter variability. The controller designed based on the simulations is tested with the specific Bergman Minimal Model of a diabetic patient whose parameters were identified from an in vivo assay. To minimize the insulin infusion rate, and avoid the hypoglycemia risk, the glucose target is a dynamical profile.
Betting the House: Teacher Investment, Identity, and Attrition in Urban Schools
ERIC Educational Resources Information Center
Dunn, Alyssa Hadley; Downey, C. Aiden
2018-01-01
This study explores the impetus for and impact of four urban teachers' extracurricular investments. Framing teacher investment as work voluntarily undertaken with an eye toward bringing about a highly desired, yet highly uncertain, end, we argue that the outcome of these often-hidden investments have identity and career implications for teachers.…
Barriers to applying advanced high-temperature materials
NASA Astrophysics Data System (ADS)
Premkumar, M. K.
1993-01-01
During the past 25 years, aerospace engineers and material scientists have made significant technical progress toward developing next-generation aircraft. However, while advanced high-temperature materials continue to be developed, the outlook for their future application is uncertain and will depend on the ability of these materials to satisfy a more diverse market.
E.A.G. Schuur; B.W. Abbott; W.B. Bowden; V. Brovkin; P. Camill; J.P. Canadell; F.S. Chapin; T.R. Christensen; J.P. Chanton; P. Ciais; P.M. Crill; B.T. Crosby; C.I. Czimczik; G. Grosse; D.J. Hayes; G. Hugelius; J.D. Jastrow; T. Kleinen; C.D. Koven; G. Krinner; P. Kuhry; D.M. Lawrence; S.M. Natali; C.L. Ping; A. Rinke; W.J. Riley; V.E. Romanovsky; A.B.K. Sannel; C. Schadel; K. Schaefer; Z.M. Subin; C. Tarnocai; M. Turetsky; K. M. Walter-Anthony; C.J. Wilson; S.A. Zimov
2011-01-01
Arctic temperatures are rising fast, and permafrost is thawing. Carbon released into the atmosphere from permafrost soils will accelerate climate change, but the magnitude of this effect remains highly uncertain. Our collective estimate is that carbon will be released more quickly than models suggest, and at levels that are cause for serious concern. We calculate that...
Feedforward/feedback control synthesis for performance and robustness
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1990-01-01
Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.
Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.
Herrero, David; Martínez, Humberto
2011-01-01
This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.
Adaptive route choice modeling in uncertain traffic networks with real-time information.
DOT National Transportation Integrated Search
2013-03-01
The objective of the research is to study travelers' route choice behavior in uncertain traffic networks : with real-time information. The research is motivated by two observations of the traffic system: 1) : the system is inherently uncertain with r...
Successional dynamics in Neotropical forests are as uncertain as they are predictable
Norden, Natalia; Angarita, Héctor A.; Bongers, Frans; Martínez-Ramos, Miguel; Granzow-de la Cerda, Iñigo; van Breugel, Michiel; Lebrija-Trejos, Edwin; Meave, Jorge A.; Vandermeer, John; Williamson, G. Bruce; Finegan, Bryan; Mesquita, Rita; Chazdon, Robin L.
2015-01-01
Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes—stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration. PMID:26080411
Successional dynamics in Neotropical forests are as uncertain as they are predictable.
Norden, Natalia; Angarita, Héctor A; Bongers, Frans; Martínez-Ramos, Miguel; Granzow-de la Cerda, Iñigo; van Breugel, Michiel; Lebrija-Trejos, Edwin; Meave, Jorge A; Vandermeer, John; Williamson, G Bruce; Finegan, Bryan; Mesquita, Rita; Chazdon, Robin L
2015-06-30
Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes--stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration.
NASA Astrophysics Data System (ADS)
Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Miller, J. M.; Ptak, A.; Rana, V.; Webb, N. A.; Zhang, W. W.
2013-12-01
Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ~5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 1040 erg s-1). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows LvpropT 1.70 ± 0.17, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ~90 M ⊙ for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.
NASA Technical Reports Server (NTRS)
Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.;
2013-01-01
Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multiepoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E greater than 10 keV) X-rays. CircinusULX5is variable on long time scales by at least a factor of approx. 5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10(exp 40) erg s(exp-1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L alpha T (exp 1.70+/-0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of approx. 90M for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.
Diversified models for portfolio selection based on uncertain semivariance
NASA Astrophysics Data System (ADS)
Chen, Lin; Peng, Jin; Zhang, Bo; Rosyida, Isnaini
2017-02-01
Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts' estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts' estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.
The impact of uncertain threat on affective bias: Individual differences in response to ambiguity.
Neta, Maital; Cantelon, Julie; Haga, Zachary; Mahoney, Caroline R; Taylor, Holly A; Davis, F Caroline
2017-12-01
Individuals who operate under highly stressful conditions (e.g., military personnel and first responders) are often faced with the challenge of quickly interpreting ambiguous information in uncertain and threatening environments. When faced with ambiguity, it is likely adaptive to view potentially dangerous stimuli as threatening until contextual information proves otherwise. One laboratory-based paradigm that can be used to simulate uncertain threat is known as threat of shock (TOS), in which participants are told that they might receive mild but unpredictable electric shocks while performing an unrelated task. The uncertainty associated with this potential threat induces a state of emotional arousal that is not overwhelmingly stressful, but has widespread-both adaptive and maladaptive-effects on cognitive and affective function. For example, TOS is thought to enhance aversive processing and abolish positivity bias. Importantly, in certain situations (e.g., when walking home alone at night), this anxiety can promote an adaptive state of heightened vigilance and defense mobilization. In the present study, we used TOS to examine the effects of uncertain threat on valence bias, or the tendency to interpret ambiguous social cues as positive or negative. As predicted, we found that heightened emotional arousal elicited by TOS was associated with an increased tendency to interpret ambiguous cues negatively. Such negative interpretations are likely adaptive in situations in which threat detection is critical for survival and should override an individual's tendency to interpret ambiguity positively in safe contexts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Wiggins, J; Hill, S L; Stockley, R A
1984-01-01
The constituents of the secretory immunoglobulin A system (dimeric IgA, total secretory component and free secretory component) were measured in sputum sol phase, tracheal aspirates, and bronchoalveolar lavage fluids from 15 patients undergoing fibreoptic bronchoscopy. All of the proteins showed a progressive decrease in concentration from sputum to the bronchoalveolar lavage fluids (2p less than 0.001). Standardisation of samples by means of protein concentration ratios showed that all secretions were generally similar in respect of their secretory IgA profiles, although major differences remained in some individual patients. The between patient variability of the results was generally reduced by the use of protein concentration ratios, allowing closer comparison between subjects. When the secretion albumin concentration was used as a standard, however, it increased the variability of the sputum sol phase IgA components (2p less than 0.01), whereas it decreased the variability of the IgA components in the bronchoalveolar lavage fluid (2p less than 0.05). The role of albumin as a standard protein for assessing the secretory IgA system in lung secretions remains uncertain. PMID:6463931
Sustainability Based Decision Making
With sustainability as the “true north” for EPA research, a premium is placed on the ability to make decisions under highly complex and uncertain conditions. The primary challenge is reconciling disparate criteria toward credible and defensible decisions. Making decisions on on...
Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang Hee; Kang, Joo-Hyon
2016-05-01
While identification of critical pollutant sources is the key initial step for cost-effective runoff management, it is challenging due to the highly uncertain nature of runoff pollution, especially during a storm event. To identify critical sources and their quantitative contributions to runoff pollution (especially focusing on phosphorous), two ordination methods were used in this study: principal component analysis (PCA) and positive matrix factorization (PMF). For the ordination analyses, we used runoff quality data for 14 storm events, including data for phosphorus, 11 heavy metal species, and eight ionic species measured at the outlets of subcatchments with different land use compositions in a mixed land use watershed. Five factors as sources of runoff pollutants were identified by PCA: agrochemicals, groundwater, native soils, domestic sewage, and urban sources (building materials and automotive activities). PMF identified similar factors to those identified by PCA, with more detailed source mechanisms for groundwater (i.e., nitrate leaching and cation exchange) and urban sources (vehicle components/motor oils/building materials and vehicle exhausts), confirming the sources identified by PCA. PMF was further used to quantify contributions of the identified sources to the water quality. Based on the results, agrochemicals and automotive activities were the two dominant and ubiquitous phosphorus sources (39-61 and 16-47 %, respectively) in the study area, regardless of land use types.
Planck intermediate results. XLII. Large-scale Galactic magnetic fields
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Alves, M. I. R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Oppermann, N.; Orlando, E.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-12-01
Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.
The limited and localized flow of fresh groundwater to the world's oceans
NASA Astrophysics Data System (ADS)
Luijendijk, E.; Gleeson, T. P.; Moosdorf, N.
2017-12-01
Submarine groundwater discharge, the flow of fresh or saline groundwater to oceans [Burnett et al., 2003], may be a significant contributor to the water and chemical budgets of the world's oceans [Taniguchi et al., 2002] potentially buffering ocean acidification with groundwater alkalinity and is arguably the most uncertain component of the global groundwater budget [Alley et al., 2002]. The fresh component of submarine groundwater discharge is critical due to its high solute and nutrient load, and has been quantified locally and but only roughly estimated globally using significant assumptions. Here we show that that fresh submarine groundwater discharge is an insignificant water contributor to global oceans (0.05% of the total input) but that the freshwater discharge may still be an important chemical and nutrient contributor especially around distinct hotspots. The first spatially-explicit, physically-based global estimate of fresh submarine groundwater discharge was derived by combining density-dependent numerical groundwater models and a geospatial analysis of global coastal watersheds to robustly simulate the partitioning of onshore and offshore groundwater discharge. Although fresh submarine groundwater discharge is an insignificant part of fresh coastal groundwater discharge, results are consistent with previous estimates of significant recirculated seawater discharging as groundwater as well as quantifying the significant near-shore terrestrial discharge, a flux that has so far been overlooked in global hydrological studies and that affects coastal water budgets, evapotranspiration and ecosystems.
Neptune's inner magnetosphere and aurora: Energetic particle constraints
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Krimigis, S. M.; Acuna, M. H.
1994-01-01
A dramatic and peculiar dropout of greater than 500-keV ions (but not electrons) was observed within Neptune's inner magnetosphere near 2 R(sub N) as the Voyager 2 spacecraft approached the planet. Unlike a number of other energetic particle features this feature could not be accounted for by known material bodies in the context of the most utilized magnetic field models (neither the offset tilted dipole models nor the spehrical harmonic model 'O8'). However, the configuration of Neptune's inner magnetosphere is highly uncertain. By applying a novel technique, utilizing energetic particle measurements, to constrain the magnetic field configuration of the inner regions, we show that appeals to unobserved materials within Neptune's system are unnecessary, and that the ion dropout feature was, in all likelihood, the result of ion interactions with maximum L excursions of the ring 1989N1R. The constraints also favor the se of the M2 magnetic field model (Selesnick, 1992) over the previous models. An electron feature was probably absent because the electron interactions with the ring occurred substantially before the ion interactions (about 2 hours for the electrons versus a few minutes for the ions). Pitch-angle scattering apparently eliminated the electron signature. Minimum scattering rates determined based on this premise yield enough electron precipitation power to explain the brightest component of Neptune's aurora. We propose that this bright component is analogous to the Earth's diffuse aurora.
Intolerance of uncertainty in adolescents: correlations with worry, social anxiety, and depression.
Boelen, Paul A; Vrinssen, Inge; van Tulder, Floor
2010-03-01
The current study examined Intolerance of Uncertainty (IU)-the tendency to react negatively to situations that are uncertain-in psychological problems among adolescents. Using data from 191 adolescents, aged 14 to 18, we examined (a) the dimensionality of IU as tapped by the Intolerance of Uncertainty Scale short-form (IUS-12), (b) the relationship of IU with worry, social anxiety, and depression, (c) the specificity of IU to these variables, and (d) the role of IU as a mediator of the linkages between negative affectivity (NA) and worry, social anxiety, and depression. Results showed that the IUS-12 encompassed 2 components of IU, named Prospective Anxiety and Inhibitory Anxiety. Furthermore, IU was specifically related with worry and social anxiety, but not depression, when controlling the shared variance between these variables and NA, age, and gender. Finally, IU and its 2 components were found to mediate the linkages of NA with worry and social anxiety.
Hutchinson, J Benjamin; Uncapher, Melina R; Wagner, Anthony D
2015-01-01
Retrieval of episodic memories is a multi-component act that relies on numerous operations ranging from processing the retrieval cue, evaluating retrieved information, and selecting the appropriate response given the demands of the task. Motivated by a rich functional neuroimaging literature, recent theorizing about various computations at retrieval has focused on the role of posterior parietal cortex (PPC). In a potentially promising line of research, recent neuroimaging findings suggest that different subregions of dorsal PPC respond distinctly to different aspects of retrieval decisions, suggesting that better understanding of their contributions might shed light on the component processes of retrieval. In an attempt to understand the basic operations performed by dorsal PPC, we used functional MRI and functional connectivity analyses to examine how activation in, and connectivity between, dorsal PPC and ventral temporal regions representing retrieval cues varies as a function of retrieval decision uncertainty. Specifically, participants made a five-point recognition confidence judgment for a series of old and new visually presented words. Consistent with prior studies, memory-related activity patterns dissociated across left dorsal PPC subregions, with activity in the lateral IPS tracking the degree to which participants perceived an item to be old, whereas activity in the SPL increased as a function of decision uncertainty. Importantly, whole-brain functional connectivity analyses further revealed that SPL activity was more strongly correlated with that in the visual word-form area during uncertain relative to certain decisions. These data suggest that the involvement of SPL during episodic retrieval reflects, at least in part, the processing of the retrieval cue, perhaps in service of attempts to increase the mnemonic evidence elicited by the cue. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina
2016-04-01
The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.
Curtis, Gary P.; Lu, Dan; Ye, Ming
2015-01-01
While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
75 FR 60371 - Requirements of a Statement Disclosing Uncertain Tax Positions; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... Requirements of a Statement Disclosing Uncertain Tax Positions; Correction AGENCY: Internal Revenue Service... the IRS to require corporations to file a schedule disclosing uncertain tax positions related to the tax return as required by the IRS. FOR FURTHER INFORMATION CONTACT: Kathryn Zuba, (202) 622-3400 (not...
Uncertain Times 2012: Afterschool Programs Still Struggling in Today's Economy
ERIC Educational Resources Information Center
Afterschool Alliance, 2012
2012-01-01
"Uncertain Times 2012," conducted by the Afterschool Alliance between April 25 and June 8, 2012, assesses the impact of economic conditions on afterschool programs. While many studies have evaluated the impact of programs, "Uncertain Times" is the only research to examine the fiscal health of afterschool programs and their…
Bradford, Daniel E; Motschman, Courtney A; Starr, Mark J; Curtin, John J
2017-11-01
Developing a better understanding of how and under what circumstances alcohol affects the emotions, cognitions and neural functions that precede and contribute to dangerous behaviors during intoxication may help to reduce their occurrence. Alcohol intoxication has recently been shown to reduce defensive reactivity and anxiety more during uncertain vs certain threat. However, alcohol's effects on emotionally motivated attention to these threats are unknown. Alcohol may disrupt both affective response to and attentional processing of uncertain threats making intoxicated individuals less able to avoid dangerous and costly behaviors. To test this possibility, we examined the effects of a broad range of blood alcohol concentrations on 96 participants' sub-cortically mediated defensive reactivity (startle potentiation), retrospective subjective anxiety (self-report) and cortically assessed emotionally motivated attention (probe P3 event related potential) while they experienced visually cued uncertain and certain location electric shock threat. As predicted, alcohol decreased defensive reactivity and subjective anxiety more during uncertain vs certain threat. In a novel finding, alcohol dampened emotionally motivated attention during uncertain but not certain threat. This effect appeared independent of alcohol's effects on defensive reactivity and subjective anxiety. These results suggest that alcohol intoxication dampens processing of uncertain threats while leaving processing of certain threats intact. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Smith, Edward; Dougherty, Michele K.
The global distribution of plasma and its flows inside Saturn's magnetosphere is complex. The large satellites in the inner magnetosphere are a persistent source of plasma that must make its way into the outer magnetosphere and exit through the magnetotail. The mass loaded into the magnetic field stretches the field lines outward resulting in the formation of the equatorial current sheet. The outward radial flow causes the closed stretched fields to spiral out of magnetic meridian planes. The angle associated with the spiralling is given by the ratio of the azimuthal field component, B , to the radial component Br : tan = B / Br . The magnetic spiral is directly related to the corresponding components of plasma velocity, v and v r, provided the conductivity of the ionosphere, , is high enough to enforce co-rotation of the field lines. If, as has been inferred, the conductivity is low, the field and plasma do not co-rotate and the conductivity also enters the expression for . Conditions are more uncertain further out in the magnetosphere where convective motions associated with magnetic reconnection between planetary and interplanetary fields and the motion of the shocked solar wind become dominant. The prevailing model is a superposition of two modes of plasma circulation inside the magnetosphere and magnetotail, the Dungey and Vasyliunas cycles, that depend on radial distance and local time with an x-line in the midnight sector that separates the two cycles. The measured spiral angle will be affected by this complexity and holds the promise of distinguishing the relative influences of v ,v r and . The two field components that define the spiral angle are also involved in the transfer of angular momentum from the ionosphere to the magnetospheric plasma and the outward mass flux. The spiral should also contain evidence, especially at high latitudes, of the return of the current to the ionosphere from the current sheet. Our major objective, therefore, is to characterize as a function of radius, latitude and local time using the global coverage provided by Cassini and apply the findings to the topics listed above.
NASA Astrophysics Data System (ADS)
Nebel, Oliver; Arculus, Richard J.; van Westrenen, Wim; Woodhead, Jon D.; Jenner, Frances E.; Nebel-Jacobsen, Yona J.; Wille, Martin; Eggins, Stephen M.
2013-07-01
Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with μ = 238U/204Pb), and exhibit unique Hf-Nd isotopic characteristics, defined as ΔɛHf, deviant from a terrestrial igneous rock array that includes all other OIB types. Here we combine new Hf isotope data with previous Nd-Pb isotope measurements to assess the coupled, time-integrated Hf-Nd-Pb isotope evolution of the most extreme HIMU location (Mangaia, French Polynesia). In comparison with global MORB and other OIB types, Mangaia samples define a unique trend in coupled Hf-Nd-Pb isotope co-variations (expressed in 207Pb/206Pb vs. ΔɛHf). In a model employing subducted, dehydrated oceanic crust, mixing between present-day depleted MORB mantle (DMM) and small proportions (˜5%) of a HIMU mantle endmember can re-produce the Hf-Nd-Pb isotope systematics of global HIMU basalts (sensu stricto; i.e., without EM-1/EM-2/FOZO components). An age range of 3.5 to <2 Ga is required for HIMU endmember(s) that mix with DMM to account for the observed present-day HIMU isotope compositions, suggesting a range of age distributions rather than a single component in the mantle. Our data suggest that mixing of HIMU mantle endmembers and DMM occurs in the mantle transition zone by entrainment in secondary plumes that rise at the edge of the Pacific Large Low Seismic Velocity Zone (LLSVP). These create either pure HIMU (sensu stricto) or HIMU affected by other enriched mantle endmembers (sensu lato). If correct, this requires isolation of parts of the mantle transition zone for >3 Gyr and implies that OIB chemistry can be used to test geodynamic models.
Hyseni, L; Atkinson, M; Bromley, H; Orton, L; Lloyd-Williams, F; McGill, R; Capewell, S
2017-01-01
Poor diet generates a bigger non-communicable disease (NCD) burden than tobacco, alcohol and physical inactivity combined. We reviewed the potential effectiveness of policy actions to improve healthy food consumption and thus prevent NCDs. This scoping review focused on systematic and non-systematic reviews and categorised data using a seven-part framework: price, promotion, provision, composition, labelling, supply chain, trade/investment and multi-component interventions. We screened 1805 candidate publications and included 58 systematic and non-systematic reviews. Multi-component and price interventions appeared consistently powerful in improving healthy eating. Reformulation to reduce industrial trans fat intake also seemed very effective. Evidence on food supply chain, trade and investment studies was limited and merits further research. Food labelling and restrictions on provision or marketing of unhealthy foods were generally less effective with uncertain sustainability. Increasingly strong evidence is highlighting potentially powerful policies to improve diet and thus prevent NCDs, notably multi-component interventions, taxes, subsidies, elimination and perhaps trade agreements. The implications for policy makers are becoming clearer. PMID:27901036
Hyseni, L; Atkinson, M; Bromley, H; Orton, L; Lloyd-Williams, F; McGill, R; Capewell, S
2017-06-01
Poor diet generates a bigger non-communicable disease (NCD) burden than tobacco, alcohol and physical inactivity combined. We reviewed the potential effectiveness of policy actions to improve healthy food consumption and thus prevent NCDs. This scoping review focused on systematic and non-systematic reviews and categorised data using a seven-part framework: price, promotion, provision, composition, labelling, supply chain, trade/investment and multi-component interventions. We screened 1805 candidate publications and included 58 systematic and non-systematic reviews. Multi-component and price interventions appeared consistently powerful in improving healthy eating. Reformulation to reduce industrial trans fat intake also seemed very effective. Evidence on food supply chain, trade and investment studies was limited and merits further research. Food labelling and restrictions on provision or marketing of unhealthy foods were generally less effective with uncertain sustainability. Increasingly strong evidence is highlighting potentially powerful policies to improve diet and thus prevent NCDs, notably multi-component interventions, taxes, subsidies, elimination and perhaps trade agreements. The implications for policy makers are becoming clearer.
21 CFR 20.47 - Situations in which confidentiality is uncertain.
Code of Federal Regulations, 2011 CFR
2011-04-01
... submitted or divulged the data or information or who would be affected by disclosure before determining whether or not such data or information is available for public disclosure. [42 FR 15616, Mar. 22, 1977... uncertain. In situations where the confidentiality of data or information is uncertain and there is a...
21 CFR 20.47 - Situations in which confidentiality is uncertain.
Code of Federal Regulations, 2014 CFR
2014-04-01
... submitted or divulged the data or information or who would be affected by disclosure before determining whether or not such data or information is available for public disclosure. [42 FR 15616, Mar. 22, 1977... uncertain. In situations where the confidentiality of data or information is uncertain and there is a...
21 CFR 20.47 - Situations in which confidentiality is uncertain.
Code of Federal Regulations, 2012 CFR
2012-04-01
... submitted or divulged the data or information or who would be affected by disclosure before determining whether or not such data or information is available for public disclosure. [42 FR 15616, Mar. 22, 1977... uncertain. In situations where the confidentiality of data or information is uncertain and there is a...
21 CFR 20.47 - Situations in which confidentiality is uncertain.
Code of Federal Regulations, 2013 CFR
2013-04-01
... submitted or divulged the data or information or who would be affected by disclosure before determining whether or not such data or information is available for public disclosure. [42 FR 15616, Mar. 22, 1977... uncertain. In situations where the confidentiality of data or information is uncertain and there is a...
21 CFR 20.47 - Situations in which confidentiality is uncertain.
Code of Federal Regulations, 2010 CFR
2010-04-01
... submitted or divulged the data or information or who would be affected by disclosure before determining whether or not such data or information is available for public disclosure. [42 FR 15616, Mar. 22, 1977... uncertain. In situations where the confidentiality of data or information is uncertain and there is a...
Millennial Teachers and Multiculturalism: Considerations for Teaching in Uncertain Times
ERIC Educational Resources Information Center
Hallman, Heidi L.
2017-01-01
Purpose: This paper aims to explore the intersection of generational traits of millennial teachers, multiculturalism and teaching in an era of Uncertain Times. Uncertain Times, as a framework for the paper, characterizes changing aspects of the current era in which we live, such as the rise of the internet and interconnectivity, globalization and…
NASA Astrophysics Data System (ADS)
Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.
2014-12-01
Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.
Improve SSME power balance model
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1992-01-01
Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.
Zoology: Invertebrates that Parasitize Invertebrates.
Giribet, Gonzalo
2016-07-11
The genome of an orthonectid, a group of highly modified parasitic invertebrates, is drastically reduced and compact, yet it shows the bilaterian gene toolkit. Phylogenetic analyses place the enigmatic orthonectids within Spiralia, although their exact placement remains uncertain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hamberg, U; Elg, P; Nissinen, E; Stelwagen, P
1975-01-01
Various methods of preparing human kininogen were investigated with an aim to limit the immunoreactive contaminant proteins to permit purification by immunosorption. A five-step procedure is described giving 7.5% yield of highly purified kininogen (pharmacological purity 14--20) from pooled human plasma, and containing approximately 30% alpha-2HS-glycoprotein and 2.8% albumin. Alpha-2HS could not be removed by polyacrylamide gel electrophoresis or isoelectric focusing in column. Analysis of heterogeneity of kininogen after chromatography on DEAE-Sephadex using various linear gradients and gel filtration on Sephadex G-100 suggested that a minor component may be an aggregate, not included in the yield. It remains uncertain whether this component derives from an occasionally observed high molecular form of active kininogen in the primary purification steps in the 7-12 S sieve fractions from Sephadex G-200, and excluded from further purification by pooling. Purification with immunosorbents was investigated using batch operations with antibody specific polymers prepared with antisera insolubilized with ethylchloroformate. It was found that the adsorption-desorption procedure was favourable for immunization purposes in producing highly specific immunologically pure kininogen. The kininogen obtained by this method or by the removal of contaminant alpha-2HS and albumin with the corresponding antibody specific polymers gave similar heterogenous patterns by polyacrylamide gel electrophoresis, indicating a main band of kininogen and several faintly stained bands which responded only to anti-kininogen. With 200 mug of the kininogen protein purified by immunosorption using monospecific antiserum the kininogen precipitation titre was 1:8 after 6--8 weeks in rabbits. With a polymer prepared with 4 ml anti-kininogen serum (1:8) and incubated with 800 mug highly purified kininogen approximately half the protein was desorbed with 2 M and 3 M sodium iodide in the first adsorption-desorption procedure.
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas; ...
2018-01-03
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
Decentralized stochastic control
NASA Technical Reports Server (NTRS)
Speyer, J. L.
1980-01-01
Decentralized stochastic control is characterized by being decentralized in that the information to one controller is not the same as information to another controller. The system including the information has a stochastic or uncertain component. This complicates the development of decision rules which one determines under the assumption that the system is deterministic. The system is dynamic which means the present decisions affect future system responses and the information in the system. This circumstance presents a complex problem where tools like dynamic programming are no longer applicable. These difficulties are discussed from an intuitive viewpoint. Particular assumptions are introduced which allow a limited theory which produces mechanizable affine decision rules.
Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.
2013-08-01
Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
Orbiting space debris: Dangers, measurement and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-06-01
Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.
Black Carbon and Precipitation: An Energetics Perspective
NASA Astrophysics Data System (ADS)
Sand, M.; Samset, B. H.; Stjern, C.; Tsigaridis, K.; Myhre, G.
2017-12-01
Airborne Black Carbon (BC) can affect precipitation rates, both globally and regionally, through a number of mechanisms. Many studies have investigated the impact of the direct radiative effect, indirect modification of cloud properties and rapid adjustments (the semidirect effect), individually or in combination, but the net climate impacts of anthropogenic and natural BC are still highly uncertain. A particular problem is the complex behavior of BC-climate interactions with altitude. Since the atmospheric residence time, ageing and removal processes for BC are also poorly known, differences in vertical BC concentration profiles between models and intercomparison experiments greatly complicate the picture. Recently, precipitation changes predicted by climate models have been studied in the framework of changes to the global and regional energy balance. Here, we employ such an energetics perspective to simulations of BC inserted at isolated altitudes, in two major climate models (NCAR CESM1, NASA GISS). We show the resulting regional and global changes to precipitation, and analyze it in both in terms of individual components of radiative forcing, and the atmospheric energy balance. The results are presented in the context of recent literature.
NASA Astrophysics Data System (ADS)
Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru
2018-01-01
Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.
Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes
NASA Technical Reports Server (NTRS)
Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.
2017-01-01
NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... microorganism identity or use is confidential or uncertain. 725.15 Section 725.15 Protection of Environment... microorganism identity or use is confidential or uncertain. (a) Consulting EPA. Persons intending to conduct... on the Inventory, in § 725.239 or in subpart M of this part. (1) Confidential identity or use. In...
Code of Federal Regulations, 2012 CFR
2012-07-01
... microorganism identity or use is confidential or uncertain. 725.15 Section 725.15 Protection of Environment... microorganism identity or use is confidential or uncertain. (a) Consulting EPA. Persons intending to conduct... on the Inventory, in § 725.239 or in subpart M of this part. (1) Confidential identity or use. In...
Code of Federal Regulations, 2014 CFR
2014-07-01
... microorganism identity or use is confidential or uncertain. 725.15 Section 725.15 Protection of Environment... microorganism identity or use is confidential or uncertain. (a) Consulting EPA. Persons intending to conduct... on the Inventory, in § 725.239 or in subpart M of this part. (1) Confidential identity or use. In...
Code of Federal Regulations, 2013 CFR
2013-07-01
... microorganism identity or use is confidential or uncertain. 725.15 Section 725.15 Protection of Environment... microorganism identity or use is confidential or uncertain. (a) Consulting EPA. Persons intending to conduct... on the Inventory, in § 725.239 or in subpart M of this part. (1) Confidential identity or use. In...
Code of Federal Regulations, 2011 CFR
2011-07-01
... microorganism identity or use is confidential or uncertain. 725.15 Section 725.15 Protection of Environment... microorganism identity or use is confidential or uncertain. (a) Consulting EPA. Persons intending to conduct... on the Inventory, in § 725.239 or in subpart M of this part. (1) Confidential identity or use. In...
NASA Astrophysics Data System (ADS)
Chiaro, G.; Salvetti, D.; La Mura, G.; Giroletti, M.; Thompson, D. J.; Bastieri, D.
2016-11-01
The Fermi-Large Area Telescope (LAT) is currently the most important facility for investigating the GeV γ-ray sky. With Fermi-LAT, more than three thousand γ-ray sources have been discovered so far. 1144 (˜40 per cent) of the sources are active galaxies of the blazar class, and 573 (˜20 per cent) are listed as blazar candidate of uncertain type (BCU), or sources without a conclusive classification. We use the empirical cumulative distribution functions and the artificial neural networks for a fast method of screening and classification for BCUs based on data collected at γ-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as flat-spectrum radio quasars, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogues and because blazars and in particular their subclass high synchrotron peak objects are the main targets of atmospheric Cherenkov telescopes.
The locus of word frequency effects in skilled spelling-to-dictation.
Chua, Shi Min; Liow, Susan J Rickard
2014-01-01
In spelling-to-dictation tasks, skilled spellers consistently initiate spelling of high-frequency words faster than that of low-frequency words. Tainturier and Rapp's model of spelling shows three possible loci for this frequency effect: spoken word recognition, orthographic retrieval, and response execution of the first letter. Thus far, researchers have attributed the effect solely to orthographic retrieval without considering spoken word recognition or response execution. To investigate word frequency effects at each of these three loci, Experiment 1 involved a delayed spelling-to-dictation task and Experiment 2 involved a delayed/uncertain task. In Experiment 1, no frequency effect was found in the 1200-ms delayed condition, suggesting that response execution is not affected by word frequency. In Experiment 2, no frequency effect was found in the delayed/uncertain task that reflects the orthographic retrieval, whereas a frequency effect was found in the comparison immediate/uncertain task that reflects both spoken word recognition and orthographic retrieval. The results of this two-part study suggest that frequency effects in spoken word recognition play a substantial role in skilled spelling-to-dictation. Discrepancies between these findings and previous research, and the limitations of the present study, are discussed.
Robust optimization modelling with applications to industry and environmental problems
NASA Astrophysics Data System (ADS)
Chaerani, Diah; Dewanto, Stanley P.; Lesmana, Eman
2017-10-01
Robust Optimization (RO) modeling is one of the existing methodology for handling data uncertainty in optimization problem. The main challenge in this RO methodology is how and when we can reformulate the robust counterpart of uncertain problems as a computationally tractable optimization problem or at least approximate the robust counterpart by a tractable problem. Due to its definition the robust counterpart highly depends on how we choose the uncertainty set. As a consequence we can meet this challenge only if this set is chosen in a suitable way. The development on RO grows fast, since 2004, a new approach of RO called Adjustable Robust Optimization (ARO) is introduced to handle uncertain problems when the decision variables must be decided as a ”wait and see” decision variables. Different than the classic Robust Optimization (RO) that models decision variables as ”here and now”. In ARO, the uncertain problems can be considered as a multistage decision problem, thus decision variables involved are now become the wait and see decision variables. In this paper we present the applications of both RO and ARO. We present briefly all results to strengthen the importance of RO and ARO in many real life problems.
Biehler, J; Wall, W A
2018-02-01
If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.
2017-08-01
The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.
Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river
Legleiter, C.J.; Kyriakidis, P.C.; McDonald, R.R.; Nelson, J.M.
2011-01-01
Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations. Copyright 2011 by the American Geophysical Union.
A global parallel model based design of experiments method to minimize model output uncertainty.
Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E
2012-03-01
Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.
Hellberg, Samantha N; Levit, Jeremy D; Robinson, Mike J F
2018-01-30
Gambling disorder (GD) frequently co-occurs with alcohol use and anxiety disorders, suggesting possible shared mechanisms. Recent research suggests reward uncertainty may powerfully enhance attraction towards reward cues. Here, we examined the effects of adolescent ethanol exposure, anxiety, and reward uncertainty on cue-triggered motivation. Male and female adolescent rats were given free access to ethanol or control jello for 20days. Following withdrawal, rats underwent autoshaping on a certain (100%-1) or uncertain (50%-1-2-3) reward contingency, followed by single-session conditioned reinforcement and progressive ratio tasks, and 7days of omission training, during which lever pressing resulted in omission of reward. Finally, anxiety levels were quantified on the elevated plus maze. Here, we found that uncertainty narrowed cue attraction by significantly increasing the ratio of sign-tracking to goal-tracking, particularly amongst control jello and high anxiety animals, but not in animals exposed to ethanol during adolescence. In addition, attentional bias towards the lever cue was more persistent under uncertain conditions following omission training. We also found that females consumed more ethanol, and that uncertainty mitigated the anxiolytic effects of ethanol exposure observed in high ethanol intake animals under certainty conditions. Our results further support that reward uncertainty biases attraction towards reward cues, suggesting also that heightened anxiety may enhance vulnerability to the effects of reward uncertainty. Chronic, elevated alcohol consumption may contribute to heightened anxiety levels, while high anxiety may promote the over-attribution of incentive value to reward cues, highlighting possible mechanisms that may drive concurrent anxiety, heavy drinking, and problematic gambling. Copyright © 2017 Elsevier B.V. All rights reserved.
Wildland fire emissions, carbon, and climate: U.S. emissions inventories
Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand
2014-01-01
Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...
Heather N. Speckman; John M. Frank; John B. Bradford; Brianna L. Miles; William J. Massman; William J. Parton; Michael G. Ryan
2015-01-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high...
Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao
2018-05-01
The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Uncertain programming models for portfolio selection with uncertain returns
NASA Astrophysics Data System (ADS)
Zhang, Bo; Peng, Jin; Li, Shengguo
2015-10-01
In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.
DOT National Transportation Integrated Search
2017-02-01
The inland navigation system is highly dependent on uncertain natural factors such as shoaling that can render waterways unnavigable. In order to ensure waterway navigability, maintenance dredging must be completed. We consider the problem of selecti...
Marine nitrous oxide emissions: An unknown liability for the international water sector
Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N2O) emissions from sewage management are both highly uncertain and ...
Toward Sustainable Water Resource Management: Challenges and Opportunities
The United States has derived significant economic benefit from an abundant and high-quality water supply. The ability of the nation to continue this pace into the future is uncertain because of a number of significant challenges. These include increasing water demand because of ...
AN AMMONIA EMISSION INVENTORY FOR FERTILIZER APPLICATION IN THE UNITED STATES. (R826371C006)
Fertilizer application represents a significant fraction of ammonia emissions from all sources in the United States. Previously published ammonia inventories have generally suffered from poor spatial and temporal resolution, erroneous activity levels, and highly uncertain emis...
Evaluating Urban Resilience to Climate Change: A Multi-Sector Approach (External Review Draft)
Climate change impacts are diverse, long-term, and not easily predictable. Adapting to climate change requires making context specific and forward-looking decisions regarding a variety of climate change impacts and vulnerabilities when the future is highly uncertain. EPA scientis...
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Synthetic Spectral Ananlysis of the Nova-Like Variable KQ Mon
NASA Astrophysics Data System (ADS)
Wolfe, Aaron; Sion, E.
2011-01-01
KQ Mon is classified as a nova-like variable with an uncertain orbital period of 0.128 d. Optical spectra (Zwitter, T. & Munari, U.1994, A&AS, 107, 503) reveal no emission lines but strong Balmer absorption features. High speed flickering has been observed indicative of accretion. IUE spectra reveal deep absorption lines due to C III, C II, Si III, Si IV, C IV, He II but no P Cygni profiles indicative of outflow. Its classification in Ritter and Kolb (2006) as a UX UMa type nova-like is uncertain. We have carried out the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic accretion disk models with vertical structure and high gravity photosphere models. The results of our model atmosphere and model accretion disk analyses are presented. We discuss the properties that we have derived for KQ Mon and compare KQ Mon with other nova-like variables viewed at low inclination. This work was supported in part by NSF grant AST0807892 to Villanova University.
Application of a predictive Bayesian model to environmental accounting.
Anex, R P; Englehardt, J D
2001-03-30
Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.
Optimal Decision Making in a Class of Uncertain Systems Based on Uncertain Variables
NASA Astrophysics Data System (ADS)
Bubnicki, Z.
2006-06-01
The paper is concerned with a class of uncertain systems described by relational knowledge representations with unknown parameters which are assumed to be values of uncertain variables characterized by a user in the form of certainty distributions. The first part presents the basic optimization problem consisting in finding the decision maximizing the certainty index that the requirement given by a user is satisfied. The main part is devoted to the description of the optimization problem with the given certainty threshold. It is shown how the approach presented in the paper may be applied to some problems for anticipatory systems.
Uncertain sightings and the extinction of the Ivory-billed Woodpecker.
Solow, Andrew; Smith, Woollcott; Burgman, Mark; Rout, Tracy; Wintle, Brendan; Roberts, David
2012-02-01
The extinction of a species can be inferred from a record of its sightings. Existing methods for doing so assume that all sightings in the record are valid. Often, however, there are sightings of uncertain validity. To date, uncertain sightings have been treated in an ad hoc way, either excluding them from the record or including them as if they were certain. We developed a Bayesian method that formally accounts for such uncertain sightings. The method assumes that valid and invalid sightings follow independent Poisson processes and use noninformative prior distributions for the rate of valid sightings and for a measure of the quality of uncertain sightings. We applied the method to a recently published record of sightings of the Ivory-billed Woodpecker (Campephilus principalis). This record covers the period 1897-2010 and contains 39 sightings classified as certain and 29 classified as uncertain. The Bayes factor in favor of extinction was 4.03, which constitutes substantial support for extinction. The posterior distribution of the time of extinction has 3 main modes in 1944, 1952, and 1988. The method can be applied to sighting records of other purportedly extinct species. ©2011 Society for Conservation Biology.
High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue
Galicia, Melissa P.; Thiemann, Gregory W.; Belt, Simon T.; Yurkowski, David J.; Dyck, Markus G.
2018-01-01
Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72–100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems. PMID:29360849
High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue.
Brown, Thomas A; Galicia, Melissa P; Thiemann, Gregory W; Belt, Simon T; Yurkowski, David J; Dyck, Markus G
2018-01-01
Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72-100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.
A novel grey-fuzzy-Markov and pattern recognition model for industrial accident forecasting
NASA Astrophysics Data System (ADS)
Edem, Inyeneobong Ekoi; Oke, Sunday Ayoola; Adebiyi, Kazeem Adekunle
2017-10-01
Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey-fuzzy-Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey-fuzzy-Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
NASA Astrophysics Data System (ADS)
Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.
2011-02-01
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.
Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS
NASA Astrophysics Data System (ADS)
Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason
2018-01-01
Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modeling the low-J lines alone or using a CO-to-mass conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent).
NASA Astrophysics Data System (ADS)
Kamenetzky, J.; Rangwala, N.; Glenn, J.
2017-11-01
We have conducted two-component, non-local thermodynamic equilibrium modelling of the CO lines from J = 1-0 through J = 13-12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We find the average pressure of the cold molecular gas, traced especially by CO J = 1-0, is ˜105.0±0.5 K cm-3. The mid- to high-J lines of CO trace higher pressure gas at 106.5 ± 0.6 K cm-3; this pressure is slightly correlated with LFIR. Two components are often necessary to accurately fit the Spectral Line Energy Distributions; a one-component fit often underestimates the flux of carbon monoxide (CO) J = 1-0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modelling the low-J lines alone or using an αCO conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent). We find a very large spread in our derived values of αCO, though they do not have a discernible trend with LFIR; the best fit is a constant 0.7 M⊙ (K km s- 1 pc2)-1, with a standard deviation of 0.36 dex, and a range of 0.3-1.6 M⊙ (K km s- 1 pc2)-1. We find average molecular gas depletion times (τdep) of 108 yr that decrease with increasing star formation rate. Finally, we note that the J = 11-10/J = 1-0 line flux ratio is diagnostic of the warm component pressure, and discuss the implications of this comprehensive study of SPIRE FTS extragalactic spectra for future study post-Herschel.
Self-expanding stent for spontaneous coronary artery dissection: a rational choice.
Mele, Marco; Langialonga, Tommaso; Maggi, Alessandro; Villella, Massimo; Villella, Alessandro
2016-12-01
: Spontaneous coronary artery dissection (SCAD) is a rare and poorly understood cause of acute coronary syndrome in relatively young patients. Nowadays, the optimal treatment of SCAD is uncertain. A conservative approach seems to be preferable, but in particular conditions, an invasive strategy is necessary. The poor rate of procedural success, the high risk of procedural complications and the uncertain long and mid-term results make the interventional treatment of SCAD a challenge. We report a case of a young male patient presenting with SCAD successfully treated with a sirolimus-eluting self-expanding coronary stent. To our knowledge, the use of self-expanding coronary stent for SCAD has never been described yet and we discuss about the rationale of a possible larger use in clinical practice.
Travel itinerary uncertainty and the pre-travel consultation--a pilot study.
Flaherty, Gerard; Md Nor, Muhammad Najmi
2016-01-01
Risk assessment relies on the accuracy of the information provided by the traveller. A questionnaire was administered to 83 consecutive travellers attending a travel medicine clinic. The majority of travellers was uncertain about destinations within countries, transportation or type of accommodation. Most travellers were uncertain if they would be visiting malaria regions. The degree of uncertainty about itinerary potentially impacts on the ability of the travel medicine specialist to perform an adequate risk assessment, select appropriate vaccinations and prescribe malaria prophylaxis. This study reveals high levels of traveller uncertainty about their itinerary which may potentially reduce the effectiveness of their pre-travel consultation. © The Author 2016. Published by Oxford University Press on behalf of International society of travel medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Norman, Gill; Dumville, Jo C; Crosbie, Emma J
2016-11-01
Do antiseptics and antibiotics benefit surgical wounds healing by secondary intention (SWHSI)? No high-quality randomized clinical trials have addressed this question. Current evidence is limited and insufficient; it is uncertain whether treating SWHSI with antiseptics or antibiotics is beneficial.
Toward Securing a Future for Geography Graduates
ERIC Educational Resources Information Center
Spronken-Smith, Rachel
2013-01-01
Geography graduates face an uncertain future. To help students think and practice as a geographer, we must teach disciplinary knowledge--particularly threshold concepts--as well as skills and attributes. We must role model and articulate our geographical reasoning using signature pedagogies and promote high-impact and signature learning…
Molecular characterization of biochars and their influence on microbiological properties of soil
USDA-ARS?s Scientific Manuscript database
The composition and surface chemistry of carbon rich biochar materials is highly uncertain and believed to change with feedstock and biomass conversion process. The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N...
Stochastic Modeling of Laminar-Turbulent Transition
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Choudhari, Meelan
2002-01-01
Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.
Polymerization of epoxidized triglycerides with fluorosulfonic acid
USDA-ARS?s Scientific Manuscript database
The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...
Research on Spectroscopy, Opacity, and Atmospheres
NASA Technical Reports Server (NTRS)
Kurucz, Robert L.; Oliversen, Ronald (Technical Monitor)
2002-01-01
We list a few things that we do not understand about stars and that most people ignore. These are all hard problems. We can learn more cosmology by working on them to reduce the systematic errors they introduce than by trying to derive cosmological results that are highly uncertain.
High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals
The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, f...
Projected future suitable habitat and productivity of Douglas-fir in western North America
Aaron R. Weiskittel; Nicholas L. Crookston; Gerald E. Rehfeldt
2012-01-01
Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) is one of the most common and commercially important species in western North America. The species can occupy a range of habitats, is long-lived (up to 500 years), and highly productive. However, the future of Douglas-fir in western North America is highly uncertain due to the expected changes in climate conditions....
At the Last Hour, It's Financial Aid 101 for These High-School Students
ERIC Educational Resources Information Center
Supiano, Beckie
2009-01-01
The high-school seniors drifting in and out of the office in New York should be weighing financial-aid offers and deciding where to go to college. But some of them have yet to begin the process of applying for student aid. This article describes a nonprofit group in Harlem which gives last-minute help to students uncertain about applying for…
Faddeev calculation for ^9_ΛBe hypernucleus
NASA Astrophysics Data System (ADS)
Suslov, Vladimir; Filikhin, Igor; Vlahovic, Branislav
2003-04-01
Faddeev calculations are performed for the ^9_ΛBe hypernucleus in terms of α's and Λ clusters using various Λα potential models. The main goal of our calculations is to estimate higher partial waves contribution in binding energy of ^9_ΛBe ground state (1/2^+) and particularly contribution from the high partial waves of the Λα pair. Phenomenological Ali-Bodmer potential is employed for description of the αα interaction. This potential has s, d and g - waves components. For a Λα potential both form and parameters are uncertain, because Λα interaction data are limited by the experimental value of binding energy of the ^5_ΛHe hypernucleus, which is considered as the bound s-wave state of the Λα system. The binding energy of the ^9_ΛBe is calculated for two different cases. First the s-wave Λα potential acting in all partial waves in the Λα subsystem is used. Second, a recent more realistic Λα potential model including the s and p-partial components from work [1] is employed. We compared these models and discussed validity of the s-wave approximation for calculation of ^9_ΛBe hypernucleus. This work was partially supported by Department of Defenses through the grant No.DAAD 19-01-1-0795. The work of V.M.S and I.N.F was supported by the RFFI under Grant No. 02-02-16562. References: [1] K.S. Myint, S. Shinmura and Y. Akaishi, nucl-th/0209090.
Planck intermediate results: XLII. Large-scale Galactic magnetic fields
Adam, R.; Ade, P. A. R.; Alves, M. I. R.; ...
2016-12-12
Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. In this paper, we use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering inmore » the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Finally, though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.« less
Synchronization transmission of laser pattern signal within uncertain switched network
NASA Astrophysics Data System (ADS)
Lü, Ling; Li, Chengren; Li, Gang; Sun, Ao; Yan, Zhe; Rong, Tingting; Gao, Yan
2017-06-01
We propose a new technology for synchronization transmission of laser pattern signal within uncertain network with controllable topology. In synchronization process, the connection of dynamic network can vary at all time according to different demands. Especially, we construct the Lyapunov function of network through designing a special semi-positive definite function, and the synchronization transmission of laser pattern signal within uncertain network with controllable topology can be realized perfectly, which effectively avoids the complicated calculation for solving the second largest eignvalue of the coupling matrix of the dynamic network in order to obtain the network synchronization condition. At the same time, the uncertain parameters in dynamic equations belonging to network nodes can also be identified accurately via designing the identification laws of uncertain parameters. In addition, there are not any limitations for the synchronization target of network in the new technology, in other words, the target can either be a state variable signal of an arbitrary node within the network or an exterior signal.
Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian
2011-04-01
This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
[Treatment of aerobic vaginitis and clinically uncertain causes of vulvovaginal discomfort].
Cepický, P; Malina, J; Kuzelová, M
2003-11-01
The treatment of clinically uncertain conditions of vaginal discomforts with a mixed preparation of nifuratel + nystatin (Macmiror complex) and the relation of uncertain conditions to aerobic vaginitis. A prospective study. Gynecology-Obstetrics Outpatient Department LEVRET Ltd., AescuLab Ltd., Laboratory of Microbiology, Prague. 50 women with vaginal discomfort, causes of which had not been clarified by gynecological examination, determination of pH and the amine test, were examined by vaginal smears using microscopy. The results were evaluated in relation to aerobic vaginitis in a pure form or in combination with other nosological units. The authors also evaluated results of therapy by oral nifuratel (Macmiror tbl) 3 x 200 mg daily and a vaginal combined preparation containing nifuratel 500 mg + nystatin 200 kIU (Macmiror complex 500 glo vag) for the period of 7 days. In 50 women candida was demonstrated 24 times, presence of key cells 11 times, lactobacillus nine times with more than 50 in the field, six women were affected by aerobic vaginitis. In all these cases the pH was 4.8 or higher, leukocytes were significantly represented in all cases (> 15 in the field), as well as gram-negative bacteria and/or cocci (> 30 in the field), indicating a combined picture of mycosis, anaerobic vaginosis or lactobacillosis with aerobic vaginitis. The therapy was successful in all cases, the relapse of complaints during one month occurred in three cases. Aerobic vaginitis in a pure form or with anaerobic vaginosis, mycosis or lactobacillosis is frequently concealed under clinically uncertain pictures of vulvo-vaginal discomfort. The therapy by a combination of nifurated 3 x 200 mg orally together with the combined vaginal preparation nifuratel 500 mg + nystatin 200 kIU for the period of 7 days exerts high effect and a low number of relapses.
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...
2012-12-20
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
Introduced and invasive species in novel rangeland ecosystems: friends or foes?
Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.
2012-01-01
Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses and hold stakeholder workshops to resolve conflicts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
Ballo, Piercarlo; Bandini, Fabrizio; Capecchi, Irene; Chiodi, Leandro; Ferro, Giuseppe; Fortini, Alberto; Giuliani, Gabriele; Landini, Giancarlo; Laureano, Raffaele; Milli, Massimo; Nenci, Gabriele; Pizzarelli, Francesco; Santoro, Giovanni Maria; Vannelli, Pasquale; Cappelletti, Carlo; Zuppiroli, Alfredo
2012-06-01
A recent American College of Cardiology Foundation and American Society of Echocardiography document updated previous appropriate use criteria (AUC) for echocardiography. The aim of this study was to explore the application of the new AUC, and the resulting appropriateness rate, in hospitalized patients referred for transthoracic echocardiography (TTE) in a community setting. A total of 931 consecutive inpatients referred for TTE were prospectively recruited in five community hospitals. Patients were categorized as having appropriate, uncertain, or inappropriate indications for TTE according to the AUC. An additional group of 259 inpatients, discharged without having been referred for TTE, was also considered. In the group referred for TTE, the large majority of indications (98.8%) were classifiable according to the AUC with good interobserver reproducibility. Indications were appropriate in 739 patients (80.3%), of uncertain appropriateness in 46 (5.0%), and inappropriate in 135 (14.7%). Compared with patients with appropriate or uncertain indications, those with inappropriate indications were younger and more often referred by noncardiologists. Most common causes of inappropriate indications were related to the lack of changes in clinical status or to the absence of cardiovascular symptoms and signs. Examinations with appropriate or uncertain indications had an impact on clinical decision making more often than those with inappropriate indications (86.7% vs 14.1%, P < .0001). In the group discharged without having been referred for TTE, TTE might have been appropriate in 16.2% of cases. Clinical application of the new AUC was highly feasible in a community setting. Although inpatient referral for TTE was appropriate in most patients, strategies aimed at implementing these criteria in clinical practice are desirable. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
While there is a high potential for exposure of humans and ecosystems to chemicals released from hazardous waste sites, the degree to which this potential is realized is often uncertain. Conceptually divided among parameter, model, and modeler uncertainties imparted during simula...
Adaptability: Conceptual and Empirical Perspectives on Responses to Change, Novelty and Uncertainty
ERIC Educational Resources Information Center
Martin, Andrew J.; Nejad, Harry; Colmar, Susan; Liem, Gregory Arief D.
2012-01-01
Adaptability is proposed as individuals' capacity to constructively regulate psycho-behavioral functions in response to new, changing, and/or uncertain circumstances, conditions and situations. The present investigation explored the internal and external validity of an hypothesised adaptability scale. The sample comprised 2,731 high school…
SUPPLEMENTAL ULTRAVIOLET-B RADIATION DOES NOT REDUCE GROWTH OR GRAIN YIELD IN RICE
Negative effects of enhanced UV-B radiation have been demonstrated in plants, but impacts under realistic field conditions remain uncertain. Adverse impacts to major crops, such as rice (Oryza sativa L.), that are grown in areas with currently high ambient levels of UV-B, could h...
ERIC Educational Resources Information Center
Lokan, Janice J.; Biggs, John B.
1982-01-01
Investigated student characteristics in relation to affective and cognitive aspects of adolescent career development. Questionnaire results indicated three styles of career development: intellective or deliberative; concerned and personally involved with high or low aspirations; and uncertain or confused. Suggests motives and strategies that might…
Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community...
DEVELOPMENT OF LIGHTWEIGHT INSTRUMENTATION FOR MEASUREMENT OF LONG-LIVED TRACE GASES
The ozone budget of the upper troposphere is highly uncertain with respect to both chemistry and dynamical effects. Extensive data in the 6 to 12 km region of the atmosphere is needed to constrain the relative roles of various dynamical processes, such as convection and int...
The Cost and Value of Marketing Analysis. AIR Forum Paper 1978.
ERIC Educational Resources Information Center
Thompson, Fred
Product-market planning is an inherently difficult practice. It aims at a match between consumer preference and institutional behavior. Unfortunately, consumer reactions to changes in institutional behavior are often highly uncertain. This paper assumes that institutional planners should neither ignore uncertainty nor seek to avoid all actions…
USDA-ARS?s Scientific Manuscript database
Land data assimilations are typically based on highly uncertain assumptions regarding the statistical structure of observation and modeling errors. Left uncorrected, poor assumptions can degrade the quality of analysis products generated by land data assimilation systems. Recently, Crow and van de...
Quantifying spatial differences in metabolism in headwater streams
Ricardo González-Pinzón; Roy Haggerty; Alba Argerich
2014-01-01
Stream functioning includes simultaneous interaction among solute transport, nutrient processing, and metabolism. Metabolism is measured with methods that have limited spatial representativeness and are highly uncertain. These problems restrict development of methods for up-scaling biological processes that mediate nutrient processing. We used the resazurinâresorufin (...
Precipitation is one of the primary forcing functions of hydrologic and watershed fate and transport models; however, in light of advances in precipitation estimates across watersheds, data remain highly uncertain. A wide variety of simulated and observed precipitation data are a...
Central Libraries in Uncertain Times.
ERIC Educational Resources Information Center
Kenney, Brian J.
2001-01-01
Discusses security and safety issues for public libraries, especially high-profile central facilities, in light of the September 11 terrorist attacks. Highlights include inspecting bags as patrons enter as well as exit; the need for security guidelines for any type of disaster or emergency; building design; and the importance of communication.…
2018-04-01
Reports an error in "The impact of uncertain threat on affective bias: Individual differences in response to ambiguity" by Maital Neta, Julie Cantelon, Zachary Haga, Caroline R. Mahoney, Holly A. Taylor and F. Caroline Davis ( Emotion , 2017[Dec], Vol 17[8], 1137-1143). In this article, the copyright attribution was incorrectly listed under the Creative Commons CC-BY license due to production-related error. The correct copyright should be "In the public domain." The online version of this article has been corrected. (The following abstract of the original article appeared in record 2017-40275-001.) Individuals who operate under highly stressful conditions (e.g., military personnel and first responders) are often faced with the challenge of quickly interpreting ambiguous information in uncertain and threatening environments. When faced with ambiguity, it is likely adaptive to view potentially dangerous stimuli as threatening until contextual information proves otherwise. One laboratory-based paradigm that can be used to simulate uncertain threat is known as threat of shock (TOS), in which participants are told that they might receive mild but unpredictable electric shocks while performing an unrelated task. The uncertainty associated with this potential threat induces a state of emotional arousal that is not overwhelmingly stressful, but has widespread-both adaptive and maladaptive-effects on cognitive and affective function. For example, TOS is thought to enhance aversive processing and abolish positivity bias. Importantly, in certain situations (e.g., when walking home alone at night), this anxiety can promote an adaptive state of heightened vigilance and defense mobilization. In the present study, we used TOS to examine the effects of uncertain threat on valence bias, or the tendency to interpret ambiguous social cues as positive or negative. As predicted, we found that heightened emotional arousal elicited by TOS was associated with an increased tendency to interpret ambiguous cues negatively. Such negative interpretations are likely adaptive in situations in which threat detection is critical for survival and should override an individual's tendency to interpret ambiguity positively in safe contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ataei-Esfahani, Armin
In this dissertation, we present algorithmic procedures for sum-of-squares based stability analysis and control design for uncertain nonlinear systems. In particular, we consider the case of robust aircraft control design for a hypersonic aircraft model subject to parametric uncertainties in its aerodynamic coefficients. In recent years, Sum-of-Squares (SOS) method has attracted increasing interest as a new approach for stability analysis and controller design of nonlinear dynamic systems. Through the application of SOS method, one can describe a stability analysis or control design problem as a convex optimization problem, which can efficiently be solved using Semidefinite Programming (SDP) solvers. For nominal systems, the SOS method can provide a reliable and fast approach for stability analysis and control design for low-order systems defined over the space of relatively low-degree polynomials. However, The SOS method is not well-suited for control problems relating to uncertain systems, specially those with relatively high number of uncertainties or those with non-affine uncertainty structure. In order to avoid issues relating to the increased complexity of the SOS problems for uncertain system, we present an algorithm that can be used to transform an SOS problem with uncertainties into a LMI problem with uncertainties. A new Probabilistic Ellipsoid Algorithm (PEA) is given to solve the robust LMI problem, which can guarantee the feasibility of a given solution candidate with an a-priori fixed probability of violation and with a fixed confidence level. We also introduce two approaches to approximate the robust region of attraction (RROA) for uncertain nonlinear systems with non-affine dependence on uncertainties. The first approach is based on a combination of PEA and SOS method and searches for a common Lyapunov function, while the second approach is based on the generalized Polynomial Chaos (gPC) expansion theorem combined with the SOS method and searches for parameter-dependent Lyapunov functions. The control design problem is investigated through a case study of a hypersonic aircraft model with parametric uncertainties. Through time-scale decomposition and a series of function approximations, the complexity of the aircraft model is reduced to fall within the capability of SDP solvers. The control design problem is then formulated as a convex problem using the dual of the Lyapunov theorem. A nonlinear robust controller is searched using the combined PEA/SOS method. The response of the uncertain aircraft model is evaluated for two sets of pilot commands. As the simulation results show, the aircraft remains stable under up to 50% uncertainty in aerodynamic coefficients and can follow the pilot commands.
Ecology, mobility and labour: dynamic pastoral herd management in an uncertain world.
Butt, B
2016-11-01
In this review, the author discusses how pastoralism, and its many constituent components, is increasingly being recognised as in tune with the changing political and ecological nature of rangelands. He describes ways in which the literature reflects this changing attitude, outlines how rangelands respond to changes in climate and explores the evolving use of livestock resources. In addition, he describes the growing recognition of factors other than livestock density that affect rangeland vegetation (i.e. density-independent relationships). The author explains how terms such as 'carrying capacity', 'overgrazing' and 'desertification' are often taken out of their social and political context when describing rangeland pastoralism. Next, he describes the growing recognition by the development community of the importance of the mobility model, particularly in relation to changing ecologies and politics. Finally, he outlines how labour, a central focus of pastoral herd management, is a fluid component of pastoral systems in response to changing political and ecological circumstances.
Characterizing Time Series Data Diversity for Wind Forecasting: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong
Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less
AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3
NASA Technical Reports Server (NTRS)
Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.
2015-01-01
Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).
Holmström, Gerd; van Wijngaarden, Peter; Coster, Douglas J; Williams, Keryn A
2007-01-01
Despite advances in management and treatment, retinopathy of prematurity remains a major cause of childhood blindness. Evidence for a genetic basis for susceptibility to retinopathy of prematurity is examined, including the influences of sex, ethnicity, and ocular pigmentation. The role of polymorphisms is explored in the genes for vascular endothelial growth factor and insulin‐like growth factor‐1, and of mutations in the Norrie disease gene. Insights into the genetic basis of retinopathy of prematurity provided by the animal model of oxygen induced retinopathy are examined. Evidence for a genetic component for susceptibility to retinopathy of prematurity is strong, although the molecular identity of the gene or genes involved remains uncertain. PMID:18024814
Holmström, Gerd; van Wijngaarden, Peter; Coster, Douglas J; Williams, Keryn A
2007-12-01
Despite advances in management and treatment, retinopathy of prematurity remains a major cause of childhood blindness. Evidence for a genetic basis for susceptibility to retinopathy of prematurity is examined, including the influences of sex, ethnicity, and ocular pigmentation. The role of polymorphisms is explored in the genes for vascular endothelial growth factor and insulin-like growth factor-1, and of mutations in the Norrie disease gene. Insights into the genetic basis of retinopathy of prematurity provided by the animal model of oxygen induced retinopathy are examined. Evidence for a genetic component for susceptibility to retinopathy of prematurity is strong, although the molecular identity of the gene or genes involved remains uncertain.
Robust Unit Commitment Considering Uncertain Demand Response
Liu, Guodong; Tomsovic, Kevin
2014-09-28
Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less
Circuit-based versus full-wave modelling of active microwave circuits
NASA Astrophysics Data System (ADS)
Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.
2018-03-01
Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher N.; Sargsyan, Khachik; Jones, Reese E.
2015-08-11
We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomistic-to-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We alsomore » consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. As a result, the uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.« less
NASA Astrophysics Data System (ADS)
Arnold, R. T.; Troost, Christian; Berger, Thomas
2015-01-01
Irrigation with surface water enables Chilean agricultural producers to generate one of the country's most important economic exports. The Chilean water code established tradable water rights as a mechanism to allocate water amongst farmers and other water-use sectors. It remains contested whether this mechanism is effective and many authors have raised equity concerns regarding its impact on water users. For example, speculative hoarding of water rights in expectations of their increasing value has been described. This paper demonstrates how farmers can hoard water rights as a risk management strategy for variable water supply, for example, due to the cycles of El Niño or as consequence of climate change. While farmers with insufficient water rights can rely on unclaimed water during conditions of normal water availability, drought years overproportionally impact on their supply of irrigation water and thereby farm profitability. This study uses a simulation model that consists of a hydrological balance model component and a multiagent farm decision and production component. Both model components are parameterized with empirical data, while uncertain parameters are calibrated. The study demonstrates a thorough quantification of parameter uncertainty, using global sensitivity analysis and multiple behavioral parameter scenarios.
Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond
NASA Astrophysics Data System (ADS)
Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko
2013-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.
Analysis of Implicit Uncertain Systems. Part 1: Theoretical Framework
1994-12-07
Analysis of Implicit Uncertain Systems Part I: Theoretical Framework Fernando Paganini * John Doyle 1 December 7, 1994 Abst rac t This paper...Analysis of Implicit Uncertain Systems Part I: Theoretical Framework 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...model and a number of constraints relevant to the analysis problem under consideration. In Part I of this paper we propose a theoretical framework which
Research of Uncertainty Reasoning in Pineapple Disease Identification System
NASA Astrophysics Data System (ADS)
Liu, Liqun; Fan, Haifeng
In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
NASA Astrophysics Data System (ADS)
Watson, K. A.; Masarik, M. T.; Flores, A. N.
2016-12-01
Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.
NASA Astrophysics Data System (ADS)
Zi, Bin; Zhou, Bin
2016-07-01
For the prediction of dynamic response field of the luffing system of an automobile crane (LSOAAC) with random and interval parameters, a hybrid uncertain model is introduced. In the hybrid uncertain model, the parameters with certain probability distribution are modeled as random variables, whereas, the parameters with lower and upper bounds are modeled as interval variables instead of given precise values. Based on the hybrid uncertain model, the hybrid uncertain dynamic response equilibrium equation, in which different random and interval parameters are simultaneously included in input and output terms, is constructed. Then a modified hybrid uncertain analysis method (MHUAM) is proposed. In the MHUAM, based on random interval perturbation method, the first-order Taylor series expansion and the first-order Neumann series, the dynamic response expression of the LSOAAC is developed. Moreover, the mathematical characteristics of extrema of bounds of dynamic response are determined by random interval moment method and monotonic analysis technique. Compared with the hybrid Monte Carlo method (HMCM) and interval perturbation method (IPM), numerical results show the feasibility and efficiency of the MHUAM for solving the hybrid LSOAAC problems. The effects of different uncertain models and parameters on the LSOAAC response field are also investigated deeply, and numerical results indicate that the impact made by the randomness in the thrust of the luffing cylinder F is larger than that made by the gravity of the weight in suspension Q . In addition, the impact made by the uncertainty in the displacement between the lower end of the lifting arm and the luffing cylinder a is larger than that made by the length of the lifting arm L .
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
Processing uncertain RFID data in traceability supply chains.
Xie, Dong; Xiao, Jie; Guo, Guangjun; Jiang, Tong
2014-01-01
Radio Frequency Identification (RFID) is widely used to track and trace objects in traceability supply chains. However, massive uncertain data produced by RFID readers are not effective and efficient to be used in RFID application systems. Following the analysis of key features of RFID objects, this paper proposes a new framework for effectively and efficiently processing uncertain RFID data, and supporting a variety of queries for tracking and tracing RFID objects. We adjust different smoothing windows according to different rates of uncertain data, employ different strategies to process uncertain readings, and distinguish ghost, missing, and incomplete data according to their apparent positions. We propose a comprehensive data model which is suitable for different application scenarios. In addition, a path coding scheme is proposed to significantly compress massive data by aggregating the path sequence, the position, and the time intervals. The scheme is suitable for cyclic or long paths. Moreover, we further propose a processing algorithm for group and independent objects. Experimental evaluations show that our approach is effective and efficient in terms of the compression and traceability queries.
Processing Uncertain RFID Data in Traceability Supply Chains
Xie, Dong; Xiao, Jie
2014-01-01
Radio Frequency Identification (RFID) is widely used to track and trace objects in traceability supply chains. However, massive uncertain data produced by RFID readers are not effective and efficient to be used in RFID application systems. Following the analysis of key features of RFID objects, this paper proposes a new framework for effectively and efficiently processing uncertain RFID data, and supporting a variety of queries for tracking and tracing RFID objects. We adjust different smoothing windows according to different rates of uncertain data, employ different strategies to process uncertain readings, and distinguish ghost, missing, and incomplete data according to their apparent positions. We propose a comprehensive data model which is suitable for different application scenarios. In addition, a path coding scheme is proposed to significantly compress massive data by aggregating the path sequence, the position, and the time intervals. The scheme is suitable for cyclic or long paths. Moreover, we further propose a processing algorithm for group and independent objects. Experimental evaluations show that our approach is effective and efficient in terms of the compression and traceability queries. PMID:24737978
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
Chen, Wei
2014-01-01
Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm. PMID:25089292
An artificial bee colony algorithm for uncertain portfolio selection.
Chen, Wei
2014-01-01
Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm.
Mining of high utility-probability sequential patterns from uncertain databases
Zhang, Binbin; Fournier-Viger, Philippe; Li, Ting
2017-01-01
High-utility sequential pattern mining (HUSPM) has become an important issue in the field of data mining. Several HUSPM algorithms have been designed to mine high-utility sequential patterns (HUPSPs). They have been applied in several real-life situations such as for consumer behavior analysis and event detection in sensor networks. Nonetheless, most studies on HUSPM have focused on mining HUPSPs in precise data. But in real-life, uncertainty is an important factor as data is collected using various types of sensors that are more or less accurate. Hence, data collected in a real-life database can be annotated with existing probabilities. This paper presents a novel pattern mining framework called high utility-probability sequential pattern mining (HUPSPM) for mining high utility-probability sequential patterns (HUPSPs) in uncertain sequence databases. A baseline algorithm with three optional pruning strategies is presented to mine HUPSPs. Moroever, to speed up the mining process, a projection mechanism is designed to create a database projection for each processed sequence, which is smaller than the original database. Thus, the number of unpromising candidates can be greatly reduced, as well as the execution time for mining HUPSPs. Substantial experiments both on real-life and synthetic datasets show that the designed algorithm performs well in terms of runtime, number of candidates, memory usage, and scalability for different minimum utility and minimum probability thresholds. PMID:28742847
77 FR 70551 - Highly Migratory Species; Atlantic Shark Management Measures
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... uncertain. The Southeast Fisheries Science Center addressed the questions from the peer reviewers in a post... condition. The stock assessment scientists showed in the post-review updates and projections document that... lb dw in the Gulf of Mexico. Using the ex-vessel prices described in the DEIS under Alternative Suite...
USDA-ARS?s Scientific Manuscript database
This presentation asks: how do ranchers know what to do when they are faced with a decision under high levels of complexity and uncertainty? In the semi-arid Western Great Plains of North America, rancher decisions have implications for rangeland ecosystems and for livelihoods. Adaptive management r...
Isotopic signals of summer denitrification in a northern hardwood forested catchment
Sarah K. Wexler; Christine L. Goodale; Kevin J. McGuire; Scott W. Bailey; Peter M. Groffman
2014-01-01
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide...
Unintended Consequences: An Uncertain Future for Distance Learning
ERIC Educational Resources Information Center
Halfond, Jay A.
2011-01-01
While most in the academic community know about the attempt to rein in the for-profits, few are aware of its collateral damage. In October, the Department of Education (DOE) issued its Program Integrity Rules, intended to protect federal funds especially from those for-profit institutions with high student loan default rates. Well-intentioned…
Adaptive economic and ecological forest management under risk
Joseph Buongiorno; Mo Zhou
2015-01-01
Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...
Teacher Preparation: Reforming the Uncertain Profession
ERIC Educational Resources Information Center
Duncan, Arne
2010-01-01
In this paper, the Arne Duncan, the United States Secretary of Education, discusses the need for a sea change in America's schools of education, and focuses on the need to improve teacher preparation programs. Many schools of education have provided high-quality preparation programs for aspiring teachers for years. In the last decade, many…
Pembroke Academy Freshman Advisor Handbook. 1st Edition.
ERIC Educational Resources Information Center
Stehno, Joseph J.
Students entering high school as freshmen bring with them a variety of issues, problems and strengths. Often, students are uncertain about their academic abilities, their social-selves, and their chances of success in a new environment. Even freshmen with positive educational experiences and a strong sense of self-need support and guidance during…
Post-Observation Conferences with Bilingual Pre-Service Teachers: Revoicing and Rehearsing
ERIC Educational Resources Information Center
Wall, Dorothy J.; Hurie, Andrew H.
2017-01-01
Pre-service teachers need support in developing their teacher identities as they navigate the uncertain and complex terrain of student teaching and face the pressures of high-stakes accountability. This support is particularly important for bilingual pre-service teachers as they negotiate the many complexities of the bilingual classroom, and as…
USDA-ARS?s Scientific Manuscript database
The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strat...
Many regional and global climate models include aerosol indirect effects (AIE) on grid-scale/resolved clouds. However, the interaction between aerosols and convective clouds remains highly uncertain, as noted in the IPCC AR4 report. The objective of this work is to help fill in ...
Preserving and Strengthening Together: Collective Strategies of U.S.Women's College Presidents
ERIC Educational Resources Information Center
Thomas, Auden D.
2008-01-01
Women's colleges in the 1970s and 1980s faced highly uncertain futures. Soaring popularity of coeducation left them with serious enrollment downturns, and challenges from proposed equal rights legislation threatened to render illegal their single-sex admissions policies. These perilous external conditions drew together the presidents of U.S.…
ERIC Educational Resources Information Center
Hawley, Willis D.
1987-01-01
Extended programs are likely to reduce the quality and quantity of teachers and probably will not improve teacher performance. Because the risks of extended programs are great and the benefits uncertain, other strategies for improving teacher education should be explored more aggressively. (Author/LHW)
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
The Role of Intelligence in Social Learning.
Vostroknutov, Alexander; Polonio, Luca; Coricelli, Giorgio
2018-05-02
Studies in cultural evolution have uncovered many types of social learning strategies that are adaptive in certain environments. The efficiency of these strategies also depends on the individual characteristics of both the observer and the demonstrator. We investigate the relationship between intelligence and the ways social and individual information is utilised to make decisions in an uncertain environment. We measure fluid intelligence and study experimentally how individuals learn from observing the choices of a demonstrator in a 2-armed bandit problem with changing probabilities of a reward. Participants observe a demonstrator with high or low fluid intelligence. In some treatments they are aware of the intelligence score of the demonstrator and in others they are not. Low fluid intelligence individuals imitate the demonstrator more when her fluid intelligence is known than when it is not. Conversely, individuals with high fluid intelligence adjust their use of social information, as the observed behaviour changes, independently of the knowledge of the intelligence of the demonstrator. We provide evidence that intelligence determines how social and individual information is integrated in order to make choices in a changing uncertain environment.
Lu, Dan; Ye, Ming; Curtis, Gary P.
2015-08-01
While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally, limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.« less
Adaptive suboptimal second-order sliding mode control for microgrids
NASA Astrophysics Data System (ADS)
Incremona, Gian Paolo; Cucuzzella, Michele; Ferrara, Antonella
2016-09-01
This paper deals with the design of adaptive suboptimal second-order sliding mode (ASSOSM) control laws for grid-connected microgrids. Due to the presence of the inverter, of unpredicted load changes, of switching among different renewable energy sources, and of electrical parameters variations, the microgrid model is usually affected by uncertain terms which are bounded, but with unknown upper bounds. To theoretically frame the control problem, the class of second-order systems in Brunovsky canonical form, characterised by the presence of matched uncertain terms with unknown bounds, is first considered. Four adaptive strategies are designed, analysed and compared to select the most effective ones to be applied to the microgrid case study. In the first two strategies, the control amplitude is continuously adjusted, so as to arrive at dominating the effect of the uncertainty on the controlled system. When a suitable control amplitude is attained, the origin of the state space of the auxiliary system becomes attractive. In the other two strategies, a suitable blend between two components, one mainly working during the reaching phase, the other being the predominant one in a vicinity of the sliding manifold, is generated, so as to reduce the control amplitude in steady state. The microgrid system in a grid-connected operation mode, controlled via the selected ASSOSM control strategies, exhibits appreciable stability properties, as proved theoretically and shown in simulation.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Synchronization between uncertain nonidentical networks with quantum chaotic behavior
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2016-11-01
Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.
Induction of belief decision trees from data
NASA Astrophysics Data System (ADS)
AbuDahab, Khalil; Xu, Dong-ling; Keane, John
2012-09-01
In this paper, a method for acquiring belief rule-bases by inductive inference from data is described and evaluated. Existing methods extract traditional rules inductively from data, with consequents that are believed to be either 100% true or 100% false. Belief rules can capture uncertain or incomplete knowledge using uncertain belief degrees in consequents. Instead of using singled-value consequents, each belief rule deals with a set of collectively exhaustive and mutually exclusive consequents. The proposed method extracts belief rules from data which contain uncertain or incomplete knowledge.
Simulations of high-spin black-hole binaries
NASA Astrophysics Data System (ADS)
Scheel, Mark; Lovelace, Geoffrey
2014-03-01
Black holes can in principle have spins up to the Kerr limit a = 1 , and some (highly uncertain) estimates from X-ray binaries yield a > 0 . 98 . Because binaries with highly-spinning black holes may be detectable by LIGO, it is important to be able to simulate and understand these systems. We present binary black hole simulations with large spins, including a generic, precessing simulation with a spin of a > 0 . 99 on one of the black holes. We discuss some of the difficulties with simulating high-spin black holes and how to overcome them.
Final Report. Analysis and Reduction of Complex Networks Under Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Coles, T.; Spantini, A.
2013-09-30
The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local andmore » long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow manifolds transformed by parametric uncertainty? How to construct dynamical models on these uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC) methods to reformulate uncertain network models and analyzed them using CSP in probabilistic terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facilitated by projection onto PC bases. These problems motivated us to explore the spectral properties stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic eigensystems—transformations of a uncertain dynamical system that lead to lower storage and solution complexity. These technical accomplishments are detailed below. This report focuses on the MIT portion of the joint project.« less
Global assessment of ocean carbon export by combining satellite observations and food-web models
NASA Astrophysics Data System (ADS)
Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.
2014-03-01
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
Orbiting space debris: Dangers, measurement, and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-01-01
Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.
Habib, Muddasar; Miles, Nicholas J; Hall, Philip
2013-03-01
The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hidalgo, P.; Escribano, R.
2015-12-01
A shallow oxygen minimum zone (OMZ) is a critical component in the coastal upwelling ecosystem off Chile. This OMZ causes oxygen-deficient water entering the photic layer and affecting plankton communities having low tolerance to hypoxia. Variable, and usually species-dependent, responses of zooplankton to hypoxia condition can be found. Most dominant species avoid hypoxia by restricting their vertical distribution, while others can temporarily enter and even spent part of their life cycle within the OMZ. Whatever the case, low-oxygen conditions appear to affect virtually all vital rates of zooplankton, such as mortality, fecundity, development and growth and metabolism, and early developmental stages seem more sensitive, with significant consequences for population and community dynamics. For most study cases, these effects are negative at individual and population levels. Observations and predictions upon increasing upwelling intensity over the last 20-30 years indicate a gradual shoaling of the OMZ, and so that an expected enhancement of these negative effects of hypoxia on the zooplankton community. Unknown processes of adaptation and community-structure adjustments are expected to take place with uncertain consequences for the food web of this highly productive eastern boundary current ecosystem.
Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years.
Salvatteci, Renato; Field, David; Gutiérrez, Dimitri; Baumgartner, Tim; Ferreira, Vicente; Ortlieb, Luc; Sifeddine, Abdel; Grados, Daniel; Bertrand, Arnaud
2018-03-01
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large-scale forcing controls decadal-scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin-scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large-scale forcing. Moreover, we show that a long-term increase in coastal upwelling translates via a bottom-up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS. © 2017 John Wiley & Sons Ltd.
A multichannel decision-level fusion method for T wave alternans detection
NASA Astrophysics Data System (ADS)
Ye, Changrong; Zeng, Xiaoping; Li, Guojun; Shi, Chenyuan; Jian, Xin; Zhou, Xichuan
2017-09-01
Sudden cardiac death (SCD) is one of the most prominent causes of death among patients with cardiac diseases. Since ventricular arrhythmia is the main cause of SCD and it can be predicted by T wave alternans (TWA), the detection of TWA in the body-surface electrocardiograph (ECG) plays an important role in the prevention of SCD. But due to the multi-source nature of TWA, the nonlinear propagation through thorax, and the effects of the strong noises, the information from different channels is uncertain and competitive with each other. As a result, the single-channel decision is one-sided while the multichannel decision is difficult to reach a consensus on. In this paper, a novel multichannel decision-level fusion method based on the Dezert-Smarandache Theory is proposed to address this issue. Due to the redistribution mechanism for highly competitive information, higher detection accuracy and robustness are achieved. It also shows promise to low-cost instruments and portable applications by reducing demands for the synchronous sampling. Experiments on the real records from the Physikalisch-Technische Bundesanstalt diagnostic ECG database indicate that the performance of the proposed method improves by 12%-20% compared with the one-dimensional decision method based on the periodic component analysis.
Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.
Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia
2018-02-01
Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.
Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I
2016-09-12
Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.
2016-01-01
Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications—from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action. PMID:27476873
Asymmetries of the B →K*μ+μ- decay and the search of new physics beyond the standard model
NASA Astrophysics Data System (ADS)
Fu, Hai-Bing; Wu, Xing-Gang; Cheng, Wei; Zhong, Tao; Sun, Zhan
2018-03-01
In this paper, we compute the forward-backward asymmetry and the isospin asymmetry of the B →K*μ+μ- decay. The B →K* transition form factors (TFFs) are key components of the decay. To achieve a more accurate QCD prediction, we adopt a chiral correlator for calculating the QCD light cone sum rules for those TFFs with the purpose of suppressing the uncertain high-twist distribution amplitudes. Our predictions show that the asymmetries under the standard model and the minimal supersymmetric standard model with minimal flavor violation are close in shape for q2≥6 GeV2 and are consistent with the Belle, LHCb, and CDF data within errors. When q2<2 GeV2, their predictions behave quite differently. Thus, a careful study on the B →K*μ+μ- decay within the small q2 region could be helpful for searching new physics beyond the standard model. As a further application, we also apply the B →K* TFFs to the branching ratio and longitudinal polarization fraction of the B →K*ν ν ¯ decay within different models.
Chandrajith, Rohana; Nanayakkara, Shanika; Itai, Kozuyoshi; Aturaliya, T N C; Dissanayake, C B; Abeysekera, Thilak; Harada, Kouji; Watanabe, Takao; Koizumi, Akio
2011-06-01
The increase in the number of chronic kidney disease (CKD) patients from the north central region of Sri Lanka has become a environmental health issue of national concern. Unlike in other countries where long-standing diabetes and hypertension are the leading causes of renal diseases, the majority of CKD patients from this part of Sri Lanka do not show any identifiable cause. As the disease is restricted to a remarkably specific geographical terrain, particularly in the north central dry zone of the country, multidisciplinary in-depth research studies are required to identify possible etiologies and risk factors. During this study, population screening in the prevalent region and outside the region, analysis of geoenvironmental and biochemical samples were carried out. Population screening that was carried out using a multistage sampling technique indicated that the point prevalence of CKD with uncertain etiology is about 2-3% among those above 18 years of age. Drinking water collected from high-prevalent and non-endemic regions was analyzed for their trace and ultratrace element contents, including the nephrotoxic heavy metals Cd and U using ICP-MS. The results indicate that the affected regions contain moderate to high levels of fluoride. The Cd contents in drinking water, rice from affected regions and urine from symptomatic and non-symptomatic patients were much lower indicating that Cd is not a contributing factor for CKD with uncertain etiology in Sri Lanka. Although no single geochemical parameter could be clearly and directly related to the CKD etiology on the basis of the elements determined during this study, it is very likely that the unique hydrogeochemistry of the drinking water is closely associated with the incidence of the disease. © Springer Science+Business Media B.V. 2010
Valgimigli, Marco; Patialiakas, Athanasios; Thury, Attila; Colangelo, Salvatore; Campo, Gianluca; Tebaldi, Matteo; Ungi, Imre; Tondi, Stefano; Roffi, Marco; Menozzi, Alberto; de Cesare, Nicoletta; Garbo, Roberto; Meliga, Emanuele; Testa, Luca; Gabriel, Henrique M; Airoldi, Flavio; Ferlini, Marco; Liistro, Francesco; Dellavalle, Antonio; Vranckx, Pascal; Briguori, Carlo
2013-11-01
The use of drug-eluting stent (DES) instead of bare-metal stent (BMS) in patients at high stent thrombosis or bleeding risk as well as in those at low restenosis risk (ie, uncertain DES candidates) remains a matter of debate. Zotarolimus-Eluting Endeavor Sprint stent (E-ZES) (Santa Rosa, CA) is a hydrophilic polymer-based second-generation device with unique drug fast-release profile, which may allow for a shorter dual antiplatelet therapy (DAPT) duration without safety concerns. The primary objective is to assess whether E-ZES implantation followed by a shorter than currently recommended course of DAPT will decrease the incidence of 12-month major adverse cardiovascular events as compared with BMS in undefined DES recipients. Actual duration of DAPT regimen will be dictated by patients' characteristics and not by stent type and, as such, can be as short as 30 days after intervention in both stent groups. The ZEUS study is an open-label randomized clinical trial conducted at 20 clinical sites in Italy, Switzerland, Portugal, and Hungary. With 1,600 individuals, this study will have 85% power to detect a 33% difference in the primary end point consisting of the composite of death, nonfatal myocardial infarction, or target vessel revascularization. The ZEUS trial aims to assess whether the use of E-ZES, followed by a DAPT duration regimen based on patients' characteristics and not by stent type, is superior to conventional BMS implantation in undefined DES recipients who qualify for the presence of high thrombosis, bleeding, or low restenosis risk criteria. © 2013.
Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas
NASA Astrophysics Data System (ADS)
Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.
In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.
Robust control for uncertain structures
NASA Technical Reports Server (NTRS)
Douglas, Joel; Athans, Michael
1991-01-01
Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.
Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
Orbit control of a stratospheric satellite with parameter uncertainties
NASA Astrophysics Data System (ADS)
Xu, Ming; Huo, Wei
2016-12-01
When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.
NASA Astrophysics Data System (ADS)
Mikhalchenko, V. V.; Rubanik, Yu T.
2016-10-01
The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.
A Computational Framework to Control Verification and Robustness Analysis
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2010-01-01
This paper presents a methodology for evaluating the robustness of a controller based on its ability to satisfy the design requirements. The framework proposed is generic since it allows for high-fidelity models, arbitrary control structures and arbitrary functional dependencies between the requirements and the uncertain parameters. The cornerstone of this contribution is the ability to bound the region of the uncertain parameter space where the degradation in closed-loop performance remains acceptable. The size of this bounding set, whose geometry can be prescribed according to deterministic or probabilistic uncertainty models, is a measure of robustness. The robustness metrics proposed herein are the parametric safety margin, the reliability index, the failure probability and upper bounds to this probability. The performance observed at the control verification setting, where the assumptions and approximations used for control design may no longer hold, will fully determine the proposed control assessment.
Optimal experimental designs for fMRI when the model matrix is uncertain.
Kao, Ming-Hung; Zhou, Lin
2017-07-15
This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Rendezvous with connectivity preservation for multi-robot systems with an unknown leader
NASA Astrophysics Data System (ADS)
Dong, Yi
2018-02-01
This paper studies the leader-following rendezvous problem with connectivity preservation for multi-agent systems composed of uncertain multi-robot systems subject to external disturbances and an unknown leader, both of which are generated by a so-called exosystem with parametric uncertainty. By combining internal model design, potential function technique and adaptive control, two distributed control strategies are proposed to maintain the connectivity of the communication network, to achieve the asymptotic tracking of all the followers to the output of the unknown leader system, as well as to reject unknown external disturbances. It is also worth to mention that the uncertain parameters in the multi-robot systems and exosystem are further allowed to belong to unknown and unbounded sets when applying the second fully distributed control law containing a dynamic gain inspired by high-gain adaptive control or self-tuning regulator.
Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying
NASA Astrophysics Data System (ADS)
Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.
2018-03-01
Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.
Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.
Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A; Burger, Richard L; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R Spencer; Politis, Gustavo; Santoro, Calogero M; Standen, Vivien G; Smith, Colin; Reich, David; Ho, Simon Y W; Cooper, Alan; Haak, Wolfgang
2016-04-01
The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.
Thomas, Mark R; Storey, Robert F
2016-09-01
Platelet P2Y12 inhibitors have become an essential component of the treatment strategy for patients with acute coronary syndromes and patients undergoing percutaneous coronary intervention. It is now well-established that approximately 30% of patients treated with the P2Y12 inhibitor clopidogrel display high residual platelet reactivity despite treatment. Patients with high on-treatment platelet reactivity have approximately 2-3-fold greater risk of adverse cardiovascular events and stent thrombosis than those without high platelet reactivity. Conversely, clopidogrel-treated patients with low platelet reactivity display approximately 1.7-fold increased risk of major bleeding. High platelet reactivity is uncommon during treatment with prasugrel and ticagrelor, which achieve a greater reduction in adverse cardiovascular events compared to clopidogrel in ACS patients treated with PCI. This is at the expense of an increase in spontaneous bleeding, however. Minor bleeding events, such as skin haematomas, are more common in prasugrel- and ticagrelor-treated patients that have particularly low platelet reactivity values. These minor bleeding events may occasionally prompt discontinuation of therapy, but their overall prognostic impact is uncertain. However, risk factors for bleeding tend to overlap with risk factors for adverse cardiovascular events. Therefore, patients with these minor bleeding events may also be at higher risk of adverse cardiovascular events, conferring a benefit from low platelet reactivity. Further work is needed to determine the optimal level of platelet reactivity in individuals by taking into account their risk of subsequent adverse cardiovascular events and bleeding. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela
2014-05-14
Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols usingmore » broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.« less
Flores, J M; Washenfelder, R A; Adler, G; Lee, H J; Segev, L; Laskin, J; Laskin, A; Nizkorodov, S A; Brown, S S; Rudich, Y
2014-06-14
Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions of the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360-420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (±0.01) after 1.5 h of exposure to 1.9 ppm NH3, whereas the imaginary component (k) remained below k < 0.001((+0.002)(-0.001)). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.000 to an average k = 0.029 (±0.021) for α-humulene SOA, and from k < 0.001((+0.002)(-0.001)) to an average k = 0.032 (±0.019) for limonene SOA after 1.5 h of exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line by nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in situ using a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, which will not necessarily be the case in the atmosphere, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.
Reiff, Marian; Ross, Kathryn; Mulchandani, Surabhi; Propert, Kathleen Joy; Pyeritz, Reed E.; Spinner, Nancy B.; Bernhardt, Barbara A.
2012-01-01
Chromosomal microarray analysis (CMA) has improved the diagnostic rate of genomic disorders in pediatric populations, but can produce uncertain and unexpected findings. This paper explores clinicians’ perspectives and identifies challenges in effectively interpreting results and communicating with families about CMA. Responses to an online survey were obtained from 40 clinicians who had ordered CMA. Content included practice characteristics and perceptions, and queries about a hypothetical case involving uncertain and incidental findings. Data were analyzed using non-parametric statistical tests. Clinicians’ comfort levels differed significantly for explaining uncertain, abnormal, and normal CMA results, with lowest levels for uncertain results. Despite clinical guidelines recommending informed consent, many clinicians did not consider it pertinent to discuss the potential for CMA to reveal information concerning biological parentage or predisposition to late-onset disease, in a hypothetical case. Many non-genetics professionals ordering CMA did not feel equipped to interpret the results for patients, and articulated needs for education and access to genetics professionals. This exploratory study highlights key challenges in the practice of genomic medicine, and identifies needs for education, disseminated practice guidelines, and access to genetics professionals, especially when dealing with uncertain or unexpected findings. PMID:22989118
[Chronic low back pain: from the uncertain medical diagnosis to the profane etiologies].
Mbarga, Josiane; Pichonnaz, Claude; Foley, Rose-Anna; Ancey, Céline
2018-04-18
This qualitative research article is based on interviews with 20 participants to a low back pain rehabilitation program in a Swiss hospital. It shows that, in the absence of the obvious cause that can explain pain, patients construct their own interpretations and explanations in order to give meaning to their experience. Their explanatory models mainly include the lifestyle and the physical aspects related to the body function, what leaves little room for the psychosocial component. Their interpretation is consequently discordant with the current medical approach, which considers that chronic low back pain results from bio-psycho-social factors. This discrepancy implies negotiation between patients and professionals about the objectives to achieve in order to treat pain.
Rethinking the Role of Salps in the Ocean.
Henschke, Natasha; Everett, Jason D; Richardson, Anthony J; Suthers, Iain M
2016-09-01
Salps are barrel-shaped, gelatinous zooplankton that regularly form large swarms. They have historically been ignored because they are difficult to sample and their gelatinous body structure suggests that they are unimportant in food webs and biogeochemical cycles. We collate evidence to overturn several common misconceptions about salps that have hampered research. We show that salps play a major role in carbon sequestration and are key components of marine food webs as a food source for at least 202 species including fish, turtles, and crustaceans. The future of salps in the Anthropocene is uncertain, and therefore further research into areas such as basic rate processes and their biogeochemical impact through new and innovative laboratory and field methods is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dread of uncertain pain: An event-related potential study
Huang, Yujing; Shang, Qian; Dai, Shenyi; Ma, Qingguo
2017-01-01
Humans experience more stress about uncertain situations than certain situations. However, the neural mechanism underlying the uncertainty of a negative stimulus has not been determined. In the present study, event-related potential was recorded to examine neural responses during the dread of unpredictable pain. We used a cueing paradigm in which predictable cues were always followed by electric shocks, unpredictable cues by electric shocks at a 50/50 ratio and safe cues by no electric shock. Visual analogue scales following electric shocks were presented to quantify subjective anxiety levels. The behavioral results showed that unpredictable cues evoked high-level anxiety compared with predictable cues in both painful and unpainful stimulation conditions. More importantly, the ERPs results revealed that unpredictable cues elicited a larger P200 at parietal sites than predictable cues. In addition, unpredictable cues evoked larger P200 compared with safe cues at frontal electrodes and compared with predictable cues at parietal electrodes. In addition, larger P3b and LPP were observed during perception of safe cues compared with predictable cues at frontal and central electrodes. The similar P3b effect was also revealed in the left sites. The present study underlined that the uncertain dread of pain was associated with threat appraisal process in pain system. These findings on early event-related potentials were significant for a neural marker and development of therapeutic interventions. PMID:28832607
Toward reassessing data-deficient species.
Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben
2017-06-01
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.
Patent Foramen Ovale in Patients with Cerebral Infarction: A Transesophageal Echocradigraphy Study
NASA Technical Reports Server (NTRS)
Petty, George W.; Khandheria, Bijoy K.; Chu, Chu-Pin; Sicks, JoRean D.; Whisnant, Jack P.
1997-01-01
Patent foramen ovale was detected in 37 patients (32%). Mean age was similar in those with (60 years) and those without (64 years) PFO. Patent foramen ovale was more frequent among men (39%) than women (20%, P=.03). Patients with PFO had a lower frequency of atrial fibrillation, diabetes me!litus, hypertension, and peripheral vascular disease compared with those without PFO. There was no difference in frequency of the following characteristics in patients with PFO compared with those without PFO: pulmonary embolus, chronic obstructive pulmonary disease, pulmonary hypertension, peripheral embolism, prior cerebral infarction, nosocomial cerebral infarction, Valsalva maneuver at the time of cerebral infarction, recent surgery, or hemorrhagic transformation of cerebral infarction. Patent foramen ovale was found in 22 (40%) of 55 patients with infarcts of uncertain cause and in 15 (25%) of 61 with infarcts of known cause (cardioembolic, 21%; large vessel atherostenosis, 25%; lacune, 40%) (P=.08). When the analysis was restricted to patients who underwent Valsalva maneuver, PFO with right to left or bidirectional shunt was found in 19 (50%) of 38 patients with infarcts of uncertain cause and in 6 (20%) of 30 with infarcts of known cause (P=.Ol). Conclusion: Although PFO was over-represented in patients with infarcts of uncertain cause in our and other studies, it has a high frequency among patients with cerebral infarction of all types. The relation between PFO and stroke requires further study.
NASA Astrophysics Data System (ADS)
Kollat, J. B.; Reed, P. M.
2009-12-01
This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.
For Illegal College Students, an Uncertain Future
ERIC Educational Resources Information Center
Horwedel, Dina M.
2006-01-01
With almost two million undocumented children in school and an estimated 65,000 graduating from high school every year, higher education is becoming the new frontier in the immigration debate. In 1982, the U.S. Supreme Court ruled that the children of illegal immigrants have a right to a free K-12 education. However, the court never extended that…
Truth in Spending: The Cost of Not Educating Our Kids.
ERIC Educational Resources Information Center
DeSchryver, David A.
Statistical information is given on the inadequacy of U.S. schools, including the cost of remedial classes in colleges and businesses. The relationship between money spent, including on such items as salaries and class size, and high achievement scores is shown to be uncertain. Low performance often leads to requests for more money, rather than a…
Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman
2012-01-01
Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...
ERIC Educational Resources Information Center
Zoller, Frank A.; Zimmerling, Eric; Boutellier, Roman
2014-01-01
The funding environment has a profound impact on researchers' behavior. In particular, it influences their freedom and readiness to conduct research ventures with highly uncertain outcomes. In this conceptual paper, we propose a concise new methodology to evaluate researchers' risk aversion based on citation statistics. The derived…
The role of place-based social learning [Chapter 7
Daniel R. Williams
2017-01-01
Hummel's observations on the limits of science to inform practice provides a useful starting point for a book chapter devoted to examining post-normal environmental policy where the "facts are uncertain, values in dispute, stakes high, and decisions urgent" (Funtowicz and Ravetz 1993, 739, 744). Central to the argument here is that the integration of...
ERIC Educational Resources Information Center
Gibson, Jenny; Adams, Catherine; Lockton, Elaine; Green, Jonathan
2013-01-01
Background: Developmental disorders of language and communication present considerable diagnostic challenges due to overlapping of symptomatology and uncertain aetiology. We aimed to further elucidate the behavioural and linguistic profile associated with impairments of social communication occurring outside of an autism diagnosis. Methods: Six to…
Chronic inhalation of carbon black (CB) can produce carcinomas in rat lungs. The mechanisms underlying this response are uncertain. However, it has been postulated that chronic inflammation and cell proliferation may play a role in the development of tumors after high dose, lo...
Mississippi Blacks and the Voting Rights Act of 1965
ERIC Educational Resources Information Center
Joubert, Paul E.; Crouch, Ben M.
1977-01-01
Analyzes the impact of the Voting Rights Act on black voter registration in Mississippi. Concludes that the future of black politics is highly uncertain in Mississippi. If the movement on the part of whites to disenfranchise blacks succeeds, and intimidation at the polls continues, advances made in the early 1970s could be seriously undermined.…
ERIC Educational Resources Information Center
Abrego, Leisy J.; Gonzales, Roberto G.
2010-01-01
Over the past few decades, undocumented settlement in the United States has grown to unprecedented numbers. Among the nearly 12 million undocumented immigrants, a substantial portion of undocumented youth is growing up with legal access to public education through high school but facing legal restrictions and economic barriers to higher education…
Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol
2008-01-01
This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.
Wu, Yuanyuan; Cao, Jinde; Li, Qingbo; Alsaedi, Ahmed; Alsaadi, Fuad E
2017-01-01
This paper deals with the finite-time synchronization problem for a class of uncertain coupled switched neural networks under asynchronous switching. By constructing appropriate Lyapunov-like functionals and using the average dwell time technique, some sufficient criteria are derived to guarantee the finite-time synchronization of considered uncertain coupled switched neural networks. Meanwhile, the asynchronous switching feedback controller is designed to finite-time synchronize the concerned networks. Finally, two numerical examples are introduced to show the validity of the main results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robust stabilization of the Space Station in the presence of inertia matrix uncertainty
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang; Sunkel, John
1993-01-01
This paper presents a robust H-infinity full-state feedback control synthesis method for uncertain systems with D11 not equal to 0. The method is applied to the robust stabilization problem of the Space Station in the face of inertia matrix uncertainty. The control design objective is to find a robust controller that yields the largest stable hypercube in uncertain parameter space, while satisfying the nominal performance requirements. The significance of employing an uncertain plant model with D11 not equal 0 is demonstrated.
Limits to Mercury's Magnesium Exosphere from MESSENGER Second Flyby Observations
NASA Technical Reports Server (NTRS)
Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Bradley, E. Todd; Vervack, Ronald J., Jr.; Benna, Mehdi; Slavin, James A.
2011-01-01
The discovery measurements of Mercury's exospheric magnesium, obtained by the MErcury Surface. Space ENvironment, GEochemistry. and Ranging (MESSENGER) probe during its second Mercury flyby, are modeled to constrain the source and loss processes for this neutral species. Fits to a Chamberlain exosphere reveal that at least two source temperatures are required to reconcile the distribution of magnesium measured far from and near the planet: a hot ejection process at the equivalent temperature of several tens of thousands of degrees K, and a competing, cooler source at temperatures as low as 400 K. For the energetic component, our models indicate that the column abundance that can be attributed to sputtering under constant southward interplanetary magnetic field (IMF) conditions is at least a factor of five less than the rate dictated by the measurements, Although highly uncertain, this result suggests that another energetic process, such as the rapid dissociation of exospheric MgO, may be the main source of the distant neutral component. If meteoroid and micrometeoroid impacts eject mainly molecules, the total amount of magnesium at altitudes exceeding approximately 100 km is found to be consistent with predictions by impact vaporization models for molecule lifetimes of no more than two minutes. Though a sharp increase in emission observed near the dawn terminator region can be reproduced if a single meteoroid enhanced the impact vapor at equatorial dawn, it is much more likely that observations in this region, which probe heights increasingly near the surface, indicate a reservoir of volatile Mg being acted upon by lower-energy source processes.
Busch, Jeremiah W.; Delph, Lynda F.
2012-01-01
Background The field of plant mating-system evolution has long been interested in understanding why selfing evolves from outcrossing. Many possible mechanisms drive this evolutionary trend, but most research has focused upon the transmission advantage of selfing and its ability to provide reproductive assurance when cross-pollination is uncertain. We discuss the shared conceptual framework of these ideas and their empirical support that is emerging from tests of their predictions over the last 25 years. Scope These two hypotheses are derived from the same strategic framework. The transmission advantage hypothesis involves purely gene-level selection, with reproductive assurance involving an added component of individual-level selection. Support for both of these ideas has been garnered from population-genetic tests of their predictions. Studies in natural populations often show that selfing increases seed production, but it is not clear if this benefit is sufficient to favour the evolution of selfing, and the ecological agents limiting outcross pollen are often not identified. Pollen discounting appears to be highly variable and important in systems where selfing involves multiple floral adaptations, yet seed discounting has rarely been investigated. Although reproductive assurance appears likely as a leading factor facilitating the evolution of selfing, studies must account for both seed and pollen discounting to adequately test this hypothesis. Conclusions The transmission advantage and reproductive assurance ideas describe components of gene transmission that favour selfing. Future work should move beyond their dichotomous presentation and focus upon understanding whether selection through pollen, seed or both explains the spread of selfing-rate modifiers in plant populations. PMID:21937484
Busch, Jeremiah W; Delph, Lynda F
2012-02-01
The field of plant mating-system evolution has long been interested in understanding why selfing evolves from outcrossing. Many possible mechanisms drive this evolutionary trend, but most research has focused upon the transmission advantage of selfing and its ability to provide reproductive assurance when cross-pollination is uncertain. We discuss the shared conceptual framework of these ideas and their empirical support that is emerging from tests of their predictions over the last 25 years. These two hypotheses are derived from the same strategic framework. The transmission advantage hypothesis involves purely gene-level selection, with reproductive assurance involving an added component of individual-level selection. Support for both of these ideas has been garnered from population-genetic tests of their predictions. Studies in natural populations often show that selfing increases seed production, but it is not clear if this benefit is sufficient to favour the evolution of selfing, and the ecological agents limiting outcross pollen are often not identified. Pollen discounting appears to be highly variable and important in systems where selfing involves multiple floral adaptations, yet seed discounting has rarely been investigated. Although reproductive assurance appears likely as a leading factor facilitating the evolution of selfing, studies must account for both seed and pollen discounting to adequately test this hypothesis. The transmission advantage and reproductive assurance ideas describe components of gene transmission that favour selfing. Future work should move beyond their dichotomous presentation and focus upon understanding whether selection through pollen, seed or both explains the spread of selfing-rate modifiers in plant populations.
A resilient domain decomposition polynomial chaos solver for uncertain elliptic PDEs
NASA Astrophysics Data System (ADS)
Mycek, Paul; Contreras, Andres; Le Maître, Olivier; Sargsyan, Khachik; Rizzi, Francesco; Morris, Karla; Safta, Cosmin; Debusschere, Bert; Knio, Omar
2017-07-01
A resilient method is developed for the solution of uncertain elliptic PDEs on extreme scale platforms. The method is based on a hybrid domain decomposition, polynomial chaos (PC) framework that is designed to address soft faults. Specifically, parallel and independent solves of multiple deterministic local problems are used to define PC representations of local Dirichlet boundary-to-boundary maps that are used to reconstruct the global solution. A LAD-lasso type regression is developed for this purpose. The performance of the resulting algorithm is tested on an elliptic equation with an uncertain diffusivity field. Different test cases are considered in order to analyze the impacts of correlation structure of the uncertain diffusivity field, the stochastic resolution, as well as the probability of soft faults. In particular, the computations demonstrate that, provided sufficiently many samples are generated, the method effectively overcomes the occurrence of soft faults.
Uncertain behaviours of integrated circuits improve computational performance.
Yoshimura, Chihiro; Yamaoka, Masanao; Hayashi, Masato; Okuyama, Takuya; Aoki, Hidetaka; Kawarabayashi, Ken-ichi; Mizuno, Hiroyuki
2015-11-20
Improvements to the performance of conventional computers have mainly been achieved through semiconductor scaling; however, scaling is reaching its limitations. Natural phenomena, such as quantum superposition and stochastic resonance, have been introduced into new computing paradigms to improve performance beyond these limitations. Here, we explain that the uncertain behaviours of devices due to semiconductor scaling can improve the performance of computers. We prototyped an integrated circuit by performing a ground-state search of the Ising model. The bit errors of memory cell devices holding the current state of search occur probabilistically by inserting fluctuations into dynamic device characteristics, which will be actualised in the future to the chip. As a result, we observed more improvements in solution accuracy than that without fluctuations. Although the uncertain behaviours of devices had been intended to be eliminated in conventional devices, we demonstrate that uncertain behaviours has become the key to improving computational performance.
Adaptive identifier for uncertain complex nonlinear systems based on continuous neural networks.
Alfaro-Ponce, Mariel; Cruz, Amadeo Argüelles; Chairez, Isaac
2014-03-01
This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.
Fixed-dose combination therapy for the prevention of cardiovascular disease
de Cates, Angharad N; Farr, Matthew RB; Wright, Nicola; Jarvis, Morag C; Rees, Karen; Ebrahim, Shah; Huffman, Mark D
2014-01-01
Background Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, yet CVD risk factor control and secondary prevention rates remain low. A fixed-dose combination of blood pressure and cholesterol lowering and antiplatelet treatments into a single pill, or polypill, has been proposed as one strategy to reduce the global burden of CVD by up to 80% given its potential for better adherence and lower costs. Objectives To determine the effectiveness of fixed-dose combination therapy on reducing fatal and non-fatal CVD events and on improving blood pressure and lipid CVD risk factors for both primary and secondary prevention of CVD. We also aimed to determine discontinuation rates, adverse events, health-related quality of life, and costs of fixed-dose combination therapy. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library(2013, Issue 6), MEDLINE Ovid (1946 to week 2 July 2013), EMBASE Ovid (1980 to Week 28 2013), ISI Web of Science (1970 to 19 July 2013), and the Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment Database (HTA), and Health Economics Evaluations Database (HEED) (2011, Issue 4) in The Cochrane Library. We used no language restrictions. Selection criteria We included randomised controlled trials of a fixed-dose combination therapy including at least one blood pressure lowering and one lipid lowering component versus usual care, placebo, or a single drug active component for any treatment duration in adults ≥ 18 years old with no restrictions on presence or absence of pre-existing cardiovascular disease. Data collection and analysis Three review authors independently selected studies for inclusion and extracted the data. We evaluated risk of bias using the Cochrane risk of bias assessment tool. We sought to include outcome data on all-cause mortality, fatal and non-fatal CVD events, adverse events, changes in systolic and diastolic blood pressure, total and low density lipoprotein (LDL) cholesterol concentrations, discontinuation rates, quality of life, and costs. We calculated risk ratios (RR) for dichotomous data and weighted mean differences (MD) for continuous data with 95% confidence intervals (CI) using fixed-effect models when heterogeneity was low (I2 < 50%) and random-effects models when heterogeneity was high (I2 > 50%). Main results We found nine randomised controlled trials with a total of 7047 participants. Seven of the nine trials evaluated the effects of fixed-dose combination therapy on primary CVD prevention, and the trial length ranged from six weeks to 15 months. We found a moderate to high risk of bias in the domains of selection, performance, detection, attrition, and other types of bias in five of the nine trials. Compared with the comparator groups, the effects of the fixed-dose combination treatment on mortality (1.2% versus 1.0%, RR 1.26, 95% CI 0.67 to 2.38, N = 3465) and cardiovascular events (4.0% versus 2.9%, RR 1.38, 95% CI 0.91 to 2.10, N = 2479) were uncertain (low quality evidence). The low event rates for these outcomes, limited availability of data as only two out of nine trials reported on these outcomes, and a high risk of bias in at least one domain suggest that these results should not be viewed with confidence. Adverse events were common in both the intervention (30%) and comparator (24%) groups, with participants randomised to fixed-dose combination therapy being 20% (95% CI 9% to 30%) more likely to report an adverse event. Notably, no serious adverse events were reported. Compared with placebo, the rate of discontinuation among participants randomised to fixed-dose combination was higher (14% versus 11%, RR 1.26 95% CI 1.02 to 1.55). The weighted mean differences in systolic and diastolic blood pressure between the intervention and control arms were -7.05 mmHg (95% CI -10.18 to -3.87) and -3.65 mmHg (95% CI -5.44 to -1.85), respectively. The weighted mean differences (95% CI) in total and LDL cholesterol between the intervention and control arms were -0.75 mmol/L (95% CI -1.05 to -0.46) and -0.81 mmol/L (95% CI -1.09 to -0.53), respectively. There was a high degree of statistical heterogeneity in comparisons of blood pressure and lipids (I2 ≥ 70% for all) that could not be explained, so these results should be viewed with caution. Fixed-dose combination therapy improved adherence to a multi-drug strategy by 33% (26% to 41%) compared with usual care, but this comparison was reported in only one study. The effects of fixed-dose combination therapy on quality of life are uncertain, though these results were reported in only one trial. No trials reported costs. Authors' conclusions Compared with placebo, single drug active component, or usual care, the effects of fixed-dose combination therapy on all-cause mortality or CVD events are uncertain; only few trials report these outcomes and the included trials were primarily designed to observe changes in CVD risk factor levels rather than clinical events. Reductions in blood pressure and lipid parameters are generally lower than those previously projected, though substantial heterogeneity of results exists. Fixed-dose combination therapy is associated with modest increases in adverse events compared with placebo, single drug active component, or usual care but may be associated with improved adherence to a multidrug regimen. Ongoing trials of fixed-dose combination therapy will likely inform key outcomes. PMID:24737108
Gorka, Stephanie M.; Lieberman, Lynne; Phan, K. Luan; Shankman, Stewart A.
2016-01-01
Background Recent laboratory studies have shown that acute alcohol intoxication selectively and effectively dampens aversive responding to an uncertain threat. An emerging hypothesis is that individuals who exhibit heightened reactivity to an uncertain threat may be especially motivated to use alcohol to dampen their distress, setting the stage for negative reinforcement processes to drive excessive alcohol use. However, no study to date has directly examined whether current problematic drinkers exhibit heightened reactivity to an uncertain threat as would be expected. Methods The present study was therefore designed to examine the association between current problematic alcohol use and reactivity to an uncertain threat during sobriety in two, independent samples. In Study 1 (n = 221) and Study 2 (n = 74), adult participants completed the same well-validated threat-of-shock task which separately probes responses to temporally predictable and unpredictable threat. Startle potentiation was measured as an index of aversive responding. Problematic alcohol use was defined as number of binge episodes within the past 30 days in Study 1 and total scores on a self-report measure of hazardous drinking in Study 2. Results As hypothesized, across both studies greater levels of problematic drinking were associated with greater startle potentiation to an unpredictable threat. In Study 2, hazardous drinking scores were also positively associated with startle potentiation to predictable threat. Conclusions The findings are notably consistent with the notion that heightened reactivity to an uncertain threat is an important individual difference factor associated with the onset and/or maintenance of problematic drinking behaviors and may therefore be a novel prevention and intervention target. PMID:27173662
Ding, Fangyuan; Zhang, Dajun; Cheng, Gang
2016-01-01
This study examined the association between infant facial expressions and parental motivation as well as the interaction between attachment state and expressions. Two-hundred eighteen childless adults (M age = 19.22, 118 males, 100 females) were recruited. Participants completed the Chinese version of the State Adult Attachment Measure and the E-prime test, which comprised three components (a) liking, the specific hedonic experience in reaction to laughing, neutral, and crying infant faces; (b) representational responding, actively seeking infant faces with specific expressions; and (c) evoked responding, actively retaining images of three different infant facial expressions. While the first component refers to the "liking" of infants, the second and third components entail the "wanting" of an infant. Random intercepts multilevel models with emotion nested within participants revealed a significant interaction between secure attachment state and emotion on both liking and representational response. A hierarchical regression analysis was conducted to examine the unique contributions of secure attachment state. Findings demonstrated that, after controlling for sex, anxious, and avoidant, secure attachment state positively predicted parental motivations (liking and wanting) in the neutral and crying conditions, but not the laughing condition. These findings demonstrate the significant role of secure attachment state in parental motivation, specifically when infants display uncertain and negative emotions.
The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars
NASA Technical Reports Server (NTRS)
Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.
2000-01-01
Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.
Negre, T; Faure, A; Andre, M; Daniel, L; Coulange, C; Lechevallier, E
2011-11-01
Angiomyolipoma is the most frequent benign renal solid tumor. Because of the lack of fat component on the CT scan, diagnosis of this tumor is hard and can require percutaneous biopsy of unknown renal tumor. The follow-up of the poor fat CT scan component AML (PFCT AML) is uncertain. Five hundred percutaneous renal biopsy under tomodenstitometry have been realised between 1998 and 2008. There was 41 PFCT AML on the 500 biopsy. By definition, a PFCT AML is an AML where the diagnosis is done on a percutaneous biopsy but where there was no fat component on the first CT scan. We studied and compared clinical, tomodensitometric and histologic parameters of these 41 patients (mean age: 56, 9±11.04; sexe rate M/F: 6/35) where renal AML was diagnosed on percutaneous renal biopsy but without fat component on CT scan. Average size was 26.44±14.68mm. We phone-called 16 patients for the long-term follow-up. Average follow-up was 41±28.3 months. For four patients on 16, initial diagnosis was done in front of local symptoms, for one of the 16 diagnosis was done in front of general symptoms, for one of the diagnosis was done during Bourneville tuberous sclerosis evolution and 10 of the 16 was done fortuitously. After review of the initial CT scan, fat density was found on 24% of them. Ten percent was epithelioid angiomyolipoma. Four renal biopsy on 41 (10%) was epithelioid AML. No epithelioid AML had fat component after the second look of the CT scan. Among the 16 patients who were phone-called, three (19%) underwent a complication. Two had abdominal pain and was treated medically. Initial sizes were 26 and 30mm. Only one patient must be operated by radical nephrectomy for acute hemorrhage. Initial size was 45mm. No neoplasic degeneration was identified for those 16 patients. In our study, the PFCT AML rate was 8.2%. In 25% cases, CT scan read-through shown a fat component and could help for the diagnosis. PFCT AML evolution seems to be the same as a classic AML. Conservative treatment had a good covering because there was no death and no malignant evolution. However, we found 10% of epithelioid angiomyolipoma in which malignant risk is high. PFCT AML diagnosed on renal percutaneous biopsy of unknown renal tumor requires the same management than the classic AML. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Food and functional dyspepsia: a systematic review.
Duncanson, K R; Talley, N J; Walker, M M; Burrows, T L
2018-06-01
Functional dyspepsia (FD) is a debilitating functional gastrointestinal disorder characterised by early satiety, post-prandial fullness or epigastric pain related to meals, which affects up to 20% of western populations. A high dietary fat intake has been linked to FD and duodenal eosinophilia has been noted in FD. We hypothesised that an allergen such as wheat is a risk factor for FD and that withdrawal will improve symptoms of FD. We aimed to investigate the relationship between food and functional dyspepsia. Sixteen out of 6451 studies identified in a database search of six databases met the inclusion criteria of studies examining the effect of nutrients, foods and food components in adults with FD or FD symptoms. Wheat-containing foods were implicated in FD symptom induction in six studies, four of which were not specifically investigating gluten and two that were gluten-specific, with the implementation of a gluten-free diet demonstrating a reduction in symptoms. Dietary fat was associated with FD in all three studies that specifically measured this association. Specific foods reported as inducing symptoms were high in either natural food chemicals, high in fermentable carbohydrates or high in wheat/gluten. Caffeine was associated with FD in four studies, although any association with alcohol was uncertain. Wheat and dietary fats may play key roles in the generation of FD symptoms and reduction or withdrawal eased symptoms. Randomised trials investigating the roles of gluten, FODMAPs (fermentable oligosaccharide, disaccharide, monosaccharide and polyols) and high fat ingestion and naturally occurring food chemicals in the generation of functional dyspepsia symptoms are warranted and further investigation of the mechanisms is now required. © 2017 The British Dietetic Association Ltd.
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2016-12-01
Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Gensby, U; Labriola, M; Irvin, E; Amick, B C; Lund, T
2014-06-01
This paper presents results from a Campbell systematic review on the nature and effectiveness of workplace disability management programs (WPDM) promoting return to work (RTW), as implemented and practiced by employers. A classification of WPDM program components, based on the review results, is proposed. Twelve databases were searched between 1948 to July 2010 for peer-reviewed studies of WPDM programs provided by employers to re-entering workers with occupational or non-occupational illnesses or injuries. Screening of articles, risk of bias assessment and data extraction were conducted in pairs of reviewers. Studies were clustered around various dimensions of the design and context of programs. 16,932 records were identified by the initial search. 599 papers were assessed for relevance. Thirteen studies met inclusion criteria. Twelve peer reviewed articles (two non-randomized studies, and ten single group experimental before and after studies), including ten different WPDM programs informed the synthesis of results. Narrative descriptions of the included program characteristics provided insight on program scope, components, procedures and human resources involved. However, there were insufficient data on the characteristics of the sample and the effect sizes were uncertain. A taxonomy classifying policies and practices around WPDM programs is proposed. There is insufficient evidence to draw conclusions on the effectiveness of employer provided WPDM programs promoting RTW. It was not possible to determine if specific program components or specific sets of components are driving effectiveness. The proposed taxonomy may guide future WPDM program evaluation and clarify the setup of programs offered to identify gaps in existing company strategies.
Assessing the Risks to Human Health in Heterogeneous Aquifers under Uncertainty
NASA Astrophysics Data System (ADS)
de Barros, Felipe
2015-04-01
Reliable quantification of human health risk from toxic chemicals present in groundwater is a challenging task. The main difficulty relies on the fact that many of the components that constitute human health risk assessment are uncertain and requires interdisciplinary knowledge. Understanding the impact from each of these components in risk estimation can provide guidance for decision makers to manage contaminated sites and best allocate resources towards minimal prediction uncertainty. This presentation will focus on the impact of aquifer heterogeneity in human health risk. Spatial heterogeneity of the hydrogeological properties can lead to the formation of preferential flow channels which control the plume spreading rates and travel time statistics, both which are critical in assessing the risk level. By making use of an integrated hydrogeological-health stochastic framework, the significance of characteristic length scales (e.g. characterizing flow, transport and sampling devices) in both controlling the uncertainty of health risk and determining data needs is highlighted. Through a series of examples, we show how fundamental knowledge on the main physical mechanisms affecting solute pathways are necessary to understand the human health response to varying drivers.
Prognostics Applied to Electric Propulsion UAV
NASA Technical Reports Server (NTRS)
Goebel, Kai; Saha, Bhaskar
2013-01-01
Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.
Neurodegenerative disease and cognitive retest learning.
Wilson, Robert S; Capuano, Ana W; Yu, Lei; Yang, Jingyun; Kim, Namhee; Leurgans, Sue E; Lamar, Melissa; Schneider, Julie A; Bennett, David A; Boyle, Patricia A
2018-06-01
Retest learning impacts estimates of cognitive aging, but its bases are uncertain. Here, we test the hypothesis that dementia-related neurodegeneration impairs retest learning. Older persons without cognitive impairment at enrollment (n = 567) had annual cognitive testing for a mean of 11 years, died, and had a neuropathologic examination to quantify 5 neurodegenerative pathologies. Change point models were used to divide cognitive trajectories into an early retest sensitive component and a later component less sensitive to retest. Performance on a global cognitive measure (baseline mean = 0.227, standard deviation = 0.382) increased an estimated mean of 0.142-unit per year for a mean of 1.5 years and declined an estimated mean of 0.123-unit per year thereafter. No pathologic marker was related to cognitive change before the change point; each was related to cognitive decline after the change point. Results were comparable in analyses that used specific cognitive outcomes, included 220 individuals with mild cognitive impairment at enrollment, or allowed a longer retest learning period. The findings suggest that neurodegeneration does not impact cognitive retest learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
75 FR 54802 - Requirement of a Statement Disclosing Uncertain Tax Positions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... return. Corporations that prepare financial statements are required by generally accepted accounting principles to identify and quantify all uncertain tax positions as described in Financial Accounting..., including International Financial Reporting Standards and country-specific generally accepted accounting...
Robust control synthesis for uncertain dynamical systems
NASA Technical Reports Server (NTRS)
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
NASA Astrophysics Data System (ADS)
Liu, Zhengmin; Liu, Peide
2017-04-01
The Bonferroni mean (BM) was originally introduced by Bonferroni and generalised by many other researchers due to its capacity to capture the interrelationship between input arguments. Nevertheless, in many situations, interrelationships do not always exist between all of the attributes. Attributes can be partitioned into several different categories and members of intra-partition are interrelated while no interrelationship exists between attributes of different partitions. In this paper, as complements to the existing generalisations of BM, we investigate the partitioned Bonferroni mean (PBM) under intuitionistic uncertain linguistic environments and develop two linguistic aggregation operators: intuitionistic uncertain linguistic partitioned Bonferroni mean (IULPBM) and its weighted form (WIULPBM). Then, motivated by the ideal of geometric mean and PBM, we further present the partitioned geometric Bonferroni mean (PGBM) and develop two linguistic geometric aggregation operators: intuitionistic uncertain linguistic partitioned geometric Bonferroni mean (IULPGBM) and its weighted form (WIULPGBM). Some properties and special cases of these proposed operators are also investigated and discussed in detail. Based on these operators, an approach for multiple attribute decision-making problems with intuitionistic uncertain linguistic information is developed. Finally, a practical example is presented to illustrate the developed approach and comparison analyses are conducted with other representative methods to verify the effectiveness and feasibility of the developed approach.
Modeling fuel treatment impacts on fire suppression cost savings: A review
Matthew P. Thompson; Nathaniel M. Anderson
2015-01-01
High up-front costs and uncertain return on investment make it difficult for land managers to economically justify large-scale fuel treatments, which remove trees and other vegetation to improve conditions for fire control, reduce the likelihood of ignition, or reduce potential damage from wildland fire if it occurs. In the short-term, revenue from harvested forest...
ERIC Educational Resources Information Center
Commonwealth of Learning, 2010
2010-01-01
The Commonwealth of Learning Review and Improvement Model (COL RIM) was developed by the Commonwealth of Learning in response to two key drivers: (1) Increased global emphasis on the quality of higher education; and (2) Rising concern about the high cost and uncertain benefits of conventional approaches to external quality assurance. Any…
ERIC Educational Resources Information Center
Bird, Beverly S.
Persons with low hope are characterized as having an external locus of control that is concerned with protecting an uncertain sense of self-esteem. Strategies are employed to limit negative attributions made by self and others when self-esteem is threatened. Those with high hope, on the other hand, have an internal locus of control, see themselves…
What Employers Need to Know: Frequently Asked Questions about High School Students in Workplaces
ERIC Educational Resources Information Center
Jobs For the Future, 2015
2015-01-01
Employers may not know the best way to reach out or how to structure opportunities for young people to explore careers within their organization. In addition, employers may be uncertain about liability, privacy policies, and safety regulations for employees under the age of 18. State and federal laws and policies pertaining to youth employment can…
D. Lee Taylor; Teresa N. Hollingsworth; Jack W. McFarland; Niall J. Lennon; Chad Nusbaum; Roger W. Ruess
2014-01-01
Fungi play key roles in ecosystems as mutualists, pathogens, and decomposers. Current estimates of global species richness are highly uncertain, and the importance of stochastic vs. deterministic forces in the assembly of fungal communities is unknown. Molecular studies have so far failed to reach saturated, comprehensive estimates of fungal diversity. To obtain a more...
ERIC Educational Resources Information Center
Amir, On; Ariely, Dan
2008-01-01
This article investigates the influence of progress certainty and discrete progress markers (DPMs) on performance and preferences. The authors suggest that the effects of DPMs depend on whether progress certainty is high or low. When the distance to the goal is uncertain, DPMs can help reduce uncertainty and thus improve performance and increase…
Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
Spatari, Sabrina; MacLean, Heather L
2010-11-15
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.
Thoracic paravertebral ganglioneuroma with high immunohistochemical expression of TrkA.
Nishio, S; Hamada, Y; Nakagawara, A; Haga, S; Suzuki, S; Fukui, M
1999-01-01
A 21-year-old man, who had previously undergone a total resection for a retroperitoneal ganglioneuroblastoma at 7 months of age, was revealed to have a thoracic paravertebral ganglioneuroma, in which immunohistochemical expression of neuron-specific enolase and neurofilament was noted. Furthermore, immunohistochemical expression of TrkA, which is a high-affinity receptor for nerve growth factor, was evident. Although the exact histogenesis remains uncertain, TrkA was considered to be involved in the development of this thoracic paravertebral tumor.
NASA Astrophysics Data System (ADS)
McCreight, J. L.; Gochis, D. J.; Hoar, T.; Dugger, A. L.; Yu, W.
2014-12-01
Uncertainty in precipitation forcing, soil moisture states, and model groundwater fluxes are first-order sources of error in streamflow forecasting. While near-surface estimates of soil moisture are now available from satellite, very few soil moisture observations below 5 cm depth or groundwater discharge estimates are available for operational forecasting. Radar precipitation estimates are subject to large biases, particularly during extreme events (e.g. Steiner et al., 2010) and their correction is not typically available in real-time. Streamflow data, however, are readily available in near-real-time and can be assimilated operationally to help constrain uncertainty in these uncertain states and improve streamflow forecasts. We examine the ability of streamflow observations to diagnose bias in the three most uncertain variables: precipitation forcing, soil moisture states, and groundwater fluxes. We investigate strategies for their subsequent bias correction. These include spinup and calibration strategies with and without the use of data assimilation and the determination of the proper spinup timescales. Global and spatially distributed multipliers on the uncertain states included in the assimilation state vector (e.g. Seo et al., 2003) will also be evaluated. We examine real cases and observing system simulation experiments for both normal and extreme rainfall events. One of our test cases considers the Colorado Front Range flood of September 2013 where the range of disagreement amongst five precipitation estimates spanned a factor of five with only one exhibiting appreciable positive bias (Gochis et al, submitted). Our experiments are conducted using the WRF-Hydro model with the NoahMP land surface component and the data assimilation research testbed (DART). A variety of ensemble data assimilation approaches (filters) are considered. ReferencesGochis, DJ, et al. "The Great Colorado Flood of September 2013" BAMS (Submitted 4-7-14). Seo, DJ, V Koren, and N Cajina. "Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting." J Hydromet (2003). Steiner, Matthias, JA Smith, SJ Burges, CV Alonso, and RW Darden. "Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation." WRR (1999).
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less
García-Pérez, Miguel A.; Alcalá-Quintana, Rocío
2017-01-01
Psychophysical data from dual-presentation tasks are often collected with the two-alternative forced-choice (2AFC) response format, asking observers to guess when uncertain. For an analytical description of performance, psychometric functions are then fitted to data aggregated across the two orders/positions in which stimuli were presented. Yet, order effects make aggregated data uninterpretable, and the bias with which observers guess when uncertain precludes separating sensory from decisional components of performance. A ternary response format in which observers are also allowed to report indecision should fix these problems, but a comparative analysis with the 2AFC format has never been conducted. In addition, fitting ternary data separated by presentation order poses serious challenges. To address these issues, we extended the indecision model of psychophysical performance to accommodate the ternary, 2AFC, and same–different response formats in detection and discrimination tasks. Relevant issues for parameter estimation are also discussed along with simulation results that document the superiority of the ternary format. These advantages are demonstrated by fitting the indecision model to published detection and discrimination data collected with the ternary, 2AFC, or same–different formats, which had been analyzed differently in the sources. These examples also show that 2AFC data are unsuitable for testing certain types of hypotheses. matlab and R routines written for our purposes are available as Supplementary Material, which should help spread the use of the ternary format for dependable collection and interpretation of psychophysical data. PMID:28747893
Modelling uncertain paternity to address differential pedigree accuracy
USDA-ARS?s Scientific Manuscript database
The objective was to implement uncertain parentage models to account for differences in daughter pedigree accuracy. Elite sires have nearly all daughters genotyped resulting in correct paternity assignment. Bulls of lesser genetic merit have fewer daughters genotyped creating the possibility for mor...
The Use of a Binary Composite Endpoint and Sample Size Requirement: Influence of Endpoints Overlap.
Marsal, Josep-Ramon; Ferreira-González, Ignacio; Bertran, Sandra; Ribera, Aida; Permanyer-Miralda, Gaietà; García-Dorado, David; Gómez, Guadalupe
2017-05-01
Although composite endpoints (CE) are common in clinical trials, the impact of the relationship between the components of a binary CE on the sample size requirement (SSR) has not been addressed. We performed a computational study considering 2 treatments and a CE with 2 components: the relevant endpoint (RE) and the additional endpoint (AE). We assessed the strength of the components' interrelation by the degree of relative overlap between them, which was stratified into 5 groups. Within each stratum, SSR was computed for multiple scenarios by varying the events proportion and the effect of the therapy. A lower SSR using CE was defined as the best scenario for using the CE. In 25 of 66 scenarios the degree of relative overlap determined the benefit of using CE instead of the RE. Adding an AE with greater effect than the RE leads to lower SSR using the CE regardless of the AE proportion and the relative overlap. The influence of overlapping decreases when the effect on RE increases. Adding an AE with lower effect than the RE constitutes the most uncertain situation. In summary, the interrelationship between CE components, assessed by the relative overlap, can help to define the SSR in specific situations and it should be considered for SSR computation. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.
2011-01-01
The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.
Multiple point statistical simulation using uncertain (soft) conditional data
NASA Astrophysics Data System (ADS)
Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou
2018-05-01
Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.
Appropriateness criteria predict outcomes for sinus surgery and may aid in future patient selection.
Beswick, Daniel M; Mace, Jess C; Soler, Zachary M; Ayoub, Noel F; Rudmik, Luke; DeConde, Adam S; Smith, Timothy L
2018-05-14
Appropriateness criteria to determine surgical candidacy for chronic rhinosinusitis (CRS) have recently been described. This study stratified patients who underwent endoscopic sinus surgery (ESS) according to these new appropriateness criteria and evaluated postoperative improvements among appropriateness categories. Adult patients with uncomplicated CRS electing ESS were prospectively enrolled in a multi-institutional cohort study between March 2011 and June 2015 to assess outcomes. Subsequently, appropriateness criteria that consider preoperative medical therapy, 22-item SinoNasal Outcome Test (SNOT-22) scores, and Lund-Mackay computed tomography scores were retrospectively applied. A total of 92.6% (436 of 471) were categorized as "appropriate" ESS candidates, 3.8% (18 of 471) as "uncertain," and 3.6% (17 of 471) as "inappropriate." Among uncertain patients, two-thirds (12 of 18) had identifiable reasons for undergoing ESS, most commonly oral corticosteroid intolerance (n = 6). Postoperative follow-up was available for 79% (n = 372). Clinically significant SNOT-22 improvements occurred in both appropriate and uncertain groups (all P < 0.050) but not among the inappropriate group. The inappropriate group reported less mean improvement in SNOT-22 total score compared to appropriate (P = 0.008) and uncertain (P = 0.006) groups. The vast majority of patients (∼93%) who underwent ESS in a multi-institutional research program were identified as appropriate candidates for surgical intervention, as defined by current appropriateness criteria. Valid considerations frequently exist for offering ESS to patients categorized as uncertain. Appropriate and uncertain candidates report similar, clinically significant SNOT-22 improvements following surgery. Patients classified as inappropriate reported significantly less improvement following ESS. Surgical appropriateness criteria may assist in predicting outcomes of ESS. 2b. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Tisa, Paul C.
Every year the DoD spends billions satisfying its large petroleum demand. This spending is highly sensitive to uncontrollable and poorly understood market forces. Additionally, while some stakeholders may not prioritize its monetary cost and risk, energy is fundamentally coupled to other critical factors. Energy, operational capability, and logistics are heavily intertwined and dependent on uncertain security environment and technology futures. These components and their relationships are less understood. Without better characterization, future capabilities may be significantly limited by present-day acquisition decisions. One attempt to demonstrate these costs and risks to decision makers has been through a metric known as the Fully Burdened Cost of Energy (FBCE). FBCE is defined as the commodity price for fuel plus many of these hidden costs. The metric encouraged a valuable conversation and is still required by law. However, most FBCE development stopped before the lessons from that conversation were incorporated. Current implementation is easy to employ but creates little value. Properly characterizing the costs and risks of energy and putting them in a useful tradespace requires a new framework. This research aims to highlight energy's complex role in many aspects of military operations, the critical need to incorporate it in decisions, and a novel framework to do so. It is broken into five parts. The first describes the motivation behind FBCE, the limits of current implementation, and outlines a new framework that aids decisions. Respectively, the second, third, and fourth present a historic analysis of the connections between military capabilities and energy, analyze the recent evolution of this conversation within the DoD, and pull the historic analysis into a revised framework. The final part quantifies the potential impacts of deeply uncertain futures and technological development and introduces an expanded framework that brings capability, energy, and their uncertainty into the same tradespace. The work presented is intended to inform better policies and investment decisions for military acquisitions. The discussion highlights areas within the DoD's understanding of energy that could improve or whose development has faltered. The new metric discussed allows the DoD to better manage and plan for long-term energy-related costs and risk.
Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.; Gladstone, G. R.
1993-01-01
Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra; agreement with the observed ratio of visible-to-infrared extinction opacities; and ultraviolet and visible single-scattering albedos comparable to their observed values.
Quantitative Robust Control Engineering: Theory and Applications
2006-09-01
30]. Gutman, PO., Baril , C. Neuman, L. (1994), An algorithm for computing value sets of uncertain transfer functions in factored real form...linear compensation design for saturating unstable uncertain plants. Int. J. Control, Vol. 44, pp. 1137-1146. [90]. Oldak S., Baril C. and Gutman
Zhang, Qin; Yao, Quanying
2018-05-01
The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.
Guymon, Gary L.; Yen, Chung-Cheng
1990-01-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
NASA Astrophysics Data System (ADS)
Guymon, Gary L.; Yen, Chung-Cheng
1990-07-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
NASA Astrophysics Data System (ADS)
Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo
2017-12-01
This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters
NASA Astrophysics Data System (ADS)
Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei
2018-05-01
In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.
Yuan, Chengzhi; Licht, Stephen; He, Haibo
2017-09-26
In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.
Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong
2017-04-01
This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.
"He loves me, he loves me not . . . ": uncertainty can increase romantic attraction.
Whitchurch, Erin R; Wilson, Timothy D; Gilbert, Daniel T
2011-02-01
This research qualifies a social psychological truism: that people like others who like them (the reciprocity principle). College women viewed the Facebook profiles of four male students who had previously seen their profiles. They were told that the men (a) liked them a lot, (b) liked them only an average amount, or (c) liked them either a lot or an average amount (uncertain condition). Comparison of the first two conditions yielded results consistent with the reciprocity principle. Participants were more attracted to men who liked them a lot than to men who liked them an average amount. Results for the uncertain condition, however, were consistent with research on the pleasures of uncertainty. Participants in the uncertain condition were most attracted to the men-even more attracted than were participants who were told that the men liked them a lot. Uncertain participants reported thinking about the men the most, and this increased their attraction toward the men.
[Pitfalls in 'orthodox knowledge'].
Taneda, Hiroyuki
2003-03-01
Within contemporary society both 'pseudoscience' and 'pseudomedicine' can be found. Such knowledge is seen as incorrect, wrong or irrational. I call them 'unorthodox (uncertain) knowledge'. Conversely, 'orthodox knowledge'--for example, science, medicine, etc.--is seen as correct, right or rational. Some people believe 'unorthodox (uncertain) knowledge'. Experts castigate such people from the standpoint that they lack the basic understanding of 'orthodox knowledge'. That is, experts see the ordinary lay person as subjective, ignorant or irrational (whereas they see themselves as objective, analytical, prudent or rational). But are people ignorant or irrational? The aim of this paper is to examine this question in terms of analyzing the interplay among the characteristics of 'orthodox knowledge', 'unorthodox (uncertain) knowledge' and the nature of people's concerns. Thus, this paper explains that people develop certain situated understandings of 'orthodox knowledge' and/or 'unorthodox (uncertain) knowledge' through their intensive experiences. Also, this paper suggests that people need to rethink or reflect on the good institutions which mediate between people and experts.
CKD of Uncertain Etiology: A Systematic Review
Mohottige, Dinushika; Isenburg, Megan Von; Jeuland, Marc; Patel, Uptal D.; Stanifer, John W.
2016-01-01
Background and objectives Epidemics of CKD of uncertain etiology (CKDu) are emerging around the world. Highlighting common risk factors for CKD of uncertain etiology across various regions and populations may be important for health policy and public health responses. Design, setting, participants, & measurements We searched PubMed, Embase, Scopus and Web of Science databases to identify published studies on CKDu. The search was generated in January of 2015; no language or date limits were used. We used a vote-counting method to evaluate exposures across all studies. Results We identified 1607 articles, of which 26 met inclusion criteria. Eighteen (69%) were conducted in known CKDu–endemic countries: Sri Lanka (38%), Nicaragua (19%), and El Salvador (12%). The other studies were from India, Japan, Australia, Mexico, Sweden, Tunisia, Tanzania, and the United States. Heavy metals, heat stress, and dietary exposures were reported across all geographic regions. In south Asia, family history, agrochemical use, and heavy metal exposures were reported most frequently, whereas altitude and temperature were reported only in studies from Central America. Across all regions, CKDu was most frequently associated with a family history of CKDu, agricultural occupation, men, middle age, snake bite, and heavy metal exposure. Conclusions Studies examining etiologies of CKDu have reported many exposures that are heterogeneous and vary by region. To identify etiologies of CKDu, designing consistent and comparative multisite studies across high-risk populations may help elucidate the importance of region–specific versus global risk factors. PMID:26712810
CKD of Uncertain Etiology: A Systematic Review.
Lunyera, Joseph; Mohottige, Dinushika; Von Isenburg, Megan; Jeuland, Marc; Patel, Uptal D; Stanifer, John W
2016-03-07
Epidemics of CKD of uncertain etiology (CKDu) are emerging around the world. Highlighting common risk factors for CKD of uncertain etiology across various regions and populations may be important for health policy and public health responses. We searched PubMed, Embase, Scopus and Web of Science databases to identify published studies on CKDu. The search was generated in January of 2015; no language or date limits were used. We used a vote-counting method to evaluate exposures across all studies. We identified 1607 articles, of which 26 met inclusion criteria. Eighteen (69%) were conducted in known CKDu-endemic countries: Sri Lanka (38%), Nicaragua (19%), and El Salvador (12%). The other studies were from India, Japan, Australia, Mexico, Sweden, Tunisia, Tanzania, and the United States. Heavy metals, heat stress, and dietary exposures were reported across all geographic regions. In south Asia, family history, agrochemical use, and heavy metal exposures were reported most frequently, whereas altitude and temperature were reported only in studies from Central America. Across all regions, CKDu was most frequently associated with a family history of CKDu, agricultural occupation, men, middle age, snake bite, and heavy metal exposure. Studies examining etiologies of CKDu have reported many exposures that are heterogeneous and vary by region. To identify etiologies of CKDu, designing consistent and comparative multisite studies across high-risk populations may help elucidate the importance of region-specific versus global risk factors. Copyright © 2016 by the American Society of Nephrology.
Linking definitions, mechanisms, and modeling of drought-induced tree death.
Anderegg, William R L; Berry, Joseph A; Field, Christopher B
2012-12-01
Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of work during pregnancy.
Chamberlain, G
1985-05-01
Obstetricians pay much attention to the diet and environment of the pregnant woman in prenatal care, but perhaps the woman's work also may affect pregnancy outcome. All women work in the home in addition to any work performed outside the home. The former component needs careful assessment; to get from home to work may be itself a stressful experience. In the workplace, women may encounter specific hazards of radiation or chemicals. More widespread are the problems of fatigue and boredom, which need careful assessment in relation to the outcome of pregnancy. These factors should be measured more precisely, thus allowing the physician to advise pregnant women better about the safe duration of work. Currently, advice tends to be overly cautious, as physicians are uncertain of the data on which such standards are based.
The nursing contribution to nutritional care in cancer cachexia.
Hopkinson, Jane B
2015-11-01
Cancer cachexia is a complex syndrome. Its defining feature is involuntary weight loss, which arises, in part, because of muscle atrophy and is accompanied by functional decline. International expert consensus recommends that nutritional support and counselling is a component of multimodal therapy for cancer cachexia, as poor nutritional intake can contribute to progression of the syndrome. The present paper focuses on what is presently known about the nursing contribution to nutritional care in cancer cachexia. There is potential for nurses to play an important role. However, obstacles to this include lack of a robust evidence base to support their nutritional care practices and unmet need for education about nutrition in cancer. The nursing role's boundaries and the outcomes of nurse-delivered nutritional care in cancer cachexia are both uncertain and should be investigated.
Elemental, isotopic and molecular abundances in comets
NASA Technical Reports Server (NTRS)
Delsemme, A. H.
1986-01-01
The chemical composition of comet nuclei and the factors affecting it are discussed, summarizing the results of recent theoretical, experimental, and observational investigations. Consideration is given to the evidence supporting the view that the nucleus is radially differentiation (except for a thin outer layer), surface differentiation by heat processing and outgassing, and mantle buildup on an undifferentiated core. The nature of the refractory and volatile components is examined, and the elemental and isotopic compositions are given in tables and characterized. The uncertain (except for H2O) molecular composition of the volatile fraction is considered, and it is suggested that some oxides or aldehydes (such as CO, CO2, and H2CO), but no large amounts of fully hydrogenated compounds (such as CH4 and NH3) are included.
The controversial nuclear matrix: a balanced point of view.
Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L
2002-10-01
The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.
High Spectral Resolution LIDAR as a Tool for Air Quality Research
NASA Astrophysics Data System (ADS)
Eloranta, E. W.; Spuler, S.; Hayman, M. M.
2017-12-01
Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.
NASA Astrophysics Data System (ADS)
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino
2017-03-01
Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.
NASA Astrophysics Data System (ADS)
Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.
2018-03-01
We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.
NASA Astrophysics Data System (ADS)
Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.
2018-01-01
The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.
NASA Astrophysics Data System (ADS)
Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming
2017-12-01
This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.
Efficient Portfolios of the Energy Technologies
NASA Astrophysics Data System (ADS)
Nikonov, Oleg I.; Medvedeva, Marina A.
2011-09-01
The goal of the research is to apply the methods of Portfolio Theory to a set of technologies instead of to a set of securities on a stock market (as it is the case in the original model). Assets on the stock market are objects that have risk and return, parameters that depend on uncertain factors and thus are uncertain. The returns from the use of technologies also depend on uncertain factors and thus each technology has a certain amount of risk. The simultaneous use of technologies could diversify the risks that are associated with technologies just the same way as diversification works on the stock market.
A robust optimization methodology for preliminary aircraft design
NASA Astrophysics Data System (ADS)
Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.
2016-05-01
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.
Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle
NASA Astrophysics Data System (ADS)
Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen
2017-04-01
Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.
Internationalization for an Uncertain Future: Tensions, Paradoxes, and Possibilities
ERIC Educational Resources Information Center
Stein, Sharon
2017-01-01
As higher education is increasingly called upon to play a central role in addressing the challenges and crises of today's complex, uncertain, and volatile world, internationalization efforts are intensifying. Emphasizing higher education as a space for critically-informed, socially accountable, and open-ended conversations about alternative…
When, not if: the inescapability of an uncertain climate future.
Ballard, Timothy; Lewandowsky, Stephan
2015-11-28
Climate change projections necessarily involve uncertainty. Analysis of the physics and mathematics of the climate system reveals that greater uncertainty about future temperature increases is nearly always associated with greater expected damages from climate change. In contrast to those normative constraints, uncertainty is frequently cited in public discourse as a reason to delay mitigative action. This failure to understand the actual implications of uncertainty may incur notable future costs. It is therefore important to communicate uncertainty in a way that improves people's understanding of climate change risks. We examined whether responses to projections were influenced by whether the projection emphasized uncertainty in the outcome or in its time of arrival. We presented participants with statements and graphs indicating projected increases in temperature, sea levels, ocean acidification and a decrease in arctic sea ice. In the uncertain-outcome condition, statements reported the upper and lower confidence bounds of the projected outcome at a fixed time point. In the uncertain time-of-arrival condition, statements reported the upper and lower confidence bounds of the projected time of arrival for a fixed outcome. Results suggested that people perceived the threat as more serious and were more likely to encourage mitigative action in the time-uncertain condition than in the outcome-uncertain condition. This finding has implications for effectively communicating the climate change risks to policy-makers and the general public. © 2015 The Author(s).
Richards, Elliott G; Sangi-Haghpeykar, Haleh; McGuire, Amy L; Van den Veyver, Ignatia B; Fruhman, Gary
2015-12-01
A common concern of utilizing prenatal advanced genetic testing is that a result of uncertain clinical significance will increase patient anxiety. However, prenatal ultrasound may also yield findings of uncertain significance, such as 'soft markers' for fetal aneuploidy, or findings with variable prognosis, such as mild ventriculomegaly. In this study we compared risk perception following uncertain test results from each modality. A single survey with repeated measures design was administered to 133 pregnant women. It included 'intolerance of uncertainty' questions, two hypothetical scenarios involving prenatal ultrasound or advanced genetic testing, and response questions. The primary outcome was risk perception score. Risk perception did not vary significantly between ultrasound and genetic scenarios (p = 0.17). The genetic scenario scored a higher accuracy (p = 0.04) but lower sense of empowerment (p = 0.01). Furthermore, patients were more likely to seek additional testing after an ultrasound than after genetic testing (p = 0.05). There were no differences in other secondary outcomes including perception of life-altering consequences and hypothetical worry, anxiety, confusion, or medical care decisions. Our data suggest that uncertain findings on prenatal genetic testing do not elicit a higher perception of risk or anxiety when compared to ultrasound findings of comparable uncertainty. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.
An imprecise probability approach for squeal instability analysis based on evidence theory
NASA Astrophysics Data System (ADS)
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-01-01
An imprecise probability approach based on evidence theory is proposed for squeal instability analysis of uncertain disc brakes in this paper. First, the squeal instability of the finite element (FE) model of a disc brake is investigated and its dominant unstable eigenvalue is detected by running two typical numerical simulations, i.e., complex eigenvalue analysis (CEA) and transient dynamical analysis. Next, the uncertainty mainly caused by contact and friction is taken into account and some key parameters of the brake are described as uncertain parameters. All these uncertain parameters are usually involved with imprecise data such as incomplete information and conflict information. Finally, a squeal instability analysis model considering imprecise uncertainty is established by integrating evidence theory, Taylor expansion, subinterval analysis and surrogate model. In the proposed analysis model, the uncertain parameters with imprecise data are treated as evidence variables, and the belief measure and plausibility measure are employed to evaluate system squeal instability. The effectiveness of the proposed approach is demonstrated by numerical examples and some interesting observations and conclusions are summarized from the analyses and discussions. The proposed approach is generally limited to the squeal problems without too many investigated parameters. It can be considered as a potential method for squeal instability analysis, which will act as the first step to reduce squeal noise of uncertain brakes with imprecise information.
Alexanderian, Alen; Zhu, Liang; Salloum, Maher; Ma, Ronghui; Yu, Meilin
2017-09-01
In this study, statistical models are developed for modeling uncertain heterogeneous permeability and porosity in tumors, and the resulting uncertainties in pressure and velocity fields during an intratumoral injection are quantified using a nonintrusive spectral uncertainty quantification (UQ) method. Specifically, the uncertain permeability is modeled as a log-Gaussian random field, represented using a truncated Karhunen-Lòeve (KL) expansion, and the uncertain porosity is modeled as a log-normal random variable. The efficacy of the developed statistical models is validated by simulating the concentration fields with permeability and porosity of different uncertainty levels. The irregularity in the concentration field bears reasonable visual agreement with that in MicroCT images from experiments. The pressure and velocity fields are represented using polynomial chaos (PC) expansions to enable efficient computation of their statistical properties. The coefficients in the PC expansion are computed using a nonintrusive spectral projection method with the Smolyak sparse quadrature. The developed UQ approach is then used to quantify the uncertainties in the random pressure and velocity fields. A global sensitivity analysis is also performed to assess the contribution of individual KL modes of the log-permeability field to the total variance of the pressure field. It is demonstrated that the developed UQ approach can effectively quantify the flow uncertainties induced by uncertain material properties of the tumor.
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Iowa Gambling Task (IGT): twenty years after – gambling disorder and IGT
Brevers, Damien; Bechara, Antoine; Cleeremans, Axel; Noël, Xavier
2013-01-01
The Iowa Gambling Task (IGT) involves probabilistic learning via monetary rewards and punishments, where advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger losses. Pathological gamblers (PG) perform worse on the IGT compared to controls, relating to their persistent preference toward high, immediate, and uncertain rewards despite experiencing larger losses. In this contribution, we review studies that investigated processes associated with poor IGT performance in PG. Findings from these studies seem to fit with recent neurocognitive models of addiction, which argue that the diminished ability of addicted individuals to ponder short-term against long-term consequences of a choice may be the product of an hyperactive automatic attentional and memory system for signaling the presence of addiction-related cues (e.g., high uncertain rewards associated with disadvantageous decks selection during the IGT) and for attributing to such cues pleasure and excitement. This incentive-salience associated with gambling-related choice in PG may be so high that it could literally “hijack” resources [“hot” executive functions (EFs)] involved in emotional self-regulation and necessary to allow the enactment of further elaborate decontextualized problem-solving abilities (“cool” EFs). A framework for future research is also proposed, which highlights the need for studies examining how these processes contribute specifically to the aberrant choice profile displayed by PG on the IGT. PMID:24137138
NASA Astrophysics Data System (ADS)
Yi, Bowen; Lin, Shuyi; Yang, Bo; Zhang, Weidong
2018-02-01
This paper presents an output feedback indirect dynamic inversion (IDI) approach for a class of uncertain nonaffine systems with input unmodelled dynamics. Compared with previous approaches to achieve performance recovery, the proposed method aims at dealing with a broader class of nonaffine-in-control systems with triangular structure. An IDI state feedback law is designed first, in which less knowledge of the model plant is needed compared to earlier approximate dynamic inversion methods, thus yielding more robust performance. After that, an extended high-gain observer is designed to accomplish the task with output feedback. Finally, we prove that the designed IDI controller is equivalent to an adaptive proportional-integral (PI) controller, with respect to both time response equivalence and robustness equivalence. The conclusion implies that for the studied strict-feedback non-affine systems with unmodelled dynamics, there always exits a PI controller to stabilise the systems. The effectiveness and benefits of the designed approach are verified by three examples.
Rios, Kimberly; Markman, Keith D; Schroeder, Juliana; Dyczewski, Elizabeth A
2014-08-01
Building on findings that self-uncertainty motivates attempts to restore certainty about the self, particularly in ways that highlight one's distinctiveness from others, we show that self-uncertainty, relative to uncertainty in general, increases creative generation among individualists. In Studies 1 to 3, high (but not low) individualists performed better on a creative generation task after being primed with self-uncertainty as opposed to general uncertainty. In Study 4, this effect emerged only among those who were told that the task measured creative as opposed to analytical thinking, suggesting that the positive effects of self-uncertainty on performance are specific to tasks that bolster perceptions of uniqueness. In Study 5, self-uncertain individualists experienced a restoration of self-clarity after being induced to think about themselves as more (vs. less) creative. Implications for compensatory responses to self-uncertainty and factors that influence creativity are discussed. © 2014 by the Society for Personality and Social Psychology, Inc.
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
Spatial planning using probabilistic flood maps
NASA Astrophysics Data System (ADS)
Alfonso, Leonardo; Mukolwe, Micah; Di Baldassarre, Giuliano
2015-04-01
Probabilistic flood maps account for uncertainty in flood inundation modelling and convey a degree of certainty in the outputs. Major sources of uncertainty include input data, topographic data, model structure, observation data and parametric uncertainty. Decision makers prefer less ambiguous information from modellers; this implies that uncertainty is suppressed to yield binary flood maps. Though, suppressing information may potentially lead to either surprise or misleading decisions. Inclusion of uncertain information in the decision making process is therefore desirable and transparent. To this end, we utilise the Prospect theory and information from a probabilistic flood map to evaluate potential decisions. Consequences related to the decisions were evaluated using flood risk analysis. Prospect theory explains how choices are made given options for which probabilities of occurrence are known and accounts for decision makers' characteristics such as loss aversion and risk seeking. Our results show that decision making is pronounced when there are high gains and loss, implying higher payoffs and penalties, therefore a higher gamble. Thus the methodology may be appropriately considered when making decisions based on uncertain information.
Wang, Yingyang; Hu, Jianbo
2018-05-19
An improved prescribed performance controller is proposed for the longitudinal model of an air-breathing hypersonic vehicle (AHV) subject to uncertain dynamics and input nonlinearity. Different from the traditional non-affine model requiring non-affine functions to be differentiable, this paper utilizes a semi-decomposed non-affine model with non-affine functions being locally semi-bounded and possibly in-differentiable. A new error transformation combined with novel prescribed performance functions is proposed to bypass complex deductions caused by conventional error constraint approaches and circumvent high frequency chattering in control inputs. On the basis of backstepping technique, the improved prescribed performance controller with low structural and computational complexity is designed. The methodology guarantees the altitude and velocity tracking error within transient and steady state performance envelopes and presents excellent robustness against uncertain dynamics and deadzone input nonlinearity. Simulation results demonstrate the efficacy of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Ruhrmann, Georg; Guenther, Lars; Kessler, Sabrina Heike; Milde, Jutta
2015-08-01
For laypeople, media coverage of science on television is a gateway to scientific issues. Defining scientific evidence is central to the field of science, but there are still questions if news coverage of science represents scientific research findings as certain or uncertain. The framing approach is a suitable framework to classify different media representations; it is applied here to investigate the frames of scientific evidence in film clips (n=207) taken from science television programs. Molecular medicine is the domain of interest for this analysis, due to its high proportion of uncertain and conflicting research findings and risks. The results indicate that television clips vary in their coverage of scientific evidence of molecular medicine. Four frames were found: Scientific Uncertainty and Controversy, Scientifically Certain Data, Everyday Medical Risks, and Conflicting Scientific Evidence. They differ in their way of framing scientific evidence and risks of molecular medicine. © The Author(s) 2013.
Trusted Defense Microelectronics: Future Access and Capabilities Are Uncertain
2015-10-28
Board Task Force on High Performance Microchip Supply and documentation and discussions with industry and DOD officials in September and October...the defense and microelectronics industry . DOD’s review of this report deemed some of this information as sensitive but unclassified. What GAO...increased specialization and industry consolidation. • Once dominated by domestic sources, the supply chain for microelectronics manufacturing is a global one
Lincoln R. Larson; Gary T. Green; Steven B. Castleberry
2009-01-01
The environmental education (EE) of America's youth is a high priority, but the effect of EE on children's environmental attitudes and awareness remains uncertain. This study used a pretest, post-test approach to investigate the impact of a 1-week EE summer program on children from different age groups and ethnic backgrounds. A survey instrument designed to...
Personal Reflection: Rough Seas to Calmer Waters: The Journey of an Early Career Academic
ERIC Educational Resources Information Center
Kruger, Mellissa L.
2012-01-01
As an early career academic I have had the opportunity to reflect on my early experiences in academia. This paper is a reflection on my journey through rough seas to calmer waters. This paper describes an uneasy voyage of experience, from confident practitioner to uncertain academic. Helping to steer me through uncharted waters on the high seas of…
Government Support for Synthetic Pipeline Gas Uncertain and Needs Attention.
1982-05-14
coal gas. Tear Sheetii RECOMMENDATIONS GAO recommends that the Secretary of Energy - --establish a plan to guide future support of high-Btu coal...recognizes that there are basic dif- ferences expected from large and small scale research projects, GAO believes that the report recognizes these...transportation, including the pipeline system. In its price-setting, or ratemaking function, it represents the interests of gas customers, sometimes
Accomplishments of Long-Term Research and Development
DOE R&D Accomplishments Database
Jordy, George Y.
1988-07-01
Technological breakthroughs cannot be penciled on the calendar in advance. The rate of new technological discovery, while highly uncertain, depends on a base of knowledge acquired earlier. In the economic environment of 1980, progress in basic research, which builds the technology base that will underpin future energy development by Government and industry, was being slowed as cost increases due to inflation grew faster than funding increase.
Acting on uncertainty in landscape management—options forestry.
Jonathan Thompson
2005-01-01
In response to the highly uncertain outcomes inherent in forest management, âoptions forestryâ has been introduced as a novel approach that includes an honest appraisal of uncertainties and learning as a specific objective. The strategy is unique in that it uses a variety of management pathways, all designed to reach the same goal, and structures them in a rigorous...
Portable parallel stochastic optimization for the design of aeropropulsion components
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Rhodes, G. S.
1994-01-01
This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.
Broad Ligament Perivascular Epithelioid Cell Tumor (PEComa) of Uncertain Malignant Potential.
Mathew, Mary; Nayal, Bhavna; Rao, Lakshmi; Nagel, Bhawna
2016-01-01
PEComas are uncommon mesenchymal tumors often involving the pelvic organs. They have an unpredictable behavior. Accurate diagnosis and long-term follow-up is therefore essential in these patients. We report this case of PEComa of uncertain malignant potential in an unusual location with excellent prognosis.
"A Vital Role in Uncertain Times"
ERIC Educational Resources Information Center
Hunt, Melanie
2009-01-01
The adult learning and skills sector is a diverse world, encompassing adult and community learning, apprenticeships, Train to Gain, and contracted employment programmes. The learning and skills sector plays a vital role in uncertain times by giving greater opportunities for social mobility, for example by supporting progression to further and…
Shared Decision Making in Cancer Care
ERIC Educational Resources Information Center
Butow, Phyllis; Tattersall, Martin
2005-01-01
Cancer treatment outcomes have improved over the past 20 years, but treatment decision making in this context remains complex. There are often a number of reasonable treatment alternatives, including no treatment in some circumstances. Patients and doctors often have to weigh up uncertain benefits against uncertain costs. Shared decision making…
Fear and Trembling: Hong Kong Librarians Face Their Uncertain Future.
ERIC Educational Resources Information Center
Chepesiuk, Ron
1992-01-01
Discussion of the possible changes in Hong Kong in 1997 when rule passes to the People's Republic of China focuses on the uncertain future of libraries and librarians. Topics discussed include the political climate; the departure of qualified Chinese librarians; and the growth of libraries and computerized systems. (LRW)
Reasoning in Young Children: Fantasy and Information Retrieval.
ERIC Educational Resources Information Center
Markovits, Henry; And Others
1996-01-01
A model of conditional reasoning predicted that children under 12 would respond correctly to questions of uncertain logical form if premises and context enabled them to access counterexamples from memory, and that children's performance with uncertain logical forms would decrease when empirically true premises are presented in a fantasy context.…
NASA Astrophysics Data System (ADS)
Mavilia, Irene; Bellucci, Alessio; J. Athanasiadis, Panos; Gualdi, Silvio; Msadek, Rym; Ruprich-Robert, Yohan
2018-01-01
The Atlantic multidecadal variability (AMV) is a coherent pattern of variability of the North Atlantic sea surface temperature field affecting several components of the climate system in the Atlantic region and the surrounding areas. The relatively short observational record severely limits our understanding of the physical mechanisms leading to the AMV. The present study shows that the spatial and temporal characteristics of the AMV, as assessed from the historical records, should also be considered as highly uncertain. Using 11 multi-century preindustrial climate simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database, we show that the AMV characteristics are not constant along the simulation when assessed from different 200-year-long periods to match the observed period length. An objective method is proposed to test whether the variations of the AMV characteristics are consistent with stochastic internal variability. For 7 out of the 11 models analysed, the results indicate a non-stationary behaviour for the AMV time series. However, the possibility that the non-stationarity arises from sampling errors can be excluded with high confidence only for one of the 7 models. Therefore, longer time series are needed to robustly assess the AMV characteristics. In addition to any changes imposed to the AMV by external forcings, the detected dependence on the time interval identified in most models suggests that the character of the observed AMV may undergo significant changes in the future.
NASA Astrophysics Data System (ADS)
Lund, M.; Zona, D.; Jackowicz-Korczynski, M.; Xu, X.
2017-12-01
The eddy covariance methodology is the primary tool for studying landscape-scale land-atmosphere exchange of greenhouse gases. Since the choice of instrumental setup and processing algorithms may influence the results, efforts within the international flux community have been made towards methodological harmonization and standardization. Performing eddy covariance measurements in high-latitude, Arctic tundra sites involves several challenges, related not only to remoteness and harsh climate conditions but also to the choice of processing algorithms. Partitioning of net ecosystem exchange (NEE) of CO2 into gross primary production (GPP) and ecosystem respiration (Reco) in the FLUXNET2015 dataset is made using either Nighttime or Daytime methods. These variables, GPP and Reco, are essential for calibration and validation of Earth system models. North of the Arctic Circle, sun remains visible at local midnight for a period of time, the number of days per year with midnight sun being dependent on latitude. The absence of nighttime conditions during Arctic summers renders the Nighttime method uncertain, however, no extensive assessment on the implications for flux partitioning has yet been made. In this study, we will assess the performance and validity of both partitioning methods along a latitudinal transect of northern sites included in the FLUXNET2015 dataset. We will evaluate the partitioned flux components against model simulations using the Community Land Model (CLM). Our results will be valuable for users interested in simulating Arctic and global carbon cycling.
NASA Astrophysics Data System (ADS)
Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan
2017-04-01
More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.
JWST DD ERS Team Update: Decoding Smoke Signals from WR140 using NIRISS+AMI and MIRI/MRS
NASA Astrophysics Data System (ADS)
Lau, Ryan M.; Hankins, Matt; WR DustERS Team
2018-06-01
Dust is a key component of the interstellar medium and plays and important role in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are uncertain. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are known to be efficient dust producers in the local Universe and likely existed in the earliest galaxies. In our Early Release Science (ERS) program, we will use JWST to observe the archetypal colliding-wind binary, WR 140, to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium-resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS).Our planned observations will establish a benchmark for key observing modes for imaging bright sources with faint extended emission at high spatial resolutions. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to delivering science-enabling products for the JWST community that include high-level pipeline tools to mitigate bright source artifacts and image reconstruction tools compatible with NIRISS+AMI data.
Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas
Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M.; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A.; Burger, Richard L.; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R. Spencer; Politis, Gustavo; Santoro, Calogero M.; Standen, Vivien G.; Smith, Colin; Reich, David; Ho, Simon Y. W.; Cooper, Alan; Haak, Wolfgang
2016-01-01
The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages. PMID:27051878
Immune complexes and Ross River virus disease (epidemic polyarthritis).
Fraser, J R; Cunningham, A L; Mathews, J D; Riglar, A
1988-01-01
Immune complexes were sought in serum and synovial fluid in Ross River virus disease (epidemic polyarthritis). Multiple samples from 15 patients showing varied degrees of disease activity over a 3 month period were analysed for their content of complement components C3 and C4, and for C1q solid-phase and Raji cell binding activity. Levels of C3 and C1q binding activity were normal. C4 and Raji cell binding activity were normal except for three high levels of Raji cell binding, of which two were accompanied by low levels of C4, with normal C3 and C1q binding. Synovial fluid showed anomalous Raji cell reactivity of uncertain significance. Conglutinin solid-phase binding activity and IgG rheumatoid factor were compared in the serum of 20 patients during active disease and after recovery. The results were identical and within the normal range in both phases. One patient developed IgM rheumatoid factor in a low titre late in his illness. Although these findings do not entirely exclude a role for immune complexes formed at the onset in the circulation or tissues, it is concluded from this and other evidence that circulating complexes are not commonly responsible for the persistence of syndromes in this disease.
The Lγ Phase of Pulmonary Surfactant.
Kumar, Kamlesh; Chavarha, Mariya; Loney, Ryan W; Weiss, Thomas M; Rananavare, Shankar B; Hall, Stephen B
2018-06-05
To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the L γ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the L γ phase. The cationic surfactant proteins inhibited L γ structures, but at levels unlikely related to charge. Because the L γ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the L γ structures at high relative humidities, making their physiological significance uncertain.
Glutamatergic projection from the nucleus incertus to the septohippocampal system.
Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana
2012-05-31
Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.K.
Corrosion data have been obtained for tub is exposed for 1500--2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility to conditions representative of superheater and intermediate temperature air heater (ITAH) components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, were corroded more than in most pulverized coal fired superheater service, but much less than the highly aggressive liquid phase attack encountered in conventional plants with certain coals and temperatures. Results indicated that, with parabolic corrosion kinetics, type 310 and 253MA stainless steels should be usable to 1400F at hot end of ITAH. At final superheater temperatures, 2.25 andmore » 5 Cr steels were indicated to have parabolic corrosion rates generally below a 0.5 mm/yr criterion, based on corrosion scale thickness. However, unknown amounts of scale loss from spallation made this determination uncertain. Stainless steels 304H, 316H, and 321H had parabolic rates variably above the criterion, but may be servicable under less cyclic conditions. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. Implications of results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.« less
Post-main-sequence debris from rotation-induced YORP break-up of small bodies
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Jacobson, Seth A.; Gänsicke, Boris T.
2014-12-01
Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.
The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae
NASA Astrophysics Data System (ADS)
Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.
2017-01-01
We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.
Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering
Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining
2017-01-01
Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300
NASA Astrophysics Data System (ADS)
Neff, P. D.; Petrenko, V. V.; Hmiel, B.; Smith, A. W.; Buizert, C.; Etheridge, D. M.; Murray, L. T.; Dyonisius, M.
2017-12-01
OH is the main tropospheric oxidant and determines the lifetime of methane and most other trace gases in the atmosphere, thereby controlling the amount of greenhouse warming that these gases can produce. Changes in [OH] in response to large changes in reactive trace gas emissions (which may occur in the future) are uncertain. Measurements of 14C-containing carbon monoxide (14CO) and other tracers such as methyl chloroform over the last ≈25 years have been successfully used to monitor changes in average OH concentration ([OH]), but there are no observational constraints on [OH] further back in time. Reconstructions of 14CO from ice cores could in principle provide such constraints but are complicated by in-situ production of 14CO by cosmic rays directly in the ice. Recent work in Antarctica and Greenland shows that this in-situ component would be relatively small and can be accurately corrected for at sites with very high snow accumulation rates. We propose to sample firn-air and shallow ice to ≈230 m depth at Law Dome, Antarctica (site DE-08, 1.2 m a-1 ice-equivalent snow accumulation), extracting trapped air from the ice cores on-site using a new large-volume ice melting system. 14CO will be analyzed in firn and ice core air samples, and accurate corrections made for the in-situ cosmogenic 14CO component in the ice—allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere [OH] since ≈1880 AD.
Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus
Brady, Oliver J.; Gething, Peter W.; Bhatt, Samir; Messina, Jane P.; Brownstein, John S.; Hoen, Anne G.; Moyes, Catherine L.; Farlow, Andrew W.; Scott, Thomas W.; Hay, Simon I.
2012-01-01
Background Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. Methods/Principal Findings A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. Conclusion The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work. PMID:22880140
Refining the global spatial limits of dengue virus transmission by evidence-based consensus.
Brady, Oliver J; Gething, Peter W; Bhatt, Samir; Messina, Jane P; Brownstein, John S; Hoen, Anne G; Moyes, Catherine L; Farlow, Andrew W; Scott, Thomas W; Hay, Simon I
2012-01-01
Dengue is a growing problem both in its geographical spread and in its intensity, and yet current global distribution remains highly uncertain. Challenges in diagnosis and diagnostic methods as well as highly variable national health systems mean no single data source can reliably estimate the distribution of this disease. As such, there is a lack of agreement on national dengue status among international health organisations. Here we bring together all available information on dengue occurrence using a novel approach to produce an evidence consensus map of the disease range that highlights nations with an uncertain dengue status. A baseline methodology was used to assess a range of evidence for each country. In regions where dengue status was uncertain, additional evidence types were included to either clarify dengue status or confirm that it is unknown at this time. An algorithm was developed that assesses evidence quality and consistency, giving each country an evidence consensus score. Using this approach, we were able to generate a contemporary global map of national-level dengue status that assigns a relative measure of certainty and identifies gaps in the available evidence. The map produced here provides a list of 128 countries for which there is good evidence of dengue occurrence, including 36 countries that have previously been classified as dengue-free by the World Health Organization and/or the US Centers for Disease Control. It also identifies disease surveillance needs, which we list in full. The disease extents and limits determined here using evidence consensus, marks the beginning of a five-year study to advance the mapping of dengue virus transmission and disease risk. Completion of this first step has allowed us to produce a preliminary estimate of population at risk with an upper bound of 3.97 billion people. This figure will be refined in future work.
Henrichs, Kelly F; Howk, Nedda; Masel, Debra S; Thayer, Mark; Refaai, Majed A; Kirkley, Scott A; Heal, Joanna M; Blumberg, Neil
2012-03-01
There are multiple benefits to transfusing only ABO-identical blood components. Historically our institution routinely transfused ABO-nonidentical platelets (PLTs) and cryoprecipitate to surgical patients. In April 2005, we implemented a policy of transfusing only ABO-identical components whenever feasible, regardless of outdating or logistic considerations. Technical staff closely monitored product usage and adjusted blood center orders based on recent utilization and planned transfusions. When unable to provide ABO-identical PLTs, ABO-compatible PLTs were washed to remove incompatible plasma. Data on outdating were collected for 18 months before and after implementation. We compared transfusion reaction and red blood cell (RBC) alloimmunization incidence for 4 years preceding (2001-2004) and subsequent (2006-2009) to implementation. In the year after implementation, only 11 of 410 surgical patients received ABO-nonidentical PLTs (2.7%). There was a 5.6% increase in outdating of PLTs. Transfusing ABO-identical components was associated with significant reductions in febrile (-46%; 8.0 to 4.3 per 10,000 components; p < 0.0001) and allergic transfusion reactions (-23%; from 7.0 to 5.4 per 10,000 components; p = 0.025). A progressive reduction in de novo RBC alloimmunization incidence also occurred (-50% by 2009; p = 0.03). Providing ABO-identical PLTs to almost all patients was feasible in our setting by changing ordering and inventorying procedures and making the ABO-identical policy a staff priority. Unexpected and striking reductions in febrile and allergic reactions and RBC alloimmunization were observed, of uncertain causal relationship to this ABO policy change, which will require further study. © 2011 American Association of Blood Banks.
Roth, Lawrence M; Cheng, Liang
2016-05-01
The origin of mixed germ cell-sex cord stromal tumor (MGC-SCST) of the testis is uncertain, and a controversy exists as to whether the germ cells in these tumors are neoplastic. Although intratubular components of the common and several uncommon forms of testicular germ cell tumors have been described, to our knowledge, intratubular MGC-SCST has not previously been reported in detail. In a study of 13 cases of testicular MGC-SCST, we observed entrapped seminiferous tubules in 7 cases and an intratubular component in 2, both of which were associated with extensive entrapped tubules. Intratubular MGC-SCST is distinguished from entrapped tubules by the occurrence of germ cells resembling spermatogonia in the adluminal compartment and the absence of tubular lumens. By way of contrast, the adluminal compartment of entrapped tubules is composed entirely of immature Sertoli cells, and lumen formation is observed in favorably oriented tubules. Although the germ cells in our cases of MGC-SCST do not show histologic features of malignancy, the observation of spermatogonia-like cells in the adluminal compartment of the tubule, sometimes with concomitant germ cell proliferation, and the infiltrative pattern of the germ cells in the extratubular component support their neoplastic nature. The intratubular component tends to be more centrally located than the adjacent entrapped seminiferous tubules suggesting that it originates from the latter. The tubules of intratubular MGC-SCST are not expanded except in the advanced stage and are approximately the same size as entrapped seminiferous tubules but are considerably smaller than those of the uninvolved testis that shows active spermatogenesis. Copyright © 2015. Published by Elsevier Inc.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.